• Login
    View Item 
    •   BSpace Home
    • Faculty of Engineering & IT
    • Dissertations (IT & Engineering)
    • Dissertations for Sustainable Design of Built Environment (SDBE)
    • View Item
    •   BSpace Home
    • Faculty of Engineering & IT
    • Dissertations (IT & Engineering)
    • Dissertations for Sustainable Design of Built Environment (SDBE)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessment of the Effectiveness of the Double Skin Facades (DSFs) Configurations on Enhancing the Energy Performance of Multi-Used Building in Hot-Arid Climate The Case in Al-Ain City-UAE

    Thumbnail
    View/Open
    20174391.pdf (98.69Mb)
    Date
    2021-10
    Author
    TOBEISHAT, REEMA A.
    Metadata
    Show full item record
    Abstract
    Implementation of double-skin facades DSFs is a sustainable technical solution for enhancing energy performance of building, but the climatic conditions could affect the DSF performance. Al-Ain city-UAE is a hot-arid climate zone and characterized by higher solar gains which play a key role in the DSF performance. In this work, the parametric study was carried out to assess the impact of DSF geometry, cavity depth, glazing properties, openings vents, shading devices SDs and air flow mode in enhancing energy performance and thermal comfort. A multi-used building (commercial and residential) in Al Ain city was selected as a reference base case model for this study. Four -types of ventilated DSFs were applied in the reference building under a wide range of strategies and scenarios based on modifying parametric study of (Cavity width, glazing properties, solar shading devices SDs positions), through replacing the conventional building wall of reference case with DSF system. Different strategies were adopted to analyze the energy performance (total annual cooling loads and total annual electricity consumption) of the building. This work is based on numerical simulation methodology, the IES-VE software tool was utilized to perform the simulation of total energy consumption. IES-VE tool is connected to different applications based on thermal analysis and energy consumption such as, MacroFlo and MicroFlo-CFD used to assess and predict the optimal type and parameter, based on measuring the efficient energy performance, air flow-rate, and air velocity of an integrated base building with DSF types. CFD application was used to simulate the airflow behavior with the air cavity and predicting the influence of DSF in promoting energy performance. To identify the optimum configurations among the four types of natural ventilated DSFs system with External Air Curtin (EAC) mode; the 4 -types of DSFs based on partitioning cavity (Box-Window, Shaft-Box, Corridor and Multi-Story facade) were investigated and compared in this work. The final findings found that the most effective parameter in reduction cooling loads is opening size area, glazing properties, cavity width, airflow within cavity, and shading devices SDs in sequence. The most optimal case was Multi-Storey façade achieving about 10.30% reduction in cooling loads in comparison to the reference base. Overall, all types of DSFs achieved efficient performance in reduction the total annual cooling loads and total annual electricity consumption. In comparing with reference traditional building envelope. The target of this study is to investigate the thermal performance and the effectiveness of DSFs systems to improve the building energy efficiency, to afford a comparison and evaluation of the tested types of DSFs, and to determine the optimal design of the four DSF cases in dealing with thermal performance under hot-arid climate.
    URI
    https://bspace.buid.ac.ae/handle/1234/1942
    Collections
    • Dissertations for Sustainable Design of Built Environment (SDBE)

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    BSpace Links

    Repository guidelinesFAQsContact Us

    Browse

    All of BSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV