The Effect of Using Advanced Insulation Material on Indoor Temperature

dc.Location2009 HC 79 A73
dc.SupervisorProfessor Bassam Abu-Hijleh
dc.contributor.authorArbabioon, Sahar
dc.date.accessioned2013-05-21T12:46:08Z
dc.date.available2013-05-21T12:46:08Z
dc.date.issued2009-02
dc.description.abstractSince UAE’s urban development started two decades ago, the constructions have been influenced by international high technology. As a result, the advanced developments are very different from the local traditional housing which has been built according to the climate. The traditional building materials and components, such masonry and brick walls, have a great capacity to insulate the heat therefore the best possible thermal comfort is achieved during the summer. On the other hand, the modern materials as well as highly glazed surfaces have a little capacity to isolate the heat which causes uncomfortable high temperature during the summer. The purpose of this study was to introduce advanced heat and moisture insulation for UAE hot and humid climate. Studying different type of insulation material such as Phase Change Material, Styropor, Styrodur c, Neopor, Micronal PCM, and EIFS class PB wall and finding the effects of humidity on their thermal storage and their latent heat. The advanced heat and moisture recommended insulation material in this research was Class PB-EIFS panel. EIFS, Exterior Insulation Finish Systems, has been presented in order to reveal the effect of the thickness and the color of the exterior wall which creates more comfort in the interior temperature. Although this material seems more expensive than the normal insulations, but in the real terms a fully glazed building has more initial cost for exterior finishes. By selecting an existing fully glazed building in UAE and applying EIFS with different thickness and colors. The results Ecotect Simulations showed that Class PB EIFS with 290 mm Thickness on beige color exterior finish, not only reduces the annual energy by 10 %, also there was significant of 60% saving on initial cost by removing the glass façade on construction cost. As result the initial cost of buying this EIFS material could be covered in the early years of usage by reducing the annual energy consumption.en_US
dc.identifier.other20050067
dc.identifier.urihttp://bspace.buid.ac.ae/handle/1234/144
dc.language.isoenen_US
dc.publisherThe British University in Dubai (BUiD)en_US
dc.subjectadvanced insulation materialen_US
dc.subjectindoor temperatureen_US
dc.subjecturban developmenten_US
dc.subjectUnited Arab Emirates (UAE)en_US
dc.subjectclimateen_US
dc.subjecttraditional building materialsen_US
dc.subjecthot and humid climateen_US
dc.subjectenergy consumptionen_US
dc.titleThe Effect of Using Advanced Insulation Material on Indoor Temperatureen_US
dc.typeDissertationen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
20050067.pdf
Size:
2.82 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: