Please use this identifier to cite or link to this item:
Title: Simulation & Analysis of the Helicopter Transmission System
Keywords: helicopter transmission system
shear stress
hybrid model
Issue Date: Jan-2019
Publisher: The British University in Dubai (BUiD)
Abstract: This report analyzes the main shafts of the helicopter transmission box. The corresponding behavior of the shafts, gears, and blades are monitored and studied. Three different methods were used to analyze the set of systems describing the behavior of the shafts. The first method is the lumped model analysis, which considers each element of the shaft to be discrete. The second method is the finite element method, which separates the shaft itself into smaller elements. The last method is the hybrid model, where the gears are taken as discrete elements, while the shaft characteristics are continuous functions of the shafts’ length. The speed at each end of each shaft is recorded and studied, as well as, the shafts threshold to the shear stress applied. The model results are compared for accuracy, precision and difficulty. Results conclude of simplicity of the lumped model but also impracticality. While the finite elements model is difficult to produce as it requires tedious solving of high order polynomials. The hybrid model is the most accurate in terms of shaft properties however; it faces difficulty in determining the critical speeds for mechanical failure.
Appears in Collections:Dissertations for Systems Engineering (SE)

Files in This Item:
File Description SizeFormat 
2015115024.pdf3.22 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.