Comparison and Critique review of Durability Provisions and Design Requirements of Various International Design Codes and Standards.

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
The British University in Dubai (BUiD)
Codes and standards establish a standardized language and set of rules for building design, construction, and operation. Such codes and standards have long been the primary mechanism used by governments to establish agreed-upon norms within a territory. These codes are under continual development and update to respond to the outcomes of proven search and the ongoing evolvement of technology and construction processes. Building codes are primarily concerned with establishing a framework for structural capacity and serviceability; nevertheless, many do not effectively consider durability design. In the absence of clear standard guidelines for design engineers, insufficient design and failures or an expensive over-design to provide for the worst-case scenario may occur. Failures in durability design endanger public safety and put a strain on the government's budget. The ACI 318 code is the most widely used code for the design of new concrete structures. Adapting this code will result in a cost-effective concrete structure that is sufficient to withstand the applied loads, however, the provisions about durability are not well understood or thoroughly documented. The goal of this study is to compare the development of the ACI 318 durability design approach to international codes and to suggest improvements to the provisions in light of this comparison. The proposed upgrade may be a beneficial start for the ACI code committee to begin updating the following ACI code generation. The study revealed that the provisions of the ACI 318 code are not comprehensive and well documented, the requirements are prescriptive and dispersed throughout the code chapters, the terminology lacks crucial terms related to durability, and that complex structures and a highly aggressive environment are not included. On the other hand, in the European code and British standards, provisions are more detailed, harmonized, and comprehensive. Additionally, the investigation uncovered inconsistencies in the way ACI publications provided durability criteria for corrosion caused by chlorides, resistance to freezing and thawing, and chemical sulphate attack. Inadequate durability design and implementation can lead to structural failures; as a result, design codes need to be improved to enable code practitioners a coherent, understandable foundation for creating designs that can withstand the environment for their specified service lives.
durability design, exposure conditions, ACI code, eurocode, British code, durability requirement, concrete durability, service life