Predicting Dropouts among a Homogeneous Population using a Data Mining Approach

dc.Location2019 T 58.6 B55
dc.SupervisorDr Sherief Abdallah
dc.contributor.authorBILQUISE, GHAZALA
dc.date.accessioned2019-08-27T06:59:42Z
dc.date.available2019-08-27T06:59:42Z
dc.date.issued2019-03
dc.description.abstractStudent retention is one the biggest challenges facing academic institutions worldwide. Failure to retain students not only affects the student in a negative way but also hinders institutional quality and reputation. While there are several theoretical perspectives of retention, which study the factors that cause students to drop out, more recent studies rely on a data mining and machine learning approach to explore the problem of retention. In this research, we present a novel data mining approach to predict retention among a homogeneous group of students, with similar social and cultural background, at an academic institution based in the UAE. Our model successfully identifes dropouts at an early stage. It provides an early warning system that enables the institution to promptly intervene with assertive measures. Moreover, our model also effectively determines the top predictive variables of retention. Several researchers study retention by focusing on student persistence from one term to another while our study builds a predictive model to study retention until graduation. Moreover, other works use additional student data for predictions, thereby reducing the dataset size, which is counter productive to data mining. Our research relies solely on pre-college and college performance data available in the institutional database. Our research reveals that the Gradient Boosted Trees is a robust algorithm that predicts dropouts with an accuracy of 79.31% and AUC of 88.4% using only pre-enrollment data. High School Average and High School stream of study are observed to be the top predictive variables of on-time graduation when a student joins college. Our study also reveals that ensemble machine learning algorithms are more reliable and outperform standard algorithms.en_US
dc.identifier.other2016228206
dc.identifier.urihttps://bspace.buid.ac.ae/handle/1234/1448
dc.language.isoenen_US
dc.publisherThe British University in Dubai (BUiD)en_US
dc.subjectstudent retentionen_US
dc.subjecthomogeneous populationen_US
dc.subjectdata miningen_US
dc.subjectUnited Arab Emirates (UAE)en_US
dc.subjectacademic institutionsen_US
dc.subjectmachine learningen_US
dc.subjectmachine learning algorithmsen_US
dc.titlePredicting Dropouts among a Homogeneous Population using a Data Mining Approachen_US
dc.typeDissertationen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2016228206.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: