Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of BSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Touqan, Basim"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Establishing a Guideline and Decision-Making Approach for UAE Solar Assets Waste Management by Utilizing PVsyst
    (SpringerLink, 2024) Al−Ali, Amel Khalid Ali; Abdul-Ameer, Alaa; Touqan, Basim
    This research studies the PV solar panels waste with respect to their end-of-life EOL management for PV assets installed in a solar park in the UAE. The lack of thorough worldwide rules and frameworks that direct decision-making in connection to the disposal of photovoltaic (PV) panel waste, as well as the insufficient research on the management of such waste, are the driving forces behind this study. The study aims to address this gap by identifying the factors affecting the performance and efficiency of PV systems, specifically in UAE, a country known for its extremely hot and dry climate, and establish an evaluation approach and guidelines. PVsyst simulation software was utilized for the purpose of system performance analysis and to provide support in the decision-making process by adhering to specifically designed technical flowcharts. The fundamental performance-related parameters of the PV panels, coupled with meteorological information, were determined as important elements for assessing the general performance. The study also identified the main instruments used to make end-of-life (EOL) decisions. The results reveal that the photovoltaic (PV) system at the UAE solar park completed its end of life coupled with an 80% PR ratio sooner than anticipated, with 22 years as compared to the manufacturer's expected 25 years. This leads to the conclusion that installing photovoltaic (PV) panels in hot climates regions accelerates the degradation of the PV panels. The study provides a clear understanding of the circumstances that cause PV systems to fail earlier than expected and consequently introduce more waste to the environment.
  • No Thumbnail Available
    Item
    From Heritage to Sustainability: The Future of the Past in the Hot Arid Climate of the UAE
    (MDPI, 2023) Salameh, Muna; Touqan, Basim
    Achieving future energy objectives and promoting social, economic, and environmental sustainability can be inspired by heritage and historic structures, which make up a sizeable component of the existing building industry. Heritage architecture and urban sites are known for their capability of positive interaction with the climate to provide better thermal conditions, beside their capability of strengthening cultural identity and improving the economic sector for the related sites. Thus, the main purpose of this research is to highlight the positive sustainable effects (social, economic and environmental) for a proposal of conserving and reconstructing a vernacular heritage architecture site in the hot arid climate in the UAE. The research used a qualitative methodology based on multicriteria descriptive schemes beside ENVI-met software. The research’s findings presented the capability of the conserved heritage area to strengthen the social and cultural identity and improve the economic sector. Moreover, the results demonstrated that the conserved heritage district had a better microclimate and predicted mean vote for outdoor thermal comfort compared to the basic case heritage district prior to rehabilitation and another modern district. The conclusion promotes heritage conservation in hot arid climates and encourages the preservation of vernacular architecture and traditional sites to achieve the sustainable goals for creating sustainable cities that can mitigate climate change.
  • Loading...
    Thumbnail Image
    Item
    Heating, Ventilation and Air Conditioning Multivariable Control System with Least Energy Dissipation
    (The British University in Dubai (BUiD), 2019-03) Touqan, Basim
    The highest energy consumption in building sector is caused by building's services such as lighting units and thermal comfort systems. Heated Ventilated Air Conditioning (HVAC) system consumes approximately 50% of the total building energy bill. Many measures have been proposed to achieve energy efficient buildings. Accurate HVAC mathematical models, as well as suitable HVAC control system that leads to optimised energy consumption and improved system performance are part of the engineering efforts to achieve greater efficiency. This study is part of such engineering efforts. It concentrates on employing a ready developed reliable HVAC system mathematical model, namely hybrid distributed-lumped parameter model which handles HVAC as spatially and dimensional dispersed systems for specific HVAC components such as ventilated volume. Other components, such as fan motors, inlet and exit impedances, have physical properties that treated as concentrated lumped mass elements without compromising on the accuracy. Applying an appropriate automatic control strategy to achieve improved HVAC system performance associated with least control energy consumption is one of the major research objectives. This objective has been achieved by adopting and applying a multivariable Least Effort (LE) control technique to regulate a multivariable three inputs-three outputs HVAC system model that employs output feedback, passive compensators and proportional gains, avoiding employment of active integrators. Direct Nyquist Array (DNA), as an alternative multivariable control technique, was employed to compare with the LE performance in terms of system performance and proportional control energy cost. Contrasting the straightforward procedure used to decouple the interaction between the outputs in the LE controller, the identification of decoupling matrix in the DNA controller was based on a trial and error approach, which was very time consuming. After decoupling the plant transfer function matrix, the DNA controller was able to regulate and control the HVAC multivariable system based on using PID loop control, but on the price of consuming higher proportional control energy cost which contravenes with global efforts to minimize energy consumption inside buildings. The ratios of proportional control energy cost between LE and DNA at the time 900 seconds following disturbance unity changes on the system outputs are , and for three different disturbance scenarios. LE controller has shown also better system performance than DNA which at the end makes it superior to the DNA control solution based on the consideration of the simplicity of each controller, the system behaviour under closed loop control and the control energy dissipation.
  • No Thumbnail Available
    Item
    HVAC multivariable system modelling and control
    (Sage journals, 2022) Touqan, Basim; Abdul-Ameer, Alaa; Salameh, Muna
    Heating, Ventilation and Air Conditioning (HVAC) is a multivariable process where any alteration with one system input affects most or all of the system’s outputs simultaneously. Owing to its comprehensiveness, a readily derived multivariable HVAC mathematical model is selected for this work, mainly a hybrid distributed-lumped parameters model. As the transfer function matrix was not established in the selected HVAC model, it was exclusively developed in this study, using the time domain graphical responses of the chosen model. Based on the developed transfer function matrix, a conceptual two-step approach was followed to control HVAC model performance. The first was decoupling the interactions that affect all the system outputs, and the second was designing proper PID controllers for each decoupled loop similar to those used for single input single output (SISO) systems. A direct Nyquist Array (DNA) multivariable control strategy was used for this purpose and successfully decoupled the HVAC system into three separate (SISO) loops. Three PID controllers afterwards were applied for each decoupled loop. The results showed quite decoupled system outputs with a minor coupling percentage so that any change in a system input only affected the corresponding system output. The output responses are also underdamped with almost zero steady-state error confirming the effectiveness of the selected PID parameters. The values of steady-state responses are obtained in (10– 15) s compared with (200–600) s of open-loop response time. However, various overshoot percentages in the responses are encountered but are relatively small, with a short settling time, so they don’t affect the thermal comfort of the ventilated volume. System stability using the Nyquist criterion has also been examined and found to satisfy the criterion. The multivariable DNA control technique and the SISO closed-loop PID controllers have shown the capability to suppress external disturbances and restore the system to its original functional steady-state values.
  • No Thumbnail Available
    Item
    HVAC multivariable system modelling and control
    (2022) Touqan, Basim; Abdul-Ameer, Alaa; Salameh, Muna
    Heating, Ventilation and Air Conditioning (HVAC) is a multivariable process where any alteration with one system input affects most or all of the system’s outputs simultaneously. Owing to its comprehensiveness, a readily derived multivariable HVAC mathematical model is selected for this work, mainly a hybrid distributed-lumped parameters model. As the transfer function matrix was not established in the selected HVAC model, it was exclusively developed in this study, using the time domain graphical responses of the chosen model. Based on the developed transfer function matrix, a conceptual two-step approach was followed to control HVAC model performance. The first was decoupling the interactions that affect all the system outputs, and the second was designing proper PID controllers for each decoupled loop similar to those used for single input single output (SISO) systems. A direct Nyquist Array (DNA) multivariable control strategy was used for this purpose and successfully decoupled the HVAC system into three separate (SISO) loops. Three PID controllers afterwards were applied for each decoupled loop. The results showed quite decoupled system outputs with a minor coupling percentage so that any change in a system input only affected the corresponding system output. The output responses are also underdamped with almost zero steady-state error confirming the effectiveness of the selected PID parameters. The values of steady-state responses are obtained in (10– 15) s compared with (200–600) s of open-loop response time. However, various overshoot percentages in the responses are encountered but are relatively small, with a short settling time, so they don’t affect the thermal comfort of the ventilated volume. System stability using the Nyquist criterion has also been examined and found to satisfy the criterion. The multivariable DNA control technique and the SISO closed-loop PID controllers have shown the capability to suppress external disturbances and restore the system to its original functional steady-state values.
  • Library Website
  • University Website
The British University in Dubai (BUiD)

PO Box 345015 | 1st & 2nd Floors, Block 11, Dubai International Academic City (DIAC)
United Arab Emirates, Phone: +971 4 279 1471, Email: library@buid.ac.ae

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback