Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of BSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "K. Assayed, Suha"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    A Chatbot Intent Classifier for Supporting High School Students
    (2022) K. Assayed, Suha; Shaalan, Khaled; Alkhatib, Manar
    INTRODUCTION: An intent classification is a challenged task in Natural Language Processing (NLP) as we are asking the machine to understand our language by categorizing the users’ requests. As a result, the intent classification plays an essential role in having a chatbot conversation that understand students’ requests. OBJECTIVES: In this study, we developed a novel chatbot called “HSchatbot” for predicting the intent classifications from high school students’ enquiries. Evidently, students in high schools are the most concerned among all students about their future; thus, in this stage they need an instant support in order to prepare them to take the right decision for their career choice. METHODS: The authors in this study used the Multinomial Naive-Bayes and Random Forest classifiers for predicting the students’ enquiries, which in turn improved the performance of the classifiers by using the feature’s extractions. RESULTS: The results show that the random forest classifier performed better than Multinomial Naive-Bayes since the performance of this model is checked by using different metrics like accuracy, precision, recall and F1 score. Moreover, all showed high accuracy scores exceeding 90% in all metrics. However, the accuracy of Multinomial Naive-Bayes classifier performed much better when using CountVectorizers compared to using the TF-IDF. CONCLUSION: In the future work, the results will be analysed and investigated in order to figure out the main factors that affect the performance of Multinomial Naive-Bayes classifier, as well as evaluating the model with using a large corpus of students’ questions and enquiries.
  • Library Website
  • University Website
The British University in Dubai (BUiD)

PO Box 345015 | 1st & 2nd Floors, Block 11, Dubai International Academic City (DIAC)
United Arab Emirates, Phone: +971 4 279 1471, Email: library@buid.ac.ae

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback