Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of BSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Della Valle, Emanuele"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    D 2IA: User-defined interval analytics on distributed streams
    (ProQuest Central, 2022) Awad, Ahmed; Tommasini, Riccardo; Langhi, Samuele; Kamel, Mahmoud; Della Valle, Emanuele; Sakr, Sherif
    Nowadays, modern Big Stream Processing Solutions (e.g. Spark, Flink) are working towards being the ultimate framework for streaming analytics. In order to achieve this goal, they started to offer extensions of SQL that incorporate stream-oriented primitives such as windowing and Complex Event Processing (CEP). The former enables stateful computation on infinite sequences of data items while the latter focuses on the detection of events pattern. In most of the cases, data items and events are considered instantaneous, i.e., they are single time points in a discrete temporal domain. Nevertheless, a point-based time semantics does not satisfy the requirements of a number of use-cases. For instance, it is not possible to detect the interval during which the temperature increases until the temperature begins to decrease, nor for all the relations this interval subsumes. To tackle this challenge, we present D 2IA; a set of novel abstract operators to define analytics on user-defined event intervals based on raw events and to efficiently reason about temporal relationships between intervals and/or point events. We realize the implementation of the concepts of D 2IA on top of Flink, a distributed stream processing engine for big data.
  • No Thumbnail Available
    Item
    D2IA: Stream Analytics on User-Defined Event Intervals
    (Springer Nature Switzerland AG, 2019) Awad, Ahmed; Tommasini, Riccardo; Kamel, Mahmoud; Della Valle, Emanuele; Sakr, Sherif
    Nowadays, modern Big Stream Processing Solutions (e.g. Spark, Flink) are working towards ultimate frameworks for streaming analytics. In order to achieve this goal, they started to offer extensions of SQL that incorporate stream-oriented primitives such as windowing and Complex Event Processing (CEP). The former enables stateful com putation on infinite sequences of data items while the latter focuses on the detection of events pattern. In most of the cases, data items and events are considered instantaneous, i.e., they are single time points in a discrete temporal domain. Nevertheless, a point-based time semantics does not satisfy the requirements of a number of use-cases. For instance, it is not possible to detect the interval during which the temperature increases until the temperature begins to decrease, nor all the relations this interval subsumes. To tackle this challenge, we present D2IA; a set of novel abstract operators to define analytics on user-defined event inter vals based on raw events and to efficiently reason about temporal rela tionships between intervals and/or point events. We realize the imple mentation of the concepts of D2IA on top of Esper, a centralized stream processing system, and Flink, a distributed stream processing engine for big data.
  • Library Website
  • University Website
The British University in Dubai (BUiD)

PO Box 345015 | 1st & 2nd Floors, Block 11, Dubai International Academic City (DIAC)
United Arab Emirates, Phone: +971 4 279 1471, Email: library@buid.ac.ae

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback