Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of BSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alattar, Fuad"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Emerging Research Topic Detection Using Filtered-LDA
    (MDPI, 2021) Alattar, Fuad; Shaalan, Khaled
    Comparing two sets of documents to identify new topics is useful in many applications, like discovering trending topics from sets of scientific papers, emerging topic detection in microblogs, and interpreting sentiment variations in Twitter. In this paper, the main topic-modeling-based approaches to address this task are examined to identify limitations and necessary enhancements. To overcome these limitations, we introduce two separate frameworks to discover emerging topics through a filtered latent Dirichlet allocation (filtered-LDA) model. The model acts as a filter that identifies old topics from a timestamped set of documents, removes all documents that focus on old topics, and keeps documents that discuss new topics. Filtered-LDA also genuinely reduces the chance of using keywords from old topics to represent emerging topics. The final stage of the filter uses multiple topic visualization formats to improve human interpretability of the filtered topics, and it presents the most-representative document for each topic.
  • Library Website
  • University Website
The British University in Dubai (BUiD)

PO Box 345015 | 1st & 2nd Floors, Block 11, Dubai International Academic City (DIAC)
United Arab Emirates, Phone: +971 4 279 1471, Email: library@buid.ac.ae

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback