Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of BSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Abdul-Ameer, Alaa"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Establishing a Guideline and Decision-Making Approach for UAE Solar Assets Waste Management by Utilizing PVsyst
    (SpringerLink, 2024) Al−Ali, Amel Khalid Ali; Abdul-Ameer, Alaa; Touqan, Basim
    This research studies the PV solar panels waste with respect to their end-of-life EOL management for PV assets installed in a solar park in the UAE. The lack of thorough worldwide rules and frameworks that direct decision-making in connection to the disposal of photovoltaic (PV) panel waste, as well as the insufficient research on the management of such waste, are the driving forces behind this study. The study aims to address this gap by identifying the factors affecting the performance and efficiency of PV systems, specifically in UAE, a country known for its extremely hot and dry climate, and establish an evaluation approach and guidelines. PVsyst simulation software was utilized for the purpose of system performance analysis and to provide support in the decision-making process by adhering to specifically designed technical flowcharts. The fundamental performance-related parameters of the PV panels, coupled with meteorological information, were determined as important elements for assessing the general performance. The study also identified the main instruments used to make end-of-life (EOL) decisions. The results reveal that the photovoltaic (PV) system at the UAE solar park completed its end of life coupled with an 80% PR ratio sooner than anticipated, with 22 years as compared to the manufacturer's expected 25 years. This leads to the conclusion that installing photovoltaic (PV) panels in hot climates regions accelerates the degradation of the PV panels. The study provides a clear understanding of the circumstances that cause PV systems to fail earlier than expected and consequently introduce more waste to the environment.
  • No Thumbnail Available
    Item
    Frequency Induced Hydraulic Fracturing
    (2018) Abdul-Ameer, Alaa
  • No Thumbnail Available
    Item
    HVAC multivariable system modelling and control
    (Sage journals, 2022) Touqan, Basim; Abdul-Ameer, Alaa; Salameh, Muna
    Heating, Ventilation and Air Conditioning (HVAC) is a multivariable process where any alteration with one system input affects most or all of the system’s outputs simultaneously. Owing to its comprehensiveness, a readily derived multivariable HVAC mathematical model is selected for this work, mainly a hybrid distributed-lumped parameters model. As the transfer function matrix was not established in the selected HVAC model, it was exclusively developed in this study, using the time domain graphical responses of the chosen model. Based on the developed transfer function matrix, a conceptual two-step approach was followed to control HVAC model performance. The first was decoupling the interactions that affect all the system outputs, and the second was designing proper PID controllers for each decoupled loop similar to those used for single input single output (SISO) systems. A direct Nyquist Array (DNA) multivariable control strategy was used for this purpose and successfully decoupled the HVAC system into three separate (SISO) loops. Three PID controllers afterwards were applied for each decoupled loop. The results showed quite decoupled system outputs with a minor coupling percentage so that any change in a system input only affected the corresponding system output. The output responses are also underdamped with almost zero steady-state error confirming the effectiveness of the selected PID parameters. The values of steady-state responses are obtained in (10– 15) s compared with (200–600) s of open-loop response time. However, various overshoot percentages in the responses are encountered but are relatively small, with a short settling time, so they don’t affect the thermal comfort of the ventilated volume. System stability using the Nyquist criterion has also been examined and found to satisfy the criterion. The multivariable DNA control technique and the SISO closed-loop PID controllers have shown the capability to suppress external disturbances and restore the system to its original functional steady-state values.
  • No Thumbnail Available
    Item
    HVAC multivariable system modelling and control
    (2022) Touqan, Basim; Abdul-Ameer, Alaa; Salameh, Muna
    Heating, Ventilation and Air Conditioning (HVAC) is a multivariable process where any alteration with one system input affects most or all of the system’s outputs simultaneously. Owing to its comprehensiveness, a readily derived multivariable HVAC mathematical model is selected for this work, mainly a hybrid distributed-lumped parameters model. As the transfer function matrix was not established in the selected HVAC model, it was exclusively developed in this study, using the time domain graphical responses of the chosen model. Based on the developed transfer function matrix, a conceptual two-step approach was followed to control HVAC model performance. The first was decoupling the interactions that affect all the system outputs, and the second was designing proper PID controllers for each decoupled loop similar to those used for single input single output (SISO) systems. A direct Nyquist Array (DNA) multivariable control strategy was used for this purpose and successfully decoupled the HVAC system into three separate (SISO) loops. Three PID controllers afterwards were applied for each decoupled loop. The results showed quite decoupled system outputs with a minor coupling percentage so that any change in a system input only affected the corresponding system output. The output responses are also underdamped with almost zero steady-state error confirming the effectiveness of the selected PID parameters. The values of steady-state responses are obtained in (10– 15) s compared with (200–600) s of open-loop response time. However, various overshoot percentages in the responses are encountered but are relatively small, with a short settling time, so they don’t affect the thermal comfort of the ventilated volume. System stability using the Nyquist criterion has also been examined and found to satisfy the criterion. The multivariable DNA control technique and the SISO closed-loop PID controllers have shown the capability to suppress external disturbances and restore the system to its original functional steady-state values.
  • No Thumbnail Available
    Item
    Investigating different damages in a hybrid composite plate completely immersed in water using Ultrasonic waves
    (2024) Masurkar, Faeez; Abdul-Ameer, Alaa; Cui, Fangsen
    The present research investigates the ability of ultrasonic waves in detecting and localizing different types of damage in a hybrid metal-composite laminate fully immersed in water through the permanently attached piezoelectric (PZT) transducers (PZT). Based on the wave-structure analysis and dispersion diagrams obtained for the hybrid metal-composite laminate, a suitable wave excitation frequency is selected for conducting numerical simulations. Accordingly, a gaussian-windowed tone burst signal centered at 250 kHz is applied at the PZT to generate ultrasonic waves in the test specimen. It is found that Scholte wave mode is generated and propagates along the water-solid interface in addition to the anti symmetric guided wave modes. Further, mode conversion is observed during the wave mode-damage interaction. Comparing the pristine and damaged specimens, additional wave packets are seen to be propagating within the specimen that is revealed by analyzing the time-domain waveforms. This information can be further utilized in detecting as well as localizing the damage in the specimen. The location of damage found is well in harmony with the physical locations of damage. Thus, the proposed methodology is found to be capable of investigating the health status of immersed hybrid laminates non-destructively using ultrasonic waves with the help of simple and cost-effective PZT sensors.
  • Library Website
  • University Website
The British University in Dubai (BUiD)

PO Box 345015 | 1st & 2nd Floors, Block 11, Dubai International Academic City (DIAC)
United Arab Emirates, Phone: +971 4 279 1471, Email: library@buid.ac.ae

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback