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Abstract 

This study investigates gas turbine engine regulation for heavy duty vehicles using least 

effort and H infinity control strategies to evaluate the system response, performance and 

consumption of power. This research study shows how the least effort control gives good 

transient response, with characteristics of output decoupling and disturbance rejection 

using a simple feedback strategy. It is shown that the least effort controller gives minimum 

control energy consumption which causes least heat and power losses and lower 

maintenance cost. A comparison study with the H infinity method was conducted, to show 

the advantages and disadvantages of each method. The system model investigated used the 

linearized equations for an automotive gas turbine, to obtain the vehicle, high load 

response. The fuel flow and nozzle area of the gas turbine, are used as reference inputs to 

control the change in the model gas stream temperature, and angular velocity, as system 

outputs. 
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 خلاصة الأطروحة

 

بإستخدام طريقة الطاقة المنخفضة وطريقة الثقيلة  التوربينية للآليات الغاز ركاتمحيتم دراسة التحكم في  هذا البحثفي 

وتبين هذه الدراسة البحثية كيف تعطي .  الاداء و الطاقة المستهلكةمع التركيز على , اتش اللانهائية لتنظيم استجابة النظام 

تأثير  من حدالمع خصائص فصل ارتباط مخرجات النظام و  للنظامطريقة التحكم ذات الطاقة المنخفضة استجابة جيدة 

كيف تعطي طريقة التحكم  وتبين هذه الدراسة البحثية . باستخدام نظام تحكم بسيط بالتغذية الراجعة, الاضطرابات و التشويش

أقل مستوى للطاقة الازمة للتحكم و التي تؤدي إلى تقليل الحرارة و ضياع الطاقة في النظام و تقليل  ذات الطاقة المنخفضة

و في هذا البحث تم انجاز دراسة مقارنة مع طريقة اتش اللانهائية لتنظيم استجابة النظام لإظهار . زمة للصيانةلاالتكلفة ال

لمحرك الغاز التوربيني تم اختبار نموذج النظام باستخدام معادلات خطية و . و مساوئ كل من الطرق المستخدمة حسنات

في هذا البحث تم استخدام تدفق الوقود و حجم فوهة الهواء لمحرك الغاز التوربيني كمدخلات و  . للآليات لتعكس استجابة الآلية

 . رعة الزاويةّ و مخرجات النظامسالغاز المحول و ال مرجعية للتحكم في التغيير في حرارة تيار
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Section one: 

Introduction: 

1.1 Background: 

Gas turbine engines are widely used in industrial applications because of reliability, 

power weight ratio and their efficiency characteristics particularly for full load, constant 

speed applications. The excellent efficiency, compactness and high power-weight ratio 

characteristics of gas turbines are instrumental in their selection for industrial, maritime 

and aviation applications. Gas turbine prime movers were introduced in 1930. A 

successfully flight using Whittle’s engine results in aerospace sector applications which 

continue to this day. In other sectors the advantages of this engine for power plant, ship 

propulsion and automobiles was also proposed (Chiras, 2002)   

 

Figure 1.1: general gas turbine schematic (U.S. Department of Transportation 

Federal Aviation Administration, Airplane Flying Handbook, 2004) 



Eyad Megdadi Page 12 
 

A general gas turbine schematic includes three sections connected in series 

starting with the compressor then the combustion chamber and then the power turbine 

section. Gas turbine working principles are similar to the combustion engine where 

power is generated from a mixture of fuel and compressed air. As illustrated in figure 

1.1 there are four processes in the gas turbine cycle. This commences with air flowing 

through the air inlet as a result of the low pressure inside the air intake caused by the 

compressor unit. Then the compressed air inside the compression section is mixed with 

fuel in the combustion chamber. The mixed air and fuel is then ignited causing 

expansion and the activation of the power turbine. This is how the gas turbine engine 

converts the energy stored in the fuel to produce mechanical work. (Meherwan 

P.Boyce., 2006) 

In general the three processes stages of gas turbine includes: compression , 

combustion and expansion are referred to as the Brayton cycle. The gas turbine 

Brayton cycle was named after the American mechanical engineer George Brayton 

(1830- 1892). Figure (1.2) shows the ideal gas turbine Brayton Cycle. The actual cycle 

is different due to the turbulence and engine internal friction. (Meherwan P. Boyce, 

2006) 

A car gas turbine was tested by the Rover car company in 1950. This vehicle 

completed the Le Mans 24 hour race. A problem of gas turbine car engines is the sound 

which was unexpected to consumers. Gas turbine engines run at lower efficiency when 

operating on less than full load owing to incomplete combustion. (Phillips P. A. 2006)  
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Figure 1.2: Brayton Cycle (Meherwan P. Boyce, 2006) 
 

Nevertheless, the response characteristics of gas turbines on full load is as good as 

diesels. This and the power weight characteristics of gas turbines encouraged further 

research. 

 

Figure 1.2: gas turbine with electric generator for electric drive vehicles  

(E. Megdadi, R. Whalley and K. M. Ebrahimi, PMC2016, 2016) 



Eyad Megdadi Page 14 
 

Research into gas turbine electric drive systems, helps to reduce the gearing 

problems and high shaft rotating speed while reducing the exhaust gas temperature by 

providing an exhaust gas recovery cycle.         

In this paper the gas turbines used for heavy duty, automotives which run over long 

distances will be considered.  

1.2  Problem statement: 

The regulation of automotive gas turbines will be investigated in this research study. 

using a multivariable system model. This represents the gas turbine with outputs of gas 

temperature (𝑇) and the angular speed (𝜔) and, fuel flow (𝑓. 𝑓.) and the nozzle area 

(𝑛. 𝑎.) as inputs.  

The research in this study aims to regulate the gas turbine angular speed (𝜔) by 

regulating the fuel flow (𝑓. 𝑓.) and the nozzle area (𝑛. 𝑎.). The rapid system response 

with lower output interaction and disturbance rejection behavior is required to obtain 

suitable, automotive system response characteristics.  

Multivariable system models are more complicated than single input, single output 

systems models because of output interaction. Both outputs are affected by any system 

input change and this affects system stability. However, this research also deals with 

the control system energy consumption which affects maintenance cost, wear, heat and 

noise generation. 
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1.3  Aims and objectives: 

A least effort controller will be used for regulation of the power turbine shaft speed 

and gas temperature, whilst obtaining acceptable changes in steady state via a closed 

loop strategy. The least effort controller, presented by Whalley R. and Ebrahimi M. 

(2004) solves the problems of stability, transient and steady state response with 

minimum output interaction. 

In this research, a comparative study with an H infinity controller design will be 

produced.  Comparing these controllers shows improvements in the speed response by 

decoupling the system outputs with least control energy consumption. The complexity of 

each control method, for purpose of implementation, will also be discussed. 

1.4 Research Organization 

Section one introduces a gas turbine history, operation and automotive engine 

applications. Then it gives the problem statement with the research aims and objectives. 

Section two provides a literature survey regarding gas turbine control and a brief 

review of the control strategies used in this research together with control theory history 

and developments.  

Section three discusses the gas turbine extended and reduced modeling with the 

gas turbine open loop response, including the controller requirements to achieve 

stability with well-behaved transients, and minimum settling time.    

Section four discusses the control methods used in the comparative study and the 

equations and calculation required by each method.  
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Section five is concerned with the design steps for least effort and H infinity control, 

starting with the required equations, and design parameters.   

Section six deals with the control system comparison and implementation. Results 

from the simulation using the MatLab programing language, simulation results and 

control objectives will be presented. 

As a part of this research a comparative study will be conducted in section seven, 

highlighting the controller design and implementation difficulties of each technique, 

while focusing on the energy consumed by each method.   

Finally, “Conclusions” and “Recommendations” are outlined in order to focus on 

each control method and recommendation for development and implementation 

purposes.   
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Section two: 

Literature Review 

2.1 Introduction 

The earliest gas turbine regulation system used a manual operated hydraulic valve 

to manage the fuel required to achieve the desired, gas turbine power output.  Figure 

2.1 shows the diagram of a gas turbine basic control system starting from the power 

requested by the operator which is compared with the output to compute the fuel flow. 

 

Figure 2.1 diagram of gas turbine basic control system  

(Jaw & Garg, 2005) 
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Traditional control techniques such as stability and closed loop feedback will be 

used, by applying multivariable regulation principles. The least effort control method, will 

be compared with the H infinity method. 

 

2.2 Control strategies review 

Control theories have been implemented and investigated to solve the practical 

problems of regulation and system behavior.  Engineers used the approach to 

understand the relationships between inputs and outputs, identifying the closed loop 

response, and the system stability.   Feedback control strategies managed the system 

behavior by calculating the error or difference value between the actual output value of 

the system and the desired value, to achieve the output response and overall system 

stability.  

Starting from water level regulating mechanism in tanks, in Greece in the period 

300 to 1 B.C., this technique was used for water level processes.  The industrial 

revolution period and mechanization development leading to automation technology and 

control theories are documented by (Dorf and Bishop, 2011).  
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Figure 2.2: diagram of water level regulator system. 

(Dorf and Bishop, 2011)   

 

The temperature control system of Cornelis Drebbel (1572-133) appears to be the 

first control system used in Europe. Then the pressure control system in 1681 by 

Dennis Papin using a flyball governor was introduced. The governor was invented by 

James Watt’s in 1769, to regulate a steam engine speed and was the first application of 

feedback control for industry. Figure (2.3) shows how the output shaft speed is 

measured and this changes the flyball movement in order to manage the amount of 

steam to the steam engine. As the output shaft rotates the flying ball movement causes 

the steam valve to close. (Otto Mayr, 1971). 

Using floating ball, water level governor to control the water entering a boiler, was 

he first applcation of feedback by Plzunov in 1765. (Dorf and Bishop, 2011) 
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Figure 2.3 diagram of flyball governor system. 

(Dorf and Bishop, 2011)   

 

Using mathematical tools to represent actual systems started in the eighteenth 

century. Then differential equations were used to develop control system models. In 

world war II a huge improvement occurred in control theory because of the need to 

design control systems for radar, gun positioning, and other applications. Table 2.1 

shows historical important developments of control science and applications, starting 

from the steam engine governor developed by James Watts, passing through to the 

developments of control systems such as the first formulation of system models for 

industry applications. Table (2.1) details the important development in control 

engineering.  
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Table 2.1: important developments of control science.  

(Dorf and Bishop, 2011)   

The developments of H infinity and least effort controller will be presented and 

discussed, as they are the chosen methods in this comparative study. 

2.3 Classical control theory 

Control science developed in three stages the first stage called the primitive stage 

of automotive control started in the end of 1860s to the beginning of 1900s. This is 

called Control science development stage 1900s. In 1960 the classical and the modern 

stage started through to the present day. 
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2.3.1 Open loop controller concept: 

The concept of open loop control is based on managing the system output directly, 

without using feedback, therefore with open loop control it is not possible to maintain the 

relationship between variables by comparing these variables and improving thereby 

process system accuracy.  

  

a) b) 

Figure 2.4: process of open loop controller: 

a) System to be controlled. b) Open loop controller  

(Dorf and Bishop, 2011) 
 

2.3.2 Feedback controller concept: 

“Feedback is a central feature of life. The process of feedback governs how we grow, 

respond to stress and challenge, and regulate factors such as body temperature, blood 

pressure and cholesterol level. The mechanisms operate at every level, from the 

interaction of proteins in cells to the interaction of organisms in complex ecologies.” 

M. B. Hoagland and B. Dodson, The Way Life works, 1995 [99] - (Karl Johan Aström, 

Richard M. Murray, Feedback Systems, 2008) 

 

Feedback concepts are based on the comparing the output variables with the 

desired values to obtain the system error.  
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Figure 2.5: process of feedback controller  

(Dorf and Bishop, 2011) 

 

The comparison process starts by measuring the output value, then producing a 

feedback signal to compare it with the reference value, which represents the desired 

output.  

2.3.3 PID controller: 

Proportional–integral–derivative (PID) controller is a control strategy that works by 

measuring the difference between the reference point and the actual system output. 

The system output follow the desired value using PID control represented by equation 

(2.1) using proportional, integral and derivative components: 

𝒖 = 𝑲𝑷𝒆 + 𝑲𝑰 ∫𝒆 + 𝑲𝑫 �̇�               ……….(2.1) 

PID controller started to be used early in 1930s as a trial and error control approach 

by selecting 𝐾𝑃, 𝐾𝐼 and 𝐾𝐷 parameters. The aim of this approach is to obtain zero error 

in the output. While 𝑒 representing the current output error, ∫ 𝑒 representing the 

accumulated integral output error. These basics allowed engineers to adjust and tune 

the controller to achieve the required output of the system. This is still a sufficient 
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method in many industry applications and still included in 95 percent of industrial control 

applications. (Edge 1997) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: PID controller representation  

(Johnson M. A. &  Moradi M. H., 2005 ) 

Figure (2.6) shows a PID controller representation general as in (a) and the time 

domine form as in (b) and in laplace transform form as in (c). 
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2.3.4 Routh Hurwitz stability concept:  

Representing physical models of actual systems as a polynomial, gives the ability to 

test a systems response by a mathematical strategy developed by the British scientist 

E. John Routh (1876). The polynomial is consider as stable if its roots are in the left half 

plane or in the unit disk. The famed Routh-Hurwitz stability criterion developed as a 

consequence of realizing the new Routh Hurwitz stability criterion started to be used in 

1911. (Gopal, 2008) 

Routh-Hurwitz stability concept dealing with the main issue in the controller design 

process by evaluating system stability and giving the system roots in the left half s-plane 

without calculating the exact values of these roots. This allows designers to choose a 

suitable method and control parameters that will produce a stable close loop system 

response. 

2.4 The British control school  

Many of British scientist, researchers and engineers, contributed and developed 

control theory and here are some of the methods and techniques developed by the 

British school. 

2.4.1 Nyquist control theory 

Nyquist stability theory was invented by H. Nyquist  in 1932 at New Jersey Nokia 

Bell Labs, it is based on using the graph known as a Nyquist plot to obtain the system 

stability and there is no need to calculate the zeros and poles of the closed loop system. 

(H. Nyquist, 1932) 
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The inverse Nyquist control theory has been improved by the British engineer 

Rosenbrock (1969-1974) to include multi input multi output systems. In multivariable 

systems changing one input affects more than one output due to system input 

interaction, and this make it difficult of applying classical control methods. Using this 

approach to obtain a pre compensator reduce input interaction by changing diagonal 

dominance which make it possible to apply single input-output system control methods. 

(John O'Reilly, 1987)    

 

 

Figure 2.7: representation of a multivariable system  

(John O'Reilly, 1987) 
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Figure 2.8: feedback regulating block diagram of multivariable system 

(John O'Reilly, 1987) 

Figure (2.8) shows that the regulating matrix 𝐾(𝑠) is the product of the multivariable 

pre compensator 𝐾𝑝(𝑠) and the diagonal tuning matrix 𝐾𝑑(𝑠). 

 

Figure 2.9: rearrangement of feedback regulating block diagram of multivariable 
system  

(John O'Reilly, 1987) 
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Using rearrangement of feedback regulating block diagram of multivariable system 

of Figure (2.9) shows that the diagonal matrix F can be represented in the gain space. 

The closed loop transfer function is represented by the equation (2.2) 

𝑯(𝒔) = (𝑰 + 𝑮(𝒔)𝑲(𝒔)𝑭) − 𝟏 𝑮(𝒔)𝑲(𝒔)         …..….(2.2) 

If the poles of H(s) in the left half s-plane then the control system is asymptotically 

stable. The main way to obtain the system stability in inverse Nyquist array is by using 

Gershgorin bands, which plot a group of disks contained the system eigenvalues with a 

calculated radius from the sum of the moduli of the off-diagonal elements.  (John 

O'Reilly, 1987) 

2.5 The American control school 

Many American scientist, researchers and engineers also contributed and 

developed control theory. Here are some of the methods and techniques developed by 

the American school. 

2.5.1 State space modeling  

State space is one of the modern control methods which were firstly adopted by 

Leroy MacColl after studying Soviet researches and journals in the 1930s. Because 

Soviet researchers developed state space methods derived by Poincare and Lyapunov 

in the 19th century it was used by Kalman as a mathematical representation for control 

systems.  (Kalman, 1960) 
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A state space model is obtained by relating system state variables, inputs and 

outputs using differential equations. Then representing state variables, input and output 

as vectors which allows control system using algebraic techniques, matrixes and 

vectors. This approach resulted in an effective way to analyze and solve multi-input and 

multi-output system models. These models use the least number possible of state 

variables reflecting thereby the order of a given system of differential equations.   

The equations used to represent the state space at the same time show the system 

inputs, outputs and state variables as: 

�̇�(𝒕) = 𝑨(𝒕)𝒙(𝒕) + 𝑩(𝒕)𝒖(𝒕) 

𝒚(𝒕) = 𝑪(𝒕)𝒙(𝒕) + 𝑫(𝒕)𝒖(𝒕) 

where : 

𝑨 is the system state matrix 

𝑩 is the system input matrix 

𝑪 is the system output matrix 

𝑫 is the system forward feed matrix which is a zero matrix 

𝒙 is the system state vector 

𝒚 is the system output vector 

𝒖 is the system input vector 

Figure (2.10) shows the representing block diagram of state space modeling. 
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Figure 2.10: representing block diagram of state space modeling  

(Robert L. Williams, II & Douglas A. Lawrence, 2007) 

State space originated in control engineering science in the 1960s by Kalman R. E.. 

Then 𝑛 the state space models were applied in control science to analyze and solve 

multi-input multi-output system models. 

 

Figure 2.11: representing block diagram of state space modeling with feedback gain 

(Norman S. Nise, 2006) 
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The usual control technique is the use of a negative feedback matrix 𝐾 by setting 

𝑢(𝑡) = 𝐾𝑦(𝑡) in: 

�̇�(𝒕) = 𝑨(𝒕)𝒙(𝒕) + 𝑩(𝒕)𝑲𝒚(𝒕) 

𝒚(𝒕) = 𝑪(𝒕)𝒙(𝒕) + 𝑫(𝒕)𝑲𝒚(𝒕) 

Then the closed loop form becomes : 

𝒙(𝒕) = (𝑨 + 𝑩𝑲(𝑰 − 𝑫𝑲)−𝟏𝑪)𝒙(𝑻) 

𝒚(𝑻) = (𝑰 − 𝑫𝑲)𝑪𝒙(𝒕) 

Using the representing (𝑨 + 𝑩𝑲(𝑰 − 𝑫𝑲)−𝟏𝑪) to change the system Eigenvalues by 

choosing the suitable value of the gain matrix 𝑲  

2.5.2 Optimal controller method  

This control strategy uses a mathematical method developed in the beginning of 

1950s by L. Pontryagin and R. Bellman, after studying applied mathematics researches. 

(Bryson, A. E., 1996) 

An optimal controller method based on using a group of differential equations 

represent the control element paths which minimize a cost or loss function. The Optimal 

controller can be obtained using the partial differential equation of Hamilton–Jacobi–

Bellman (HJB) equation. (Ross, I. M. ,2009). 

The Optimal controller for linear quadratic representation minimized the following 

equation. 

https://en.wikipedia.org/wiki/I._Michael_Ross
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𝐉 = ∫(𝐱(𝐭)𝐓𝐐𝐱(𝐭) + 𝐮(𝐭)𝐓𝐑𝐮(𝐭)). 𝐝𝐭

∞

𝟎

 

Using the H constraint equation as the following: 

𝐇(𝐱, 𝐮, 𝐩, 𝐭) =
𝟏

𝟐
(𝐱𝐓𝐐𝐱 + 𝐮𝐓𝐑𝐮) + 𝐏𝐓(𝐀𝐱 + 𝐁𝐮) 

With the partial differential of H equaling zero the system input becomes: 

𝐮 = −𝐑−𝟏𝐁𝐓𝐏 

All this results in the optimal gain of R−1BTP as shown in the following diagram: 

Figure 2.12: optimal controller feedback gain diagram. 

( Whalley R., “lecture notes”, 2015)  

Using the steady state Riccati Equation this yields: 
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𝟎 = 𝐀𝐓𝐏 + 𝐏𝐀 − 𝐏𝐁𝐑−𝟏𝐁𝐓𝐏 + 𝐐      …..….(2.3) 

to select the Q and R matrix to obtain the P matrix and then select the appropriate 

gain.  

2.6 Main issues and concepts of control theory: 

2.6.1 Stability  

Stability is the main issue in the controller designing process. In general a linear 

system is stable when it’s bounded input values lead to a bounded output value. The 

marginal stable system is stable under some conditions and may be stable under other 

conditions because the system poles in the S-plan are on the complex axis. 

2.6.2 Controllability and Observability 

Controllability and Observability is a very important consept in the design stage 

because it indicates a suitable control method for the target system. Controllability 

shows the ability to obtain the desired system output using a suitable control input.  

Observability shows the ability to measure and observe system states and indicate if 

any of system states can be used to obtain the desired system output (Gilbert E. G., 

1962) 

2.6.3 Robust control 

Robust theory is to obtain system stability with the existence of disturbances on the 

system. Robust theory started actively in the 1980s after the improved control methods 

of the American researcher Bode (1905- 1982) and others. Robust control was obtained 
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by multiple feedback and forward paths which allow high gain to be used to suppress 

system disturbances.   

Robustness was achieved in many modern control methods such as the least effort 

controller and H infinity controller techniques.   

2.7 The control methods used in this research: 

2.7.1 Least effort controller review:  

The least effort control strategy proposed by Whalley, R and M Ebrahimi (2006), is 

based on closed loop analysis procedures, which aim to minimize the control effort 

effect required for multivariable system regulation purposes. In so doing, actuator 

actively, wear, heat generation and noise are all minimized, with the employment of the 

low gain, passive feedback strategy invoked. 

Least effort controller system achieves its design by using the minimum value of the 

system performance index (J). The technique in this method is based on analyzing an 

inner and outer loop. Low steady state, output interaction, following reference input 

changes can be achieved by this approach.     

The design strategy to be adopted here will be to adjust the inner loop k(s) and h(s) 

vectors providing thereby “well behaved” dynamic conditions.  Thereafter, with the pre-

compensator P, configured to produce acceptable output coupling, and the outer loop 

feedback gain f becomes the final design parameter enabling the achievement of 

desired, dynamic and disturbance suppression characteristics.   
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2.7.2 H infinity controller review 

H infinity control is used to achieve system robustness and dynamic performance . 

One of the designing methods for H infinity controller is H infinity loop shaping because 

the requested performance can be integrated in the design stage, as performance 

weights.  This method with others was introduced by Zames G. in the early eighties 

which was suitable for multivariable system problems. ( Ankit B.and Veena S. “Design 

and Analysis of Robust H-infinity Controller”) 

  H infinity controller is complicated because of the high order control algorithm 

required, the high controller energy required and the more difficulties in design and 

implementation. The controller K(s) of H infinity technique should provide three criteria 

starting with stability, performance and robustness. 

The stability of H infinity controller is ensured, when the characteristic equation 

roots, represented by equation (2.4), are in the left side of the s plane.  

𝟏 + 𝑮(𝒔)𝑲(𝒔) = 𝟎        ……….(2.4) 

The performance criterion achieved when the sensitivity represented by equation 

(2.5), has a small value for all frequencies. For robustness criterion the H infinity 

controller given to achieve  high robustness for system performance: 

𝑺(𝒔) = 𝟏/(𝟏 + 𝑮(𝒔)𝑲(𝒔))       ……….(2.5) 
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Section three 

Research Methodology 

3.1 Gas turbine modeling: 

The gas turbine and electric power system shown in figure (3.1), with the system 

functions indicated represent and automotive gas turbine system. Two system outputs 

of gas temperature 𝑇(𝑠) and gas generator angular speed 𝑤(𝑠) are the two system 

outputs and fuel flow 𝑓. 𝑓. (𝑠) and nozzle area 𝑛(𝑠) are the inputs. 

 

Figure 3.1: diagram of gas turbine connected electric power system  

(E. Megdadi, R. Whalley and K. M. Ebrahimi, 2016) 

 

The automotive gas turbine multivariable reduced system model can be 

represented by: 

𝒚(𝒔) = 𝑮(𝒔)𝒖(𝒔) 
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where the outputs are the changes in turbine speed and gas temperature, so that: 

𝒚(𝒔) = [
𝑻
𝝎

] 

And the inputs are fuel pump and the guide vane angle changes, so that: 

𝒖(𝒔) = [
𝒇. 𝒇.
𝒏. 𝒂.

] 

The automotive gas turbine model is represented in (3.1) where the matrix 

representing the system relations in the gas turbine is: 

�̅�(𝒔) =

[
 
 
 
 

𝟏. 𝟑(𝒔 + 𝟐𝟓𝟖. 𝟒𝟔)𝟏𝟎𝟔

(𝒔 + 𝟑𝟗. 𝟒𝟐𝟒)(𝒔 + 𝟑𝟓𝟐. 𝟓𝟕𝟓)

−𝟓. 𝟔(𝒔 + 𝟑. 𝟐𝟔𝟕)(𝒔 + 𝟒𝟎. 𝟔𝟔)

(𝒔 + 𝟐𝟖. 𝟎𝟎𝟏)(𝒔 + 𝟎. 𝟗𝟓)

𝟗. 𝟎𝟒(𝒔 + 𝟑𝟏. 𝟒𝟐)𝟏𝟎𝟔

(𝒔 + 𝟏𝟖𝟕. 𝟑𝟗)(𝒔 + 𝟒𝟒. 𝟏𝟕)(𝒔 + 𝟒𝟒. 𝟏𝟔𝟗)

𝟖𝟑. 𝟒(𝒔 + 𝟕𝟓. 𝟓𝟑𝟗𝟓)

(𝒔 + 𝟏𝟏𝟑. 𝟐𝟕)(𝒔 + 𝟏. 𝟕𝟐𝟏𝟒) ]
 
 
 
 

 

           ……….(3.1) 

The reduced G(s) model is obtained by disregarding the remote poles and zeros. 

The final model is obtained by combining adjacent poles and maintaining steady state 

conditions. Then the system transfer function is: 

𝑮(𝒔) =

[
 
 
 
 

𝟎. 𝟗𝟔𝟕 ∗ 𝟏𝟎𝟔

𝒔 + 𝟒𝟎. 𝟎

−𝟖. 𝟏𝟐𝟒𝟖(𝒔 + 𝟑. 𝟐𝟕)

(𝒔 + 𝟎. 𝟗𝟓)

𝟖. 𝟖𝟐 ∗ 𝟏𝟎𝟔(𝒔 + 𝟑𝟏. 𝟒𝟐)

(𝒔 + 𝟏. 𝟓𝟓)(𝒔 + 𝟒𝟎)(𝒔 + 𝟏𝟖𝟕. 𝟒)

𝟓𝟎. 𝟐𝟎

(𝒔 + 𝟏. 𝟓𝟓) ]
 
 
 
 

 

           ……….(3.2) 
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Figure 3.2: the actual gas turbine model with reduced transfer functions 

(Whalley, R and Ebrahimi M, 2004) 

 

Figure (3.2) shows that the reduced model is equivalent to the original model and 

can be used to investigate the system control. 
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3.2 Open loop response: 

Using the reduced system transfer function 𝐺(𝑠) by applying a unit step change on 

system inputs figure (3.3) shows system outputs for 1 second after applying a 1% unity 

step change in Fuel Pump %𝑓𝑝. Figure (3.4) shows outputs response for one second 

after applying a 1% unity step change in the Guide Vane angle %𝑛𝑎. The Figures show 

an over damped response and relatively faster response in figure (3.3) than the 

response in figure (3.4). This response needs to be improved in terms of speed of 

reaction and output interaction. 

 

 

Figure 3.3: system response after applying a 1% unity step  

change in Fuel Pump % 𝑓𝑝 
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Figure 3.4:  system response after applying a 1% unity step  

change in Guide Vane Unit % 𝑛𝑎 

 

Each input affects both outputs, so the controller should reduce output coupling as 

much as possible. This should result, in changing any of the system inputs will change 

mainly one output with relatively small changes in the other output. The controller aims 

to achieve a stable well behaved response, with less than 20% overshoot, minimum 

settling time and rapid response. In this gas turbine model the controller should 

minimize the impact of random disturbances on system response with system’s ability to 

rapidly recover from these disturbances. 

This research investigation aims to achieve minimum effort control, with a simple 

controller design for easy implementation purposes.  
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3.3 Controller methods: 

Least effort controllers control multivariable systems using an inner and outer loop. 

The function of the inner loop is to obtain acceptable transient conditions. The system 

outer loop function is to obtain the required steady state value and to ensure good 

disturbance rejection. The comparison with H infinity controller will illustrate the 

strengths and weaknesses of each strategy.  
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Section four: 

Control theory 

4.1 Least effort controller theory 

4.1.1 Least effort controller technique: 

In the least effort controller an inner loop is used to control the transient behavior of 

the system and outer loop to obtain the required steady state and to ensure disturbance 

suppression criteria.  

The open loop system is represented by: 

𝒚(𝒔) = 𝑮(𝒔)𝒖(𝒔) + 𝜹(𝒔)       ………(4.1) 

and closed loop control law given by: 

𝒖(𝒔) = 𝒌(𝒔)[ŕ(𝒔) − 𝒉(𝒔)𝒚(𝒔)] + 𝑷(𝒓(𝒔) − 𝑭𝒚(𝒔))    ………(4.2) 

The independent inputs in equations (4.1) and (4.22) they are 𝑚 input and outputs 

and  

𝑭 = 𝑫𝒊𝒂𝒈(𝒇𝟏, 𝒇𝟐, …… . . , 𝒇𝒎), 0 < 𝑓𝑗 < 1, 1 ≤ 𝑗 ≤ 𝑚    ………(4.3) 

The inner loop equation which used to obtain the transient performance is: 

𝒌(𝒔)[ŕ(𝒔) − 𝒉(𝒔)𝒚(𝒔)]        ………(4.4) 

The outer loop equation which used to obtain the required steady state condition is: 

𝑷(𝒓(𝒔) − 𝑭𝒚(𝒔))        ………(4.5) 
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With ŕ(𝑠) = 0 , the equation for the closed loop system becomes: 

𝒚(𝒔) = (𝑰𝒎 + 𝑮(𝒔)(𝒌(𝒔) >< 𝒉(𝒔) + 𝑷𝑭))−𝟏 × (𝑮(𝒔) 𝐏𝐫(𝒔) + 𝜹(𝒔))  ………(4.6) 

In terms of the steady state matrix 𝑆𝑠 

𝒚(𝟎) = 𝑺𝒔𝒓(𝟎)         ………(4.7) 

Substituting 𝑠 = 0 in equation(4.6) 

𝑷 = (𝑮(𝟎)−𝟏 + 𝒌(𝟎) >< 𝒉(𝟎)𝑺𝒔(𝑰 − 𝑭𝑺𝒔)
−𝟏     ………(4.8) 

To reduce the system output interaction, the steady state matrix should have unity 

diagonal elements and a small value, off-diagonal elements 𝑆𝑖,𝑗 , ,1, ≤ 𝑖, 𝑗 ≤ 𝑚, 𝑖 ≠ 𝑗. 

Substituting for P from equation (4.8) equation (4.6) becomes: 

𝒚(𝒔) = (𝑰𝒎 + 𝑮(𝒔)(𝒌(𝒔) >< 𝒉(𝒔) + (𝑮(𝟎)−𝟏 + 𝒌(𝒔) >< 𝒉(𝒔)(𝑰𝒎 − 𝑭)−𝟏𝑭))−𝟏 ×

(𝑮(𝒔) 𝐏𝐫(𝒔) + 𝜹(𝒔))                  ………(4.9) 

At low frequencies 

𝑮(𝒔) ≅ 𝑮(𝟎)  and  𝑮(𝒔)𝑮(𝟎)−𝟏 ≅ 𝑰𝒎 

Substituting in equation (4.9): 

𝒚(𝒔) = (𝑰𝒎 + 𝑮(𝒔)(𝒌(𝒔) >< 𝒉(𝒔) + (𝑰𝒎 + (𝑰𝒎 − 𝑭)−𝟏𝑭))−𝟏 × (𝑮(𝒔) 𝐏𝐫(𝒔) + 𝜹(𝒔))   … 

               …..……(4.10) 

Choosing the 𝑭 matrix elements 𝑓1 = 𝑓2 = ……𝑓𝑚 = 𝑓 , 0 < 𝑓 < 1 then equation 

(4.10) becomes: 
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𝒚(𝒔) ≅ (𝟏 − 𝒇)(𝑰𝒎 + 𝑮(𝒔)𝒌(𝒔) >< 𝒉(𝒔))−𝟏 × (𝑮(𝒔) 𝐏𝐫(𝒔) + 𝜹(𝒔))  ………(4.11) 

From equation (4.8) and (4.10): 

𝑮(𝒔)𝑷 = 𝑮(𝒔)(𝑮(𝟎)−𝟏 + 𝒌(𝟎) >< 𝒉(𝟎))(𝑰𝒎 − 𝑭)−𝟏 

This equation can be reduced for low frequencies to: 

𝑮(𝒔)𝑷 ≅
𝟏

𝟏−𝒇
(𝑰𝒎 + 𝑮(𝒔)𝒌(𝟎) >< 𝒉(𝟎))     ………(4.12) 

Under steady state condition equation (4.12) is represented by: 

𝒚(𝒔) = 𝑰𝒎𝒓(𝒔) + 𝑺(𝒔)𝜹(𝒔)       ………(4.13) 

The equation for the sensitivity matrix at low frequencies is: 

𝑺(𝒔) = (𝟏 − 𝒇)(𝑰𝒎 + 𝑮(𝒔)𝒌(𝒔) >< 𝒉(𝒔))
−𝟏

, 0 < 𝑓 < 1   ………(4.14) 

When 𝑆𝑠 is equal to 𝐼𝑚 then the system has no interaction at steady state, giving 

enhanced stability and disturbance rejection at steady state with higher value of 𝑓 , 𝑓 <

1 

Using a conventional regulator structure with forward path gain of 𝐾(𝑠) and a 

feedback gain 𝐻(𝑠) the closed loop equation is: 

𝒚(𝒔) = (𝑰_𝒎 + 𝑮(𝒔)𝑲(𝒔)𝑯(𝒔))−𝟏(𝑮𝑲(𝒔)𝒓(𝒔) + 𝜹(𝒔))    ………(4.15) 

Let 𝐾(𝑠) = 𝑃 .From equation (4.6) and (4.15): 

𝑲(𝒔)𝑯(𝒔) = 𝒌(𝒔) >< 𝒉(𝒔) + 𝑷𝑭      ………(4.16) 

𝑯(𝒔) = 𝑷−𝟏𝒌(𝒔) >< 𝒉(𝒔) + 𝑭       ………(4.17) 
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4.1.2 Inner loop calculations: 

For an m x m system transfer function 𝐺(𝑠) the general equation is: 

𝑮(𝒔) = 𝑳(𝒔)
𝑨(𝒔)

𝒅(𝒔)
𝑹(𝒔)𝚪(𝒔)       ………(4.18) 

Where elements of 𝐿(𝑠), 𝐴(𝑠), 𝑅(𝑠), Γ(𝑠) and  
𝐴(𝑠)

𝑑(𝑠)
    𝜖 𝐻∞, 𝑠 ∈ ℂ 

In equation () 𝐿(𝑠) for left row factors and 𝑅(𝑠) for right column factors of 𝐺(𝑠) and 

Γ(𝑠)  for the transformed system time delays. 

𝐿(𝑠) = 𝐷𝑎𝑖𝑔 (
𝜆𝑖(𝑠)

𝑝𝑗(𝑠)
)  , 𝑅(𝑠) = 𝐷𝑖𝑎𝑔 (

𝜌𝑖(𝑠)

𝑞𝑖(𝑠)
)  𝑎𝑛𝑑 Γ(𝑠) = 𝐷𝑖𝑎𝑔(𝑒−𝑠𝑇𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑚 

where 𝐴(𝑠) ≠ 0, and 𝑎𝑖𝑗𝑆
𝑚−1 + 𝑏𝑖𝑗𝑆

𝑚−2 + ⋯+ 𝛾𝑖𝑗  , 1 ≤ 𝑖, 𝑗 ≤ 𝑚 

the inner loop equation for the system is: 

𝒖(𝒔) = 𝒌(𝒔)[ŕ(𝒔) − 𝒉(𝒔)𝒚(𝒔)]       ………(4.19) 

From combining equations (4.1) and (4.19) yields: 

𝒚(𝒔) = (𝑰𝒎 + 𝑮(𝒔)𝒌(𝒔) >< 𝒉(𝒔))
−𝟏

(𝑮(𝒔)𝒌(𝒔)ŕ(𝒔) +  𝜹(𝒔))   ………(4.20) 

The 𝑘(𝑠) equation becomes: 

𝒌(𝒔) = (𝒌𝟏(𝒔)𝒆
−𝒔(𝑻𝒊−𝑻𝒋), 𝒌𝟐(𝒔)𝒆

−𝒔(𝑻𝒊−𝑻𝒋), … , 𝒌𝒎(𝒔)𝒆−𝒔(𝑻𝒊−𝑻𝒋))
𝑻
  ………(4.21) 

and 𝒉(𝒔) = (𝒉𝟏(𝒔), 𝒉𝟐(𝒔), … , 𝒉𝒎(𝒔))  
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Since 𝜙𝑗(𝑠) and 𝑥𝑗(𝑠) are stable, minimum phase, strictly proper or proper functions 

then 𝑘𝑗(𝑠) = 𝑘𝑗(𝑠)𝜙𝑗(𝑠) and ℎ𝑗(𝑠) = ℎ𝑗𝑥𝑗(𝑠) for 1 ≤ 𝑗 ≤ 𝑚 then 𝑦(𝑠) becomes: 

𝒚(𝒔) = (𝑰𝒎 + 𝒆−𝒔𝑻𝒊𝒏(𝒔)𝑳(𝒔)
𝑨(𝒔)

𝒅(𝒔)
𝒌(𝒔) >< 𝒉(𝒔))

−𝟏

(𝒏(𝒔)𝑳(𝒔)
𝑨(𝒔)

𝒅(𝒔)
𝒌𝒆−𝒔𝑻𝒊𝒓(𝒔) + 𝜹(𝒔)) 

           ………(4.22) 

With:  𝒌 = (𝒌𝟏, 𝒌𝟐, … , 𝒌𝒎)𝑻 ,  𝒉 = (𝒉𝟏, 𝒉𝟐, … , 𝒉𝒎) , 𝑑(𝑠) = 𝑠𝑘 , 𝑎1𝑠
𝑘−1 + ⋯+ 𝑎0 

 and deg (𝑛(𝑠)𝑎𝑖,𝑗(𝑠)) < 𝑘, 𝑓𝑜𝑟 1 ≤ 𝑖, 1 ≤ 𝑚. 

The determinant of equation (4.22) is: 

𝐝𝐞𝐭(𝑰𝒎 + 𝒆−𝒔𝑻𝒊𝒏(𝒔)𝑳(𝒔)
𝑨(𝒔)

𝒅(𝒔)
𝒌(𝒔) >< 𝒉(𝒔)) = 𝟏 + 𝒆−𝒔𝑻𝒊𝒏(𝒔) < 𝒉

𝑨(𝒔)

𝒅(𝒔)
𝒌 > 

where < 𝒉
𝑨(𝒔)

𝒅(𝒔)
𝒌 > = [𝟏, 𝒔, … . . , 𝒔𝒎−𝟏] [

𝜸𝟏𝟏

⋮
𝒃𝟏𝟏

𝒂𝟏𝟏

𝜸𝟏𝟐

⋮
𝒃𝟏𝟐

𝒂𝟏𝟐

⋯
⋱…
⋯

𝜸𝒎𝒎

⋮
𝒃𝒎𝒎

𝒂𝒎𝒎

] [

𝒌𝟏𝒉𝟏

𝒌𝟐𝒉𝟏

⋮
𝒌𝒎𝒉𝒎

] 

with gain ratio of: 

𝑘2 = 𝑛𝑘1 , 𝑘3 = 𝑛2𝑘1, … , 𝑘𝑚 = 𝑛𝑚−1𝑘1  

and < ℎ𝐴(𝑠)𝑘 >= 𝑏(𝑠)  ,  𝑘1[𝑄]ℎ = (𝑏𝑚−1, 𝑏𝑚−2, … , 𝑏0)
𝑇 

𝑸 = [

𝜸𝟏𝟏 + 𝜸𝟏𝟐𝒏𝟏 + 𝜸𝟏𝒎𝒏𝒎−𝟏

⋮
⋮
⋮

𝜸𝟐𝟏 + 𝜸𝟐𝟐𝒏𝟏 + 𝜸𝟐𝒎𝒏𝒎−𝟏

⋮
⋮ 𝜸𝒎𝟏 + 𝜸𝒎𝟐𝒏𝟏 + 𝜸𝒎𝒎𝒏𝒎−𝟏

⋮                           ⋮                    
𝒃𝟏𝟏 + 𝒃𝟏𝟐𝒏𝟏 + 𝒃𝟏𝒎𝒏𝒎−𝟏

𝒂𝟏𝟏 + 𝒂𝟏𝟐𝒏𝟏 + 𝒂𝟏𝒎𝒏𝒎−𝟏

⋮
⋮

𝒃𝟐𝟏 + 𝒃𝟐𝟐𝒏𝟏 + 𝒃𝟐𝒎𝒏𝒎−𝟏

𝒂𝟐𝟏 + 𝒂𝟐𝟐𝒏𝟏 + 𝒂𝟐𝒎𝒏𝒎−𝟏

⋮ 𝒃𝒎𝟏 + 𝒃𝒎𝟐𝒏𝟏 + 𝒃𝒎𝒎𝒏𝒎−𝟏

⋮ 𝒂𝒎𝟏 + 𝒂𝒎𝟐𝒏𝟏 + 𝒂𝒎𝒎𝒏𝒎−𝟏

] 

Selecting n values so the 𝑸 matrix is invertible. the performance index becomes: 
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𝐽 = (1 + 𝑛1
2 + 𝑛2

2 + ⋯+ 𝑛𝑚−1
2)𝑏𝑇(𝑄−1)𝑇𝑄−1𝑏    ………(4.23) 

Should be minimized by selecting the 𝑏(𝑠) and the gain ratio n, so the closed loop 

dynamics can be obtained and the h vector can be calculated where 𝑘1 ≠ 0. 

4.2 H infinity controller theory  

H-infinity controller technique is widely used for the control problems including 

multivariable systems. The controller resulting is optimal with the respect that the 

resulting function does not necessarily represent the best controller solution.    

In the H-infinity control technique the general feedback structure shown in figure 

(4.1) is used   

 

Figure 4.1:  Feedback control structure typical  

(Dingyu X, YangQuan C and Derek P, 2007) 

 

The matrix representing the H-infinity controller is: 

𝐅𝐜 = [
𝐀𝐟

⋯
⋮ −𝐙𝐋
⋯ ⋯

𝐅 ⋮ 𝟎
] 

Where: 
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𝐀𝐟 = 𝐀 + 𝛄−𝟐𝐁𝟏𝐁𝟏
𝐓𝐗 + 𝐁𝟐𝐅 + 𝐙𝐋𝐂𝟐 , 𝐅 = −𝐁𝟐

𝐓𝐗    and    𝐋 = −𝐘𝐂𝟐
𝐓 , 𝐙 = (𝐈 − 𝛄−𝟐𝐘𝐗)−𝟏 

For the robust control the following structure is used in general: 

 

Figure 4.2 : general structure of feedback control  

(Dingyu X, YangQuan C and Derek P, 2007) 

 

The following representing the system plant model. 

[

𝒔�̇�(𝒔)

𝒚𝟏(𝒔)

𝒚𝟐(𝒔)
] = 𝑷(𝒔) [

𝒙(𝒔)

𝒖𝟏(𝒔)

𝒖𝟐(𝒔)
]        ………(4.1) 

where the states, outputs and inputs of (4.1) equation are representing by  

x(s) , u(s) and (s) , respectively, and P(s) as : 

𝐏(𝐬) = [
𝐀 𝐁𝟏 𝐁𝟐

𝐂𝟏

𝐂𝟐

𝐃𝟏𝟏

𝐃𝟐𝟏

𝐃𝟏𝟐

𝐃𝟐𝟐

] 

The equation representing the state space given by the following: 

𝐬𝐱(𝐬) = 𝐀𝐱(𝐬) + [𝐁𝟏 𝐁𝟐] [
𝐮𝟏(𝒔)
𝐮𝟐(𝒔)

] 
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and for the system output equation: 

[
𝐲𝟏(𝐬)
𝐲𝟐(𝐬)

] = [
𝐂𝟏

𝐂𝟐
] 𝐱(𝐬) + [

𝐃𝟏𝟏

𝐃𝟐𝟏

𝐃𝟏𝟐

𝐃𝟐𝟐
] [

𝐮𝟏(𝐬)
𝐮𝟐(𝐬)

] 

The equation showing the relation between y1(s) and u1(s) is: 

𝐓𝐲𝟏𝐮𝟏(𝐬) = 𝐏𝟏𝟏(𝐬) + 𝐏𝟏𝟐(𝐬)[𝐈 − 𝐅(𝐬)𝐏𝟐𝟐(𝐬)]
−𝟏𝐅(𝐬)𝐏𝟐𝟏(𝐬) 

where for the standard robust  ℋ∞   control problems: 

‖𝐓(𝐬)𝐲𝟏𝐮𝟏‖∞
< 𝟏 

For optimal ℋ∞ control problems, the 𝐦𝐢𝐧
𝐅(𝐬)

‖𝐓(𝐬)𝐲𝟏𝐮𝟏‖∞
 to be selected as in the 

example given in [3]: 

The weighting functions  W1(s),W2(s) and W3(s), which representing the system 

filters, are to be selected, as per figure (4.3). 

 

Figure4.3: structure of feedback control problem with weighting functions  

(Dingyu X, YangQuan C and Derek P, 2007) 
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The relationship between the plant model and the plant weighting functions can be 

represented by the following matrix: 

𝑷(𝐬) =

[
 
 
 
 
𝐖𝟏(𝒔) ⋮ −𝐖𝟏(𝐬)𝐆(𝐬)

𝟎
𝟎…
𝐈

⋮
⋮
⋮
⋮

𝐖𝟐(𝒔)
𝐖𝟑(𝐬)𝐆(𝐬)

…
−𝐆(𝐬) ]

 
 
 
 

 

where: 

𝐓𝐲𝟏𝐮𝟏 = [

𝐖𝟏(𝐬)𝐒(𝐬)
𝐖𝟐(𝐬)𝐅(𝐬)𝐒(𝐬)

𝐖𝟑(𝐬)𝐓(𝐬)
] 

where F(s) is obtained from the sensitivity function S(s): 

𝑺(𝐬) = [𝐈 + 𝐅(𝐬)𝐆(𝐬)]−𝟏 

Then the complementary transfer function of sensitivity is: 

𝑻(𝐬) = 𝐈 − 𝐒(𝐬) = 𝐅(𝐬)𝐆(𝐬)[𝐈 + 𝐅(𝐬)𝐆(𝐬)]−𝟏 
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Section five: 

Controller Design  

5.1 Design of the least effort controller 

System transfer function is: 

𝑮(𝒔) =

[
 
 
 
 

𝟎. 𝟗𝟔𝟕 ∗ 𝟏𝟎𝟔

𝒔 + 𝟒𝟎. 𝟎

−𝟖. 𝟏𝟐𝟒𝟖(𝒔 + 𝟑. 𝟐𝟕)

(𝒔 + 𝟎. 𝟗𝟓)

𝟖. 𝟖𝟐 ∗ 𝟏𝟎𝟔(𝒔 + 𝟑𝟏. 𝟒𝟐)

(𝒔 + 𝟏. 𝟓𝟓)(𝒔 + 𝟒𝟎)(𝒔 + 𝟏𝟖𝟕. 𝟒)

𝟓𝟎. 𝟐𝟎

(𝒔 + 𝟏. 𝟓𝟓) ]
 
 
 
 

 

Using the form: 

𝑮(𝒔) = 𝑳(𝒔)
𝑨(𝒔)

𝒅(𝒔)
𝑹(𝒔)𝚪(𝒔) 

………(5.1) 

With the following left row factors, right column factors and transformed system 

time delays. 

𝑳(𝒔) =

[
 
 
 

𝟏

(𝒔 + 𝟎. 𝟗𝟓)
𝟎

𝟎
𝟏

(𝒔 + 𝟏. 𝟓𝟓)(𝒔 + 𝟏𝟖𝟕. 𝟒)]
 
 
 

 

𝑨(𝒔) = [
𝟎. 𝟗𝟔𝟕(𝒔 + 𝟎. 𝟗𝟓) ∗ 𝟏𝟎𝟔 −𝟖. 𝟏𝟐𝟒𝟖(𝒔 + 𝟑. 𝟐𝟕)

𝟖. 𝟖𝟐(𝒔 + 𝟑𝟏. 𝟒𝟐)𝟏𝟎𝟔 𝟓𝟎. 𝟐𝟎(𝒔 + 𝟏𝟖𝟕. 𝟒)
] 

𝑹(𝒔) = [

𝟏

(𝒔 + 𝟒𝟎)
𝟎

𝟎 𝟏

] 

𝑑(𝑠) = (𝑠 + 1.55)(𝑠 + 400)(𝑠 + 187.4) 
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If: 

𝐤(𝐬) = [

𝐬 + 𝟒𝟎. 𝟎

𝐬 + 𝟒𝟎𝟎. 𝟎
𝟎

𝟎
𝟏

𝐬 + 𝟒𝟎𝟎. 𝟎

] [
𝐤𝟏

𝐤𝟐
] 

and: 

𝐡(𝐬) = [𝐡𝟏, 𝐡𝟐] [

𝐬 + 𝟎. 𝟗𝟓

(𝐬 + 𝟏. 𝟓𝟓)(𝐬 + 𝟏𝟖𝟕. 𝟒)
𝟎

𝟎 𝟏

] 

Then the following equation can be used to calculate the inner loop parameters: 

𝐲(𝐬) = (𝐈𝐦 + 𝐆(𝐬)𝐤(𝐬) >< 𝐡(𝐬))
−𝟏

𝐆(𝐬)𝐤(𝐬)ŕ(𝐬)     ………(5.2) 

and the inner loop equation becomes: 

det(Im + G(s)k(s) >< h(s)) = 1+< h(s)G(s)k(s) >   ………(5.3) 

Then equation (5.2) becomes: 

−1 =
b(s)

(s + 1.55)(s + 400)(s + 187.4)
 

                                                ………(5.4) 

 

Figure (5.1) shows the root locus of the equation (5.4) to obtain the gain b0 
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Figure 5.1: root locus of the equation (5.4) 

To select the zeros of the equation 𝒃(𝒔) = 𝒃𝟎(𝒔 + 𝟏. 𝟓𝟓) to achieve the required 

pattern for the system closed loop poles. From the root locus graph 𝑏0 is (0 to 

1.09*10^4), from the gain range   𝑏0=1.09*10^4 to be chosen for the closed loop poles 

at −𝟐𝟗𝟒 ± 𝟔. 𝟖𝟏 ∗ 𝟏𝟎−𝟔𝒊 

 

Calculating < h. A(s). k >= b(s) as following: 

< 𝒉.𝑨(𝒔). 𝒌 >= [𝒉𝟏 𝒉𝟐]. [
𝟎. 𝟗𝟔𝟕(𝒔 + 𝟎. 𝟗𝟓) ∗ 𝟏𝟎𝟔 −𝟖. 𝟏𝟐𝟒𝟖(𝒔 + 𝟑. 𝟐𝟕)

𝟖. 𝟖𝟐(𝒔 + 𝟑𝟏. 𝟒𝟐)𝟏𝟎𝟔 𝟓𝟎. 𝟐𝟎(𝒔 + 𝟏𝟖𝟕. 𝟒)
] . [

𝒌𝟏

𝒌𝟐
] 

< 𝒉.𝑨(𝒔). 𝒌 >= [
𝟎. 𝟗𝟔𝟕(𝒔 + 𝟎. 𝟗𝟓) ∗ 𝟏𝟎𝟔 ∗ 𝒉𝟏 + 𝟖. 𝟖𝟐(𝒔 + 𝟑𝟏. 𝟒𝟐)𝟏𝟎𝟔 ∗ 𝒉𝟐

−𝟖. 𝟏𝟐𝟒𝟖(𝒔 + 𝟑. 𝟐𝟕) ∗ 𝒉𝟏 + 𝟓𝟎. 𝟐𝟎(𝒔 + 𝟏𝟖𝟕. 𝟒) ∗ 𝒉𝟐
]
𝑻

. [
𝒌𝟏

𝒌𝟐
] 

< 𝒉.𝑨(𝒔). 𝒌 >=(𝟎. 𝟗𝟔𝟕(𝒔 + 𝟎. 𝟗𝟓) ∗ 𝟏𝟎𝟔 ∗ 𝒉𝟏 + 𝟖. 𝟖𝟐(𝒔 + 𝟑𝟏. 𝟒𝟐)𝟏𝟎𝟔 ∗ 𝒉𝟐). 𝒌𝟏 +

(−𝟖. 𝟏𝟐𝟒𝟖(𝒔 + 𝟑. 𝟐𝟕) ∗ 𝒉𝟏 + 𝟓𝟎. 𝟐𝟎(𝒔 + 𝟏𝟖𝟕. 𝟒) ∗ 𝒉𝟐). 𝒌𝟐 

Root Locus

Real Axis (seconds-1)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

-450 -400 -350 -300 -250 -200 -150 -100 -50 0 50
-150

-100

-50

0

50

100

150

System: bs

Gain: 1.09e+04

Pole: -294 + 6.81e-06i

Damping: 1

Overshoot (%): 0

Frequency (rad/s): 294



Eyad Megdadi Page 54 
 

< 𝒉. 𝑨(𝒔) ∗=. 𝒌 >= [𝟏 𝒔] [
𝟎. 𝟗𝟓 ∗ 𝟏𝟎𝟔

−𝟐𝟔. 𝟓𝟔𝟖 𝟐𝟕𝟕. 𝟏𝟐𝟒𝟒 ∗ 𝟏𝟎𝟔 𝟗𝟒𝟎𝟕. 𝟒𝟖
𝟎. 𝟗𝟔𝟕 ∗ 𝟏𝟎𝟔

−𝟖. 𝟏𝟐𝟒𝟖   𝟖. 𝟖𝟐 ∗ 𝟏𝟎𝟔          𝟓𝟎. 𝟐𝟎   
] . [

𝒌𝟏𝒉𝟏

𝒌𝟐𝒉𝟏

𝒌𝟏𝒉𝟐

𝒌𝟐𝒉𝟐

] 

          ………(5.5) 

Let 𝑘2 = 𝑛. 𝑘1 and selecting then selecting 𝑘1 = 1: 

< 𝒉.𝑨(𝒔). 𝒌 >= [𝟏 𝒔] [
𝟎. 𝟗𝟓 ∗ 𝟏𝟎𝟔 −𝟐𝟔. 𝟓𝟔𝟖 𝟐𝟕𝟕. 𝟏𝟐𝟒𝟒 ∗ 𝟏𝟎𝟔 𝟗𝟒𝟎𝟕. 𝟒𝟖
𝟎. 𝟗𝟔𝟕 ∗ 𝟏𝟎𝟔 −𝟖. 𝟏𝟐𝟒𝟖   𝟖. 𝟖𝟐 ∗ 𝟏𝟎𝟔          𝟓𝟎. 𝟐𝟎   

] × [

𝒉𝟏

𝒏. 𝒉𝟏

𝒉𝟐

𝒏. 𝒉𝟐

] 

< 𝒉.𝑨(𝒔). 𝒌 >

= [𝟎. 𝟗𝟔𝟕(𝒔 + 𝟎. 𝟗𝟓)𝟏𝟎𝟔 𝟖. 𝟖𝟐(𝒔 + 𝟑𝟏. 𝟒𝟐)𝟏𝟎𝟔 −𝟖. 𝟏𝟐𝟒𝟖(𝒔 + 𝟑. 𝟐𝟕) 𝟓𝟎. 𝟐𝟎(𝒔 + 𝟏𝟖𝟕. 𝟒)]

× [

𝒉𝟏

𝒏. 𝒉𝟏

𝒉𝟐

𝒏. 𝒉𝟐

] 

< 𝒉.𝑨(𝒔). 𝒌 >

= [𝟎. 𝟗𝟓 ∗ 𝟏𝟎𝟔 + 𝟎. 𝟗𝟔𝟕 ∗ 𝟏𝟎𝟔𝒔 −𝟐𝟔. 𝟓𝟔𝟖 − 𝟖. 𝟏𝟐𝟒𝟖 𝒔 𝟐𝟕𝟕. 𝟏𝟐𝟒𝟒 ∗ 𝟏𝟎𝟔 + 𝟖. 𝟖𝟐 ∗ 𝟏𝟎𝟔𝒔 𝟗𝟒𝟎𝟕. 𝟒𝟖 + 𝟓𝟎. 𝟐𝟎𝒔]

× [

𝒉𝟏

𝒏. 𝒉𝟏

𝒉𝟐

𝒏. 𝒉𝟐

] 

Equation (5.5) can be represented as: 

< 𝒉𝑨(𝒔)𝒌 >= 𝑸(𝒏)(𝒉𝟏, 𝒉𝟐)
𝑻 
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The Q matrix obtained as following: 

𝑸 = [ 𝟎. 𝟗𝟓 ∗ 𝟏𝟎𝟔 − 𝟐𝟔. 𝟓𝟔𝟖𝒏 𝟐𝟕𝟕. 𝟏𝟐𝟒𝟒 ∗ 𝟏𝟎𝟔 + 𝟗𝟒𝟎𝟕. 𝟒𝟖𝒏
𝟎. 𝟗𝟔𝟕 ∗ 𝟏𝟎𝟔 − 𝟖. 𝟏𝟐𝟒𝟖𝒏 𝟖. 𝟖𝟐 ∗ 𝟏𝟎𝟔 + 𝟓𝟎. 𝟐𝟎𝒏

] 

From equation (5.5) and equation (5.4): 

< 𝒉.
𝑨(𝒔)

𝒅(𝒔)
. 𝒌 >=

𝒃(𝒔)

𝒅(𝒔)
 

𝑏(𝑠) = 𝑏0(𝑠 + 𝑥) 

𝑥 = 1.55 

Using victor [1 1.55] to remove the pole (s+1.55) , from the root locus of the 

following: 

1 +
𝑏0(𝑠 + 1.55)

(𝑠 + 1.55)(𝑠 + 400)(𝑠 + 187.4)
 

To calculate 𝑘2 from the performance index 𝐽 

𝐽 = (1 + 𝑛2)𝑏𝑇(𝑄−1)𝑇𝑄−1𝑏 

Plotting performance index (𝐽) with the system gain ratio using MATLAB, the 

numerical computing program. Then obtaining the n, producing the minimum value of 

performance index (𝐽) using MATLAB code which occurs when: 

𝜕𝐽(𝑛)/𝜕𝑛 = 0 

Substituting 𝑄(𝑛) and 𝑏 
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Figure 5.2: performance index with the gain ratio graph 

With (𝑛 =-7.4741*10^-06) performance index (𝐽) has the lowest value of 

0.0000089147422 

Substitute 𝑛 value in 𝑄 

𝑸 = [
𝟗. 𝟏𝟖𝟎𝟎𝒆 + 𝟎𝟓 𝟐. 𝟕𝟕𝟐𝟎𝒆 + 𝟎𝟖
𝟗. 𝟔𝟕𝟎𝟎𝒆 + 𝟎𝟓 𝟖. 𝟖𝟐𝟎𝟎𝒆 + 𝟎𝟔

] 

Selecting  𝑘1 = 1 and substituting in equation (5.6) 

𝒉(𝒔) =
𝑸−𝟏

𝒌𝟏
𝒃 

                                                ………(5.6) 

 

ℎ = [ 𝟏. 𝟕𝟔𝟒𝟔 ∗ 𝟏𝟎−𝟐

−𝟏. 𝟗𝟏𝟏𝟔 ∗ 𝟏𝟎−𝟓
] 
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Using 𝑘2 = 𝑛𝑘1to obtain 𝑘 as following: 

𝒌 = [
𝟏

−𝟕. 𝟒𝟕𝟒𝟏𝟔𝟎𝟔𝟕 ∗ 𝟏𝟎−𝟔] 

Outer loop design  

For the Outer loop design it is required to find the 𝑃 matrix of equation (4.8) is 

determined: 

The steady state system transfer function at 𝑠 = 0 is: 

𝑮(𝟎) = [
𝟐𝟒𝟏𝟕𝟓 −𝟐𝟕. 𝟗𝟔𝟔𝟒

𝟐𝟑𝟖𝟓𝟏. 𝟑𝟕𝟖𝟖 𝟑𝟐. 𝟑𝟖𝟕
] 

Using steady state inter action of 0.01 as following: 

𝑺𝒔 = [
𝟏 𝟎. 𝟎𝟏

𝟎. 𝟎𝟏 𝟏
] 

Using outer loop feedback gain (𝑓) from 𝑓 =0.1 to 𝑓 =0.9 

Choosing  𝑓 =0.95 

𝑭 = [
𝟎. 𝟗𝟓 𝟎

𝟎 𝟎. 𝟗𝟓
] 

Using the equation (4.8) to calculate  𝑃 compensator: 

𝑷 = (𝑮(𝟎)−𝟏 + 𝑲(𝟎) >< 𝒉(𝟎)) ∗ 𝑺𝒔 ∗ (𝑰 − 𝑭 ∗ 𝑺𝑺)
−𝟏 

𝑷 = [
𝟔. 𝟐𝟓𝟕𝟐𝒆 − 𝟎𝟐 𝟏. 𝟐𝟔𝟕𝟖𝒆 − 𝟎𝟐

−𝟐. 𝟕𝟐𝟕𝟕𝒆 − 𝟎𝟏 𝟐. 𝟕𝟖𝟑𝟑𝒆 − 𝟎𝟏
] 
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Figure 5.3: closed loop system representation 

The conventional controller structure  

H compensator is required to complete the conventional structure with the P matrix 

calculated in the previous section. 

Using the flowing equation to calculate  𝐻 compensator: 

𝑯 = 𝑷−𝟏 ∗ 𝑲(𝟎) >< 𝒉(𝟎) + 𝑭 

𝑯 = [
𝟗. 𝟖𝟗𝟖𝟏𝒆 − 𝟎𝟏 −𝟏. 𝟑𝟏𝟖𝟒𝒆 − 𝟎𝟒
𝟑. 𝟗𝟎𝟏𝟓𝒆 − 𝟎𝟐 𝟗. 𝟒𝟗𝟖𝟕𝒆 − 𝟎𝟏

] 

With r(s) =0 and using the flowing controller construction:  
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Figure 5.4: conventional closed loop system representation 

5.2 H infinity controller design  

By selecting the weighting function matrices for the system model which should be 

proper or in other words bounded when 𝑠 goes to infinity (Dingyu Xue; YangQuan Chen 

& Deek P. Atherton, 2007) as following:  

𝐖𝟏(𝐬) = [

𝟏𝟎𝟎

𝐬 + 𝟎. 𝟓
𝟎

𝟎
𝟏𝟎𝟎

𝐬 + 𝟏

] 

𝐖𝟐(𝐬) = [𝟏𝟎−𝟓 𝟎
𝟎 𝟏𝟎−𝟓

] 
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This values of W2(s) cancel any problems of singularity and avoid the determinant 

becomes zero. The weighting functions are chosen to be rational, stable, minimum 

phase functions with no RH plane poles. (John e. Bibel  & D. Stephen Malyevac, 1992) 

And: 

𝐖𝟑(𝐬) = [

𝐬

𝟏𝟎𝟎𝟎
𝟎

𝟎
𝐬

𝟐𝟎𝟎

] 

Referring to [3] (Dingyu X, YangQuan C and Derek P, 2007) and by using the 

MatLab application “augtf” function to get the variable γ of the system transfer function, 

and the MatLab function “hinfopt” to get the minimum value of γ as follows: 

 

Table 5.1: the results obtain from MatLab application for the synthesis of H-infinity 

optimal controller. 

By selection gamma =7.7734∗ 10−1 , then 𝐹𝑐(𝑠) is: 
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𝐅𝐜(𝐬) = [
𝐅𝟏𝟏(𝐬) 𝐅𝟏𝟐(𝐬)

𝐅𝟐𝟏(𝐬) 𝐅𝟐𝟐(𝐬)
] 

Where: 

F11(s)

=
1.6826 (s + 3259) (s + 187.4) (s + 40)^2 (s + 1.55) (s + 1) (s + 0.9439)

(s + 2.14e04) (s + 253.9) (s + 84.55) (s + 40) (s + 1.55) (s + 1.396) (s + 1) (s + 0.5)
 

F12(s)

=
21.449 (s + 187.4) (s + 40)^2 (s − 14.98) (s + 1.55) (s + 0.8405) (s + 0.5)

(s + 2.14e04) (s + 253.9) (s + 84.55) (s + 40) (s + 1.55) (s + 1.396) (s + 1) (s + 0.5)
 

F21(s)

=
245.87 (s − 2.534e04) (s + 245.2) (s + 40) (s + 20.69) (s + 1.55) (s + 1) (s + 0.95)

(s + 2.14e04) (s + 253.9) (s + 84.55) (s + 40) (s + 1.55) (s + 1.396) (s + 1) (s + 0.5)
 

F22(s)

=
8217 (s + 405.2) (s + 206.6) (s + 40) (s + 4.784) (s + 1.55) (s + 0.95) (s + 0.5)

(s + 2.14e04) (s + 253.9) (s + 84.55) (s + 40) (s + 1.55) (s + 1.396) (s + 1) (s + 0.5)
 

𝐹𝑐(𝑠) is the controller obtained from H-infinity method. And 𝐅𝟐𝟏, 𝐅𝟐𝟏, 𝐅𝟐𝟏and 𝐅𝟐𝟏 are 

the controller matrix elements  

The controller matrix element 𝐅𝟐𝟏 shows a non-minimum phase algorithm. The 

effect of this non-minimum phase algorithm will be discussed in the “Comparison Study” 

section. 
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Section six: 

Simulation 

6.1 Least effort controller simulation: 

The analytical structure of the closed loop system is shown in figure (5.3). The 

second reference r2(s)  is used to achieve the required acceleration. The first reference 

will be constant value reflecting the gas temperature limit of the power turbine. So a 

single input will be required for vehicle operation. 

By using a unit step at the first system reference r1(s) and then on the second 

reference  r2(s) for  the closed loop system response. This response is shown in figures 

(6.1) and (6.2) gives least interaction between the outputs with a fast system response.   

figures (6.1) and (6.2) shows that the system response for angular speed output 

with different 𝑓 values with the output reaching its steady state value after 0.25 sec., for 

an outer loop feedback gain of 𝑓 = 0.95. 
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Figure 6.1: System response after applying a unit step change at  𝑟1(𝑠) 

 

Figure 6.2:  System response after applying a unit step change at  r2(s) 
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Figures (6.1) and (6.2) show the improvement in the angular speed output of 

system, with the system response becoming faster for increasing 𝑓 values  

A unit step input at δ1(s) and δ2(s) is used to show the system response following 

disturbances. Figures (6.3) and (6.4) show system’s ability to suppress disturbances. 

Results show that the system with least effort controller has a high disturbance rejection 

performance.  

 

 

Figure 6.3:  System response after applying a negative unit step at 𝛿1(𝑠) 
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Figure 6.4:  System response after applying a negative unit step at 𝛿2(𝑠) 
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Figure 6.5:  System response after applying a unit step change at 𝑟1(𝑠) 

 

Figure 6.6:  System response after applying a unit step change at 𝑟2(𝑠) 
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Figure 6.7: System response after applying a negative unit step at 𝛿1(𝑠) 

 

Figure 6.8:  System response after applying a negative unit step at 𝛿2(𝑠) 
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A unit step input at δ1(s) and δ2(s) is used to show the system response following 

disturbances. Figures (6.7) and (6.8) show system’s ability to suppress disturbances. 

Results show that the system with H infinity controller has a high steady state 

disturbance suppression behavior, but with initial transient reaction which exceed 100%. 

These disturbance transients would not be acceptable in practice. 
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Section seven: 

Comparison Study 

Controller implementation is a difficulty facing multivariable controller design 

methods but it is not the only one. Disturbance rejection and the controller consumption 

of energy are also difficulties in multivariable control system design. Concerning these 

factors the following comparison study between these methods, will be used in this 

research study.  

7.1 Controller consumption of energy:  

The control energy calculated after applying white noise at δ1(s) and δ2(s) is 

obtained by the following formula. According to the published paper of  (R. Whalley and 

M. Ebrahimi ,2006) 

𝑬(𝒕) = ∫ (𝒖𝟏(𝒕)
𝟐 + 𝒖𝟐(𝒕)

𝟐
𝒕=𝟏

𝒕=𝟎

)𝒅𝒕 

 

Figure (7.1) shows a high level of control energy consumed in the H-infinity method 

with least control energy consumed by least effort method. The energy consumed by 

the controller will be converted to heat, noise and wear with increasing actuator activity. 

This affects the fuel consumption by gas turbine engine with reduced engine efficiency.       
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Figure 7.1:  least effort and H infinity controllers’ energy dissipation. 
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7.2 Controller implementation 

The high order algorithms for the H infinity controller resulted in a fast system 

response, but produced difficulties in implementation with complicated controller 

functions giving difficulties in maintenance, drift, wear and aging. The simple algorithms 

obtained for the least effort technique does not involve these penalties.  

The non-minimum phase characteristics shown in H-infinity controller algorithm 

gives additional difficulties, integrity and stability issues. 

7.3 Disturbance rejection comparison 

Figures 6.3 and 6.4 shows a pleasing result, for disturbance rejection with the least 

effort controller, giving a rejection performance of 91% and 92%, for the temperature 

and speed variations.  This suppression of disturbances arising from the low gain 

compensators for the least effort technique.    

Figures 6.7 and 6.8 shows disturbance rejection characteristics with a rejection 

performance of 100% in steady state for both figures. However, the initial reaction 

where there are huge impulse like, temperature response would not be acceptable as 

shown in figures 6.7 and 6.8.  
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Section eight 

Conclusions and Recommendations  

8.1 Conclusions: 

In this study the employment of a gas turbine electric drive was investigated, for 

heavy duty vehicles. 

This research investigates two control techniques. The first is the least effort 

method and then the H infinity method, for the gas turbine regulation. The system 

performance obtained using these regulators were distinctly different with varying 

controller algorithm complexity and control energy consumption. Therefore, the 

monotonically, diverging and significantly increasing amount of energy needed for the 

control purposes is significant.         

Gas turbines achieve the highest power efficiency under full load conditions. The 

amount of power obtained from a low weight engine, with compactness and reliability 

has attracted considerable research attention.  

The regulation of gas turbines depends on the closed loop strategy used and 

system robustness. This means avoiding high gain compensators and actuators in the 

control loops, with the use of accurate, efficient transducers and actuators. 

The study is for heavy duty vehicles where relatively constant, smooth and rapid 

speed variations are required. The need for the closed loop system is to regulate the 

system response following reference changes and to minimize output interaction.  
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The results show how a least effort control techniques make the system faster with 

high stability response and good behavior. Also this results in a less interaction between 

the system outputs. 

After this comparison, it can be concluded that since the performance shows a 

huge difference in response between the two methods, with the H infinity showing 

increased control energy consumption and actuator activity, generating noise and wear. 

Moreover, this additional energy consumption decreases the life cycle of the system 

while producing higher capital replacements and maintenance costs with lower system 

reliability. The previous conclusions are the results of poor design selection as well as 

decreases in the system life cycle duration. 

8.2 Recommendations: 

For multivariable systems, the least effort controller design method is 

recommended, especially for complicated applications. This method simplifies the 

controller structure, implementation, operating and maintenance procedures. 

Gas turbine engines are recommended for long distance journeys way heavy duty 

automotives because of the engine efficiency under full load, constant speed conditions. 

Additionally, the engine output power and low weight are attractive properties.     

For the least control energy dissipation and simplicity, the Least Effort design 

method, is usually used where simple control algorithms are needed while providing 

attractive characteristics of performance. This attribute and the actuator activity 

minimization, heat generation, wear, noise are all undesirable effects arising from the 

results of this study. 
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Appendix 

1. MatLab code 

MATLAB shortcut of  matrix laboratory is a programing language produced 

by MathWorks Inc.. it is invented for numerical computing with optional 

toolboxes. Nowadays, millions using this programing language in academic 

and industrial sectors. 

The following code is the least effort controller code used for simulation in 

this research.  

 

1.1 least effort controller: 

2. s = tf('s'); 

3. G = [0.967*10^6/(s+40) -

8.1248*(s+3.27)/(s+0.95);8.82*10^6*(s+31.42)/((s+1.55)*(s+40)*(s+187

.4)) 50.2/(s+1.55)]; 

4. G0=[24175 -27.96641684;2.385137879987606e+04 32.387]; 

5. bs = tf([1 1.55],[1 588.95 75870.5 11618]);    %Expanded form 

%d(s)=(s+1.55)(s+400)(s+187.4) 

6. b0=1.09*10^4       % from the gragh of rlocus(bs) the rang (0 to 

2.8*10^6 to ) for b 

7. b=b0*[1;1.55]   

8. Q=[(0.918*10^6-26.5638*n) (2772*10^5+9424.5*n);(0.967*10^6-8.125*n) 

(88.2*10^5+50.20*n)];  

9.  

10. step(G)  

11. figure 

12. rlocus(bs) 

13. figure 

14. J(n)=(1+n^2)*transpose(b)*transpose(inv(Q))*inv(Q)*b; 

15. JR = vpa(J) 

16. dJ=diff(J,n); 

17. ezplot(J); %% ezplot(f,[xmin,xmax,ymin,ymax]) 

18. ylabel('performance index J') 

19. grid on 
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20.   

21. [symNum,symDen] = numden(J(n)); %Get num and den of Symbolic TF 

22. TFnum = sym2poly(symNum);       %Convert Symbolic num to 

polynomial 

23. TFden = sym2poly(symDen);       %Convert Symbolic den to 

polynomial 

24. Js =tf(TFnum,TFden) 

25. solx = solve(dJ==0, n) 

26. Jvalu=[J(solx(1,1)) J(solx(2,1)) J(solx(3,1)) J(solx(4,1))] 

27. nv=-0.00000747416067  %or  per solx = solve(dJ==0, n) 

28. Qv=subs(Q,nv); 

29. Qv1=double(Qv) 

30. invQv1=double(inv(Qv)) 

31. h=inv(Qv)*b 

32. hi=double(inv(Qv))*b 

33. hh=double(h) 

34. hs=[hi(1,1)*(s+0.95)/((s+1.55)*(s+187.4)) hi(2,1)] 

35. h0=[hh(1,1)/0.95;hh(2,1)/(1.55*187.4)] 

36.  

37. k1=1; 

38. k2=nv; 

39. k=[k1;k2] 

40. ki=double(k) 

41. ks=[ki(1,1)*(s+40)/(s+400);ki(2,1)/(s+400)] 

42. k0=[k1/10;k2/400] 

43.   

44. F = [0.9 0;0 0.9]; 

45. Ss=[1 0.1;0.1 1]; 

46. I=[1 0;0 1]; 

47.   

48. P=(inv(G0)+k0 * h0')*Ss*inv(I-F*Ss);  

49. H=inv(P)*(k * h')+F   

50.   

51. PM = double(P) 
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52. HM = double(H) 

53.   

54. Hs=inv(PM)*(ks*hs)+F 

55. [numh11,denh11] = tfdata(Hs(1,1)) 

56. [numh21,denh21] = tfdata(Hs(2,1)) 

57. [numh12,denh12] = tfdata(Hs(1,2)) 

58. [numh22,denh22] = tfdata(Hs(2,2))  

59.   

60. set_param('desertation2full2ss/P11','Gain','PM(1,1)') 

61. set_param('desertation2full2ss/P12','Gain','PM(1,2)') 

62. set_param('desertation2full2ss/P21','Gain','PM(2,1)') 

63. set_param('desertation2full2ss/P22','Gain','PM(2,2)') 

64.  

65. set_param('desertation2full2ss/TF11','Numerator','numh11{1}','Den

ominator','denh11{1}'); % TF=H(s) 

66. set_param('desertation2full2ss/TF21','Numerator','numh21{1}','Den

ominator','denh21{1}'); % TF=H(s) 

67. set_param('desertation2full2ss/TF12','Numerator','numh12{1}','Den

ominator','denh12{1}'); % TF=H(s) 

68. set_param('desertation2full2ss/TF22','Numerator','numh22{1}','Den

ominator','denh22{1}'); % TF=H(s) 

69.   

70. set_param('desertation2full2ss/ffStep1','after','1') 

71. set_param('desertation2full2ss/naStep2','after','0') 

72.   

73. set_param('desertation2full2ss/d1','after','0') 

74. set_param('desertation2full2ss/d2','after','0') 

75.   

76. sim( 'desertation2full2ss' ) 

77.   

78. figure 

79. p=plot(tout,T1simout,'b--',tout,w2simout,'b-','LineWidth',2) 

80. legend('T temperature f=.9','w angular speed f=.9') 

81. xlabel('time (sec)') 
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82. ylabel('output Response') 

83. title('system response conventional(K(s),H(s))(f.f.=1 & n.a.=0)') 

84. grid on  

85. hold 

86.   

87. F = [0.8 0;0 0.8]; 

88. P=(inv(G0)+k0 * h0')*Ss*inv(I-F*Ss); 

89. Hs=inv(PM)*(ks*hs)+F; 

90.   

91. PM = double(P) 

92. set_param('desertation2full2ss/P11','Gain','PM(1,1)') 

93. set_param('desertation2full2ss/P12','Gain','PM(1,2)') 

94. set_param('desertation2full2ss/P21','Gain','PM(2,1)') 

95. set_param('desertation2full2ss/P22','Gain','PM(2,2)') 

96.   

97. [numh11,denh11] = tfdata(Hs(1,1)) 

98. [numh21,denh21] = tfdata(Hs(2,1)) 

99. [numh12,denh12] = tfdata(Hs(1,2)) 

100. [numh22,denh22] = tfdata(Hs(2,2)) 

101. set_param('desertation2full2ss/TF11','Numerator','numh11{1}','Den

ominator','denh11{1}'); % TF=H(s) 

102. set_param('desertation2full2ss/TF21','Numerator','numh21{1}','Den

ominator','denh21{1}'); 

103. set_param('desertation2full2ss/TF12','Numerator','numh12{1}','Den

ominator','denh12{1}'); 

104. set_param('desertation2full2ss/TF22','Numerator','numh22{1}','Den

ominator','denh22{1}'); 

105.   

106. sim( 'desertation2full2ss' )  

107.   

108. p=plot(tout,T1simout,'r--',tout,w2simout,'r-','LineWidth',2) 

109. legend('T temperature f=.8','w angular speed f=.8') 

110.   

111. F = [0.5 0;0 0.5]; 
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112. P=(inv(G0)+k0 * h0')*Ss*inv(I-F*Ss); 

113. Hs=inv(PM)*(ks*hs)+F; 

114.   

115. PM = double(P) 

116. set_param('desertation2full2ss/P11','Gain','PM(1,1)') 

117. set_param('desertation2full2ss/P12','Gain','PM(1,2)') 

118. set_param('desertation2full2ss/P21','Gain','PM(2,1)') 

119. set_param('desertation2full2ss/P22','Gain','PM(2,2)') 

120.   

121. [numh11,denh11] = tfdata(Hs(1,1)) 

122. [numh21,denh21] = tfdata(Hs(2,1)) 

123. [numh12,denh12] = tfdata(Hs(1,2)) 

124. [numh22,denh22] = tfdata(Hs(2,2)) 

125. set_param('desertation2full2ss/TF11','Numerator','numh11{1}','Den

ominator','denh11{1}'); % TF=H(s) 

126. set_param('desertation2full2ss/TF21','Numerator','numh21{1}','Den

ominator','denh21{1}'); 

127. set_param('desertation2full2ss/TF12','Numerator','numh12{1}','Den

ominator','denh12{1}'); 

128. set_param('desertation2full2ss/TF22','Numerator','numh22{1}','Den

ominator','denh22{1}'); 

129.   

130. sim( 'desertation2full2ss' )  

131.   

132. p=plot(tout,T1simout,'g--',tout,w2simout,'g-','LineWidth',2) 

133. legend('T temperature f=.5','w angular speed f=.5') 

134.   

135. legend('T temperature f=0.9','w angular speedf=0.9','T 

temperature f=0.8','w angular speedf=0.8','T temperature f=0.5','w 

angular speedf=0.5') 

136.   

137. %%%%%%%% ff=0 na=1 

138.   

139. set_param('desertation2full2ss/ffStep1','after','0') 
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140. set_param('desertation2full2ss/naStep2','after','1') 

141.   

142. set_param('desertation2full2ss/d1','after','0') 

143. set_param('desertation2full2ss/d2','after','0') 

144.   

145. F = [0.9 0;0 0.9]; 

146. P=(inv(G0)+k0 * h0')*Ss*inv(I-F*Ss); 

147. Hs=inv(PM)*(ks*hs)+F; 

148.   

149. PM = double(P) 

150. set_param('desertation2full2ss/P11','Gain','PM(1,1)') 

151. set_param('desertation2full2ss/P12','Gain','PM(1,2)') 

152. set_param('desertation2full2ss/P21','Gain','PM(2,1)') 

153. set_param('desertation2full2ss/P22','Gain','PM(2,2)') 

154.   

155. [numh11,denh11] = tfdata(Hs(1,1)) 

156. [numh21,denh21] = tfdata(Hs(2,1)) 

157. [numh12,denh12] = tfdata(Hs(1,2)) 

158. [numh22,denh22] = tfdata(Hs(2,2)) 

159. set_param('desertation2full2ss/TF11','Numerator','numh11{1}','Den

ominator','denh11{1}'); % TF=H(s) 

160. set_param('desertation2full2ss/TF21','Numerator','numh21{1}','Den

ominator','denh21{1}'); 

161. set_param('desertation2full2ss/TF12','Numerator','numh12{1}','Den

ominator','denh12{1}'); 

162. set_param('desertation2full2ss/TF22','Numerator','numh22{1}','Den

ominator','denh22{1}'); 

163.   

164. sim( 'desertation2full2ss' ) 

165.   

166. figure 

167. p=plot(tout,T1simout,'b--',tout,w2simout,'b-','LineWidth',2) 

168.   

169. legend('T temperature f=.9','w angular speed f=.9') 
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170. xlabel('time (sec)') 

171. ylabel('output Response') 

172. title('system response conventional(K(s),H(s)(f.f.=0 & n.a.=1)') 

173. grid on 

174.   

175. hold 

176.   

177. F = [0.8 0;0 0.8]; 

178. P=(inv(G0)+k0 * h0')*Ss*inv(I-F*Ss); 

179. Hs=inv(PM)*(ks*hs)+F; 

180.   

181. PM = double(P) 

182. set_param('desertation2full2ss/P11','Gain','PM(1,1)') 

183. set_param('desertation2full2ss/P12','Gain','PM(1,2)') 

184. set_param('desertation2full2ss/P21','Gain','PM(2,1)') 

185. set_param('desertation2full2ss/P22','Gain','PM(2,2)') 

186.   

187. [numh11,denh11] = tfdata(Hs(1,1)) 

188. [numh21,denh21] = tfdata(Hs(2,1)) 

189. [numh12,denh12] = tfdata(Hs(1,2)) 

190. [numh22,denh22] = tfdata(Hs(2,2)) 

191. set_param('desertation2full2ss/TF11','Numerator','numh11{1}','Den

ominator','denh11{1}'); % TF=H(s) 

192. set_param('desertation2full2ss/TF21','Numerator','numh21{1}','Den

ominator','denh21{1}'); 

193. set_param('desertation2full2ss/TF12','Numerator','numh12{1}','Den

ominator','denh12{1}'); 

194. set_param('desertation2full2ss/TF22','Numerator','numh22{1}','Den

ominator','denh22{1}'); 

195.   

196. sim( 'desertation2full2ss' )  

197.   

198. p88=plot(tout,T1simout,'r--',tout,w2simout,'r-','LineWidth',2) 

199. legend('T temperature f=.8','w angular speed f=.8') 
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200.   

201. F = [0.5 0;0 0.5]; 

202. P=(inv(G0)+k0 * h0')*Ss*inv(I-F*Ss); 

203. Hs=inv(PM)*(ks*hs)+F; 

204.   

205. PM = double(P) 

206. set_param('desertation2full2ss/P11','Gain','PM(1,1)') 

207. set_param('desertation2full2ss/P12','Gain','PM(1,2)') 

208. set_param('desertation2full2ss/P21','Gain','PM(2,1)') 

209. set_param('desertation2full2ss/P22','Gain','PM(2,2)') 

210.   

211. [numh11,denh11] = tfdata(Hs(1,1)) 

212. [numh21,denh21] = tfdata(Hs(2,1)) 

213. [numh12,denh12] = tfdata(Hs(1,2)) 

214. [numh22,denh22] = tfdata(Hs(2,2)) 

215. set_param('desertation2full2ss/TF11','Numerator','numh11{1}','Den

ominator','denh11{1}'); % TF=H(s) 

216. set_param('desertation2full2ss/TF21','Numerator','numh21{1}','Den

ominator','denh21{1}'); 

217. set_param('desertation2full2ss/TF12','Numerator','numh12{1}','Den

ominator','denh12{1}'); 

218. set_param('desertation2full2ss/TF22','Numerator','numh22{1}','Den

ominator','denh22{1}'); 

219.   

220. sim( 'desertation2full2ss' )  

221.   

222. p=plot(tout,T1simout,'g--',tout,w2simout,'g-','LineWidth',2) 

223. legend('T temperature f=.5','w angular speed f=.5') 

224.   

225. legend('T temperature f=0.9','w angular speedf=0.9','T 

temperature f=0.8','w angular speedf=0.8','T temperature f=0.5','w 

angular speedf=0.5') 

226.   

227. %%%%% dis ff=0,na=0,d1=-1,d2=0 
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228.   

229. set_param('desertation2full2ss/ffStep1','after','0') 

230. set_param('desertation2full2ss/naStep2','after','0') 

231.   

232. set_param('desertation2full2ss/d1','after','-1') 

233. set_param('desertation2full2ss/d2','after','0') 

234.   

235. F = [0.9 0;0 0.9]; 

236. P=(inv(G0)+k0 * h0')*Ss*inv(I-F*Ss); 

237. Hs=inv(PM)*(ks*hs)+F; 

238.   

239. PM = double(P) 

240. set_param('desertation2full2ss/P11','Gain','PM(1,1)') 

241. set_param('desertation2full2ss/P12','Gain','PM(1,2)') 

242. set_param('desertation2full2ss/P21','Gain','PM(2,1)') 

243. set_param('desertation2full2ss/P22','Gain','PM(2,2)') 

244.   

245. [numh11,denh11] = tfdata(Hs(1,1)) 

246. [numh21,denh21] = tfdata(Hs(2,1)) 

247. [numh12,denh12] = tfdata(Hs(1,2)) 

248. [numh22,denh22] = tfdata(Hs(2,2)) 

249. set_param('desertation2full2ss/TF11','Numerator','numh11{1}','Den

ominator','denh11{1}'); % TF=H(s) 

250. set_param('desertation2full2ss/TF21','Numerator','numh21{1}','Den

ominator','denh21{1}'); 

251. set_param('desertation2full2ss/TF12','Numerator','numh12{1}','Den

ominator','denh12{1}'); 

252. set_param('desertation2full2ss/TF22','Numerator','numh22{1}','Den

ominator','denh22{1}'); 

253.   

254. sim( 'desertation2full2ss' ) 

255.   

256. figure 

257. p=plot(tout,T1simout,'b--',tout,w2simout,'b-','LineWidth',2) 
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258.   

259. legend('T temperature f=.9','w angular speed f=.9') 

260. xlabel('time (sec)') 

261. ylabel('output Response') 

262. title('sys.res.conven.(K(s),H(s)(ff=0,na=0,d1=-1,d2=0)') 

263. grid on 

264.   

265. hold 

266.   

267. F = [0.8 0;0 0.8]; 

268. P=(inv(G0)+k0 * h0')*Ss*inv(I-F*Ss); 

269. Hs=inv(PM)*(ks*hs)+F; 

270.   

271. PM = double(P) 

272. set_param('desertation2full2ss/P11','Gain','PM(1,1)') 

273. set_param('desertation2full2ss/P12','Gain','PM(1,2)') 

274. set_param('desertation2full2ss/P21','Gain','PM(2,1)') 

275. set_param('desertation2full2ss/P22','Gain','PM(2,2)') 

276.   

277. [numh11,denh11] = tfdata(Hs(1,1)) 

278. [numh21,denh21] = tfdata(Hs(2,1)) 

279. [numh12,denh12] = tfdata(Hs(1,2)) 

280. [numh22,denh22] = tfdata(Hs(2,2)) 

281. set_param('desertation2full2ss/TF11','Numerator','numh11{1}','Den

ominator','denh11{1}'); % TF=H(s) 

282. set_param('desertation2full2ss/TF21','Numerator','numh21{1}','Den

ominator','denh21{1}'); 

283. set_param('desertation2full2ss/TF12','Numerator','numh12{1}','Den

ominator','denh12{1}'); 

284. set_param('desertation2full2ss/TF22','Numerator','numh22{1}','Den

ominator','denh22{1}'); 

285.   

286. sim( 'desertation2full2ss' )  

287.   
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288. p88=plot(tout,T1simout,'r--',tout,w2simout,'r-','LineWidth',2) 

289.   

290. legend('T temperature f=.8','w angular speed f=.8') 

291.   

292. F = [0.5 0;0 0.5]; 

293. P=(inv(G0)+k0 * h0')*Ss*inv(I-F*Ss); 

294. Hs=inv(PM)*(ks*hs)+F; 

295.   

296. PM = double(P) 

297. set_param('desertation2full2ss/P11','Gain','PM(1,1)') 

298. set_param('desertation2full2ss/P12','Gain','PM(1,2)') 

299. set_param('desertation2full2ss/P21','Gain','PM(2,1)') 

300. set_param('desertation2full2ss/P22','Gain','PM(2,2)') 

301.   

302. [numh11,denh11] = tfdata(Hs(1,1)) 

303. [numh21,denh21] = tfdata(Hs(2,1)) 

304. [numh12,denh12] = tfdata(Hs(1,2)) 

305. [numh22,denh22] = tfdata(Hs(2,2)) 

306. set_param('desertation2full2ss/TF11','Numerator','numh11{1}','Den

ominator','denh11{1}'); % TF=H(s) 

307. set_param('desertation2full2ss/TF21','Numerator','numh21{1}','Den

ominator','denh21{1}'); 

308. set_param('desertation2full2ss/TF12','Numerator','numh12{1}','Den

ominator','denh12{1}'); 

309. set_param('desertation2full2ss/TF22','Numerator','numh22{1}','Den

ominator','denh22{1}'); 

310.   

311. sim( 'desertation2full2ss' )  

312.   

313. p=plot(tout,T1simout,'g--',tout,w2simout,'g-','LineWidth',2) 

314.   

315. legend('T temperature f=.5','w angular speed f=.5') 

316.   
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317. legend('T temperature f=0.9','w angular speedf=0.9','T 

temperature f=0.8','w angular speedf=0.8','T temperature f=0.5','w 

angular speedf=0.5') 

318.   

319. %%%%% dis ff=0,na=0,d1=0,d2=-1 

320.   

321. set_param('desertation2full2ss/ffStep1','after','0') 

322. set_param('desertation2full2ss/naStep2','after','0') 

323.   

324. set_param('desertation2full2ss/d1','after','0') 

325. set_param('desertation2full2ss/d2','after','-1') 

326.   

327. F = [0.9 0;0 0.9]; 

328. P=(inv(G0)+k0 * h0')*Ss*inv(I-F*Ss); 

329. Hs=inv(PM)*(ks*hs)+F; 

330.   

331. PM = double(P) 

332. set_param('desertation2full2ss/P11','Gain','PM(1,1)') 

333. set_param('desertation2full2ss/P12','Gain','PM(1,2)') 

334. set_param('desertation2full2ss/P21','Gain','PM(2,1)') 

335. set_param('desertation2full2ss/P22','Gain','PM(2,2)') 

336.   

337. [numh11,denh11] = tfdata(Hs(1,1)) 

338. [numh21,denh21] = tfdata(Hs(2,1)) 

339. [numh12,denh12] = tfdata(Hs(1,2)) 

340. [numh22,denh22] = tfdata(Hs(2,2)) 

341. set_param('desertation2full2ss/TF11','Numerator','numh11{1}','Den

ominator','denh11{1}'); % TF=H(s) 

342. set_param('desertation2full2ss/TF21','Numerator','numh21{1}','Den

ominator','denh21{1}'); 

343. set_param('desertation2full2ss/TF12','Numerator','numh12{1}','Den

ominator','denh12{1}'); 

344. set_param('desertation2full2ss/TF22','Numerator','numh22{1}','Den

ominator','denh22{1}'); 
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345.   

346. sim( 'desertation2full2ss' ) 

347.   

348. figure 

349. p=plot(tout,T1simout,'b--',tout,w2simout,'b-','LineWidth',2) 

350. legend('T temperature f=.9','w angular speed f=.9') 

351. xlabel('time (sec)') 

352. ylabel('output Response') 

353. title('sys.res.conven.(K(s),H(s)(ff=0,na=0,d1=0,d2=-1)') 

354. grid on 

355.   

356. hold 

357.   

358. F = [0.8 0;0 0.8]; 

359. P=(inv(G0)+k0 * h0')*Ss*inv(I-F*Ss); 

360. Hs=inv(PM)*(ks*hs)+F; 

361.   

362. PM = double(P) 

363. set_param('desertation2full2ss/P11','Gain','PM(1,1)') 

364. set_param('desertation2full2ss/P12','Gain','PM(1,2)') 

365. set_param('desertation2full2ss/P21','Gain','PM(2,1)') 

366. set_param('desertation2full2ss/P22','Gain','PM(2,2)') 

367.   

368. [numh11,denh11] = tfdata(Hs(1,1)) 

369. [numh21,denh21] = tfdata(Hs(2,1)) 

370. [numh12,denh12] = tfdata(Hs(1,2)) 

371. [numh22,denh22] = tfdata(Hs(2,2)) 

372. set_param('desertation2full2ss/TF11','Numerator','numh11{1}','Den

ominator','denh11{1}'); % TF=H(s) 

373. set_param('desertation2full2ss/TF21','Numerator','numh21{1}','Den

ominator','denh21{1}'); 

374. set_param('desertation2full2ss/TF12','Numerator','numh12{1}','Den

ominator','denh12{1}'); 
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375. set_param('desertation2full2ss/TF22','Numerator','numh22{1}','Den

ominator','denh22{1}'); 

376.   

377. sim( 'desertation2full2ss' )  

378.   

379. p88=plot(tout,T1simout,'r--',tout,w2simout,'r-','LineWidth',2) 

380. legend('T temperature f=.8','w angular speed f=.8') 

381.   

382.   

383. F = [0.5 0;0 0.5]; 

384. P=(inv(G0)+k0 * h0')*Ss*inv(I-F*Ss); 

385. Hs=inv(PM)*(ks*hs)+F; 

386.   

387. PM = double(P) 

388. set_param('desertation2full2ss/P11','Gain','PM(1,1)') 

389. set_param('desertation2full2ss/P12','Gain','PM(1,2)') 

390. set_param('desertation2full2ss/P21','Gain','PM(2,1)') 

391. set_param('desertation2full2ss/P22','Gain','PM(2,2)') 

392.   

393. [numh11,denh11] = tfdata(Hs(1,1)) 

394. [numh21,denh21] = tfdata(Hs(2,1)) 

395. [numh12,denh12] = tfdata(Hs(1,2)) 

396. [numh22,denh22] = tfdata(Hs(2,2)) 

397. set_param('desertation2full2ss/TF11','Numerator','numh11{1}','Den

ominator','denh11{1}'); % TF=H(s) 

398. set_param('desertation2full2ss/TF21','Numerator','numh21{1}','Den

ominator','denh21{1}'); 

399. set_param('desertation2full2ss/TF12','Numerator','numh12{1}','Den

ominator','denh12{1}'); 

400. set_param('desertation2full2ss/TF22','Numerator','numh22{1}','Den

ominator','denh22{1}'); 

401.   

402. sim( 'desertation2full2ss' )  

403.   
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404. p=plot(tout,T1simout,'g--',tout,w2simout,'g-','LineWidth',2) 

405. legend('T temperature f=.5','w angular speed f=.5') 

406.   

407. legend('T temperature f=0.9','w angular speedf=0.9','T 

temperature f=0.8','w angular speedf=0.8','T temperature f=0.5','w 

angular speedf=0.5') 

 

 

 

Figure A.1: least effort controller simulation model 
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1.2 H infinity controller code: 

2 format short e; 

3 syms n; 

4 s = tf('s'); 

5 G = [0.967*10^6/(s+40) -

8.1248*(s+3.27)/(s+0.95);8.82*10^6*(s+31.42)/((s+1.55)*(s+40)*(s+187.4)) 

50.2/(s+1.55)]; 

6 G0=[24175 -27.96641684;2.385137879987606e+04 32.387]; 

7   

8 g11=tf(0.967*10^6/(s+40)) 

9 g12=tf(-8.1248*(s+3.27)/(s+0.95)) 

10 g21=tf(8.82*10^6*(s+31.42)/((s+1.55)*(s+40)*(s+187.4))) 

11 g22=tf(50.2/(s+1.55)) 

12 Gh=[g11 g12; g21 g22]; 

13   

14 W1=[100/(s+0.5),0; 0,100/(s+1)]; 

15 W2=[tf(1e-5),0; 0,tf(1e-5)]; W3=[s/1000,0; 0,s/200]; 

16 Tss=augtf(Gh,W1,W2,W3); [g,Gc]=hinfopt(Tss); zpk(Gc(1,2)) 

17  

18 step(feedback(Gh*Gc,eye(2)),0.1) 

19 figure 

20  

21 step(G) 

22 figure 

23  

24 Hs=Gc 

25 [numh11,denh11] = tfdata(Hs(1,1)) 

26 [numh21,denh21] = tfdata(Hs(2,1)) 

27 [numh12,denh12] = tfdata(Hs(1,2)) 

28 [numh22,denh22] = tfdata(Hs(2,2)) 

29   

30 set_param('desertation2full2ss2/TF11','Numerator','numh11{1}','Denominator

','denh11{1}'); % TF=H(s) 
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31 set_param('desertation2full2ss2/TF21','Numerator','numh21{1}','Denominator

','denh21{1}'); 

32 set_param('desertation2full2ss2/TF12','Numerator','numh12{1}','Denominator

','denh12{1}'); 

33 set_param('desertation2full2ss2/TF22','Numerator','numh22{1}','Denominator

','denh22{1}'); 

34   

35 set_param('desertation2full2ss2/ffStep1','after','1') 

36 set_param('desertation2full2ss2/naStep2','after','0') 

37 set_param('desertation2full2ss2/d1','after','0') 

38 set_param('desertation2full2ss2/d2','after','0') 

39   

40 sim( 'desertation2full2ss2' ) 

41 figure 

42 p=plot(tout,T1simout,'b--',tout,w2simout,'b-','LineWidth',2) 

43 legend('T temperature','w angular speed') 

44 xlabel('time (sec)') 

45 ylabel('output Response') 

46 title('system response conventional H inf(f.f.=1 & n.a.=0)') 

47 grid on 

48 figure 

49   

50 set_param('desertation2full2ss2/ffStep1','after','0') 

51 set_param('desertation2full2ss2/naStep2','after','1') 

52 sim( 'desertation2full2ss2' ) 

53 p=plot(tout,T1simout,'b--',tout,w2simout,'b-','LineWidth',2) 

54 legend('T temperature','w angular speed') 

55 xlabel('time (sec)') 

56 ylabel('output Response') 

57 title('system response conventional H inf(f.f.=0 & n.a.=1)') 

58 grid on 

59  

60 figure 

61 set_param('desertation2full2ss2/ffStep1','after','0') 
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62 set_param('desertation2full2ss2/naStep2','after','0') 

63 set_param('desertation2full2ss2/d1','after','1') 

64 set_param('desertation2full2ss2/d2','after','0') 

65 sim( 'desertation2full2ss2' ) 

66   

67 p=plot(tout,T1simout,'b--',tout,w2simout,'b-','LineWidth',2) 

68 legend('T temperature','w angular speed') 

69 xlabel('time (sec)') 

70 ylabel('output Response') 

71 title('system response conventional H inf(ff=0,na=1,d1=1,d2=0)') 

72 grid on 

73   

74 figure 

75 set_param('desertation2full2ss2/ffStep1','after','0') 

76 set_param('desertation2full2ss2/naStep2','after','0') 

77 set_param('desertation2full2ss2/d1','after','0') 

78 set_param('desertation2full2ss2/d2','after','1') 

79 sim( 'desertation2full2ss2' ) 

80   

81 p=plot(tout,T1simout,'b--',tout,w2simout,'b-','LineWidth',2) 

82 legend('T temperature','w angular speed') 

83 xlabel('time (sec)') 

84 ylabel('output Response') 

85 title('system response conventional H inf(ff=0,na=1,d1=0,d2=1)') 

86 grid on 
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 Figure A.2: H-infinity controller simulation model 

 

 

 

 

 


