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Abstract

Flow Cytometry (FCM) is a microscopitechniqueusedin many fields,especially clinical
research and health cart€lassical analysis of FCM data is done manually in a tedious, error
prone process, which is not standardized, not open fevakiation and highly dependent on the
experience of thanalyst Conventional analis methods are based on comparisons of univariate
or bivariate distributions for one or twahannelsonly, while it is obvious that analyzing flow
cytometric data files in a multivariate space would generate more accurate results. For this
reason, many stlies and researches are directed towards developing a model for aaiynat
analyzing FCM data files, as it is difficult for human analysts to extract clear information from

multidimensionabata files.

The automated analysis of flow cytometric dat&hallenging due to many reasons especially:
the unordered cells across different flow cytometilies and the featureare divided across
multiple FCS files for the same patieMany approaches concentrated on resolving either the

first or thesecondchalleng, but not both of them.

In this thesisa novelapproachis introducel and validatd for generating a multivariate flow
cytometric data file with Ndimensions, where N is the number of the intended independent
measurementsThe approach was develed to resolve the maitwo challenges in flow
cytometry T mentioned previously- using concepts of Probability Binning and Bayesian

Inference.

The approachdescribedn this thesis ivalidated forclassifyingnormal and leukemia incidence
casesAlso, it is validated for classifying different Leukemia types (AML;ABL or T-ALL).

Experiments showa 100%correspondence between our results and clinical results.
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Chapter 1

1.0vervi ew

Flow Cytometry(FC) is a widely used technique and an essential tool in many fie&dsare
related to clinical research and health caligke Immunophenotyping, DNA analysis,
microbiology and drug discovenA flow cytometerforces thousands of cells ftow one ata
time through a very thin chamber. Whil®wing, the physical and chemical characteristics of the
cells are measured aneagorded in Flow Cytometry Stdard Daa files (FCS). Depending on
how manycdl features are to be measuradagre than one aliquot (for the same patiendy be
analyzed, producing more than one FC8 for the same patien{Cualing 2000) (liu et al.
2008), (Pedreiraet al. 2008a), (Lakoumentas et al. 2009) and (Rowley 2Bighlight the

importance of flow cytometry in Hematological Immunophenotyping in the following peints:

1. Diagnosing and monitoring blood cancer: Flow cytometers provide rapit-parameter
antigenic fingerprinting of blast cells. Also FC is used in dgtishing lymphoid from
myeloid leukemia.

2. Diagnosing and monitoring HIV/AIDS infection.

3. Detection of minimal residual disease (MRD) based on the neoplastic antigenic
fingerprint, even when neoplastic cells exist at very low frequencies among majority of

normal cells.

(liu et al. 2008), (Pedreira et al. 2008b) and (Bashashati & Brinkman 2009) show that
traditionally, and this remains the case in many labs today, FCM data are analyzed by human
experts through visualization of scatter plot arraysitéérent pairs of cell featuredollowed by

gating A gate is a selective boundary that can be used to define the characteristics of particles
include for further analysis, and eliminate unwanted particles (dead cells or debris) from results.
Althoughgating s an i mportant step in FCM analysi s;

a highly subjective process which depends mainly on the experience of the analyst.

Due to the importance of the problem and the availability of the data electronicallyhtsere
been several attempts to partially or fullyt@uate the analysis of FCM datélowever, such

automatiorfaces a number of challengeghich will be explainedn details in the next section.



Unordered cells over different FCS files and features diggtover different FCS files are the

most important challengeBor example, in the field of diagnosing Leukemianwentional FCS
analysis methods could not be used to directly measure the distance between leukemia patients.
In other words, applyingraditional distance metrics to original FCS files would generate
different results for the same patient and this is obviously wrong. This is due to unordered cells

across different FCS files for the same patient.
1.1 Challenges facing analysis of Flow Cytomat data

(Liu et al. 2008)believe that malyzing (FCS) data files is a real challenge duesdweral

reasons:

1. Flow Cytometry is an example of multiparametric measurement technique that can
measure up to 20 channels (attriugefeaturefor each celht a time.

2. The number of cells in one (FCS) file can reach the order of (x0)10f. Hence the
matrix of (FCS) file containsuge number of intensities of different features (channels).

3. Cells are not uniformly ordered across samples of the same patient.

4. Data of a single patient may be divided over multiple (FCS) files, dipgron the
technical limitations of thBow cytometer

5. Usually in Flow Cytometry research field, the number of cases under investigation is

relatively small. This produces a hugmgsch space for the parameters of any model.

The above mentioned challenges may exist in dibatthrelated data, but poimumbers (3 and

4) representinique challenges for flow cytometry and needs a special care.
1.2 Questions the research address

Many researches introduadifferent approaches t(partially or fully) automatethe analysis of
flow cytometric data. Generally,most approacheghat attempt to represent FCM datan be
divided into two main categories:

1. Approaches addressintpe challenge of unordered cells (challenge number 3 in the
previous section) These approaches concentrate omalying separate channels
(attributes) in each (FCS) data file.Vector quantization,mixture modelling and
frequency binningare examples dkechniques used to group simmilgells in one unit and

el iminate the i mportance of cellsd order.



2. Approaches integrating channels across FCS data Viisgalization techniques, nearest
neighbor classification techniquesd Bayesian Inference are examsptd techniques
usedto merge channels frodiifferent FCS files (of the same patient) into one huge FCS

file.

This thesis presents a novel approach that combines two different techniques to solve the two
challenges facingepresentation oflow cytometricdata. As mentioned earlier some researches
solved the first challenge, but not the second; while other researches solved the second challenge
but not the first. Theepresentation that is proposédre solves both challenges and could
successfully be usedn real data toachieve 100% accuracy and sensitivity ilassifying
Leukemia patientsThe approachpresented here was also used in a novel idea-sie®
classification of leukemia casesand also achieved 100% accuracy and sensitivity in

discriminatingdifferent Leukemia types, which is more challenging for human pathologists.
This thesis aims to answer the following questions:

1. How can we represent FCM data that address the two representation challenges?
2. Can the proposed representation be used to ssfodly classify Leukemia cases?
3. Can the proposed representation be used to successfully classify different types of

Leukemia cases?
1.3 .Contributions

In this section, thesis main contributions are outlined. The following illustration shows how the

thesis workanswers the research questions in details.
1. How can we represent FCM data that address the two representation challenges?

(Cox et al. 1988)(Roederer et al. 2001a@nd (Roederer et al. 2001ipresent the concept of
Probability Binning (PB) that addresse challenge of unordered cells across FCS Gfethe
same patient(Pedreira et al. 2008@pply Bayesian Inference (BIl) to address the challenge of
features divided over differe®CS files, by merging histograms different features in one
global daaset.This thesiscombines botliProbability Binning and Bayesian Inferernogresent a

novel approaclior FCM data representation that can be used with traditional distance metrics
2. Can the proposed representation be used to successfully classify Leckses?

The proposed representation was used to generate a global (cpanaiftieter) dataset that

contains cases (instances) on the rows, and (binned and combined) features on the columns. This
3



dataset could be analyzed using different data mining iggobs, and verified to accurately

classify leukemia cases.

3. Can the proposed representation be used to successfully classify different types of

Leukemia cases?

The representation proposed here was applied@©8 data ofdifferent lkeukemia types to
generatea muli-parameter datasethis dataset wathenanalyzed using a novel idea ofsip
classification to classify two main types of leukemia: Acute Myeloid Leukemia (AML) and
Acute Lymphoid Leukemia (ALL)The representation verified to succeed in clgssif different

leukemia types.
Briefly, the contributions of this thesis are:

A representation for FCM data based on Probability Binning and Bayesian Inference.
First data set of leukemia cases in the UAE analyzed locally using data mining.

Comparativeanalysis of classification techniques for leukemia cases.

0N

Proposing Zstage classification of Leukemia types.
1.4 ThesisOutlines

The remaining of this thesis is organized as follows:

Chapter 2introducesa technical description of a flow cytometer and its specificatimnggical
factsabout diferent blood cells anthe definition of leukemia and its types.

Chapter 3discusses the related work to this thesis.

Chapter 4:.represents the basic conceptsd anathematicabrincipals used inbuilding the

algorithm ofthis thesis
Chapter 5represents the methodology and the detailed steps of the suggested algorithm.

Chapter 6:represents the first experiment of examiniitfCS) samplesfor the diagnosis of
leukemia. The experiment includes: generating the gl#B@b) datasetusing optimization and
selection techniques to reduce its size, and finally analyzing it using data mining techilispies.
application of Euclidean Distance metric on flow cytometriasiet is presented here.

Chapter 7represents the second experiment of discrimindietgreen Acute Myeloid Leukemia
(AML) and Acute Lymphoid Leukemia (ALL)The experiment includes: generating the global



(FCS) dataset,using optimization and selectiotechniques to reduce its size, and finally

analyzing it using data mining techniques.
Chapter 8:concludes and summarizes this thesis; discusses the results and presents the future

work.



Chapter 2

2.Fl ow Cytometry

Flow Cytometry (FC) is a widely used tectique thatallows simultaneous muiparameter
analysis othundreds of thousands idividual cells It is used taneasurecell size and volume,
analyze expression of cell sacke and intracellular molecules afthracterize different cell types

in hetergeneous cell populations.
2.1 Cell preparation for Flow Cytometry

FC uses amatological and lymphoid tissues as specimens such as peripheral blood (PB), bone
marrow, lymph node and thymus. Each specimen is composed of different percentages of
populations of dés, characterized by cell lineage, growth stage, functioning and activation level.
The identification of each <cell popul ation ca
protein structure or by meas wme celypopulatiprs,iac a | c
simultaneous measurement of 2 or more protein structures is required to accomplish the
identification process. This biological fact increases the demand for instruments with higher
multi-parametequalifications. As a result, neimustruments are capable now of measurindaup

20 parameters simultaneously by developing cytometers with 20 florescence detectors as
mentionedin (Bashashati & Brinkman 2009)Pedreira et al. 2008c) and (Pedreira et al. 2013)
argue that these developmenin industry are still less than the requirements of clinical
discrimination between several heterogeneous disease categories. For example, for accurate
identification of B cell chronic lymphoproliferative disorders (BCLPDs), acute leukemia, or
myelodyspastic syndromes; measuring characteristics of neoplastic cells with respect to more
than 30 markers are required, while currently available cytometers does not provide 30
florescence color detectors. This potential problem of multicolor detectors limgédtias been

solved by staining cells with biomarkers (fluorochrecomjugated antibodies). There are two

main categories of biomarkers associated with different hematological malignancies; backbone
markers and supplemental markers. The specimen is diwdedaliquots and stained with
different combination of markers. All aliquots are stained with backbone markers to identify the
same population of cells. Different aliquots of the sample are stained with different supplemental
markers for additional desption of physical characteristics of populations. In other words, to
solve the problem of limited number of detectors in cytometers, panels with two or more

6



combinations of overlapping antibodies are used to measure cells' characteristics for the complete
identification of different hematological malignancies. Although staining solved the problem of
florescence detectors limitations, it has encouraged the development of new automatic

multidimensional analysis techniques.
2.2 Technical Descriptionof a Flow Cytometer

(Rowley 2012) and (@dreiraet al. 2013 demonstrate the structure of Flow Cytometers (Cyto

for cell, meter for measureh flow cytometerconsiss of four main components: fluidic system,

lasers, optics and electronic system. Figure (2) repiesdbe main components of a flow
cytometer. The test tube containing a sample is placed in the collection stage of the flow
cytometer. The heterogeneous suspension in the test tube is drawn from the test tube and pumped
to the flow chamber. The flow chambalows cells to flow one at a time veguickly by Hydro

Dynamic Focusingvhich is achieved bgontrolling the pressure of the sample with respect to

the pressure of trgheathfluid. Figure (3) focuses on the fluidic system of a flow cytometer.

When thecell reaches the interrogation po(ttie point of intersection between the flow chamber
and the laser light source) is hit by a bright light laser beam. The light reflected off eachiell
collected by light detector® give information about theall's physical characteristics. Light
reflections at small angles are called Forward scatter (FS) and gives information about the size of
the cell, while light reflections at large angles are called side scatter (SS) and indicates if the cell
containsgrarules as described in gkoumentast al. 2006) and @lreiraet al. 2008h) Also

cells are stained with bio markers (antibody fluorochromes) that cause certain light emission
according to protein information in each cell. Light scattering and/or fluorescence emission are
captured, filtered by photdetectors and converted to @liécal signals (voltage). The voltage
signal is digitized and stored in a Flow Cytometry Standard (FCS) file format. The value of the
voltage signal shows the intensity of light emitted from each cell. Thus each FCS data file can be
described by a matriwhose columns are the channels (attributefeaturesof cells), and rows

are the individual cells. The intersection between each row and column istehsity of the

voltage.
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Figure2: Cells flowing in a flow chamber of a cytometer. Adopted fron
(Abcam 2014)
(Pedreira et al. 2008a), €Breiraet al. 2013) and @koumenta®t al. 2009)elievethat many
developments in FC industry have been achieved, but conventional data analysis techniques don't
satisfy those complex achievements. Thus adequate developments in data representation,

visualization and analysis techniques are a real challenganaeskential demand.
2.3 Different specifications offlow cytometers

There are many manufacturers for flow cytometers with different specifications. (Rowley 2012)
mentions t he commonly cited flow cytometers
Biosciences ifs common models are: FACSCalibur, LSR Il, FACSCanto and FACScan),
Beckman Coulter, Dako, Guava/EMD Millipore and Miltenyi Biotec.
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(Select Science 2014) shows the main differences betfleen cytometers, andorovides
technical guidelines to choose thew cytometer those best suites individual requirements. The

following points summarize the main differences between flow cytometers:

1- The number of parameters to be simultaneously measudsgpéndenobn the number of
lasers and detectors the flow cytometer supplied with.

2- The capabilities of the software provided with the flow cytometdre companion
software providedools for representing the data generated by the flow cytometer in
histograms, twalimensioml dot plotsor some times ithreedimensioml plots.

3- Gating is an important procedure in flow cytometers aiesfrom one manufacturer to
amother. Some cytometers provides manual gating, while others presmdieautomated
or automated gating

4- Some flow cytometers provide solutions to protect the samptes &nvironmental
influences.

5- The degree of automating the process of analysis varies from one manufacturer to
another.

6- Flow cytometers vary according to teensitivity,accuracy and effiency of their fluidic,
optic and electronic systems supplied with th€igure @) shows a detailed optic system

of a flow cytometer.

Fluorescent
Channels

To CCD or

Dichroic \ / Computer
- ( ¥,

4

Bandpass
Filter
Forward
Scatter
Detector

Figure3: Optic System of FEAdopted from (Semrock 2014)



2.4 Flow Cytometric Data files

(Pedreiraet al. 2008c) and @RIreiraet al. 2013pelieve thathe last two decades have seen many
developments in Flow cytometry. These developments included production of monoclonal
antibodies, welcharacterized and high quality reagents and a broagtyaof compatible
fluorochromes. Also great enhancements have been added to instrumentation and tools in flow

cytometry, which led te:

Greater number of parameters (channels) that can be simultaneously assessed for each cell.
Greater analysis speed of & flow cytometers.
Examining tens of thousands of stained cells per seconds.

S

Generating more complex data files that containti-parametedistribution about millions

of cells in a sample.

These developments imposed many challenges on the existalgsiantools and, thus

encouraged developing new automated analysis algorithms and clear visualization tools.

Old flow cytometers used a screen attached to instrumentations to represent voltage signals
emitted from each cell as analog signals in real .tibaer then, computers were developed to
store cells6 measurements in a wunique efile
cytometer. (Pedreira et al. 2018pte that in 1984, a standardized file format was proposed to
store flow cytometers da FCS 1.0 (Flow Cytometer Standards 1.0 format). Three main formats

of FCS 1.0 could be used:

1. Single FCS file format: contains information about population of cells with respect to a single
parameter (single channel).

2. Double FCS file format: containsformation about population of cells with respect to two
parameters (two channels).

3. Multi-parameter(n dimensions) FCS file format: contains information about population of
cells with respect to three parameters or more. This format is also called ListAesle
format (LMD). LMD files can be viewed as a matrix, where individual cells are on the rows

of the matrix, and the parameters under investigation are on the columns of the matrix.

Since 1984, FCS 1.0 has been revised and updated to the current oeFI$ 3.0.
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2.5 Conventional analysis methods of FCS files

(Liu et al. 2008), (Bashashati & Brinkman 2009) and (Pedsdiral. 2008b) explain how FCS

files are analyzed manually by plotting two different parameters (attributes)-in scatter plot.

The resulting plot is then gated by identifying homogenous subgroups of cells of special
importance to be further analyzed another 2D scatter plot with respect to another two
channels. (Pedreira et al. 2013) demonstrate that manual technique is done by highly experienced
people, who may find difficulties in extracting clear and simple information from
multidimensional FGS files generated from currently available digital cytometers with many

channels.

Although gating is an important step in conventional flow cytometry analysis, it is considered as
a major disadvantage. (Boedigheimer & Ferbas 2008), (Liu et al. 2008), (699 Bashashati

& Brinkman 2009) and (Simon et al. 2012) highlight that gating is a subjective process that
neglects multidimensionality of the data and miss potential subsets of cells due to projecting high
dimensionédata down to a 2D space . Also siee, shape and position of the gates are highly

dependent on the knowledge and experience of the analyst.

(Bashashati & Brinkman 2009) present a study performed in 15 clinical institutions. The study
shows that the mean intlxboratory coefficientof variation ranged from }44%. The same
samples and antibodies were used, preparation of samples was standardized and analysis of data
files where performed by experts in flow cytometry. Actually the study shows that high variation

coefficient was accountddr gating.
2.6 Normal Blood Cells

National Cancer Institute (NCI 2013) states that all blood cells are produced by Blood Stem
Cells, which exist mainly in the bone marrow. Blood stem cells can produce myeloid stem cells

and lymphoid stem cells, which in tuwill finally produce three types of cells:

1. White Blood Cells (WBCs) which help the body fights infection.
2. Red Blood Cells (RBCs) which carry oxygen all over the body.

3. Platelets which form clot to stop bleeding.

All blood cells have a certain life cycle vahi consists of many stages: formation, growth,
function and death. This life cycle is controlled in the bone marrow, which will in turn produce

new blood cells instead of the dead ones.
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Figure4: Generation of Normal Bloo@ells- Adopted from (NCI 2018

As shown in figure 4), WBCs can be formed from different cell lineages, Granulocytes which
are generated from myeloid stem cell, and Lymphobhasish are generated from lymphoid
stem cell. Lymphoblast (Lymphocyte) cells are called Agranulocytes, and are of three types: B
cells, T-cells and Natural Killer (NK).

2.7 L eukemia, Definition and Types

(Tadmouri et al.) define Leukemia as the form of catleatrtargets the blood. Another definition

from National Cancer Institute (NCI 2013) Leukemia is the cancer that starts infblomdg

tissue, such as the bone marrow, and causes large numbers of abnormal blood cells to be
produced and enter the bloagdstim.

In Leukemia incidence cases, bone marrow produces abnormal WBCs called Leukemia and
Leukemia blast cells which divide to produce copies of themselves. The copies divide again and
again producing more and more leukemia and leukemia blast cellsinAlsokemia incidence

cases the control of the bone marrow on the abnormal white blood cells' life cycle is disturbed
resulting in undying white blood cells even if they are old or damaged. As a result, abnormal
WBCs crowd out the other two types of blooells resulting in disorders in fighting infections,

controlling bleeding and delivering oxygen to tissues.

Leukemia is the most common cancer in children. It causes disturbances of functions in their

immune system causing fevers and infections. Leukelsm @auses disruption in generating
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different blood cells, causing anemia and bleeding problems. It may also results in tumors

formation due to accumulation of leukemia cells in different organs causing headache or pain.

As mentioned in the previousectioo, WBCs can be produced from two main cell lineages;
Lymphoid and Myeloid. Also the degree of abnormality of WBCS can be strong and sudden
(acute) or weak and slow (Chronic).This resuitéour main types of Leukemias explained in

(NCI 2013} they are:

1. Acute myeloid leukemia (AML) affects myeloid cells and grows quickly. Leukemic blast
cells collect in the bone marrow and blood. AML is most common in adults.

2. Acute lymphoblastic leukemia (ALL) affects lymphoid cells and grows quickly. Leukemic
blast cells usually collect in the bone marraand blood. (Tadmouri et al.)ade that ALL is
the most common leukemia in children.

3. Chronic myeloid leukemia (CML) affects myeloid cells and usually grows slowly at first.
Blood tests show an increase in the numbextute blood cells. The abnormal white blood
cells work almost as well as the normal white blood cells. There may be a small number of
leukemic blast cells in the bone marrow. CML is most common in adults.

4. Chronic lymphocytic leukemia (CLL) affects lympHdaells and usually grows slowly. Blood
tests show an increase in the number of white blood cells. The abnormal cells work almost as

well as the normal white blood cells. CLL is most an adult disorder.
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Chapter 3

3. Rel ated Wor ks

(Pedreiraet al.200&) presents a novel algorithm for analyzing flow cytometric data files for the
diagnosis and identdation of B-cell chronic lympheroliferative disorders. The algorithm is
based on generating a single flow cytometric data file from many flow cytometridildatthat

contain information of events (cells) stained with different combinations of antibodies. The final
file should present information about all antibodies for each individual cell. The algorithm uses a
3D vector of the common parameters (FSC, 38 CD19) to represent all cellular events in
different aliquots. Then a nearest neighbor approach is used to estimate the intensity value of
different parameters for each individual cell. In other words, the approach tries to guess the
intensity value ofall parameters for all cells in a sample depending on a common 3D frame and
nearest neighbor approach. For example, suppose two aliquots A and B with parameters (FSC,
SSC, CD19, Xa) for aliquot A and parameters (FSC, SSC, CD19, Xb) for aliquot B. The scommo
parameters are used to build the 3D vector that works as a general visualization structure. Now,
the main goal is to estimate the intensity value of Xa for all cells in aliquot B, and estimate the
intensity value of Xb for all cells in aliquot A, in suahway to generate a super file that contains
information about (FSC, SSC,CD19,Xa,Xb). This goal is achieved by using the nearest neighbor
approach whicHor a cell in B finds the nearest neighbor cell in A, and assigns its Xa value to
that cell in B. Nog¢ that Xa was not directly measured for cells in B. The algorithm show high
agreement between the results obtained from analyzing individual flow cytometric data files and
the results obtained from analyzing the super global flow cytometric file thatir®tiafinite)

number of parameters.

(Smon et al. 2005)develop a clustering algorithm based on cell intensities in all dimensions
(channels) at once. The algorithm depends on applying successive clustering techriigues to
cytometric data files. First,K-means clustering is applied to all original data; in order to
distinguish between interesting data cells, and those particles without biological importance.
Then another hierarchical clustering phase is applied on a random subset of observations. The
result of this phase is just a start to build a more accurate Gaussian model. Although this model
shows successful results; but it depends on an expert knowledge to exclude unimportant clusters

in the early stages of the algorithm.
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(Liu et al. 2008)apply inmportant preproessing steps by converting flow cytomettiata files

from its original structure showing intensity value for each cell at each channel to another
structure showing cell counts for every intensity value at each channel. This intensibystri
structure makes it easy to directly comp#og cytometricdata files. To overcome the problem

of huge number of features; regression analysis is used. As the number of features is significantly
reduced; data files could be separately clustereshelh channel. The evaluation of algorithm
shows that a great enhancement has been done to the quality and efficiency of reduced features

clustering compared with original features clustering.

(Costa et al. 2006) anddBreiraet al.2008b) present successfapproaches to classify different
neoplastic Bcell disorders depending on the concept of Vector Quantization (VQ). VQ is a
technique built on modelling of probability density functions by a number of prototype vectors.
Each vector is representing aaporoximately equal number of data points closest to it. Each
vector is viewed as the centroid of group of data points surrounding it, ameaKs clustering.

This approach reduces the number of features in the search space, as only one vector is
represeting a group of data points. This clustering technique was used at each channel separately
and could successfully classify different neoplasticeB disorders depending on classifying

lymphocytes.

(Lakoumentas et al. 2006), ¢Bdigheime& Ferbas2008, (Chanet al. 2008) and @&koumentas

et al. 2009)represent similar approaches for automatically gating lymphocytes. The approach
depends on the concept of mixture model. In this model, each data point is assumed to be
generated from a mixture of probability distributions. For each data point, the oardguess

the most probable distribution to which it belongs. This model is sometimes referred to as

Bayesian Clustering, as it uses the concept of Bayesian networks in clustering data points.

(Shih et al. 2013)develop a graphical based approach, in twhiealthy cases, -Bhronic
Lymphocytic Leukemia (BCLL) cases and Follicular Lymphoma (FL) cases are plotted #ba 3
5-parameter model. The 5 parameters of this model are the five biomarkers: CD5, CD10, CD19,
Kappa and Lambda. The model is based on d@irfects that normal cases show positive values
for CD19, but negative values for both CD5 and CD10, with approximately equal popsilatio
expressing Kappa and Lambdan the other hand CLL cases show positive values for CD19 and
CD5, but negative valuesrf@€D10. Lastly, FL cases show positive values for CD19 and CD10,

but negative values for CD5. In both CLL and FL populations express either Kappa or Lambda
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light chains. The model is built by training on FCM data cases, and then used to fit the algorithm
on test cases. The graphical nature of the approach shows great efficiency and easiness in
diagnosing different B ymphocytosis disorders.

(Pedreira et al. 2008a)epresent a probabilistic approach on BCLPD-cé chronic
lymphoproliferative disorders). Brapproach applieBayes Theorem to predict the probability of
every data point (event) either to belong to a normal population or a neoplastic population.
Assuming that events follow Gaussian distribution functions; conditional probabilities of an
event dawn from normal or neoplastic case can be easily calculated. Thus this paper represents a

direct application of Bayesian Law.

(Aghaeepouret al. 2013)represent FLOWCAPFlow Critical Assessment of Population is a
software developed to compare the perfance of differentflow cytometric data analysis
techniques. The software compares the performance with respect to manual expert results, and
with respect to actual clinical outcomes. The paper aims to develop techniques for automatic
analysis offlow cytometric data files, and to provide guidelines about accurately using those
techniques.

(Bashashati& Brinkman 2009)represent a general framework for analyzing FCS data files.
Majority of papers in this filed focus on automatic gating techniques (selextimmogenous

subset of cells which share one function or have similar interesting characteristics). Other papers
focus on applying supervised or unsupervised learning techniques in finding correlations between
cells' characteristics and clinical resultsp8rvised learning algorithms are used when there is a
label variable (attribute) that can distinguish between the events in a data set. While in
unsupervised learning all the variables are the same, and the goal here is to separate the events of
the dataset into similar groups or clusters where data points (events) of one cluster are most
similar to each other than events in other clusters. In most cases, unsupervised learning
techniques are more suitable to analyze flow cytometry data files, as useabnit have a prior

knowledge about the nature of cells and other particles in blood samples.

(Zareet al. 2010)rgue that spectral clustering is the best technique for analyzing FCS data files.
However, direct application of spectral clustering on FCitadsets (of size 300,000 events for
example) will consume extraordinary time and memory (approximately two years! and 5
terabytes of memory). Thus reducing data events first would solve the problem. The approach is

based on the following steps:
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1. Plottingdata points (vertices) on a grid

2. Running faithful sampling to produce much less data points where spectral clustering can be
performed easily.

3. The lost information due to sampling is compensated by adding weighted edges to data points
produced in step (2)The edge is a&onnectionbetween two data points (vertices) with a
weight (thickness) appropriate to the density of the regiena denseregion is weighted
with thicker edge. This way, the lost information about the density of data points will be
retrieved.

4. Spectral clustering is applied on the modified data set.

The overall previously mention algorithm is called SamSPECTRAL, which was tested and

verified to be the first successful application of spectral clustering on large datasets.
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Chapter 4

4.Badi c concepts

This research presents a noapproach to represent FCS ddthis representation could be used

with traditional distance metric¥heprocedure presented hesebuilt upon two mairconcepts

1. Probability Binning

2. Bayesian Inferencdd generatdoint Probability distribution).

(Pedreiraet al. 2008c) preserd novel algorithm to generate a multivariate distribution from
different FCS files. The algorithmexplainedpreviously is similar tothe algorithm presented

here in their main objective, which is merging different parameters measured for different
aliquots into one flow cytometric file. The main difference between the former algorithm and the
one presented here; is the nature of FCS fisdoused for merging. (Pedreira et2008c)use

the raw FCS files which presents intensity values for individual cells for each channel
(parameter) measured, while theocedurepresented here uses intensity histograms (intensity
distribution values) for each channel measured. The curr@ndyentedprocedureis much
simpler as it neglects the order of cells, and cares only for their quantity at each discrete intensity

value.
4.1.Cox Method and Theory of Probability Binning

(Cox et al. 1988)%tate that comparing two or more multivariate datastbgrams can determine

if the datasets differ from one another in terms of their respective fluorescence intensity
distributions, however, the current statistical tests do not identify the exact region of difference

on the fluorescence intensity scalar Fexample, the Kolmogore8mirnov test computes a P

value to assess the similarity of two cell populations in terms of their fluorescence intensities but

the test does not provide where on the intensity scale the difference lies. Identifying these
Adidgdfea regionso requires modifying the compa
accommodate limited intensitgnges which can drop down t&5of the sample population. This

limitation of current tests promoted the use of Cox Method.

(Cox et al. 1988)introduce Cox Model for identifying the regions of differenoa intensity
scale between samples. In order to understand how Cox Method is applied, suppose that we have

two stained blood samples (Control sample) and (Test sample). Cox Method groum cells
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equally sized bins according to their florescence intensities. Each bin has unequal number of
cells. These bins are then compared between the two samples to detect the regions with
significant difference in cell counts on the intensity scale. Althotnghsize of bins in Cox
Method is arbitrary, it affects the statistical power of the comparison. If the bin is too narrow, it
will have small cell counts and lead to less powerful statistics. If the bin size is too wide, it will

have large cell counts amioe resolution of intensities igherefore lost.

(Roederer et al. 2001a) ando@lereret al. 2001b)ntroduce the theory of Probability Binning
(PB) to provide a metric that determines the degree of similarity or dissimilarity between two or
more multhariate distributions. It can be used to discriminate samples and classify them
according to their biological differences. Probability binning is just a modified version of the
original algorithm named Cox Method (or Cox Model).

Probability Binning theoryRB) uses unequal sized bins with equal number of cells in lgach
This will result in sufficient amount of cells in each bin, in such a way to provide powerful
statistics of difference between control sample and test sample. This method suffers figm losi
resolution at unpopulated areafsflorescence intensity scalas it may group outliers with inliers
together in one bin to complete the jgpecified amount of cells in each bin. Thus we can say

that equal frequency binning is biased against outhegsh may represent neoplastic cells.

(Roedereret al. 2001b)describe and validate the Probability Binning algorithm to compare
univariate distributions according to their florescemtensity.A control univariate distribution

is divided into bins with equal frequencies in each bin. This algorithm is considered-@aamini

approach as it minimizes the maximum variance of the control dataset. The same bins are then
applied to a test distributiors in Kolmogorov+Smirnov K-S) statistics, a chsquared P values

are calculated to assess the similarity of control and test distribution on the basig by bibin

comparison. PB algorithm uses a Moftarlo simulation for chsquared P values androerted

them to another metric T(x) score. The metric T(x) scales with the degree of similarity or

di ssimilarity between two distri but-$ tstfr whi
example. This metric can also be used to determine the reldistence between different

distributions and a control dataset.

Following the same concept, gBdereret al. 2001ayhowthat PB algorithm can also be applied
for comparing multivariate distributions, where each bin is made up of -gpngles of n

dimensions, where n is the number of parameters (attributes) to be simultaneously measured.
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Again, each bin must contain the same number of events (cells), and the same number of bins is
applied on both control and test data sets. As mentioned previousiyg&Rhm could generate

a metric T(x) that can rank distributions according to their similarity or dissimilarity to a control
distribution. The algorithm was applied to multivariate immunophenotyping dataeaifidd its

ability to discriminate differen distributions and rank them according to their biological

meaningful differences.
4.2 Probability , conditional probability and Bayes Law

A probability is a numeric value representing the possibility that a certain eveateur. (Duda
et al. 1999)expresshe concept of probability as a random variable X that can assume a finite
number m of different values in the space of XThus
0w U,fori=1, 2, 3ém
Equationl: Probability of a random variable (X)
Wherex is the value thathe randonwvariable ) can take andn is the number of different
valuesthat (X)can take.

An impossible event is the event that will never occur, i.e. has a possibility value=0.

0@ m Forimpossible event
Equation2: Probability of an impossible event
On the other hand a certain event is the event that of sure will occur, i.e. has a possibility
value=1.
0@ p Forcertain event
Equation3: Probability of acertain event

(Duda et al. 1999%3uggesexpressindghe set of all possible probabilities that a variable will take
in terms of a probability madsinctiond ¢ . The probability mass function musatisfy these

two conditions:

0@ m

Equationd4: Condition 1 on Probability mass function

00 »p

Equation5: Condition 2 on Probability mass function
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Conditional Probability is the probability that event X will occur given tohaton thecondition
that event Y has already occed, ands denoted by P(X|Y). We can firfel (X|Y) by consider
the sample space truncated to just the event Y, and is given by:

- .. DONEQ

e
Equation6: Conditional Probaibty (X]Y)

Similarly, the onditional probability P(Y) can be found by considering the sample space
truncated to just the event X, thus:

Equation7: Conditional Probability (Y|X)
Note thatP (X|Y) I P (Y|X).

As mentimed in (Ahdrade2010)and using Error! Reference source not found) and Error!
Reference source not found, Bayes Law is derived:

0 —
W0 L ®
Equation8: Bayes Law

Equations Equation 6: Conditional Probabty (X|Y)), (Equation7: Conditional Probability
(Y[X)) and Equation8: Bayes Law will be used inChapter §Methodology, to derive the main

joint probability equation that merges betweendtiterent channels from different FCS files.

21



Chaert 5

5.Met hodol ogy

The diagnosis of various hematological diseases, such as different types of lymphocytic leukemia
and lymphoma, requires comprehensiegadanalysis of lymphocytes. (Lakoumentas et al. 2006)
confirm that it is necessary to discriminate lymphocytes from all other leukocytes for the
diagnosis of leukemia. Theusty agrees that using normal FS/SS (Forward Scatter/Side Scatter)
gating is not enough in the discrimination process. Depending dfotherd ScatteFS attribute

to discriminate cells according to their relative size is not always successful because cells are
usually mixed. Also depending on the SS attribute to discriminate cells according to their
granularity (complexity) is not alwaysuccessful as SS can distinguish granulocytes, but can't

distinguish lymphocytes and monocytes.

(Lacombe et al. 1997ntroduce the fact that leukemic blast cells express low values of the
leukocyte common antigen (CD45) marker, while normal lymphocytédsnaonocytes express

high values of CD45.They compare between normal FS/§&ting (without using any
immunological marker) ah CD45/SSgating. The results of their study show that the former
gating produces overlapping areas between blast cells and rmetnpbpubtions, while gating

on CD45/SScan precisely discriminate between blastls and normal cells. dcombeet al.

1997) show that using CD45 plus two or three lineagpecific markers can achieve good
discrimination between leukemic blast cedisd normal cells. Their procedure was applied on
AML cases, but also succeeded for different types of acute leukemia, even those which have low
percentages of blast cells.

Moreover, (Lakoumentas et al. 20Q&)int out that CD3 and CD19 are two antigen reeskhat
can discriminate between different subtypes of lymphocytesellB and Fcells, as they can

produce distinctive flow cytometric attributes.

(Lacombe et al. 1997and (Lakoumentas et al. 200&8¥sure that CD19 antigen marker can

recognize Bcell lymphocytes, while CD3 antigen marker can recognizelllymphocytes.

However, the required antigen attributes, CD3 and CD19, are not always available in the same
flow-cytometric file of the same patient examination. Therefthrig, thesissuggest addingthe

common antigen attribute CD45 to help in merging the channels, as CD45 is available in almost
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all flow cytometric files of the same patient and is also used for discriminating between

lymphocytes among other leukocytes.

Therefore, and depending on thleove mentioned factthis thesisclaims thatusing CD45 with

CD3 and CD19ive excellent phenotypic determination of the leukemic blast cells, and hence

provides accurate leukemia diagnosis.

The proceduregoresented here aims at merging intensity histogr of three chantginto single
multidimensionahistogram. The single multidimensiortastogram will contain intensities ol

possible combinationsf the binnedchannels. This integration process is done for each patient,

and then almulti-dimensimal histograms are gathered in one global dataset. The columnires of t

global dataset introduce @bmbined binnedchannels, and the rowspresent theases

This chapterintroduces the three main stages of finecedure The firstsectionpresents the
modified algorithm of prbability binning, the secondection presentBayesian Inferencéhat
will be used to merge thehannelsand the thirdsectiondescribes how the mulfaraneter

dataset will be generated to achievepghgposedepresentation of FCS data.

Sample(FCS data filesareprovided in LMD file format (listmodefrom PathologySection at a
hospital in Dubai Exploration of the data and statistical calculatiovere performed in the

statistical package R versin 3.02.
5.1.Stage (A) Applying the modified Probability Binning algorithm

Stage (A) is the step where nor mal (FCS)
(intensity histograms)This stageis similar to Cox method and Probability Binning al¢jom,
except in the size of bins and the amount of cells in eachThmalgorithm presented heres
much simpler and easier than the former two algorithms, andretgeed its ability to generate

high accuracy result3hefollowing steps describhis stage -

1. Define the possible range of intensities (minimum and maximum intensity values) by

exploring the backbone channels (CD3, CD19 and CD4&)Q files.

2. The range of intensities is divided into bins of unequal size with no condition on the

amount of cells in each bin. Sizes of bins are selected by trial and error, taking into

account striking the balance between compact representation and accuracytsf resul

W R is a free software environment for sséital computing and graphics. B availablefor free downloadat
http://www.r-project.org/ R versimn 3.0.2 released on 2562013
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Generally, exploring(FCS files shows that intensity histograms of channels under
consideration are-shaped with left peak, so small bin sizes were selected at the peak and
near it, while larger bin sizes are chosen beyond the peak. The same [Erappted on
the three channels.

3. Intensities of cells in individual hannels are categorizednd groupedin the
correspondingpins, ie.intensityof each cel | i's categorized

sequence, anplacedin the appropriate bin.

Figures 6, 6 and 7) show intensity distributions of cells stained with backbone markers CD3,
CD19 and CD45 respectively. Each distribution contains (60690) cells. Note that these plots are
sensitive to cells flow ordelVhile figures 8, 9 and10) show histgram plots of intensities for

the same cells. These plots @ameependenb f c el orde® and genevally following & J

shaped curve with left peaklso note that all histogram plotsgave the same binning sequence.

Intensity

0 10000 20000 30000 40000 50000 60000 70000

Figure5: Cel |l sé6 I ntensity Distribut

Intensity Value

0 & ! T e it ‘ _.-_"_—:é = I AT P I e

=S5 Y

0 10000 20000 30000 40000 50000 60000 70000
Cells

Figure6:Cel | s6 I ntensity Distributic«

24



Intensity Value

12000

10000 Erat Ty T Loty ¥ ey p—_ r y r
PP R S T T o e T
oy 5
8000 .
6000
4000

Figure7.Cel | sdé I ntensity Di

Intensity
8

6000

5000

z I:l

3000

2000

0 w il
g g 8 8 8 8

2 AR R 2 B 8 R 8 8 8 8 8

100 |

D
1000
200
300
400
00
601
7000
8000
Q0

Bins

Figure8: Intensity Histogram for channel CD3

25

10000

str

but

(



Intensity

10
20
30
40
50
60
70
80
90
100
200 §
300 0

o o
o O
< wn

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

Bins

Figure9: Intensity Histogram for channel CD19

16000

14000

12000 -+

10000 -H

8000

Intensity

6000 -

4000 H

|...|JJJLJJJ |

O L LR RS LLL L PP PSS
PP RPN PPRF PSS
NW%&‘){),\S},,)QD.QQ’QQ’Q,\Q@O’Q'&@

2000

Bins

FigurelQ: Intensity Histogram for channel CD45

5.2.Stage (B):Using Bayesian Inference to generatéhe joint probability
equation of the channels

Bayesian Inference is used to join histograms across different FCS files. Suppose we have two
FCS files representing two aliquots of the same patient. The FCM analysis of the first aliquot
generated the FCSId with the following features: (B B¢ . ., BB1, Si2€ . 1mB The FCM
analysis of the second aliquot generated the FCSviitethe following features:Hj, B2¢. . B
S, S2€ . amP Note that the features {B B 2 gare.thi® backbone markers that ebenmon
across albliquots, while features (S S>€é . imy@re supplementaharkersthat are specific to the
i aliquot.Let H1 and H2 be the histograms of the first and second FC@djtectively Now to
calculate the joint histogram of all featur@;, B¢ . ., By, S . 1mSS, S22 . Som), We
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assume thaprobabilities associated with supplemental features irmdepenént given the
backbone features. Recglint probability equation is given by:
O ohd 0G0 O
Equation9: Joint Probability Equation
Therefore
H=PB1 B6 . By, S26 . 1m$1, S22 . omP PG11, Sio€ . im$PB1, B2 . 1) (S,
$2€ . amPP B1, B2 . 1)B
EquationlQ: The joint histogram of afleatures

Substituting usingEquation6: Conditional Probabty (X|Y) ), we get:

0 3p pBp G 8Bp IH'pH'¢8 8T 03¢ pBc @ 8B¢ h"pH' ¢8 &'1
0 "pHc8 &1

Equationll: The joint histogram of all features
Consider the twsupplementathannels CD3 and CD1&e independent (as they are obtained
from different FCS files of the same patient examinatioasyiCD45 is the backbone channel.
Substitutan (Equation 1) to get:

06O DUV 6P & @ v
06®@uv

06O P& @ u

Equation12 Joint Probability Equation of chann&®3, Cd19, CD45

From equationd) we can say thdhe joint histogram (the jot probability of all featuresgan be
calculated from the bivariate probability distribution between (CD3, CD45), bivariate probability
distribution between (CD1%;D45) and the univariate probability distribution of (CD45).

5.3Stage (C): Generating contingency tables for (CD3, CD45), (CD19,
CD45) and frequency table for (CD45)

In this stage, bivariate distributions and univariate distributions are generated in qrddotm

equation ). The following steps describe this stage

1. From stage (A): des éntensity distributios areconvertedinto intensity histograms for
CD3, CD19 and CD45 separately.
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2. Combine frequency histograms bbth CD3 and CD45 in a contingencghie. Do the
same for CD19 and CD45. These contingency tables describe the relationship between
(CD3, CD45) and (CD19, CD45) as bivariate data distributions.

3. Calculate frequency table for CD45 as a univariate data.

4. Substitute iNEquation12: Joint Probability Equation of chann&®3, Cd19, CD4p

5. Stage (A and C) are repeated for all cas&be resulted combined attributes of all cases

are then usetb generate a muliparameter dataset.
Note that CD3 and CD19 are usually not in the same FCS file,

Note that CD3, CD19 or CD45 can be repeated in different examingi@files)for a single
patient, so steps 1, 2 and 3 can be performethfiwechannels (attributes) from arfifC9 file
that contains them, as gIFCS files for the same patient will show the same final results.

Appendix (A) shows the detailed steps of the algorithm presented here on one sample case.

A clear limitation of the approach presented here is the explosion afetterated combined
attributes. Theaumber of the generated combined attribié¢sis exponential in theaumber of

individual attributesN is given by:
N=(b)™
Equation13: Number of generated combined attributes
Where:
m: is the number of individual featurdsofth supplemental and backbone channels).
b: is the number déreak points used in binning.

This limitation can be resolved by using effective manual binnamgurate selection of
individual featuresand applyilg feature reduction techniques on the generated (Combined
Attributes) dataset.
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Chapter 6

6.Di scri minating betweépruhemmals and

In this chapterthe first and second questiontthis thesiwill be answered

1. How can we represent FCtata that address the two representation challenges?

2. Can the proposed representation be used to successfully classify Leukemia cases?

This chaptempresents experiments to discriminate between normal and abrieukamiacases.

The chapterconsists of twomain parts:generate the proposed representation of FCS data by
generating the combined attributes dataset (G#gn analyzinghte resultedCA) dataset using
Rapid miner 5.8 to classify leukemia cases.

6.1.Generating the Gombined Attributes (CA) dataset

Generating the combined attributes dataset requires calculating the joint probability distribution
of thethree channels (CDXD19 CDA45) by alculatingequation 2) for all the available cases

(30 normal cases and 5 Leukenmieidencecases). Recall equatioB)(

0 6@ @V 6P & @ v

060G O & @
vo ® v VDOO@U

D)

Where:

P(CD3, CD19, CD45)is the joint probability of the combined backbone attributes (CIZ3L9,
CD45).

P(CD3, CD45)is the joint probability of two channels (CD3, Ch)4
P(CD19, CD45)is the joint probability of two channels (CD19,CD45).
P(CD45) is the discrete probability of one channel (CD45).

The procedure described previously waaluatedusing data o80 normal cases and 5 abnormal

cases.The data files of theases were provided in LMD (Listmode) file formBCS Express 4

@ Rapid Miner 5.3: is a data mining program. It is available as a-stiame application for data analysis and as a
data mining engine. Rapid Miner is available for download at:
http://sourceforge.net/projects/rapidminer/files/latest/download
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Plus Research Editio® was used to convert files into FCS file format and CSV file format.
.The three channels adkscretizedusing24 break points at: 10, 20, 30, 40, 50, 60, 70, 80, 9

100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, which
results in 25manuallysetbins . Therefore, the maximum number of combined attributes that

will be generated in the dataset is (24)13824 attributes. Thecaual generated dataset contains

6175 attributes, as the remaining attributes have zero value for all cases, so they were cancelled
out to simplify the analysis amdduce the size of the dataset.

Case label | 101010 |1010100 (1010 101020 [1010200| 10102000 (10
10n normal | 0.047716| 0.01082| 0.031198| 0.017657| 0.149289| 0.01866277| 0.0
11n normal | 0.182279| 0.003812| 0.110022| 0.032442| 0.077145| 0.033266556| 0.0
13n normal | 0.020818| 0.028015| 0.046507| 0.008782| 0.327855| 0.017901391| O.
14n normal | 0.430916| 0.00194| 0.129535| 0.029279| 0.014221| 0.060895363| 0.0
15n normal | 0.395545| 0.00113| 0.092632| 0.039585| 0.033393| 0.066066463| 0.0
16n normal | 0.638405| 0.003592| 0.013913| 0.062682| 0.039192| 0.01250938| 0.0
17n normal | 0.154798| 0.018963 0.0045| 0.100683| 0.059257 0| 0.0
la abnormal| 0.075154( 0.000285| 0.085094| 0.001942| 0.003776| 0.041237664| 0.0
in normal | 0.209148| 0.018059| 0.006772| 0.185833| 0.057737 0| 0.0
20n normal | 0.024587| 0.007153| 0.014074| 0.003278| 0.14557| 0.005944004| 0.0
21n normal | 0.252474| 0.008481| 0.028805| 0.027178| 0.110421 0.042952| 0.0
22n
23n
24n

normal | 0.467225| 0.000571| 0.018773| 0.001756| 0.013764| 0.00224931| 0.0
normal | 0.004292| 0.028211| 0.004088| 0.003374| 0.141395 7.32E-05( 0.0
normal | 0.038547| 0.018346| 0.006125| 0.021437| 0.185962| 0.004830918| 0.0
25n normal | 0.608796| 0.001389| 0.078749| 0.019321| 0.009781| 0.05985739| 0.0
26n normal | 0.274721| 0.004254| 0.051588| 0.124176| 0.052375| 0.039747628| 0.0

Figurell: Part ofthe combinedttributes CA) Dataset

Figure (11) shows a part of the generated (CA) Dataset, were the cases are rowshthe
attributes including a label attribute are on the columns. Thes/afusimerical atibutes show

the joint probability of the combinedhannels (CD3, CD19 and CDA45). For exampte
combinedattribute [10 10 10means the joit probability to have CD3[0, 10], CD19 [0, 10]

and CD48 [0, 10]. This attribute equals 0.0477 for case 10n, while it equals 0.4672 for the case
22n.Also, notethat attribute [10 10 200@quals O for case 17n. This means thatgtobability

to find CD3~ [0, 10], CD19~ [0, 10] and CD45 [1000,2000] equals O for that case.

® FCS Express 4 Plus isflaw cytometrysoftware package designed gmoduced by De NOVO software. A demo
version is available dtttp://www.denovosoftware.com/site/derawerview.shtml

@ More sophisticated binning methods can be used, but this intuitive manual setting worked just fine.
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Note that abnormal cases has the ID of the form (number + a), while normal caseh#selD

form (number + n).

6.2 Analyzing the (CA) dataset using Rapidminer 5.3

Rapid Miner5.3 is used to build seven different classifier models for the (CA) Dataset. All
models are built with default Rapid Miner5.3 parameters unless otherwise stated. Cross
validation (with 10 folds and stratified sampling) is used to measure tlh@rmpance of the
classifier modelThe Cross Validation operator in Rapid Miner5.3 is a nested operator that has
two subprocesses; training and testing. In 10 folds cross validation, the (CA) dataset is divided
into 10 subsets of equal size. In the tragngubprocess, 9 subsets are used to buildntioelel

and the last TDsubset is used in the testing uiocess to measure the performance of the model

on unseen data. This process is repeated 10 times, each time with different subsets for training
and testing. The final performance of the model is the average gfetformances in all 10

cycles.Table (1) shows the performance measures for each classifier model.

False False | Accuracy | Precision Recall
# Model N .
Positive | Negative (%) (%) (%)

1 | Decision Trees 1 1 95 80 80
2 | Rule Induction 1 1 95 80 80
3 | Logistic Regression 7 3 72 22 40
4 | K Nearest Neighbor 2 2 89 60 60
5 | Perceptron 2 1 93 67 80
6 | Naive Bayes 2 1 92 67 80

Support Vector
7 ) 7 3 72 22 40

Machines

Tablel: Classification Models fofCA) dataset
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It is clear that Decision Tree (DT) and Rule Induction (RI) classifierseedahe highest accuracy
of 95%, followed by Perceptron with 98, then Naive Bayes (NB) with2%, followed by K
Nearest Neighbor (KNN) with 88, and finally the lowest accura®f 72% was acquired by
Logistic Regression (LR) and Support Vector Machines (SVM).

Decision Tree and Rule Induction models use the combined attribute [10 1000 3000] to classify
normal and abnormal cases. Figurg® §nd13) show a scatter plot diagram for all cases versus
the combined attribute [10 1000 3000] in both DT and Rl models. it is clear that the combined
attribute [10 1000 3000] in both DT and RI could not classify all cases correctly due to the
relatively small mmber of cases with respect to the huge number of combined attributes. Also
note that two abnormal cases and one normal -cais¢ancedocatedinside the rectangular area

in figures 14 and Xhave relatively close values of the combined attribute [DD BDO00], hence

both classifiers could not correctly classify all cases based on that attribute only.

abnormal @ { (]

Label

° Lo % | o
normal ® L] | 1

-0.0005 0.0000 0.0005 0.0010 0.001S 0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060
10 1000 3000

Figurel2: The Combined Attribute [10 1000 3000] Vs Label in Decision Tree Classifiel
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0.0600 0,0605 0.0b10 0.0615 0.0620 0.0625 0.0630 0.0635 0.0640 0.0645 0.0650 0.0655 0.0680
10 1000 3000

Figurel3: The Combined Attribute [10 1000 3000] Vs Label in Rule Induction Classifier

In Logistic Regression model, the combined attribute [10 400 2000] achieved the highest weight
of (0.032344), followed by the combined attribute [10 500 2000] with a weigld.0831455).
Thethird highest weight of (0.027805) was assigned to the combined attribute [10 300 2000].

In Perceptron model, the highest three weights of (0.02295), (0.007493) and (0.005515) were
assigned to the three combined attributes [10 200 1000]3(002000] and [10 300 1000]
respectively.

In Suppaet Vector Machine model, the highest weight of (0.002302) was assigned to the
combined attribute [10 500 2000], followed by the attribute [10 400 2000] with a weight of
(0.002263), and the third highestiglet of (0.001977) was assigned to the combined attribute
[10 1000 3000].

6.3.False Positive and False Negative Errors

This medical experiment is considered as a binary classification problem, where the result of
classification is either normal or abnormal. In this case, errors can occur when the classifier
model indicates that an instance is normal while it is not, ecates that an instance is abnormal
while it is not. These two errors are called false positive and false negative, respectively. A false
positive error exists when a test result shows that a condition is present but it is not in fact
presented, while a e negative error exists when a test result shows that a condition is not

present, but it is in fact presented. Although both errors affect the results of the medical testing
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problem, buthe medicalcaseinvestigatechereis a testing problem of lifanddeath situation. In

false positive, the patient may need to do extra tests and medical diagnosis to ensure the validity
of the results. This will cost some time, money and effort. While in case of false negative, the
patient may not receive the required treatment based on his actual case, so it will cost his/her life!
In this particular problem, it is better to add unnecessary tests instead of endangering someone's

life! Thus it isessential for the algorithm to be praclida reduce false negatiegrorsto zero.

In the followingsections, different solutions will be introduced that may increase the accuracy of

classification and reduce the number of false negative errors to zero.
6.4 Apply feature selection techniques

The resulted (CA) dataset consists of 6175 attributes and only 35 cases (events). This is an
example of many domains that have tens or hundreds of thousands of features and only few
training examples(Guyon& Elisseeff 2003 statethat gene selection from micrarray data and

text categorization are two famous examples of such cases. The gene selection case is very
similar to our task here, where a typical classification task requires separating healthy patients
from cancer patients depending on their gene ese profile. The dataset usually has less than

100 patients as training examples, while individual profile consists of aroundi660@00
variables. The variables are coefficients corresponding to abundamo®&MA in a sample,

which may be Bmatologial lymphoid tissue biopsies.

As mentioned previously, the huge number of attributes compared to the number of training
sampl es, may cause ACurse of Dimensionality @
This ensures that there are many redundadhiraelevant variables in the resulted dataset. This is

also the case in gene selection classification task. Actually there are many benefits behind

suggesting thapproach for feature selection, they can be summarized in the following points:

1. Enabling d@ta visualization and simple representation.

2. Reducinghe requiredrainingand testing time.

3. Handling the problem of fACurse of Dimensi ol
4

. Improving prediction accuracy.

Many feature selection techniques use variable weighting scheme as a baslhistesggheme

gives higher weights to variables that could correctly classify the training samples.
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(Aggarwal 2014) classifies feature selection techniques to: filter models, wrapper models and
embedded models. In Filter method, a ranking criterion orfeatere or a subset of features is
used to evaluate their classification ability. The filtering of variables is done as a preprocessing
step, and the result is irrespective of the used machine learning technique. In wrapper method, a
model uses an iteraB classification algorithm with built #feature selection technique. In each
iteration; the classification algorithm evaluates a subset of fedturéheir predictive ability. If

the accuracy of prediction is improved, then the embedded subset afege#uselected,
otherwise, it is neglected. Due to embedding feature selection model in the classification
algorithm, the resulted subset of features is dependent on the used classification algorithm. For
example, SVM classification would choose featutes linearly separate the two classes, while
nearest neighbor classifier would choose features that cluster classes in spherical regions.

As examples on applying feature selection techniquestjan 6.5 presents attribute weligly

process, and section 6.7 presents application of a wrapper model.
6.5.Using Attribute Weighting

An attribute weighting process is established in Rapid Miner 5.3. The process consists of three
operators: (1) Retrieve CA dataset Operator, (2) Weight by ®gbtator, then (3) Select by
Weight operator. The operator (weight by SVM) is used to calculate the relevance of each
attribute from the input dataset with respect to the class attribute. In this case the attribute weights
are the coefficients of a hypptane calculated by a SVM classification model. The third operator

is used to select only those attributes that satisfy asgmeified condition. The condition

specifiedhereis "select Top 3 attributes”. The process resulted in the following attributes:

1. Attribute [10 500 2000] with a weight of 1.
2. Attribute [10 400 2000] with a weight of 0.983.
3. Attribute [10 1000 3000] with a weight of 0.859.

The first attribute [10 500 2000] has a weight of 1, which means that a SVM-pigper has a
classification acaacy of 1006 using that attribute, while, using the second attribute will result
in a classification accuracy of 98 Constructing a hypeane at the last attribute has the least

classification accuracy which is 86.
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If the same process repeated agairt, With the operator (Weight by Ckguare statistic), chi
squared statistics will be calculated to measure the relevance of each attribute from the input

dataset with respect to the class attribute. The results are shown below:

1. Attribute [10 400 2000] wit a weight of 1.
2. Attribute [10 500 2000] with a weight of 1.
3. Attribute [10 1000 3000] with a weight of 0.844.

The firstand secondattributes have a chisquare statistic (p) value df, which meansl00%
significance with respect to the class attribute, or in other words, tharidssecondattributes

canbe used telassify all the data points with accuracy of 100%.
6.6.Constructing a (3D) visualization Model

The top three combined attributesquiredfrom the previous sectiotan be used to visualize all
instances in a 3D space. Figured §hd B) show a 3D model of all cases, whereaXs is the
combined attribute [10 400 2000]-akis is the combined attribute [10 500 2000] ardx® is
the combind attribute [10 1000 3000]. Figure@)1shows a 2D model of latases in a 2D space,
whereX-axis is the ombined attribute [10 400 2000] aidaxis is the combined attribute [10
500 2000]

Figurel4: A 3D Visualization Mode(X-Y-2)
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Figurel5: A 3D Visualization Model (XY-Z)
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Figurel6: A 2D VisualizationModel (X-Y)

6.7 Apply Wrapper Model

Rapid Miner 5.3 is used to establish a wrapper model. The model consistsaof process and
two sub processes. The main process is used to weight the combined attributes from CA dataset

(weights by SVM or ChiSquareStatistic3, and optimize the selection of attributes according to
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their weights. The first suprocess is used touild a DT classifier model using the optimized
attributes. The second splpocess is used to measure the performance of the classifier using a 10
folds cross validation with stratified sampling.

Table @) shows the results of using a wrapper model wittMSA& a weighting operator, while
table @) shows the results of using a wrapper model with-&juareStaistics as a weighting

operator.

Using SVM, a hypeplane is constructed at the attribute [10 500 2000] and it ranks the cases
according to their simalrity to a control case by weights. If the weight is high, it means that a
case is dissimilar to a control case, while a small weight value means the case is similar to a
control case. In table2) the highest weights are given to abnormal cases, whictharmost
dissimilar to a control case. All normal cases are assigned small weights, which mean they are
very similar to the control case. Thases 17n, 1n and 8n haaeank of (0) which means they

coincide with the control case.

As shown in tabled), similar results have been acquired when usingsghiared statistics, which
utilized the attribute [10 400 2000] to rank the cases. Again cases 17n and 1n coincide with the

control case. The case 5a is the most dissimilar to the control case.

# | TestCase| Label 10 500 2000
1 5a abnormal 0.013582169
2 4a abnormal 0.008391017
3 3a abnormal 0.008100031
4 2a abnormal 0.007879461
5 la abnormal 0.005397414
6 27n normal 0.001383272
7 4n normal 0.001124756
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8 11n normal 9.73041E4
9 31n normal 8.44496E4
10 25n normal 6.39992E4
11 24n normal 5.75109E4
12 13n normal 3.87695E4
13 6n normal 3.506E4

14 28n normal 3.11119E4
15 15n normal 2.76114E4
16 9n normal 2.61165E4
17 16n normal 2.38633E4
18 29n normal 2.29637E4
19 22n normal 1.98977E4
20 n normal 1.98017E4
21 14n normal 1.89732E4
22 5n normal 1.61201E4
23 33n normal 1.02683E4
24 20n normal 4.97E5

25 21n normal 4.75E5

26 10n normal 4.02E5

27 30n normal 3.86E5
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28 2n normal 3.63E5
29 3n normal 1.11E5
30 23n normal 9.15E6
31 26n normal 9.05E6
32 32n normal 4.89E6
33 17n normal 0.0
34 1n normal 0.0
35 8n normal 0.0

Table2: A wrapper model with SVM weighting operator

Figure (I7) shows a scatter plot describing the results ofatregper model with SVM operator;
while figure (L8) shows a scatter plot describing the results of the wrapper model with Chi
Squared statistics operatdiote the color indicator in both figureanks from dark blue to red
This indicator ranks the casescarding to th& value of theselectedcombined attribute:
(attribute [10 500 2000] in (SVM) and attribute [10 400 2000] in {€duiared))Normal cases
(dark blue) have low valuesnd are the most similar to a control gaskile abnormal cases have
higher values. The red instanae both figureshas the highest rank; thus considered the most

dissimilar to the control case.
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Figurel?: A scatter Plot o Wrapper Malel with SVM weighting operator
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abnorma

ID Case Label 10 400 2000
1 3a abnormal 0.032198994
2 5a abnormal 0.022323338
3 2a abnormal 0.02150929
4 la abnormal 0.02101963
5 4a abnormal 0.008285248
6 27n normal 0.002621629
7 11n normal 0.002266613
8 4n normal 0.002262591
9 14n normal 0.002043932
10 25n normal 0.001913939
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11 24n normal 0.001509662
12 28n normal 0.001485752
13 6N normal 0.001460835
14 15n normal 0.001271796
15 n normal 0.001153161
16 30n normal 0.001095223
17 29n normal 7.50147E4
18 9n normal 6.87276E4
19 5n normal 6.44805E4
20 31n normal 6.16421E4
21 16n normal 5.43204E4
22 13n normal 5.05689E4
23 22n normal 3.37397E4
24 26n normal 2.98718E4
25 33n normal 2.22479E4
26 2n normal 9.6911E5
27 20n normal 6.62E5
28 3n normal 3.88E5
29 10n normal 2.68E5
30 8n normal 2.47E5
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31 23n normal 2.14E5
32 21n normal 1.19E5
33 32n normal 8.55E6
34 17n normal 0.0
35 1n normal 0.0

Table3: A wrapper model with CRquared weighting operator

10 400 2000 0,000 EEETTIIITIN 0 032

........

10 400 2000

3%

Figurel8: A scatter Plot o Wrappe Model with ChiSquared weighting operatc

6.8 Analyzing the Reduced Dataset using Rapid Miner 5.3

Using the results gained from thareviously applied feature selection and optimization
techniques, we can construct a reduced datdsehwonsists of three combined attributes and 35
instances. The threselectedcombined attributes are: X is tlagtribute L0 400 2000], Y is the
attribute LO 500 2000] and Z is tredtribute [LO 2000 3000].

Table @) shows the results of analyzing theduced(CA) dataset using Rapid Miner 5.3.
Comparing table I and 4), it is clear that the performance of all models has enhanced
significantly due to using the reduced dataset instead of the (CA) dataset. Also two models
(Naive Bayes and Support vectdachines) achieved 100% accuracy; which means that those

nnnnnn
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models have a hypgiane that could excellently separate betweemmal and abnormal

instances.
False False | Accuracy | Precision | Recall
# Model N _
Positive | Negative (%) (%) (%)

1 | Decision Trees 1 0 97.5 83.3 100
2 | Rule Induction 1 0 97.5 83.3 100
3 | Logistic Regression 0 1 97.5 100 80
4 | K Nearest Neighbor 0 1 97.5 100 80
5 | Naive Bayes 0 0 100 100 100

Support Vector
6 _ 0 0 100 100 100

Machines

Table4: Classification Model$or the reducedCA) dataset

6.9 Anomaly detection techniques

Anomaly detection is the problem of finding
expected behavior. Those roanforming instances are called outliers or anomalies. Anomaly
detectionproblem has a special importance in many domains like fraud detection in banking
credit cards, intrusion in networking, military surveillance for enemy activities andsdsaa
medical research. (@ndolaet al. 2009)mention many supervised techniqubattare used in
detecting anomalies in the field of medical research and diagnosis. Neural Networks, Bayesian
Networks, RuleBased systems, parametric statistical modeling and Nearest Neighbors
techniques are examples of supervised techniques used in lgndetection especially in

medical and health domain.

Table (5 shows the results of applying nearest neighbors based techniques and statistical based
techniques in detecting outliers (abnormal instances) in the reduced dataset, which has three

combined #ributes X, Y and Zand 35 instances; of which 30 are normal and 5 are abnormal.
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Anomaly
Detection

Technique

Ouitlier
Score

(Normal)

Outlier
Score

(Abnormal)

Plot View (Outlier Score Vs Label)

Nearest
Neighbor
Based(LOF)

(K=10)

<3

>9

12 13 14 15 18 17 18

Nearest
Neighbor
Based(COF)

(K=20)

<2.5

>4.5

45 5.0 55 6.0 65

Nearest
Neighbor
Based: LoOP

(K=20)

<0.2

>0.3

0.00 0.05 040 045 0.20 025 0.30 035 040 045 050 0.55 060 0.65 070 075 0.80 0.85 0.0
outlier




Nearest | | | e ; S .
Neighbor
4 | Based: <3 >7 i
INFLO
(K=10)

outlier

Statistical
5 Based: <1 >3 5
(HBOS) R

Table5: Anomaly Detection Techniques

Note that [OF) is Local Outlier Factor techniqu€CORF is Connectivity Outlier Factor
technique(LoOP) is Local Outlier Probability technique adNFLO) is InfluencedOutleirness
technique.These techniquesare nearest neighbor basead are sensitive to K (the number of
instances to be considered in the neighborhood df @adividual instance). (@andolaet al.

2009) conclude that all Nearest NeighbdfdN) based techniques are built on one assumption
that inlier instances occur in denseighborhoods, while outliers occur far from their closest
neighbors. Thus these techniques need to define a distance or similarity measure between two
pairs of instances. The choice of the similarity measure is dependent on the type of attributes. For
example, Euclidean distance is used with continuous attributes, while simple matching
coefficient is usd with categorical attribute3he last technique mentioned in table KBOS is

Histogram Outlier Score which is a statistical based technique.
6.10.  Measuring Euclidean distance

(Duda et al. 2012)assert that Euclidean distance expresses the degree of similarity (or

dissimilarity) between samples in a data set. Euclidean distance is the most commonly used
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distance metric and is defined as the geometric distama multidimensional space. Euclidean

distance in 3 dimensions' space can be calculated by the following equation:

Qnm n n n n n N
Equationl4: Euclidean Distance between twointsp and q in a 3D space

Where d is the Euclidean distance between two instances p and q.

(Roedereret al. 2001a) and @edereret al. 2001b)mention that p value of clsquared test
measures the similarity between the control case and any test case.slfapldva value, this

means the test case is very similar to the control case, and vice versa, if p has a high value, this
means the test case is dissimilar to the control case. Using this fact and recallin@ taht, (

we can consider case (1n) as tioatrol case, as it has a p value of (0). The three dimensions of
the space are: X, Y and Z. Table) Ghows theEuclidean distance between cgde) - as a

control case and all other cases.

# Test Case ID | Euclidean Distance| Label of Test case
1 3a 0.033333 Abnormal
2 5a 0.026181 Abnormal
3 2a 0.023654 Abnormal
4 1a 0.021868 Abnormal
5 4a 0.011911 Abnormal
6 27n 0.002982 Normal
7 4an 0.002578 Normal
8 11n 0.002467 Normal
9 14n 0.002053 Normal
10 25n 0.002021 Normal
11 31n 0.001665 Normal
12 24n 0.001615 Normal
13 28n 0.001524 Normal
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14 6n 0.001518 Normal
15 15n 0.001303 Normal
16 7n 0.001175 Normal
17 30n 0.001096 Normal
18 20n 0.000785 Normal
19 an 0.000735 Normal
20 5n 0.000665 Normal
21 13n 0.000645 Normal
22 16n 0.000593 Normal
23 22n 0.000413 Normal
24 26n 0.0003 Normal
25 33n 0.000245 Normal
26 2N 0.000103 Normal
27 20n 8.92E05 Normal
28 21n 5.04E05 Normal
29 10n 5.01E05 Normal
30 3n 4.04E05 Normal
31 8n 2.47E05 Normal
32 23n 2.33E05 Normal
33 32n 9.92E06 Normal
34 17n 0 Normal

Table6: Euclidean Distance Between The control Odsg and all test cases

Table @) is arranged in a descending order. Notice that abnormal cases are the most dissimilar
with respect to the control case (1n) because they have the highest Euclidean distance ranging
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from (0.033)to (0.011). On the other hand, normal cases have lowerdeaclidistances with

respect to the control case, ranging from (0.0029) to (0). Also note that case (17n) has a (0)

Euclidean distance, which means that it coincides with the control case, and thas$ vgenWwtave
revealedoreviouslyin tables(2 and 3).
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Crapter 7

7.Di scriminating bet ween Acut e My e
Acute Lymphoid Leukemia (ALL)

In this chapter, théhird question will be answere€an the proposed representation be used to

successfully classify different types of Leukemia cases?

This chapter presents experiments to discriminate between acute myeloid leukemia (AML) and
acute lymphoid leukemia (ALL) usingoth conceps of Bayesian Inference and BinningAs
mentioned earlier; binning is used to change intensity values into cate(ins), and Bayesian
Inference is used to generate fjbent probability distributionthat mergesackbone channels

from different FCS files into oneulti-parameteFCS file.
The above question will be answered by:

1- Representing FCS data tie selectedchannels and generate the combined attributes
(CA) dataset.
2- Analyzing CA dataset using Rapidminer 5.3.

As mentioned earlier, lymphocyte cells can mainly be divided inttelB and Fcells, thus
(ALL) cases can be subdivide inteA_L and T-ALL. This chaper also includes experiments on
furtherclassifying(ALL ) cases int@itherB-ALL or T-ALL.

7.1 Generatingthe Combined Attributes (CA) dataset

(Van Dongeret al. 2012) present backbone attributes used for diagnosing different hematological
malignancies in cooperation WitNFINICYT © software Using the backbone channels of AML,
B-ALL and T-ALL, we can generate multi-parametedataset that contains comed attributes

for diagnosindlifferent leukemia incidence cases.

The following table shows the backbone channels for AMHALR and T-ALL as mentioned in
(Van Dongen et al. 2012):

® Infinicyt is software for analysis and interpretation of flow cytometry acquisition files. Infinicyt is available at:
http://www.infinicyt.com/
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Type of Leukemia Backbone markers

AML CD45 CD34 CD117
B-ALL CD45 CD34 CD19
T-ALL CD45 cyCD3 CD3

Table7: Backbone channels faliagnosingAML, B-ALL and T-ALL

Theapproach was evaluated using datéddAML cases,(4) B-ALL cases and3) T-ALL cases.

The data files of the cases were provided in LKLBtmode) file format. They were converted
usingINFINICYT software into FCS and CSV file formats. Exploration of the data and statistical
calculations were also performed in the statistical package RPrN&<).2 released on Z62013.

7.2 Exploring the cases and generating CA dataset

The samerocedur® of binning andgenerating the joint probability distribution between

channels can be applied here using the 6 backbone channels (CD45, CD34, CD117, CD19, CD3
and cyCD3), but it will definitely be moremplexdue to the increased number of chanriels

clear thahumber of generated attributes is exponential in the number of cell fedtowss if we
couldreduce the number édaturesthe resulting combined attributes (CA) dataset will be of

reasomble sizeThequestion nows: how can we select the correct set of attributes?

By browsing FCS files of altasesit was found that CD45 is the backbone channel which is
available in all FCS files. Also it was found that CD117, CD19 and cyCD3 is nialaeain

some cases. Therefore, the supplemental channels that are available for all cases are only CD34
and CD3.Thus the procedure is applied on the set of chan@&4, CD3 and CD45The

following steps summarize tiprocedureresented in this thesi

1. Thebackbone channeklrediscretizedoby 11 break points, they are100000,-10000, O,
1000, 5000, 10000, 50000, 100000, 300000, 500000 and 1100000, which result in 12
bins.

2. Applying the joint probability equatior?) on the new selected backbone channels:

© The procedure is described in details in Chapter 5 (Methodology) aAgpeiidix A).
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Equationl5: Joint Probability Equation ahannelsCD3, CD34, CD45

The maximumexpectednumber of combined attributes is (34)331. The actual combined
attributes dataset has only 617 attributes, becteseemainingattributesof zero value for all
cases were deleted teduce the (CA) dataset size ahplify the analysisFigure (19) shows a
part of the generated global (CA) dataset.

Cases Label |000 001000 |0010000 00100000 (00300000 |005000 00 50000 00 500000010000 (01000
1AML AML 4.38E-05| 0.000164 2.97E-03] 0.000933733| 0.001649899 1.70E-05] 0.001405195| 3.58E-03] 0.000256) 0.001
1B ALL 7.86E-06| 0.000202 8.22E-05] 0.002884245 5.94E-06 7.72E-05 2.44E-05| 1.11E-05| 0.00053%| 0.000
1T ALL 6.16E-05| 0.000561 8.09E-06 4,22E-05) 0.000936371 5.22E-06 3.28E-05 0f 0.000118| 0.001
2AML AML 0| 5.04E-05 2.93E-05] 0.000626985| 0.000464364 4.63E-06| 0.001083862 0 0| 0.00
2B ALL 7.55E-05| 0.001712| 0.000211364( 0.000524891 5.33E-05| 0.001034496| 0.000306952 0| 3.49E-05| 0.001
2T ALL 4.86E-06| 6.47E-05 0f 0.003403583| 0.001060647 5.12E-06| 0.000947626 0| 4.86E-05| 0.000
JAML AML 2.12E-05| 0.000149 2.90E-06] 0.000499791| 0.003135926 1.12E-05| 0.00028038| 5.29E-06| 0.000123] 0.001
3B ALL 8.90E-06| 0.000154 2.76E-05] 0.000236753 1.68E-05 3.42E-06| 0.00026284 0| 2.92E-05| 0.000
4AML AML 0| 4.31E-05 5.85E-06( 0.000214314| 0.000536105 4.01E-06 6.24E-05| 1.40E-05| 2.22E-05| 0.000
4B ALL 0.000196| 0.001281 6.35E-05] 0.00022754 2.95E-05 7.68E-06 4.87E-05 0f 0.000187| 0.00
AT ALL 0.000113| 0.000822 2.80E-06] 0.00033286| 0.00040434 1.20E-05| 0.000210181| 3.49E-06| 0.001026] 0.010

Figurel9: A part of the generated (CA) dataset.

The first column (Cases) is cases, llbe second column (label) is the label of the case (either
ALL or AML), and the rest of columns are the combined attributes. For example, the column (0 0
5000) is the joint probability of the combined attributes that has CDE4 1000], CD3 [0,
1000]and CD48 [5000, 10000].

7.3 Analyzing the (CA) dataset using Rapid Miner 5.3

Rapid Miner 5.3 was used to analyze the (CA) dataset using different classifietablEneelow
showsthe results of these classifiers. It is clear {{tak), (KNN) and(Perceptra) achieved the
highest accuracy of 70%, which is still a low accuracy for the sensitive problem in our Aands.
possible reason for this low accuracy is the large number ofinedhlattributes with respect to

thesmallnumber of instances (cases).
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False | False | Accuracy | Precision | Recall
# Model
AML - ALL (%) (%) (%)
1 | Decision Trees 2 2 70 71.43 71.43
2 | Rule Induction 2 4 50 55.56 71.43
3 | Logistic Regression 3 3 45 57.14 57.14
4 | K Nearest Neighbor 3 1 70 80 57.14
5 | Perceptron 0 3 70 70 100
6 | NaiveBayes 1 3 65 66.67 85.71
Support Vector
7 . 2 3 55 62.5 71.43
Machines

Table8: Classification Models for CA dataset

7.4 Attribute Weighting techniques

An attribute weighting process is established in Rapid Miner 5.3. The promesists of three
operators: (1) Retrieve CA dataset Operator, (2) Weight by SVM operator, (3) Select by Weight
operator. The operator (weight by SVM) is used to calculate the relevance of each attribute from
the input dataset with respect to the clasebatie. In this case the attribute weights are the
coefficients of a hypeplane calculated by a SVM classification model. The third operator is used
to select only those attributes that satisfy agmecified condition. The condition specified here

is "select Top 3 attributes”. The process resulted in the following attributes:
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1. X= Attribute [5000 1000 50000] has a weight of 1
2. Y= Attribute [5000 0 500000] has a weight of 0.827
3. Z= Attribute [1000 5000 300000] has a weight of 0.708

Figure (20) shows aP visualization model of AML and AL cases using attributes X and Z.

Label ® amL @ ALL
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Figure20: A 2D (X-Z) visualization model for AML and ALL cases

7.5Analyzing the Reduced Dataset using Rapid Miner 5.3

Table Q) shows the results of analyzing tredluced dataset using Rapid Miner 5.3. Comparing
table 8 and9), it is clear that the performance of all models has enhanced significantly due to

using the reduced dattdnstead of the (CA) dataset.

False | False | Accuracy | Precision| Recall
# Model

AML ALL (%) (%) (%)
1 | Decision Trees 0 0 100 100 100
2 | Rule Induction 0 0 100 100 100
3 | Logistic Regression 1 2 75 75 85.71
4 | K Nearest Neighbor 0 0 100 100 100
5 | Perceptron 0 4 60 60 100
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6 | Naive Bayes 1 0 95 100 85.71

7 | SVM 1 2 75 75 85.71

Table9: Classification Models fothe reducediataset

Also different dusteringtechniques succeeded in classifying all cases into (AML) cluster and

(ALL) cluster. Table (10shows the results of clustering the reduced dataset.

# Clustering Technique Cluster_0 Cluster_1

1 K-Means 4 AML cases 7 ALL cases

2 Expectation Maximization 3 AML cases | 7 ALL cases 1 AML case
3 K-Means (Kernel) 4 AML cases 7 ALL cases

4 K-Medoids 4 AML cases 7 ALL cases

5 X-Means 4 AML cases 7 ALL cases

Table10: Results of clustering the reduced dataset

7.6 Classifying (ALL) cases to BALL and T -ALL

In order to classify (ALL) cases into eitherR_L or T-ALL; (ALL) cases are extracted from the
original (CA) dataset, and are useddam a new (ALL) CA dataset. Figur@l) shows a part of
(ALL) CA dataset with seven (ALL) cases. Table (11) shows the results of applying different
classification models on (ALL) CA dataset. Classifier models are built using default Rapid Miner
5.3 paramter values, andross validation (with 10 folds and stratified sampling) is used to

measure the performance of the classifier model.

Row No. Cases Label oo0o 001000 0010000 00100000 00300000 005000 0050000 00500000 010000 010001000 0101
1 1B b 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.001 0.000 0.01
2 T t 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0 0.000 0.001 0.001
3 2B b 0.000 0.002 0.000 0.001 0.000 0.001 0.000 0 0.000 0.001 0.001
4 2T t 0.000 0.000 0 0.003 0.001 0.000 0.001 0 0.000 0.001 0
5 3B b 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.001 0.001
G 4B b 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0 0.000 0.003 0.001
7 4T t 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.010 0.001

Figure2l: Part of (ALL) Combined Attributes Dataset
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