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Abstract 

Flow Cytometry (FCM) is a microscopic technique used in many fields, especially clinical 

research and health care. Classical analysis of FCM data is done manually in a tedious, error 

prone process, which is not standardized, not open for re-evaluation and highly dependent on the 

experience of the analyst. Conventional analysis methods are based on comparisons of univariate 

or bivariate distributions for one or two channels only, while it is obvious that analyzing flow 

cytometric data files in a multivariate space would generate more accurate results. For this 

reason, many studies and researches are directed towards developing a model for automatically 

analyzing FCM data files, as it is difficult for human analysts to extract clear information from 

multidimensional data files. 

The automated analysis of flow cytometric data is challenging due to many reasons especially: 

the unordered cells across different flow cytometric files and the features are divided across 

multiple FCS files for the same patient. Many approaches concentrated on resolving either the 

first or the second challenge, but not both of them. 

In this thesis, a novel approach is introduced and validated for generating a multivariate flow 

cytometric data file with N-dimensions, where N is the number of the intended independent 

measurements. The approach was developed to resolve the main two challenges in flow 

cytometry – mentioned previously - using concepts of Probability Binning and Bayesian 

Inference.  

The approach described in this thesis is validated for classifying normal and leukemia incidence 

cases. Also, it is validated for classifying different Leukemia types (AML, B-ALL or T-ALL). 

Experiments show a 100% correspondence between our results and clinical results. 
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   خلاصــــــة ال

تقنية مجهرية تستخدم في العديد من المجالات، وخاصة مجالات البحث العلمي السريري والرعاية   قياس التدفق الخلوييعد 

وتعتمد بيانات التدفق الخلوي على طرق التحليل اليدوية، التي تعد طرقاً شاقة ومعرضة للخطأ، كما أنها ليست موحدة،  الصحية.

مقارنات التوزيعات وحيدة وتعتمد طرق التحليل التقليدية على  لمحلل.غير مفتوحة لإعادة التقييم وتعتمد بشكل كبير على خبرة ا

المتغير أو ثنائية المتغير لواحد أو اثنين فقط من القنوات المخصصة لقياس خصائص الجسيمات المجهرية، في حين أنه من 

وبما أنه  أن يولد نتائج أكثر دقة. الواضح والمنطقي أن تحليل ملفات بيانات التدفق الخلوي في فضاء متعدد المتغيرات من شأنه

ات التدفق الخلوي متعددة الأبعاد، فقد توجهت العديد من ملفات بيان يصعب على المحلل البشري أن يستخرج معلومات واضحة

 من الدراسات والأبحاث العلمية نحو تطوير نموذج لتحليل بيانات التدفق الخلوي تلقائيا.

يانات التدفق الخلوي تحدياً لعدة أسباب، من أهمها: الخلايا والجسيمات المجهرية غير مرتبة في يمثل التحليل التلقائي لملفات ب

جميع ملفات التدفق الخلوي، كما أن خصائص وميزات الخلايا مقسمة على عدة ملفات للمريض الواحد، وليست متاحة في نفس 

 منهاجاً  تواجدلا يالتحدي الأول أو التحدي الثاني فقط، ولكن  قامت العديد من الأبحاث بوضع نهج مقترحة كثيرة لحل إما الملف.

 قدم حلاً كاملا يشمل التحديين الأول والثاني معاً.ي

بيانات التدفق الخلوي متعدد المتغيرات، والذي واحد ل إنتاج ملفجديداً تم التحقق من صحته في  منهاجاً هذه الأطروحة أقدم في 

وقد تم تطوير هذا النهج لحل  المستقلة والموزعة على عدة ملفات. القنوات( من الابعاد، حيث )ن( هو عدد يحوي عدد )ن

 واستدلال بايزي. توزيع خانات الاحتمالاتوذلك باستخدام مفاهيم  -السابق ذكرهما –التحديين الرئيسين 

سرطان الدم وتصنيف عدد من الحالات إلى حالات المقدم في هذه الأطروحة لتشخيص  المنهاجوللتحقق من صحته؛ تم تطبيق 

كذلك تم التحقق من صحة هذا المنهاج عن طريق استخدامه لتصنيف أنواع سرطان الدم  وأخرى مصابة باللوكيميا. سليمة عادية

سرطان الدم  B – T-ALLسرطان الدم الليمفاوي الحاد نوع  B-ALL –الدم النخاعي الحاد  سرطان  AMLالمختلفة )

% بين نتائج المنهاج المطبق في هذه الأطروحة وبين النتائج 100( وقد أظهرت التجارب تطابقا بنسبة   Tالليمفاوي الحاد نوع 

 . السريرية
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Chapter 1 

1. Overview 

Flow Cytometry (FC) is a widely used technique and an essential tool in many fields that are 

related to clinical research and health care, like Immunophenotyping, DNA analysis, 

microbiology and drug discovery. A flow cytometer forces thousands of cells to flow one at a 

time through a very thin chamber. While flowing, the physical and chemical characteristics of the 

cells are measured and recorded in Flow Cytometry Standard Data files (FCS). Depending on 

how many cell features are to be measured, more than one aliquot (for the same patient) may be 

analyzed, producing more than one FCS file for the same patient. (Cualing 2000), (liu et al. 

2008), (Pedreira et al. 2008a), (Lakoumentas  et al. 2009) and (Rowley 2014) highlight the 

importance of flow cytometry in Hematological Immunophenotyping in the following points:- 

1. Diagnosing and monitoring blood cancer: Flow cytometers provide rapid multi-parameter 

antigenic fingerprinting of blast cells. Also FC is used in distinguishing lymphoid from 

myeloid leukemia. 

2. Diagnosing and monitoring HIV/AIDS infection.  

3. Detection of minimal residual disease (MRD) based on the neoplastic antigenic 

fingerprint, even when neoplastic cells exist at very low frequencies among majority of 

normal cells.  

(liu et al. 2008), (Pedreira et al. 2008b) and (Bashashati & Brinkman 2009) show that 

traditionally, and this remains the case in many labs today, FCM data are analyzed by human 

experts through visualization of scatter plot arrays of different pairs of cell features, followed by 

gating. A gate is a selective boundary that can be used to define the characteristics of particles to 

include for further analysis, and eliminate unwanted particles (dead cells or debris) from results. 

Although gating is an important step in FCM analysis; it’s considered to be a time consuming and 

a highly subjective process which depends mainly on the experience of the analyst.  

Due to the importance of the problem and the availability of the data electronically, there has 

been several attempts to partially or fully automate the analysis of FCM data. However, such 

automation faces a number of challenges which will be explained in details in the next section.  
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Unordered cells over different FCS files and features distributed over different FCS files are the 

most important challenges. For example, in the field of diagnosing Leukemia; conventional FCS 

analysis methods could not be used to directly measure the distance between leukemia patients. 

In other words, applying traditional distance metrics to original FCS files would generate 

different results for the same patient and this is obviously wrong. This is due to unordered cells 

across different FCS files for the same patient. 

1.1. Challenges facing analysis of Flow Cytometric data 

(Liu et al. 2008) believe that analyzing (FCS) data files is a real challenge due to several 

reasons:- 

1. Flow Cytometry is an example of multiparametric measurement technique that can 

measure up to 20 channels (attributes or features) for each cell at a time. 

2. The number of cells in one (FCS) file can reach the order of (10)
5
 or (10)

6
. Hence the 

matrix of (FCS) file contains huge number of intensities of different features (channels). 

3. Cells are not uniformly ordered across samples of the same patient. 

4. Data of a single patient may be divided over multiple (FCS) files, depending on the 

technical limitations of the flow cytometer.  

5. Usually in Flow Cytometry research field, the number of cases under investigation is 

relatively small. This produces a huge search space for the parameters of any model. 

The above mentioned challenges may exist in other health-related data, but point numbers (3 and 

4) represent unique challenges for flow cytometry and needs a special care.  

1.2. Questions the research address 

Many researches introduce different approaches to (partially or fully) automate the analysis of 

flow cytometric data. Generally, most approaches that attempt to represent FCM data can be 

divided into two main categories:- 

1. Approaches addressing the challenge of unordered cells (challenge number 3 in the 

previous section). These approaches concentrate on analyzing separate channels 

(attributes) in each (FCS) data file.  Vector quantization, mixture modelling and 

frequency binning are examples of techniques used to group similar cells in one unit and 

eliminate the importance of cells’ order.  
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2. Approaches integrating channels across FCS data files. Visualization techniques, nearest 

neighbor classification techniques and Bayesian Inference are examples of techniques 

used to merge channels from different FCS files (of the same patient) into one huge FCS 

file. 

This thesis presents a novel approach that combines two different techniques to solve the two 

challenges facing representation of flow cytometric data. As mentioned earlier some researches 

solved the first challenge, but not the second; while other researches solved the second challenge 

but not the first. The representation that is proposed here solves both challenges and could 

successfully be used on real data to achieve 100% accuracy and sensitivity in classifying 

Leukemia patients. The approach presented here was also used in a novel idea of 2-step 

classification of leukemia cases, and also achieved 100% accuracy and sensitivity in 

discriminating different Leukemia types, which is more challenging for human pathologists.  

This thesis aims to answer the following questions:- 

1. How can we represent FCM data that address the two representation challenges? 

2. Can the proposed representation be used to successfully classify Leukemia cases? 

3. Can the proposed representation be used to successfully classify different types of 

Leukemia cases? 

1.3. Contributions 

In this section, thesis main contributions are outlined. The following illustration shows how the 

thesis work answers the research questions in details. 

1. How can we represent FCM data that address the two representation challenges? 

(Cox et al. 1988), (Roederer et al. 2001a) and (Roederer et al. 2001b) present the concept of 

Probability Binning (PB) that address the challenge of unordered cells across FCS files of the 

same patient. (Pedreira et al. 2008c) apply Bayesian Inference (BI) to address the challenge of 

features divided over different FCS files, by merging histograms of different features in one 

global dataset. This thesis combines both Probability Binning and Bayesian Inference to present a 

novel approach for FCM data representation that can be used with traditional distance metrics. 

2. Can the proposed representation be used to successfully classify Leukemia cases? 

The proposed representation was used to generate a global (or multi-parameter) dataset that 

contains cases (instances) on the rows, and (binned and combined) features on the columns. This 
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dataset could be analyzed using different data mining techniques, and verified to accurately 

classify leukemia cases.  

3. Can the proposed representation be used to successfully classify different types of 

Leukemia cases? 

The representation proposed here was applied on FCS data of different leukemia types to 

generate a multi-parameter dataset. This dataset was then analyzed using a novel idea of 2-step 

classification to classify two main types of leukemia: Acute Myeloid Leukemia (AML) and 

Acute Lymphoid Leukemia (ALL). The representation verified to succeed in classifying different 

leukemia types. 

Briefly, the contributions of this thesis are: 

1. A representation for FCM data based on Probability Binning and Bayesian Inference. 

2. First data set of leukemia cases in the UAE analyzed locally using data mining. 

3. Comparative analysis of classification techniques for leukemia cases. 

4. Proposing 2-stage classification of Leukemia types. 

1.4. Thesis Outlines 

The remaining of this thesis is organized as follows: 

Chapter 2: introduces a technical description of a flow cytometer and its specifications, biological 

facts about different blood cells and the definition of leukemia and its types.  

Chapter 3: discusses the related work to this thesis. 

Chapter 4: represents the basic concepts and mathematical principals used in building the 

algorithm of this thesis. 

Chapter 5: represents the methodology and the detailed steps of the suggested algorithm. 

Chapter 6: represents the first experiment of examining (FCS) samples for the diagnosis of 

leukemia. The experiment includes: generating the global (FCS) dataset, using optimization and 

selection techniques to reduce its size, and finally analyzing it using data mining techniques. Also 

application of Euclidean Distance metric on flow cytometric dataset is presented here. 

Chapter 7: represents the second experiment of discriminating between Acute Myeloid Leukemia 

(AML) and Acute Lymphoid Leukemia (ALL). The experiment includes: generating the global 



5 

 

(FCS) dataset, using optimization and selection techniques to reduce its size, and finally 

analyzing it using data mining techniques. 

Chapter 8: concludes and summarizes this thesis; discusses the results and presents the future 

work. 
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Chapter 2 

2. Flow Cytometry 

Flow Cytometry (FC) is a widely used technique that allows simultaneous multi-parameter 

analysis of hundreds of thousands of individual cells. It is used to measure cell size and volume, 

analyze expression of cell surface and intracellular molecules and characterize different cell types 

in heterogeneous cell populations. 

2.1. Cell preparation for Flow Cytometry 

FC uses hematological and lymphoid tissues as specimens such as peripheral blood (PB), bone 

marrow, lymph node and thymus. Each specimen is composed of different percentages of 

populations of cells, characterized by cell lineage, growth stage, functioning and activation level. 

The identification of each cell population can be done by binding high affinity antibodies to cell’s 

protein structure or by measuring physical cells’ characteristics. In some cell populations, a 

simultaneous measurement of 2 or more protein structures is required to accomplish the 

identification process. This biological fact increases the demand for instruments with higher 

multi-parameter qualifications. As a result, new instruments are capable now of measuring up to 

20 parameters simultaneously by developing cytometers with 20 florescence detectors as 

mentioned in (Bashashati & Brinkman 2009). (Pedreira et al. 2008c) and (Pedreira et al. 2013) 

argue that these developments in industry are still less than the requirements of clinical 

discrimination between several heterogeneous disease categories. For example, for accurate 

identification of B cell chronic lymphoproliferative disorders (BCLPDs), acute leukemia, or 

myelodysplastic syndromes; measuring characteristics of neoplastic cells with respect to more 

than 30 markers are required, while currently available cytometers does not provide 30 

florescence color detectors. This potential problem of multicolor detectors limitations has been 

solved by staining cells with biomarkers (fluorochrome-conjugated antibodies). There are two 

main categories of biomarkers associated with different hematological malignancies; backbone 

markers and supplemental markers. The specimen is divided into aliquots and stained with 

different combination of markers. All aliquots are stained with backbone markers to identify the 

same population of cells. Different aliquots of the sample are stained with different supplemental 

markers for additional description of physical characteristics of populations. In other words, to 

solve the problem of limited number of detectors in cytometers, panels with two or more 
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combinations of overlapping antibodies are used to measure cells' characteristics for the complete 

identification of different hematological malignancies. Although staining solved the problem of 

florescence detectors limitations, it has encouraged the development of new automatic 

multidimensional analysis techniques.  

2.2. Technical Description of a Flow Cytometer 

 (Rowley 2012) and (Pedreira et al. 2013) demonstrate the structure of Flow Cytometers (Cyto 

for cell, meter for measure). A flow cytometer consists of four main components: fluidic system, 

lasers, optics and electronic system. Figure (2) represents the main components of a flow 

cytometer. The test tube containing a sample is placed in the collection stage of the flow 

cytometer. The heterogeneous suspension in the test tube is drawn from the test tube and pumped 

to the flow chamber. The flow chamber allows cells to flow one at a time very quickly by Hydro 

Dynamic Focusing which is achieved by controlling the pressure of the sample with respect to 

the pressure of the sheath fluid. Figure (3) focuses on the fluidic system of a flow cytometer. 

When the cell reaches the interrogation point (the point of intersection between the flow chamber 

and the laser light source), it is hit by a bright light laser beam. The light reflected off each cell is 

collected by light detectors to give information about the cell's physical characteristics. Light 

reflections at small angles are called Forward scatter (FS) and gives information about the size of 

the cell, while light reflections at large angles are called side scatter (SS) and indicates if the cell 

contains granules as described in (Lakoumentas et al. 2006) and (Pedreira et al. 2008b). Also 

cells are stained with bio markers (antibody fluorochromes) that cause certain light emission 

according to protein information in each cell. Light scattering and/or fluorescence emission are 

captured, filtered by photo-detectors and converted to electrical signals (voltage). The voltage 

signal is digitized and stored in a Flow Cytometry Standard (FCS) file format. The value of the 

voltage signal shows the intensity of light emitted from each cell. Thus each FCS data file can be 

described by a matrix whose columns are the channels (attributes or features of cells), and rows 

are the individual cells. The intersection between each row and column is the intensity of the 

voltage.   
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Figure 1:  Flow Cytometer Structure. Adopted from (Flow Cytometry: How 

Does it Work? 2014) 

 

 

Figure 2: Cells flowing in a flow chamber of a cytometer. Adopted from 

(Abcam 2014) 

 (Pedreira et al. 2008a), (Pedreira et al. 2013) and (Lakoumentas et al. 2009) believe that many 

developments in FC industry have been achieved, but conventional data analysis techniques don't 

satisfy those complex achievements. Thus adequate developments in data representation, 

visualization and analysis techniques are a real challenge and an essential demand. 

2.3. Different specifications of flow cytometers 

There are many manufacturers for flow cytometers with different specifications. (Rowley 2012) 

mentions the commonly cited flow cytometers’ providers in his survey. They are: BD 

Biosciences (its common models are: FACSCalibur, LSR II, FACSCanto and FACScan), 

Beckman Coulter, Dako, Guava/EMD Millipore and Miltenyi Biotec. 
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(Select Science 2014) shows the main differences between flow cytometers, and provides 

technical guidelines to choose the flow cytometer those best suites individual requirements. The 

following points summarize the main differences between flow cytometers:- 

1- The number of parameters to be simultaneously measured is dependent on the number of 

lasers and detectors the flow cytometer supplied with.  

2- The capabilities of the software provided with the flow cytometer. The companion 

software provides tools for representing the data generated by the flow cytometer in 

histograms, two-dimensional dot plots or some times in three-dimensional plots. 

3- Gating is an important procedure in flow cytometers and varies from one manufacturer to 

another. Some cytometers provides manual gating, while others provide semi-automated 

or automated gating.  

4- Some flow cytometers provide solutions to protect the samples from environmental 

influences.  

5- The degree of automating the process of analysis varies from one manufacturer to 

another. 

6- Flow cytometers vary according to the sensitivity, accuracy and efficiency of their fluidic, 

optic and electronic systems supplied with them. Figure (3) shows a detailed optic system 

of a flow cytometer.  

 

Figure 3: Optic System of FC-Adopted from (Semrock 2014) 
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2.4. Flow Cytometric Data files 

(Pedreira et al. 2008c) and (Pedreira et al. 2013) believe that the last two decades have seen many 

developments in Flow cytometry. These developments included production of monoclonal 

antibodies, well-characterized and high quality reagents and a broad variety of compatible 

fluorochromes. Also great enhancements have been added to instrumentation and tools in flow 

cytometry, which led to:- 

1. Greater number of parameters (channels) that can be simultaneously assessed for each cell. 

2. Greater analysis speed of digital flow cytometers.  

3. Examining tens of thousands of stained cells per seconds. 

4. Generating more complex data files that contain multi-parameter distribution about millions 

of cells in a sample. 

These developments imposed many challenges on the existing analysis tools and, thus 

encouraged developing new automated analysis algorithms and clear visualization tools.  

Old flow cytometers used a screen attached to instrumentations to represent voltage signals 

emitted from each cell as analog signals in real time. Later then, computers were developed to 

store cells’ measurements in a unique file format that distinguishes the manufacturer of the 

cytometer. (Pedreira et al. 2013) state that in 1984, a standardized file format was proposed to 

store flow cytometers data: FCS 1.0 (Flow Cytometer Standards 1.0 format). Three main formats 

of FCS 1.0 could be used:  

1. Single FCS file format: contains information about population of cells with respect to a single 

parameter (single channel). 

2. Double FCS file format: contains information about population of cells with respect to two 

parameters (two channels). 

3. Multi-parameter (n dimensions) FCS file format: contains information about population of 

cells with respect to three parameters or more. This format is also called List Mode Files 

format (LMD). LMD files can be viewed as a matrix, where individual cells are on the rows 

of the matrix, and the parameters under investigation are on the columns of the matrix. 

Since 1984, FCS 1.0 has been revised and updated to the current version of FCS 3.0. 
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2.5. Conventional analysis methods of FCS files 

(Liu et al. 2008), (Bashashati & Brinkman 2009) and (Pedreira et al. 2008b) explain how FCS 

files are analyzed manually by plotting two different parameters (attributes) in a 2-D scatter plot. 

The resulting plot is then gated by identifying homogenous subgroups of cells of special 

importance to be further analyzed in another 2-D scatter plot with respect to another two 

channels. (Pedreira et al. 2013) demonstrate that manual technique is done by highly experienced 

people, who may find difficulties in extracting clear and simple information from 

multidimensional FCS files generated from currently available digital cytometers with many 

channels.  

Although gating is an important step in conventional flow cytometry analysis, it is considered as 

a major disadvantage. (Boedigheimer & Ferbas 2008), (Liu et al. 2008), (Pyne 2009), (Bashashati 

& Brinkman 2009) and (Simon et al. 2012) highlight that gating is a subjective process that 

neglects multidimensionality of the data and miss potential subsets of cells due to projecting high 

dimensions’ data down to a 2D space . Also the size, shape and position of the gates are highly 

dependent on the knowledge and experience of the analyst.  

(Bashashati & Brinkman 2009) present a study performed in 15 clinical institutions. The study 

shows that the mean inter-laboratory coefficient of variation ranged from 17-44%. The same 

samples and antibodies were used, preparation of samples was standardized and analysis of data 

files where performed by experts in flow cytometry. Actually the study shows that high variation 

coefficient was accounted for gating. 

2.6. Normal Blood Cells 

National Cancer Institute (NCI 2013) states that all blood cells are produced by Blood Stem 

Cells, which exist mainly in the bone marrow. Blood stem cells can produce myeloid stem cells 

and lymphoid stem cells, which in turn will finally produce three types of cells: 

1. White Blood Cells (WBCs) which help the body fights infection. 

2. Red Blood Cells (RBCs) which carry oxygen all over the body. 

3. Platelets which form clot to stop bleeding. 

All blood cells have a certain life cycle which consists of many stages: formation, growth, 

function and death. This life cycle is controlled in the bone marrow, which will in turn produce 

new blood cells instead of the dead ones.  
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Figure 4: Generation of Normal Blood Cells - Adopted from (NCI 2013) 

As shown in figure (4), WBCs can be formed from different cell lineages, Granulocytes which 

are generated from myeloid stem cell, and Lymphoblasts which are generated from lymphoid 

stem cell. Lymphoblast (Lymphocyte) cells are called Agranulocytes, and are of three types: B-

cells, T-cells and Natural Killer (NK).  

2.7. Leukemia, Definition and Types 

(Tadmouri et al.) define Leukemia as the form of cancer that targets the blood. Another definition 

from National Cancer Institute (NCI 2013) Leukemia is the cancer that starts in blood-forming 

tissue, such as the bone marrow, and causes large numbers of abnormal blood cells to be 

produced and enter the bloodstream.  

In Leukemia incidence cases, bone marrow produces abnormal WBCs called Leukemia and 

Leukemia blast cells which divide to produce copies of themselves. The copies divide again and 

again producing more and more leukemia and leukemia blast cells. Also in leukemia incidence 

cases the control of the bone marrow on the abnormal white blood cells' life cycle is disturbed 

resulting in undying white blood cells even if they are old or damaged. As a result, abnormal 

WBCs crowd out the other two types of blood cells resulting in disorders in fighting infections, 

controlling bleeding and delivering oxygen to tissues. 

Leukemia is the most common cancer in children. It causes disturbances of functions in their 

immune system causing fevers and infections. Leukemia also causes disruption in generating 
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different blood cells, causing anemia and bleeding problems. It may also results in tumors 

formation due to accumulation of leukemia cells in different organs causing headache or pain. 

As mentioned in the previous section, WBCs can be produced from two main cell lineages; 

Lymphoid and Myeloid. Also the degree of abnormality of WBCS can be strong and sudden 

(acute) or weak and slow (Chronic).This results in four main types of Leukemia- as explained in 

(NCI 2013)- they are:- 

1. Acute myeloid leukemia (AML) affects myeloid cells and grows quickly. Leukemic blast 

cells collect in the bone marrow and blood. AML is most common in adults. 

2. Acute lymphoblastic leukemia (ALL) affects lymphoid cells and grows quickly. Leukemic 

blast cells usually collect in the bone marrow and blood. (Tadmouri et al.) state that ALL is 

the most common leukemia in children.  

3. Chronic myeloid leukemia (CML) affects myeloid cells and usually grows slowly at first. 

Blood tests show an increase in the number of white blood cells. The abnormal white blood 

cells work almost as well as the normal white blood cells. There may be a small number of 

leukemic blast cells in the bone marrow. CML is most common in adults. 

4. Chronic lymphocytic leukemia (CLL) affects lymphoid cells and usually grows slowly. Blood 

tests show an increase in the number of white blood cells. The abnormal cells work almost as 

well as the normal white blood cells. CLL is most an adult disorder. 
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Chapter 3 

3. Related Works 

(Pedreira et al. 2008c) presents a novel algorithm for analyzing flow cytometric data files for the 

diagnosis and identification of B-cell chronic lymphoproliferative disorders. The algorithm is 

based on generating a single flow cytometric data file from many flow cytometric data files that 

contain information of events (cells) stained with different combinations of antibodies. The final 

file should present information about all antibodies for each individual cell. The algorithm uses a 

3D vector of the common parameters (FSC, SSC and CD19) to represent all cellular events in 

different aliquots. Then a nearest neighbor approach is used to estimate the intensity value of 

different parameters for each individual cell. In other words, the approach tries to guess the 

intensity value of all parameters for all cells in a sample depending on a common 3D frame and 

nearest neighbor approach. For example, suppose two aliquots A and B with parameters (FSC, 

SSC, CD19, Xa) for aliquot A and parameters (FSC, SSC, CD19, Xb) for aliquot B. The common 

parameters are used to build the 3D vector that works as a general visualization structure. Now, 

the main goal is to estimate the intensity value of Xa for all cells in aliquot B, and estimate the 

intensity value of Xb for all cells in aliquot A, in such a way to generate a super file that contains 

information about (FSC, SSC,CD19,Xa,Xb). This goal is achieved by using the nearest neighbor 

approach which-for a cell in B- finds the nearest neighbor cell in A, and assigns its Xa value to 

that cell in B. Note that Xa was not directly measured for cells in B. The algorithm show high 

agreement between the results obtained from analyzing individual flow cytometric data files and 

the results obtained from analyzing the super global flow cytometric file that contains (infinite) 

number of parameters. 

(Simon et al. 2005) develop a clustering algorithm based on cell intensities in all dimensions 

(channels) at once. The algorithm depends on applying successive clustering techniques to flow 

cytometric data files. First, K-means clustering is applied to all original data; in order to 

distinguish between interesting data cells, and those particles without biological importance. 

Then another hierarchical clustering phase is applied on a random subset of observations. The 

result of this phase is just a start to build a more accurate Gaussian model. Although this model 

shows successful results; but it depends on an expert knowledge to exclude unimportant clusters 

in the early stages of the algorithm. 
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(Liu et al. 2008) apply important preprocessing steps by converting flow cytometric data files 

from its original structure showing intensity value for each cell at each channel to another 

structure showing cell counts for every intensity value at each channel. This intensity distribution 

structure makes it easy to directly compare flow cytometric data files. To overcome the problem 

of huge number of features; regression analysis is used. As the number of features is significantly 

reduced; data files could be separately clustered at each channel. The evaluation of algorithm 

shows that a great enhancement has been done to the quality and efficiency of reduced features 

clustering compared with original features clustering. 

(Costa et al. 2006) and (Pedreira et al. 2008b) present successful approaches to classify different 

neoplastic B-cell disorders depending on the concept of Vector Quantization (VQ). VQ is a 

technique built on modelling of probability density functions by a number of prototype vectors. 

Each vector is representing an –approximately- equal number of data points closest to it. Each 

vector is viewed as the centroid of group of data points surrounding it, as in K-means clustering. 

This approach reduces the number of features in the search space, as only one vector is 

representing a group of data points. This clustering technique was used at each channel separately 

and could successfully classify different neoplastic B-cell disorders depending on classifying 

lymphocytes. 

(Lakoumentas et al. 2006), (Boedigheimer & Ferbas 2008), (Chan et al. 2008) and (Lakoumentas 

et al. 2009) represent similar approaches for automatically gating lymphocytes. The approach 

depends on the concept of mixture model. In this model, each data point is assumed to be 

generated from a mixture of probability distributions. For each data point, the model can guess 

the most probable distribution to which it belongs. This model is sometimes referred to as 

Bayesian Clustering, as it uses the concept of Bayesian networks in clustering data points.  

(Shih et al. 2013) develop a graphical based approach, in which healthy cases, B-Chronic 

Lymphocytic Leukemia (B-CLL) cases and Follicular Lymphoma (FL) cases are plotted in a 3-D 

5-parameter model. The 5 parameters of this model are the five biomarkers: CD5, CD10, CD19, 

Kappa and Lambda. The model is based on clinical facts that normal cases show positive values 

for CD19, but negative values for both CD5 and CD10, with approximately equal populations 

expressing Kappa and Lambda. On the other hand CLL cases show positive values for CD19 and 

CD5, but negative values for CD10. Lastly, FL cases show positive values for CD19 and CD10, 

but negative values for CD5. In both CLL and FL populations express either Kappa or Lambda 
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light chains. The model is built by training on FCM data cases, and then used to fit the algorithm 

on test cases. The graphical nature of the approach shows great efficiency and easiness in 

diagnosing different B-Lymphocytosis disorders. 

(Pedreira et al. 2008a) represent a probabilistic approach on BCLPD (B-cell chronic 

lymphoproliferative disorders). The approach applies Bayes Theorem to predict the probability of 

every data point (event) either to belong to a normal population or a neoplastic population. 

Assuming that events follow Gaussian distribution functions; conditional probabilities of an 

event drawn from normal or neoplastic case can be easily calculated. Thus this paper represents a 

direct application of Bayesian Law.  

(Aghaeepour et al. 2013) represent FLOWCAP. Flow Critical Assessment of Population is a 

software developed to compare the performance of different flow cytometric data analysis 

techniques. The software compares the performance with respect to manual expert results, and 

with respect to actual clinical outcomes. The paper aims to develop techniques for automatic 

analysis of flow cytometric data files, and to provide guidelines about accurately using those 

techniques. 

(Bashashati & Brinkman 2009) represent a general framework for analyzing FCS data files. 

Majority of papers in this filed focus on automatic gating techniques (selecting a homogenous 

subset of cells which share one function or have similar interesting characteristics). Other papers 

focus on applying supervised or unsupervised learning techniques in finding correlations between 

cells' characteristics and clinical results. Supervised learning algorithms are used when there is a 

label variable (attribute) that can distinguish between the events in a data set. While in 

unsupervised learning all the variables are the same, and the goal here is to separate the events of 

the data set into similar groups or clusters where data points (events) of one cluster are most 

similar to each other than events in other clusters. In most cases, unsupervised learning 

techniques are more suitable to analyze flow cytometry data files, as usually we don't have a prior 

knowledge about the nature of cells and other particles in blood samples. 

(Zare et al. 2010) argue that spectral clustering is the best technique for analyzing FCS data files. 

However, direct application of spectral clustering on FCM data sets (of size 300,000 events for 

example) will consume extraordinary time and memory (approximately two years! and 5 

terabytes of memory). Thus reducing data events first would solve the problem. The approach is 

based on the following steps:- 
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1. Plotting data points (vertices) on a grid 

2. Running faithful sampling to produce much less data points where spectral clustering can be 

performed easily. 

3. The lost information due to sampling is compensated by adding weighted edges to data points 

produced in step (2). The edge is a connection between two data points (vertices) with a 

weight (thickness) appropriate to the density of the region, i.e. a denser region is weighted 

with thicker edge. This way, the lost information about the density of data points will be 

retrieved. 

4. Spectral clustering is applied on the modified data set.  

The overall previously mention algorithm is called SamSPECTRAL, which was tested and 

verified to be the first successful application of spectral clustering on large datasets. 
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Chapter 4  

4. Basic concepts 

This research presents a novel approach to represent FCS data. This representation could be used 

with traditional distance metrics. The procedure presented here is built upon two main concepts: 

1. Probability Binning. 

2. Bayesian Inference (to generate Joint Probability distribution). 

(Pedreira et al. 2008c) present a novel algorithm to generate a multivariate distribution from 

different FCS files. The algorithm - explained previously- is similar to the algorithm presented 

here in their main objective, which is merging different parameters measured for different 

aliquots into one flow cytometric file. The main difference between the former algorithm and the 

one presented here; is the nature of FCS files being used for merging. (Pedreira et al. 2008c) use 

the raw FCS files which presents intensity values for individual cells for each channel 

(parameter) measured, while the procedure presented here uses intensity histograms (intensity 

distribution values) for each channel measured. The currently presented procedure is much 

simpler as it neglects the order of cells, and cares only for their quantity at each discrete intensity 

value. 

4.1. Cox Method and Theory of Probability Binning 

(Cox et al. 1988) state that comparing two or more multivariate dataset histograms can determine 

if the datasets differ from one another in terms of their respective fluorescence intensity 

distributions, however, the current statistical tests do not identify the exact region of difference 

on the fluorescence intensity scale. For example, the Kolmogorov-Smirnov test computes a P 

value to assess the similarity of two cell populations in terms of their fluorescence intensities but 

the test does not provide where on the intensity scale the difference lies. Identifying these 

“difference regions” requires modifying the comparison test to show gates of difference and 

accommodate limited intensity ranges which can drop down to 5% of the sample population. This 

limitation of current tests promoted the use of Cox Method. 

(Cox et al. 1988) introduce Cox Model for identifying the regions of difference -on intensity 

scale- between samples. In order to understand how Cox Method is applied, suppose that we have 

two stained blood samples (Control sample) and (Test sample). Cox Method group cells in 
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equally sized bins according to their florescence intensities. Each bin has unequal number of 

cells. These bins are then compared between the two samples to detect the regions with 

significant difference in cell counts on the intensity scale. Although the size of bins in Cox 

Method is arbitrary, it affects the statistical power of the comparison. If the bin is too narrow, it 

will have small cell counts and lead to less powerful statistics. If the bin size is too wide, it will 

have large cell counts and the resolution of intensities is –therefore- lost. 

(Roederer et al. 2001a) and (Roederer et al. 2001b) introduce the theory of Probability Binning 

(PB) to provide a metric that determines the degree of similarity or dissimilarity between two or 

more multivariate distributions. It can be used to discriminate samples and classify them 

according to their biological differences. Probability binning is just a modified version of the 

original algorithm named Cox Method (or Cox Model). 

Probability Binning theory (PB) uses unequal sized bins with equal number of cells in each bin. 

This will result in sufficient amount of cells in each bin, in such a way to provide powerful 

statistics of difference between control sample and test sample. This method suffers from losing 

resolution at unpopulated areas of florescence intensity scale; as it may group outliers with inliers 

together in one bin to complete the pre-specified amount of cells in each bin. Thus we can say 

that equal frequency binning is biased against outliers, which may represent neoplastic cells.  

(Roederer et al. 2001b) describe and validate the Probability Binning algorithm to compare 

univariate distributions according to their florescence intensity. A control univariate distribution 

is divided into bins with equal frequencies in each bin. This algorithm is considered a mini-max 

approach as it minimizes the maximum variance of the control dataset. The same bins are then 

applied to a test distribution. As in Kolmogorov-Smirnov (K-S) statistics, a chi-squared P values 

are calculated to assess the similarity of control and test distribution on the basis of bin – by – bin 

comparison. PB algorithm uses a Monte-Carlo simulation for chi-squared P values and converted 

them to another metric T(x) score. The metric T(x) scales with the degree of similarity or 

dissimilarity between two distributions, which can’t be decided with P values of K-S test for 

example. This metric can also be used to determine the relative distance between different 

distributions and a control dataset. 

Following the same concept, (Roederer et al. 2001a) show that PB algorithm can also be applied 

for comparing multivariate distributions, where each bin is made up of hyper-rectangles of n 

dimensions, where n is the number of parameters (attributes) to be simultaneously measured. 
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Again, each bin must contain the same number of events (cells), and the same number of bins is 

applied on both control and test data sets. As mentioned previously, PB algorithm could generate 

a metric T(x) that can rank distributions according to their similarity or dissimilarity to a control 

distribution. The algorithm was applied to multivariate immunophenotyping data, and verified its 

ability to discriminate different distributions and rank them according to their biological 

meaningful differences. 

4.2. Probability, conditional probability and Bayes Law 

A probability is a numeric value representing the possibility that a certain event will occur. (Duda 

et al. 1999) express the concept of probability as a random variable X that can assume a finite 

number m of different values ⱱi in the space of X. Thus: 

𝑃(𝑥) = 𝑣i, for i=1, 2, 3…m 

Equation 1: Probability of a random variable (X) 

Where x is the value that the random variable (X) can take and m is the number of different 

values that (X) can take. 

An impossible event is the event that will never occur, i.e. has a possibility value=0. 

P(x) = 0    For impossible event 

Equation 2: Probability of an impossible event 

On the other hand a certain event is the event that of sure will occur, i.e. has a possibility 

value=1.  

P(x) = 1   For certain event 

Equation 3: Probability of a certain event 

 (Duda et al. 1999) suggest expressing the set of all possible probabilities that a variable will take 

in terms of a probability mass function 𝑃(𝑥). The probability mass function must satisfy these 

two conditions:-  

P(x) ≥ 0 

Equation 4: Condition 1 on Probability mass function 

∑ P(x)

x

= 1 

Equation 5: Condition 2 on Probability mass function 
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Conditional Probability is the probability that event X will occur given that -or on the condition 

that- event Y has already occurred, and is denoted by P(X|Y). We can find P (X|Y) by consider 

the sample space truncated to just the event Y, and is given by: 

𝑃(𝑋|𝑌) =
𝑃(𝑋 𝑎𝑛𝑑 𝑌)

𝑃(𝑌)
 

Equation 6: Conditional Probability (X|Y) 

Similarly, the conditional probability P(Y|X) can be found by considering the sample space 

truncated to just the event X, thus:- 

𝑃(𝑌|𝑋) =
𝑃(𝑌 𝑎𝑛𝑑 𝑋)

𝑃(𝑋)
 

Equation 7: Conditional Probability (Y|X) 

Note that P (X|Y) ≠ P (Y|X). 

As mentioned in (Andrade 2010) and using (Error! Reference source not found.) and (Error! 

Reference source not found.), Bayes Law is derived: 

𝑃(𝑋|𝑌) =
𝑃(𝑌|𝑋)𝑃(𝑋)

𝑃(𝑌)
 

Equation 8: Bayes Law 

Equations (Equation 6: Conditional Probability (X|Y)), (Equation 7: Conditional Probability 

(Y|X)) and (Equation 8: Bayes Law) will be used in Chapter 5 (Methodology), to derive the main 

joint probability equation that merges between the different channels from different FCS files.  
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Chapter 5 

5. Methodology 

The diagnosis of various hematological diseases, such as different types of lymphocytic leukemia 

and lymphoma, requires comprehensive data analysis of lymphocytes. (Lakoumentas et al. 2006) 

confirm that it is necessary to discriminate lymphocytes from all other leukocytes for the 

diagnosis of leukemia. The study agrees that using normal FS/SS (Forward Scatter/Side Scatter) 

gating is not enough in the discrimination process. Depending on the Forward Scatter FS attribute 

to discriminate cells according to their relative size is not always successful because cells are 

usually mixed. Also depending on the SS attribute to discriminate cells according to their 

granularity (complexity) is not always successful as SS can distinguish granulocytes, but can't 

distinguish lymphocytes and monocytes. 

(Lacombe et al. 1997) introduce the fact that leukemic blast cells express low values of the 

leukocyte common antigen (CD45) marker, while normal lymphocytes and monocytes express 

high values of CD45. They compare between normal FS/SS gating (without using any 

immunological marker) and CD45/SS gating. The results of their study show that the former 

gating produces overlapping areas between blast cells and normal cell populations, while gating 

on CD45/SS can precisely discriminate between blast cells and normal cells. (Lacombe et al. 

1997) show that using CD45 plus two or three lineage-specific markers can achieve good 

discrimination between leukemic blast cells and normal cells. Their procedure was applied on 

AML cases, but also succeeded for different types of acute leukemia, even those which have low 

percentages of blast cells. 

Moreover, (Lakoumentas et al. 2006) point out that CD3 and CD19 are two antigen markers that 

can discriminate between different subtypes of lymphocytes: B-cells and T-cells, as they can 

produce distinctive flow cytometric attributes. 

(Lacombe et al. 1997) and (Lakoumentas et al. 2006) assure that CD19 antigen marker can 

recognize B-cell lymphocytes, while CD3 antigen marker can recognize T-cell lymphocytes. 

However, the required antigen attributes, CD3 and CD19, are not always available in the same 

flow-cytometric file of the same patient examination. Therefore, this thesis suggests adding the 

common antigen attribute CD45 to help in merging the channels, as CD45 is available in almost 
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all flow cytometric files of the same patient and is also used for discriminating between 

lymphocytes among other leukocytes. 

Therefore, and depending on the above mentioned facts, this thesis claims that using CD45 with 

CD3 and CD19 give excellent phenotypic determination of the leukemic blast cells, and hence 

provides accurate leukemia diagnosis. 

The procedure presented here aims at merging intensity histograms of three channels into single 

multidimensional histogram. The single multidimensional histogram will contain intensities of all 

possible combinations of the binned channels. This integration process is done for each patient, 

and then all multi-dimensional histograms are gathered in one global dataset. The columns of the 

global dataset introduce all combined- binned channels, and the rows represent the cases.  

This chapter introduces the three main stages of the procedure. The first section presents the 

modified algorithm of probability binning, the second section presents Bayesian Inference that 

will be used to merge the channels and the third section describes how the multi-parameter 

dataset will be generated to achieve the proposed representation of FCS data. 

Sample (FCS) data files are provided in LMD file format (listmode) from Pathology Section at a 

hospital in Dubai. Exploration of the data and statistical calculations were performed in the 

statistical package R 
(1)

 version 3.0.2. 

5.1. Stage (A): Applying the modified Probability Binning algorithm 

Stage (A) is the step where normal (FCS) files (of cell’s intensity distributions) are converted to 

(intensity histograms). This stage is similar to Cox method and Probability Binning algorithm, 

except in the size of bins and the amount of cells in each bin. The algorithm presented here is 

much simpler and easier than the former two algorithms, and also verified its ability to generate 

high accuracy results. The following steps describe this stage: -  

1. Define the possible range of intensities (minimum and maximum intensity values) by 

exploring the backbone channels (CD3, CD19 and CD45) in (FCS) files.  

2. The range of intensities is divided into bins of unequal size with no condition on the 

amount of cells in each bin. Sizes of bins are selected by trial and error, taking into 

account striking the balance between compact representation and accuracy of results. 

                                                 
(1)

 R is a free software environment for statistical computing and graphics. R is available for free download at 

http://www.r-project.org/.  R version 3.0.2 released on 25-9-2013 

http://www.r-project.org/
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Generally, exploring (FCS) files shows that intensity histograms of channels under 

consideration are J-shaped with left peak, so small bin sizes were selected at the peak and 

near it, while larger bin sizes are chosen beyond the peak. The same binning is applied on 

the three channels. 

3. Intensities of cells in individual channels are categorized and grouped in the 

corresponding bins, i.e. intensity of each cell is categorized according to the selected bins’ 

sequence, and placed in the appropriate bin. 

Figures (5, 6 and 7) show intensity distributions of cells stained with backbone markers CD3, 

CD19 and CD45 respectively. Each distribution contains (60690) cells. Note that these plots are 

sensitive to cells flow order. While figures (8, 9 and 10) show histogram plots of intensities for 

the same cells. These plots are independent of cells’ flow order, and generally following a J-

shaped curve with left peak. Also note that all histogram plots have the same binning sequence. 

 

Figure 5: Cells’ Intensity Distribution at channel CD3 

 

Figure 6: Cells’ Intensity Distribution at channel CD19 
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Figure 7: Cells’ Intensity Distribution at channel CD45 

 

 

 

 

 

 

 

Figure 8: Intensity Histogram for channel CD3 
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Figure 9: Intensity Histogram for channel CD19 

 

Figure 10: Intensity Histogram for channel CD45 

5.2. Stage (B): Using Bayesian Inference to generate the joint probability 

equation of the channels 

Bayesian Inference is used to join histograms across different FCS files. Suppose we have two 

FCS files representing two aliquots of the same patient. The FCM analysis of the first aliquot 

generated the FCS file with the following features: (B1, B2…..Bn, S11, S12…..S1m). The FCM 

analysis of the second aliquot generated the FCS file with the following features: (B1, B2…..Bn, 

S21, S22…..S2m). Note that the features (B1, B2…..Bn) are the backbone markers that are common 

across all aliquots, while features (Si1, Si2…..Sim) are supplemental markers that are specific to the 

i
th

 aliquot. Let H1 and H2 be the histograms of the first and second FCS file respectively. Now to 

calculate the joint histogram of all features (B1, B2…..Bn, S11, S12…..S1m, S21, S22…..S2m), we 
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assume that probabilities associated with supplemental features are independent given the 

backbone features. Recall joint probability equation is given by: 

𝑃(𝑋, 𝑌) = 𝑃(𝑋|𝑌)𝑃(𝑌) 

Equation 9: Joint Probability Equation 

Therefore:  

H= P(B1, B2…..Bn, S11, S12…..S1m, S21, S22…..S2m )= P(S11, S12…..S1m | B1, B2…..Bn ) P(S21, 

S22…..S2m) P (B1, B2…..Bn ) 

Equation 10: The joint histogram of all features 

Substituting using (Equation 6: Conditional Probability (X|Y)), we get: 

𝐻 =
P(S11, S12 … . . S1m, B1, B2 … . . Bn) P(S21, S22 … . . S2m, B1, B2 … . . Bn )

𝑃(B1, B2 … . . Bn )
 

Equation 11:  The joint histogram of all features 

Consider the two supplemental channels CD3 and CD19 are independent (as they are obtained 

from different FCS files of the same patient examinations), and CD45 is the backbone channel. 

Substitute in (Equation 11) to get: 

𝑃(𝐶𝐷3, 𝐶𝐷19, 𝐶𝐷45) =
𝑃(𝐶𝐷3, 𝐶𝐷45)𝑃(𝐶𝐷19, 𝐶𝐷45)

𝑃(𝐶𝐷45)
 

Equation 12: Joint Probability Equation of channels CD3, Cd19, CD45 

From equation (2) we can say that the joint histogram (the joint probability of all features) can be 

calculated from the bivariate probability distribution between (CD3, CD45), bivariate probability 

distribution between (CD19, CD45) and the univariate probability distribution of (CD45). 

5.3. Stage (C): Generating contingency tables for (CD3, CD45), (CD19, 

CD45) and frequency table for (CD45) 

In this stage, bivariate distributions and univariate distributions are generated in order to perform 

equation (2). The following steps describe this stage:- 

1. From stage (A): cells’ intensity distributions are converted into intensity histograms for 

CD3, CD19 and CD45 separately. 
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2. Combine frequency histograms of both CD3 and CD45 in a contingency table. Do the 

same for CD19 and CD45. These contingency tables describe the relationship between 

(CD3, CD45) and (CD19, CD45) as bivariate data distributions. 

3. Calculate frequency table for CD45 as a univariate data. 

4. Substitute in (Equation 12: Joint Probability Equation of channels CD3, Cd19, CD45)  

5. Stages (A and C) are repeated for all cases. The resulted combined attributes of all cases 

are then used to generate a multi-parameter dataset. 

Note that CD3 and CD19 are usually not in the same FCS file,  

Note that CD3, CD19 or CD45 can be repeated in different examinations (FCS files) for a single 

patient, so steps 1, 2 and 3 can be performed for those channels (attributes) from any (FCS) file 

that contains them, as all (FCS) files for the same patient will show the same final results. 

Appendix (A) shows the detailed steps of the algorithm presented here on one sample case. 

A clear limitation of the approach presented here is the explosion of the generated combined 

attributes. The number of the generated combined attributes (N) is exponential in the number of 

individual attributes. N is given by:  

N= (b)
 m 

 

Equation 13: Number of generated combined attributes 

Where:-  

m: is the number of individual features (both supplemental and backbone channels).  

b: is the number of break points used in binning.   

This limitation can be resolved by using effective manual binning, accurate selection of 

individual features and applying feature reduction techniques on the generated (Combined 

Attributes) dataset. 
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Chapter 6  

6. Discriminating between normal and abnormal leukemia cases 

In this chapter, the first and second questions of this thesis will be answered:  

1. How can we represent FCM data that address the two representation challenges? 

2. Can the proposed representation be used to successfully classify Leukemia cases? 

This chapter presents experiments to discriminate between normal and abnormal leukemia cases. 

The chapter consists of two main parts: generate the proposed representation of FCS data by 

generating the combined attributes dataset (CA), then analyzing the resulted (CA) dataset using 

Rapid miner 5.3
(2)  

to classify leukemia cases.
         

 

6.1. Generating the Combined Attributes (CA) dataset 

Generating the combined attributes dataset requires calculating the joint probability distribution 

of the three channels (CD3, CD19, CD45) by calculating equation (2) for all the available cases 

(30 normal cases and 5 Leukemia incidence cases). Recall equation (2) 

 
𝑃(𝐶𝐷3, 𝐶𝐷19, 𝐶𝐷45) =

𝑃(𝐶𝐷3, 𝐶𝐷45)𝑃(𝐶𝐷19, 𝐶𝐷45)

𝑃(𝐶𝐷45)
 (1) 

Where:- 

P(CD3, CD19, CD45): is the joint probability of the combined backbone attributes (CD3, CD19, 

CD45). 

P(CD3, CD45): is the joint probability of two channels (CD3, CD45). 

P(CD19, CD45): is the joint probability of two channels (CD19,CD45). 

P(CD45): is the discrete probability of one channel (CD45). 

The procedure described previously was evaluated using data of 30 normal cases and 5 abnormal 

cases. The data files of the cases were provided in LMD (Listmode) file format. FCS Express 4 

                                                 
(2)

 Rapid Miner 5.3: is a data mining program. It is available as a stand-alone application for data analysis and as a 

data mining engine. Rapid Miner is available for download at: 

http://sourceforge.net/projects/rapidminer/files/latest/download  

http://sourceforge.net/projects/rapidminer/files/latest/download
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Plus- Research Edition 
(3)

 was used to convert files into FCS file format and CSV file format.  

.The three channels are discretized using 24 break points at: 10, 20, 30, 40, 50, 60, 70, 80, 90, 

100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, which 

results in 25 manually-set bins 
(4)

. Therefore, the maximum number of combined attributes that 

will be generated in the dataset is (24)
3
= 13824 attributes. The actual generated dataset contains 

6175 attributes, as the remaining attributes have zero value for all cases, so they were cancelled 

out to simplify the analysis and reduce the size of the dataset. 

 

Figure 11: Part of the combined attributes (CA) Dataset 

Figure (11) shows a part of the generated (CA) Dataset, were the cases are on the rows; the 

attributes including a label attribute are on the columns. The values of numerical attributes show 

the joint probability of the combined channels (CD3, CD19 and CD45). For example, the 

combined attribute [10 10 10] means the joint probability to have CD3∈ [0, 10], CD19∈ [0, 10] 

and CD45∈ [0, 10]. This attribute equals 0.0477 for case 10n, while it equals 0.4672 for the case 

22n. Also, note that attribute [10 10 2000] equals 0 for case 17n. This means that the probability 

to find CD3 ∈ [0, 10], CD19 ∈ [0, 10] and CD45 ∈ [1000, 2000] equals 0 for that case. 

                                                 
(3) 

FCS Express 4 Plus is a flow cytometry software package designed and produced by De NOVO software. A demo 

version is available at http://www.denovosoftware.com/site/demo-overview.shtml.  
(4)  

More sophisticated binning methods can be used, but this intuitive manual setting worked just fine.
    

 

http://www.denovosoftware.com/site/demo-overview.shtml
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Note that abnormal cases has the ID of the form (number + a), while normal cases has ID of the 

form (number + n). 

 

 

6.2. Analyzing the (CA) dataset using Rapidminer 5.3 

Rapid Miner5.3 is used to build seven different classifier models for the (CA) Dataset. All 

models are built with default Rapid Miner5.3 parameters unless otherwise stated. Cross 

validation (with 10 folds and stratified sampling) is used to measure the performance of the 

classifier model. The Cross Validation operator in Rapid Miner5.3 is a nested operator that has 

two sub-processes; training and testing. In 10 folds cross validation, the (CA) dataset is divided 

into 10 subsets of equal size. In the training sub-process, 9 subsets are used to build the model 

and the last 10
th

 subset is used in the testing sub-process to measure the performance of the model 

on unseen data. This process is repeated 10 times, each time with different subsets for training 

and testing. The final performance of the model is the average of its performances in all 10 

cycles. Table (1) shows the performance measures for each classifier model. 

# Model 
False 

Positive 

False 

Negative 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

1 Decision Trees 1 1 95 80 80 

2 Rule Induction 1 1 95 80 80 

3 Logistic Regression 7 3 72 22 40 

4 K Nearest Neighbor 2 2 89 60 60 

5 Perceptron 2 1 93 67 80 

6 Naïve Bayes 2 1 92 67 80 

7 
Support Vector 

Machines 
7 3 72 22 40 

Table 1: Classification Models for (CA) dataset 
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It is clear that Decision Tree (DT) and Rule Induction (RI) classifiers gained the highest accuracy 

of 95%, followed by Perceptron with 93%, then Naive Bayes (NB) with 92%, followed by K 

Nearest Neighbor (KNN) with 89%, and finally the lowest accuracy of 72% was acquired by 

Logistic Regression (LR) and Support Vector Machines (SVM). 

Decision Tree and Rule Induction models use the combined attribute [10 1000 3000] to classify 

normal and abnormal cases. Figures (12 and13) show a scatter plot diagram for all cases versus 

the combined attribute [10 1000 3000] in both DT and RI models. it is clear that the combined 

attribute [10 1000 3000] in both DT and RI could not classify all cases correctly due to the 

relatively small number of cases with respect to the huge number of combined attributes. Also 

note that two abnormal cases and one normal case - instances located inside the rectangular area 

in figures 14 and 15- have relatively close values of the combined attribute [10 1000 3000], hence 

both classifiers could not correctly classify all cases based on that attribute only. 

 

Figure 12: The Combined Attribute [10 1000 3000] Vs Label in Decision Tree Classifier 
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Figure 13: The Combined Attribute [10 1000 3000] Vs Label in Rule Induction Classifier 

In Logistic Regression model, the combined attribute [10 400 2000] achieved the highest weight 

of (0.032344), followed by the combined attribute [10 500 2000] with a weight of (0.031455). 

The third highest weight of (0.027805) was assigned to the combined attribute [10 300 2000]. 

In Perceptron model, the highest three weights of (0.02295), (0.007493) and (0.005515) were 

assigned to the three combined attributes [10 200 1000], [10 300 2000] and [10 300 1000] 

respectively. 

In Support Vector Machine model, the highest weight of (0.002302) was assigned to the 

combined attribute [10 500 2000], followed by the attribute [10 400 2000] with a weight of 

(0.002263), and the third highest weight of (0.001977) was assigned to the combined attribute 

[10 1000 3000]. 

6.3. False Positive and False Negative Errors 

This medical experiment is considered as a binary classification problem, where the result of 

classification is either normal or abnormal. In this case, errors can occur when the classifier 

model indicates that an instance is normal while it is not, or indicates that an instance is abnormal 

while it is not. These two errors are called false positive and false negative, respectively. A false 

positive error exists when a test result shows that a condition is present but it is not in fact 

presented, while a false negative error exists when a test result shows that a condition is not 

present, but it is in fact presented. Although both errors affect the results of the medical testing 
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problem, but the medical case investigated here is a testing problem of life-and-death situation. In 

false positive, the patient may need to do extra tests and medical diagnosis to ensure the validity 

of the results. This will cost some time, money and effort. While in case of false negative, the 

patient may not receive the required treatment based on his actual case, so it will cost his/her life! 

In this particular problem, it is better to add unnecessary tests instead of endangering someone's 

life! Thus it is essential for the algorithm to be practical; to reduce false negative errors to zero. 

In the following sections, different solutions will be introduced that may increase the accuracy of 

classification and reduce the number of false negative errors to zero. 

6.4. Apply feature selection techniques 

The resulted (CA) dataset consists of 6175 attributes and only 35 cases (events). This is an 

example of many domains that have tens or hundreds of thousands of features and only few 

training examples. (Guyon & Elisseeff 2003) state that gene selection from micro array data and 

text categorization are two famous examples of such cases. The gene selection case is very 

similar to our task here, where a typical classification task requires separating healthy patients 

from cancer patients depending on their gene expression profile. The dataset usually has less than 

100 patients as training examples, while individual profile consists of around 6000 – 60,000 

variables. The variables are coefficients corresponding to abundance of mRNA in a sample, 

which may be hematological lymphoid tissue biopsies. 

As mentioned previously, the huge number of attributes compared to the number of training 

samples, may cause “Curse of Dimensionality “ which may lead to low classification accuracy. 

This ensures that there are many redundant and irrelevant variables in the resulted dataset. This is 

also the case in gene selection classification task. Actually there are many benefits behind 

suggesting the approach for feature selection, they can be summarized in the following points:- 

1. Enabling data visualization and simple representation. 

2. Reducing the required training and testing time. 

3. Handling the problem of “Curse of Dimensionality”.  

4. Improving prediction accuracy. 

Many feature selection techniques use variable weighting scheme as a basic step. This scheme 

gives higher weights to variables that could correctly classify the training samples.  
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(Aggarwal 2014) classifies feature selection techniques to: filter models, wrapper models and 

embedded models. In Filter method, a ranking criterion on one feature or a subset of features is 

used to evaluate their classification ability. The filtering of variables is done as a preprocessing 

step, and the result is irrespective of the used machine learning technique. In wrapper method, a 

model uses an iterative classification algorithm with built in-feature selection technique. In each 

iteration; the classification algorithm evaluates a subset of features for their predictive ability. If 

the accuracy of prediction is improved, then the embedded subset of features is selected, 

otherwise, it is neglected. Due to embedding feature selection model in the classification 

algorithm, the resulted subset of features is dependent on the used classification algorithm. For 

example, SVM classification would choose features that linearly separate the two classes, while 

nearest neighbor classifier would choose features that cluster classes in spherical regions. 

As examples on applying feature selection techniques; section 6.5 presents attribute weighting 

process, and section 6.7 presents application of a wrapper model.  

6.5. Using Attribute Weighting 

An attribute weighting process is established in Rapid Miner 5.3. The process consists of three 

operators: (1) Retrieve CA dataset Operator, (2) Weight by SVM operator, then (3) Select by 

Weight operator. The operator (weight by SVM) is used to calculate the relevance of each 

attribute from the input dataset with respect to the class attribute. In this case the attribute weights 

are the coefficients of a hyper-plane calculated by a SVM classification model. The third operator 

is used to select only those attributes that satisfy a pre-specified condition. The condition 

specified here is "select Top 3 attributes". The process resulted in the following attributes:- 

1. Attribute [10 500 2000] with a weight of 1. 

2. Attribute [10 400 2000] with a weight of 0.983. 

3. Attribute [10 1000 3000] with a weight of 0.859.  

The first attribute [10 500 2000] has a weight of 1, which means that a SVM hyper-plane has a 

classification accuracy of 100% using that attribute, while, using the second attribute will result 

in a classification accuracy of 98%. Constructing a hyper-plane at the last attribute has the least 

classification accuracy which is 86%. 
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If the same process repeated again, but with the operator (Weight by Chi-square statistic), chi-

squared statistics will be calculated to measure the relevance of each attribute from the input 

dataset with respect to the class attribute. The results are shown below: 

1. Attribute [10 400 2000] with a weight of 1. 

2. Attribute [10 500 2000] with a weight of 1. 

3. Attribute [10 1000 3000] with a weight of 0.844.  

The first and second attributes have a chi-square statistic (p) value of 1, which means 100% 

significance with respect to the class attribute, or in other words, the first and second attributes 

can be used to classify all the data points with accuracy of 100%. 

6.6. Constructing a (3D) visualization Model 

The top three combined attributes acquired from the previous section can be used to visualize all 

instances in a 3D space. Figures (14 and 15) show a 3D model of all cases, where X-axis is the 

combined attribute [10 400 2000], Y-axis is the combined attribute [10 500 2000] and Z-axis is 

the combined attribute [10 1000 3000]. Figure (16) shows a 2D model of all cases in a 2D space, 

where X-axis is the combined attribute [10 400 2000] and Y-axis is the combined attribute [10 

500 2000]. 

 

Figure 14: A 3D Visualization Model (X-Y-Z) 
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Figure 15: A 3D Visualization Model (X-Y-Z) 

 

 

Figure 16: A 2D Visualization Model (X-Y) 

6.7. Apply Wrapper Model 

Rapid Miner 5.3 is used to establish a wrapper model. The model consists of a main process and 

two sub processes. The main process is used to weight the combined attributes from CA dataset 

(weights by SVM or Chi-Square Statistics), and optimize the selection of attributes according to 
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their weights. The first sub-process is used to build a DT classifier model using the optimized 

attributes. The second sub-process is used to measure the performance of the classifier using a 10 

folds cross validation with stratified sampling. 

Table (2) shows the results of using a wrapper model with SVM as a weighting operator, while 

table (3) shows the results of using a wrapper model with Chi-Square Statistics as a weighting 

operator. 

Using SVM, a hyper-plane is constructed at the attribute [10 500 2000] and it ranks the cases 

according to their similarity to a control case by weights. If the weight is high, it means that a 

case is dissimilar to a control case, while a small weight value means the case is similar to a 

control case. In table (2) the highest weights are given to abnormal cases, which are the most 

dissimilar to a control case. All normal cases are assigned small weights, which mean they are 

very similar to the control case. The cases 17n, 1n and 8n have a rank of (0) which means they 

coincide with the control case. 

 

As shown in table (3), similar results have been acquired when using chi-squared statistics, which 

utilized the attribute [10 400 2000] to rank the cases. Again cases 17n and 1n coincide with the 

control case. The case 5a is the most dissimilar to the control case. 

# Test Case Label 10 500 2000 

1 5a abnormal 0.013582169 

2 4a abnormal 0.008391017 

3 3a abnormal 0.008100031 

4 2a abnormal 0.007879461 

5 1a abnormal 0.005397414 

6 27n normal 0.001383272 

7 4n normal 0.001124756 
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8 11n normal 9.73041E-4 

9 31n normal 8.44496E-4 

10 25n normal 6.39992E-4 

11 24n normal 5.75109E-4 

12 13n normal 3.87695E-4 

13 6n normal 3.506E-4 

14 28n normal 3.11119E-4 

15 15n normal 2.76114E-4 

16 9n normal 2.61165E-4 

17 16n normal 2.38633E-4 

18 29n normal 2.29637E-4 

19 22n normal 1.98977E-4 

20 7n normal 1.98017E-4 

21 14n normal 1.89732E-4 

22 5n normal 1.61201E-4 

23 33n normal 1.02683E-4 

24 20n normal 4.97E-5 

25 21n normal 4.75E-5 

26 10n normal 4.02E-5 

27 30n normal 3.86E-5 
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28 2n normal 3.63E-5 

29 3n normal 1.11E-5 

30 23n normal 9.15E-6 

31 26n normal 9.05E-6 

32 32n normal 4.89E-6 

33 17n normal 0.0 

34 1n normal 0.0 

35 8n normal 0.0 

Table 2: A wrapper model with SVM weighting operator 

Figure (17) shows a scatter plot describing the results of the wrapper model with SVM operator; 

while figure (18) shows a scatter plot describing the results of the wrapper model with Chi-

Squared statistics operator. Note the color indicator in both figures ranks from dark blue to red. 

This indicator ranks the cases according to their value of the selected combined attribute: 

(attribute [10 500 2000] in (SVM) and attribute [10 400 2000] in (Chi-Squared)). Normal cases 

(dark blue) have low values and are the most similar to a control case, while abnormal cases have 

higher values. The red instance in both figures has the highest rank; thus considered the most 

dissimilar to the control case. 
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Figure 17: A scatter Plot of a Wrapper Model with SVM weighting operator 

 

ID Case Label 10 400 2000 

1 3a abnormal 0.032198994 

2 5a abnormal 0.022323338 

3 2a abnormal 0.02150929 

4 1a abnormal 0.02101963 

5 4a abnormal 0.008285248 

6 27n normal 0.002621629 

7 11n normal 0.002266613 

8 4n normal 0.002262591 

9 14n normal 0.002043932 

10 25n normal 0.001913939 
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11 24n normal 0.001509662 

12 28n normal 0.001485752 

13 6n normal 0.001460835 

14 15n normal 0.001271796 

15 7n normal 0.001153161 

16 30n normal 0.001095223 

17 29n normal 7.50147E-4 

18 9n normal 6.87276E-4 

19 5n normal 6.44805E-4 

20 31n normal 6.16421E-4 

21 16n normal 5.43204E-4 

22 13n normal 5.05689E-4 

23 22n normal 3.37397E-4 

24 26n normal 2.98718E-4 

25 33n normal 2.22479E-4 

26 2n normal 9.6911E-5 

27 20n normal 6.62E-5 

28 3n normal 3.88E-5 

29 10n normal 2.68E-5 

30 8n normal 2.47E-5 
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31 23n normal 2.14E-5 

32 21n normal 1.19E-5 

33 32n normal 8.55E-6 

34 17n normal 0.0 

35 1n normal 0.0 

Table 3: A wrapper model with Chi-Squared weighting operator 

 

 

Figure 18: A scatter Plot of a Wrapper Model with Chi-Squared weighting operator 

6.8. Analyzing the Reduced Dataset using Rapid Miner 5.3 

Using the results gained from the previously applied feature selection and optimization 

techniques, we can construct a reduced dataset which consists of three combined attributes and 35 

instances. The three selected combined attributes are: X is the attribute [10 400 2000], Y is the 

attribute [10 500 2000] and Z is the attribute [10 1000 3000].  

Table (4) shows the results of analyzing the reduced (CA) dataset using Rapid Miner 5.3. 

Comparing table (1 and 4), it is clear that the performance of all models has enhanced 

significantly due to using the reduced dataset instead of the (CA) dataset. Also two models 

(Naïve Bayes and Support vector Machines) achieved 100% accuracy; which means that those 
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models have a hyper-plane that could excellently separate between normal and abnormal 

instances.  

# Model 
False 

Positive 

False 

Negative 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

1 Decision Trees 1 0 97.5 83.3 100 

2 Rule Induction 1 0 97.5 83.3 100 

3 Logistic Regression 0 1 97.5 100 80 

4 K Nearest Neighbor 0 1 97.5 100 80 

5 Naïve Bayes 0 0 100 100 100 

6 
Support Vector 

Machines 
0 0 100 100 100 

Table 4: Classification Models for the reduced (CA) dataset 

6.9. Anomaly detection techniques 

Anomaly detection is the problem of finding instances in data that don’t conform to a normal 

expected behavior. Those non-conforming instances are called outliers or anomalies. Anomaly 

detection problem has a special importance in many domains like fraud detection in banking 

credit cards, intrusion in networking, military surveillance for enemy activities and diseases in 

medical research. (Chandola et al. 2009) mention many supervised techniques that are used in 

detecting anomalies in the field of medical research and diagnosis. Neural Networks, Bayesian 

Networks, Rule-Based systems, parametric statistical modeling and Nearest Neighbors 

techniques are examples of supervised techniques used in anomaly detection especially in 

medical and health domain.  

Table (5) shows the results of applying nearest neighbors based techniques and statistical based 

techniques in detecting outliers (abnormal instances) in the reduced dataset, which has three 

combined attributes X, Y and Z, and 35 instances; of which 30 are normal and 5 are abnormal. 
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# 

Anomaly 

Detection 

Technique 

Outlier 

Score 

(Normal) 

Outlier 

Score 

(Abnormal) 

Plot View (Outlier Score Vs Label) 

1 

Nearest 

Neighbor 

Based:(LOF) 

(K=10) 

<3 >9 

 

2 

Nearest 

Neighbor 

Based:(COF) 

(K=20) 

<2.5 >4.5 

 

3 

Nearest 

Neighbor 

Based: LoOP 

(K=20) 

<0.2 >0.3 
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4 

Nearest 

Neighbor 

Based: 

INFLO 

(K=10) 

<3 >7 

 

5 

Statistical 

Based: 

(HBOS) 

<1 >3 

 

Table 5: Anomaly Detection Techniques 

Note that (LOF) is Local Outlier Factor technique, (COF) is Connectivity Outlier Factor 

technique, (LoOP) is Local Outlier Probability technique and (INFLO) is Influenced Outleirness 

technique. These techniques are nearest neighbor based and are sensitive to K (the number of 

instances to be considered in the neighborhood of each individual instance). (Chandola et al. 

2009) conclude that all Nearest Neighbors (NN) based techniques are built on one assumption 

that inlier instances occur in dense neighborhoods, while outliers occur far from their closest 

neighbors. Thus these techniques need to define a distance or similarity measure between two 

pairs of instances. The choice of the similarity measure is dependent on the type of attributes. For 

example, Euclidean distance is used with continuous attributes, while simple matching 

coefficient is used with categorical attributes. The last technique mentioned in table (5) HBOS is 

Histogram Outlier Score which is a statistical based technique. 

6.10. Measuring Euclidean distance 

(Duda et al. 2012) assert that Euclidean distance expresses the degree of similarity (or 

dissimilarity) between samples in a data set. Euclidean distance is the most commonly used 



47 

 

distance metric and is defined as the geometric distance in a multidimensional space. Euclidean 

distance in 3 dimensions' space can be calculated by the following equation: 

𝑑(𝑝, 𝑞) = √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + (𝑝3 − 𝑞3)2 

Equation 14: Euclidean Distance between two points p and q in a 3D space 

Where d is the Euclidean distance between two instances p and q. 

(Roederer et al. 2001a) and (Roederer et al. 2001b) mention that p value of chi-squared test 

measures the similarity between the control case and any test case. If p has a low value, this 

means the test case is very similar to the control case, and vice versa, if p has a high value, this 

means the test case is dissimilar to the control case. Using this fact and recalling tables (2 and 3), 

we can consider case (1n) as the control case, as it has a p value of (0). The three dimensions of 

the space are: X, Y and Z. Table (6) shows the Euclidean distance between case (1n) - as a 

control case - and all other cases. 

# 
Test Case ID Euclidean Distance Label of Test case 

1 3a 0.033333 Abnormal 

2 5a 0.026181 Abnormal 

3 2a 0.023654 Abnormal 

4 1a 0.021868 Abnormal 

5 4a 0.011911 Abnormal 

6 27n 0.002982 Normal 

7 4n 0.002578 Normal 

8 11n 0.002467 Normal 

9 14n 0.002053 Normal 

10 25n 0.002021 Normal 

11 31n 0.001665 Normal 

12 24n 0.001615 Normal 

13 28n 0.001524 Normal 
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Table 6: Euclidean Distance Between The control Case (1n) and all test cases 

Table (6) is arranged in a descending order. Notice that abnormal cases are the most dissimilar 

with respect to the control case (1n) because they have the highest Euclidean distance ranging 

14 6n 0.001518 Normal 

15 15n 0.001303 Normal 

16 7n 0.001175 Normal 

17 30n 0.001096 Normal 

18 29n 0.000785 Normal 

19 9n 0.000735 Normal 

20 5n 0.000665 Normal 

21 13n 0.000645 Normal 

22 16n 0.000593 Normal 

23 22n 0.000413 Normal 

24 26n 0.0003 Normal 

25 33n 0.000245 Normal 

26 2n 0.000103 Normal 

27 20n 8.92E-05 Normal 

28 21n 5.04E-05 Normal 

29 10n 5.01E-05 Normal 

30 3n 4.04E-05 Normal 

31 8n 2.47E-05 Normal 

32 23n 2.33E-05 Normal 

33 32n 9.92E-06 Normal 

34 17n 0 Normal 
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from (0.033) to (0.011). On the other hand, normal cases have lower Euclidean distances with 

respect to the control case, ranging from (0.0029) to (0). Also note that case (17n) has a (0) 

Euclidean distance, which means that it coincides with the control case, and this is what we have 

revealed previously in tables (2 and 3).
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Chapter 7 

7. Discriminating between Acute Myeloid Leukemia (AML) and 

Acute Lymphoid Leukemia (ALL) 

In this chapter, the third question will be answered: Can the proposed representation be used to 

successfully classify different types of Leukemia cases? 

This chapter presents experiments to discriminate between acute myeloid leukemia (AML) and 

acute lymphoid leukemia (ALL) using both concepts of Bayesian Inference and Binning.  As 

mentioned earlier; binning is used to change intensity values into categories (Bins), and Bayesian 

Inference is used to generate the joint probability distribution that merges backbone channels 

from different FCS files into one multi-parameter FCS file.  

The above question will be answered by: 

1- Representing FCS data of the selected channels and generate the combined attributes 

(CA) dataset. 

2- Analyzing CA dataset using Rapidminer 5.3. 

As mentioned earlier, lymphocyte cells can mainly be divided into B-cells and T-cells, thus 

(ALL) cases can be subdivide into B-ALL and T-ALL. This chapter also includes experiments on 

further classifying (ALL) cases into either B-ALL or T-ALL.  

7.1. Generating the Combined Attributes (CA) dataset 

(Van Dongen et al. 2012) present backbone attributes used for diagnosing different hematological 

malignancies in cooperation with INFINICYT
 (5)

 software.
 
Using the backbone channels of AML, 

B-ALL and T-ALL, we can generate a multi-parameter dataset that contains combined attributes 

for diagnosing different leukemia incidence cases. 

The following table shows the backbone channels for AML, B-ALL and T-ALL as mentioned in 

(Van Dongen et al. 2012): 

 

 

                                                 
(5)

 Infinicyt is software for analysis and interpretation of flow cytometry acquisition files. Infinicyt is available at: 

http://www.infinicyt.com/  

http://www.infinicyt.com/
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Type of Leukemia Backbone markers 

AML CD45 CD34 CD117 

B-ALL CD45 CD34 CD19 

T-ALL CD45 cyCD3 CD3 

Table 7: Backbone channels for diagnosing AML, B-ALL and T-ALL 

The approach was evaluated using data of (4) AML cases, (4) B-ALL cases and (3) T-ALL cases. 

The data files of the cases were provided in LMD (Listmode) file format. They were converted 

using INFINICYT software into FCS and CSV file formats. Exploration of the data and statistical 

calculations were also performed in the statistical package R version 3.0.2 released on 25-9-2013. 

7.2. Exploring the cases and generating CA dataset 

The same procedure
(6)

 of binning and generating the joint probability distribution between 

channels can be applied here using the 6 backbone channels (CD45, CD34, CD117, CD19, CD3 

and cyCD3), but it will definitely be more complex due to the increased number of channels. It is 

clear that number of generated attributes is exponential in the number of cell features. Thus, if we 

could reduce the number of features, the resulting combined attributes (CA) dataset will be of 

reasonable size. The question now is: how can we select the correct set of attributes? 

By browsing FCS files of all cases, it was found that CD45 is the backbone channel which is 

available in all FCS files. Also it was found that CD117, CD19 and cyCD3 is not available in 

some cases. Therefore, the supplemental channels that are available for all cases are only CD34 

and CD3. Thus the procedure is applied on the set of channels: CD34, CD3 and CD45. The 

following steps summarize the procedure presented in this thesis:- 

1. The backbone channels are discretized by 11 break points, they are: -100000, -10000, 0, 

1000, 5000, 10000, 50000, 100000, 300000, 500000 and 1100000, which result in 12 

bins. 

2. Applying the joint probability equation (2) on the new selected backbone channels:  

 

                                                 
(6)  

The procedure is described in details in Chapter 5 (Methodology) and in (Appendix A).
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𝑃(𝐶𝐷34, 𝐶𝐷3, 𝐶𝐷45) =

𝑃(𝐶𝐷34, 𝐶𝐷45)𝑃(𝐶𝐷3, 𝐶𝐷45)

𝑃(𝐶𝐷45)
  

Equation 15: Joint Probability Equation of channels CD3, CD34, CD45 

The maximum expected number of combined attributes is (11)
3
=1331. The actual combined 

attributes dataset has only 617 attributes, because the remaining attributes of zero value for all 

cases were deleted to reduce the (CA) dataset size and simplify the analysis. Figure (19) shows a 

part of the generated global (CA) dataset. 

 

 

Figure 19: A part of the generated (CA) dataset. 

The first column (Cases) is cases ID, the second column (label) is the label of the case (either 

ALL or AML), and the rest of columns are the combined attributes. For example, the column (0 0 

5000) is the joint probability of the combined attributes that has CD34 ∈ [0, 1000], CD3∈ [0, 

1000] and CD45∈ [5000, 10000].  

7.3. Analyzing the (CA) dataset using Rapid Miner 5.3 

Rapid Miner 5.3 was used to analyze the (CA) dataset using different classifiers. The table below 

shows the results of these classifiers. It is clear that (DT), (KNN) and (Perceptron) achieved the 

highest accuracy of 70%, which is still a low accuracy for the sensitive problem in our hands. A 

possible reason for this low accuracy is the large number of combined attributes with respect to 

the small number of instances (cases).  

 

 



53 

 

# Model 
False 

AML 

False 

ALL 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

1 Decision Trees 2 2 70 71.43 71.43 

2 Rule Induction 2 4 50 55.56 71.43 

3 Logistic Regression 3 3 45 57.14 57.14 

4 K Nearest Neighbor 3 1 70 80 57.14 

5 Perceptron 0 3 70 70 100 

6 Naïve Bayes 1 3 65 66.67 85.71 

7 
Support Vector 

Machines 
2 3 55 62.5 71.43 

Table 8: Classification Models for CA dataset 

7.4. Attribute Weighting techniques 

An attribute weighting process is established in Rapid Miner 5.3. The process consists of three 

operators: (1) Retrieve CA dataset Operator, (2) Weight by SVM operator, (3) Select by Weight 

operator. The operator (weight by SVM) is used to calculate the relevance of each attribute from 

the input dataset with respect to the class attribute. In this case the attribute weights are the 

coefficients of a hyper-plane calculated by a SVM classification model. The third operator is used 

to select only those attributes that satisfy a pre-specified condition. The condition specified here 

is "select Top 3 attributes". The process resulted in the following attributes:- 
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1. X= Attribute [5000 1000 50000] has a weight of  1 

2. Y= Attribute [5000 0 500000] has a weight of 0.827 

3. Z= Attribute [1000 5000 300000] has a weight of 0.708 

Figure (20) shows a 2-D visualization model of AML and ALL cases using attributes X and Z. 

 

Figure 20: A 2D (X-Z) visualization model for AML and ALL cases 

7.5. Analyzing the Reduced Dataset using Rapid Miner 5.3 

Table (9) shows the results of analyzing the reduced dataset using Rapid Miner 5.3. Comparing 

table (8 and 9), it is clear that the performance of all models has enhanced significantly due to 

using the reduced dataset instead of the (CA) dataset. 

# Model 
False 

AML 

False 

ALL 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

1 Decision Trees 0 0 100 100 100 

2 Rule Induction 0 0 100 100 100 

3 Logistic Regression 1 2 75 75 85.71 

4 K Nearest Neighbor 0 0 100 100 100 

5 Perceptron 0 4 60 60 100 
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6 Naïve Bayes 1 0 95 100 85.71 

7 SVM 1 2 75 75 85.71 

Table 9: Classification Models for the reduced dataset 

Also different clustering techniques succeeded in classifying all cases into (AML) cluster and 

(ALL) cluster. Table (10) shows the results of clustering the reduced dataset. 

# Clustering Technique Cluster_0 Cluster_1 

1 K-Means 4 AML cases 7 ALL cases 

2 Expectation Maximization 3 AML cases 7 ALL cases + 1 AML case 

3 K-Means (Kernel) 4 AML cases 7 ALL cases 

4 K-Medoids 4 AML cases 7 ALL cases 

5 X-Means 4 AML cases 7 ALL cases 

Table 10: Results of clustering the reduced dataset 

7.6. Classifying (ALL) cases to B-ALL and T-ALL 

In order to classify (ALL) cases into either B-ALL or T-ALL; (ALL) cases are extracted from the 

original (CA) dataset, and are used to form a new (ALL) CA dataset. Figure (21) shows a part of 

(ALL) CA dataset with seven (ALL) cases. Table (11) shows the results of applying different 

classification models on (ALL) CA dataset. Classifier models are built using default Rapid Miner 

5.3 parameter values, and cross validation (with 10 folds and stratified sampling) is used to 

measure the performance of the classifier model. 

 

Figure 21: Part of (ALL) Combined Attributes Dataset 



56 

 

 

 

 

# Model 
False 

B-ALL 

False 

T-ALL 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

1 Decision Trees 0 1 85.71 75 100 

2 Rule Induction 0 1 85.71 75 100 

3 Logistic Regression 1 1 71.43 66.67 66.67 

4 K Nearest Neighbor 1 3 42.86 40 66.67 

5 Naïve Bayes 2 1 57.14 50 33.33 

6 
Support Vector 

Machines 
1 2 57.14 50 66.67 

Table 11: Classification Models for (ALL) CA dataset 

7.7. Attribute weighting techniques 

An attribute weighting process is established in Rapid Miner 5.3 and used to reduce the number 

of attributes in the (ALL) CA dataset. Using SVM operator, the process resulted in the following 

top three attributes:-  

1. X- Attribute (0 0 300000) with a weight of 1 

2. Y- Attribute (5000 5000 100000) with a weight of 0.979. 

3. Z- Attribute (0 50000 300000) with a weight of 0.977. 

The previous three attributes are used to visualize (ALL) cases and classify them to either B-ALL 

or T-ALL. Figures (22, 23 and 24) show different visualizations for B-ALL and T-ALL cases. 
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Figure 22: A 3-D (X-Y-Z) visualization model for ALL cases 

 

 

 

Figure 23: A 2-D (X-Z) scatter Plot of ALL cases 

B-ALL 

T-ALL 

B-ALL 

T-ALL 
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Figure 24: A 2-D (X-Y) scatter Plot of ALL cases  

7.8. Classifying the reduced (ALL) dataset  

The top three attributes resulted in the previous section can be used in a reduced dataset of seven 

(ALL) cases. This dataset is classified using different classifier models in Rapid Miner 5.3. Table 

(12) shows the results of different classifier models for the reduced (ALL) dataset. Comparing 

tables (11) and (12) verifies the significant enhancement due to using reduced attributes (ALL) 

dataset. 

# Model 
False 

B-ALL 

False 

T-ALL 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

1 Decision Trees 1 0 85.71 100 66.67 

2 Rule Induction 1 0 85.71 100 66.67 

3 Logistic Regression 0 0 100 100 100 

4 K Nearest Neighbor 0 0 100 100 100 

5 Naïve Bayes 0 0 100 100 100 

6 SVM 0 0 100 100 100 

Table 12: Classification Models for the reduced (ALL) dataset 

 

B-ALL 

T-ALL 
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Chapter 8 

8. Conclusion and Future Work 

8.1. Summary 

Flow cytometry is a very important tool in basic research for investigating many features of cell 

functions and has emerged as a very important clinical technique in the areas of blood cells and 

cancer diagnostics. Flow cytometry is used for analyzing a large population of fluorescently 

labeled cells in a fluid stream.  As the particles pass through a focused light source; the amount of 

light scattered and the emission of a fluorescence label can be measured and stored in a FCS file 

format.   

Conventional analysis method is used in many labs today, which depends mainly on gating. 

Although gating is an important step in manual analysis techniques; it is a major disadvantage in 

FCM analysis, as it highly subjective, prone to error and dependent on the experience of the 

analyst. 

The last two decades have seen many developments in computer science, FC industry and 

instrumentations, biomarkers and fluorochrome conjugate antibodies and the widespread use of 

immunophenotypic data in diagnosis. All these developments encouraged researches for FCM 

automated analysis techniques 

This thesis developed, presented and tested a framework for representing multi-parameter flow 

cytometric dataset that contains flow cytometric data of different attributes divided across more 

than one FCS files. This framework is a novel approach that combines two main concepts: 

Probability Binning (PB) and Bayesian Inference (BI). Using this combined approach, we could 

represent FCM data in such a representation that allows us to classify blood flow data to normal 

and Leukemia incidence cases. Also the same representation could successfully by used to 

discriminate different Leukemia types (AML, B-ALL or T-ALL) using a two-stage classifier 

resulting in 100% accuracy and 100% sensitivity for several classification models.  

Many researches presented either PB or BI in analyzing flow cytometric data, but not both of 

them. Researches that applied PB resolved the challenge of unordered cells across different FCS 

files, but lost the dependencies between features that are divided on multiple FCS files. Other 

researches applied BI on the individual cell level. These approaches resolved the challenge of 
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multiple features divided across many FCS files for the same patient, but did not resolve the 

challenge of different cells’ order.  Also many researches used partially or fully automated 

(gating) as a first step in flow cytometric analysis. The approach presented here can work on the 

raw flow cytometric data without the need for gating. 

The currently presented approach assumes that backbone channels are common across all FCS 

files of the same patient’s examinations, and this is practically true. The approach also assumes 

that supplemental channels are independent of each other given the backbone attribute. This is 

also true as a solution to flow cytometers’ technical limitations; panels with two or more 

combinations of overlapping antibodies are used to measure cells' characteristics for the complete 

identification of different hematological malignancies. 

A clear limitation of the approach presented here is the explosion of the generated combined 

attributes. Recall (Equation 13: Number of generated combined attributes) the number of 

generated combined attributes N= (b)
 m 

: where (m) is the number of individual attributes, and b is 

the number of break points used in binning. 

 This limitation could be overcome by selecting one backbone attribute, which is common across 

all FCS files (practically, CD45 is the backbone attribute which exist almost in all FCS files) plus 

two supplemental attributes (which vary according to hematological malignancy under 

investigation). The selection of supplemental attributes should be done by browsing all FCS files 

and picking the features that are available for all cases, as the procedure presented here uses the 

same set of features on all FCS samples. Note that, FCM tests are expensive and practically, not 

all antibodies and markers are used in FCM tests. For example, the discrimination between AML, 

B-ALL and T-ALL depends on the set of channels: CD34, CD117, CD19, cyCD3, CD3 and 

CD45. Practically, CD117, CD19 and cyCD3 are not available for all cases. Thus the procedure 

was evaluated on only CD45, CD34 and CD3. Also a wise binning sequence must be used by 

trial and error, taking into account striking a balance between accuracy and compact 

representation.  

The experiments presented in this thesis showed that it is sufficient to depend only on two or 

three combined attributes (from the global dataset) in order to have a clear and accurate results in 

either classifying leukemia or in discriminating leukemia types.  
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8.2. Future Work 

It is useful to test the approach presented here in diagnosing different hematological 

malignancies, with the condition that the approach is applied on the correct set of channels. (Van 

Dongen et al. 2012) present backbone attributes and supplemental attributes used in the diagnosis 

of different hematological malignancies. We claim that it is sufficient to depend only on three 

attributes (one backbone and two supplemental) in our algorithm to get meaningful results with 

100% accuracy and sensitivity.  

It is also challenging and interesting to test the approach presented here in analyzing and 

discovering Minimal Residual Diseases (MRD). MRD is the small numbers of cancerous cells in 

the body’s tissues that are not cured during treatment of leukemia. MRD is the most significant 

cause of recrudescence in leukemia patients following chemotherapy treatment. The algorithm 

presented here is applied on raw data and gating is not applied in any stage, and thus we claim 

that this approach can discover MRD even in very low percentages.  

Also, as a future extension to this work, it is important to test this approach on different medical 

research field like DNA analysis and gene selection from microarray data, or in drug discovery 

platforms.    
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Appendix A: Applying Probability Binning and Bayesian Inference 

to represent a sample flow cytometric case as a multi-dimensional 

histogram of combined attributes 

 

 

Figure 25: FCS files for one patient (one sample case) 

Figure (28) represents different FCS files containing examinations for the same patient. It is clear 

that CD45 is a common attribute across all files, while CD3 and CD19 are not in the same FCS 

file. 

In order to apply the approach presented here, two FCS files will be selected: Case12_8-4-_-3-

45-00002520 005 and Case12_20-10-19-38-45 -00002518 003. The first FCS file contains the 

attributes CD3 and CD45, while the second FCS file contains the attributes CD19 and CD45.  

The following table summarizes the steps of the approach:- 
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# Step Objective Result 

0 

Load the file 

“Case12_8-4-

_-3-45-

00002520 005 

.csv” to R 

 

To read the values of 

intensities of individual cells 

in the two channels CD3 and 

CD45. For example, cell #1 

show intensity of (5.6742) in 

channel CD3, and show 

intensity of (465.5526) in 

channel CD45. 

Cell # CD3 CD45 

1 5.67422

1 

465.5526 

2 11.2403

9 

349.1152 

3 8.13123 164 

4 2.50286

5 

2.813318 

5 15.1247

3 

148.5508 

….. ….. ….. 

63910 63.2093

4 

147.2207 

 

 

 

 

Stage (A): Applying the modified Probability Binning algorithm 

(Convert cells’ intensity distributions to intensity histograms) 

1 

Define the 

possible range 

of intensities 

(minimum and 

maximum 

intensity values)  

 

Flow cytometric files 

containing CD3, CD19 and 

CD45 are explored to define 

the minimum and maximum 

intensity values that can be 

assigned to a cell.  

Minimum intensity value = [0] 

Maximum intensity value =[10000] 

2 

  The intensity 

value of each 

cell is 

discretized 

according to the 

selected bins. 

 

Cell # Attribute CD3 

1 10 

2 20 

3 10 

4 10 

5 20 

…. …… 

63910 70 
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3 

 The discretized 

intensities of 

individual cells 

are placed in the 

appropriate bin, 

then the number 

of cells in each 

bin is counted to 

form the 

histogram 

(probability) at 

that intensity. 

Bin # Bin Cell counts 

1 10 24679 

2 20 18373 

3 30 7016 

4 40 3820 

5 50 2329 

6 60 1640 

7 70 1138 

8 80 798 

9 90 614 

10 100 491 

11 200 1528 

12 300 339 

13 400 245 

14 500 222 

15 1000 498 

16 2000 114 

17 3000 26 

18 4000 14 

19 5000 9 

20 6000 8 

21 7000 3 

22 8000 1 

23 9000 2 

24 10000 2 

 

4 

Step (2) is 

repeated for 

CD45 in FCS 1 

Cell # CD45 

1 500 

2 400 

3 200 

4 10 

5 200 

….  

63910 200 
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5 

Repeat step (3) 

for CD45 in 

FCS 1 

Bin # Bin Cell counts 

1 10 5540 

2 20 769 

3 30 385 

4 40 228 

5 50 204 

6 60 166 

7 70 157 

8 80 245 

9 90 417 

10 100 714 

11 200 23231 

12 300 16739 

13 400 5822 

14 500 2067 

15 1000 4958 

16 2000 2023 

17 3000 166 

18 4000 38 

19 5000 13 

20 6000 10 

21 7000 3 

22 8000 11 

23 9000 3 

24 10000 0 

 

6 

Stage (B): Generating the joint probability equation of channels (CD3, CD19, CD45) 

 
𝑃(𝐶𝐷3, 𝐶𝐷19, 𝐶𝐷45) =

𝑃(𝐶𝐷3, 𝐶𝐷45)𝑃(𝐶𝐷19, 𝐶𝐷45)

𝑃(𝐶𝐷45)
 (2) 

 

 

Stage (C): Generating contingency tables for (CD3, CD45), (CD19, CD45) and frequency table 

for (CD45) 

 

7 

Arrange 

frequencies of 

CD3 and 

CD45 in a 

contingency 

table 

# CatCD3 CatCD45 freq 

1 10 10 4951 

2 10 20 233 

3 10 30 94 

4 10 40 66 

    

282 10000 4000 1 

283 10000 8000 1 
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8 

Pivot Table of 

(CD3 and 

CD45) 

 

9 

steps (1 to 6) 

are repeated 

for both CD19 

and CD45 in 

the second 

FCS file 

 

 
CatCD19 CatCD45 freq 

1 
10 10 3941 

2 
10 20 551 

3 
10 30 213 

4 
10 40 151 

 
….   

238 6000 8000 1 

239 6000 9000 7 

 

10 

Pivot table of 

(CD19 and 

CD45) 

 

Sum of freq CD45

CD3 10 20 30 40 50 60 70 80 90 100 200 300 400 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 Grand Total

10 4951 233 94 66 67 56 54 70 130 197 6872 5578 1990 812 2672 832 4 1 24679

20 340 174 46 20 21 16 21 42 96 202 7078 5240 2155 821 1414 643 41 3 18373

30 111 139 48 21 9 15 12 16 41 82 3053 2252 684 165 206 116 40 6 7016

40 54 96 36 13 15 7 7 11 18 47 1710 1236 366 96 55 32 16 4 1 3820

50 15 51 41 16 11 8 6 12 19 26 1136 722 186 45 23 8 2 1 1 2329

60 15 28 45 14 12 9 4 4 14 16 786 507 136 27 15 6 2 1640

70 9 11 30 11 7 6 4 12 6 12 585 324 91 16 12 1 1 1138

80 7 14 21 13 8 5 5 7 10 16 411 217 46 6 9 2 1 798

90 8 6 6 17 14 2 4 6 8 24 312 157 32 8 10 614

100 4 3 8 9 6 1 1 6 9 12 266 130 25 6 2 2 1 491

200 14 11 9 24 30 33 27 37 40 59 813 288 68 30 40 5 1528

300 3 1 1 2 2 4 11 15 22 15 131 36 14 10 56 16 339

400 3 1 1 2 3 1 6 2 4 48 13 7 7 112 33 2 245

500 1 1 2 1 18 11 3 2 113 69 1 222

1000 1 1 1 1 12 27 17 9 193 216 20 498

2000 1 1 2 7 22 37 31 11 2 114

3000 1 4 7 6 5 3 26

4000 2 3 3 4 2 14

5000 2 2 3 2 9

6000 1 1 1 1 1 1 1 1 8

7000 3 3

8000 1 1

9000 2 2

10000 1 1 2

Grand Total 5540 769 385 228 204 166 157 245 417 714 23231 16739 5822 2067 4958 2023 166 38 13 10 3 11 3 63909

Sum of freq Column Labels

Row Labels 10 20 30 40 50 60 70 80 90 100 200 300 400 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Grand Total

10 3941 551 213 151 103 86 75 74 112 222 9918 9180 3368 1206 3347 1511 44 1 34103

20 88 25 64 73 53 33 36 45 93 180 8690 5780 1878 666 878 320 69 4 1 18976

30 36 11 5 5 7 16 13 23 42 65 2276 1502 376 113 151 23 17 7 4688

40 25 13 3 1 4 4 9 15 18 39 1028 568 141 27 35 7 4 1 1942

50 10 7 3 1 3 5 4 16 26 498 231 43 19 10 3 5 1 885

60 10 4 1 1 1 1 7 4 8 14 269 147 31 8 17 2 2 527

70 6 2 2 2 3 6 8 152 84 17 8 13 3 306

80 2 2 1 2 1 2 2 7 8 83 46 8 7 14 4 1 190

90 2 1 1 1 1 4 3 3 52 28 4 4 17 2 123

100 1 2 2 1 1 3 1 6 38 18 5 9 26 3 116

200 6 4 4 2 2 2 3 6 7 5 79 138 94 57 354 105 2 870

300 2 1 1 2 1 5 30 30 24 197 100 2 395

400 1 1 2 4 6 8 46 51 4 123

500 1 1 1 9 27 11 1 51

1000 1 5 4 1 3 21 39 21 7 102

2000 1 3 3 5 10 3 1 26

3000 1 2 3

4000 1 5 1 7

5000 2 2

6000 1 1 1 1 1 1 7 13

Grand Total 4130 623 299 237 173 150 154 183 313 578 23096 17760 6002 2158 5118 2180 205 38 15 11 5 2 17 1 63448
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11 

Calculate 

frequency 

table for CD45 

as a univariate 

data. 

 

 

12 
Apply 

equation (12) 

# Pattern Pjoint 

1 10 10 10 0.05551 

2 10 10 20 0.002631 

3 10 10 30 0.00082 

4 10 10 40 0.000689 

5 10 10 50 0.000533 

6 10 10 60 0.000457 

7 10 10 70 0.000407 

8 10 10 80 0.000333 

….. …… ……. 

11089 8000 7000 10000 0 
 

CD45 Freq P

10 5540 0.086686

20 769 0.012033

30 385 0.006024

40 228 0.003568

50 204 0.003192

60 166 0.002597

70 157 0.002457

80 245 0.003834

90 417 0.006525

100 714 0.011172

200 23231 0.363501

300 16739 0.261919

400 5822 0.091098

500 2067 0.032343

1000 4958 0.077579

2000 2023 0.031654

3000 166 0.002597

4000 38 0.000595

5000 13 0.000203

6000 10 0.000156

7000 3 4.69E-05

8000 11 0.000172

9000 3 4.69E-05


