
A Visualization Technique for

Multiagent Systems

Manal Rayes

Master of Science in Information Technology
Faculty of Informatics

The British University in Dubai

March 2011

Abstract

In this dissertation we consider the problem of monitoring and visualizing the performance of
multi-agent systems, i.e. systems of adaptive agents that change their behaviour as a result
of learning and experiencing. Instead of relying on global performance measures, as have been
done by current visualization techniques, we use a different technique which is a combination
of dimensionality reduction and social network measures. The advantage of this technique, we
claim, is that it does not only capture the performance of the multiagent system on its macro
level, as is the case with the global performance metrics methods, but it can also capture the
performance on the micro level, i.e. by being sensitive to the performance of individual agents.

To test our technique, we first conduct several experiments to compare different combina-
tions of dimensionality reduction techniques and network measures. Then we apply one such
combination on networks of adaptive agents that play games (we use the term ”game” as in
the Game theory).

Our findings confirm that using dimensionality-reduced weighted network measures in visu-
alizing the performance of multi-agent systems is informative in the sense that they proved to
be sensitive to changes in the global as well as local system dynamics (for example the global
network structure and the local learning of individual agents).

2

Acknowledgement

First to my parents who have always been there for us, and to my sister and brother. To my
father who has encouraged us to constantly seek higher standards, pursue high goals, and face
any challenges with faith and hard work; and to my mother for her unconditional love, prayers,
and support, especially during this work when I most needed her for taking care of my baby.

To my husband, thank you for the valuable support and encouragement.

To my supervisor for his guidance (despite the many other work overloads).

Lastly, to all friends who wished me good luck.

3

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own
except where explicitly stated otherwise in the text, and that this work has not been submitted
for any other degree or professional qualification except as specified.

(Manal Rayes)

4

Contents

Abstract 2

1 Introduction 10

2 Background 12

2.1 Multiagent Problem Formulation . 12

2.1.1 Preliminary Concepts . 12

2.1.2 Game Theory . 13

2.1.3 Formal Definitions . 15

2.2 Multiagent Learning Approaches . 16

2.2.1 Model-based approaches . 16

2.2.2 Model-free approaches . 17

2.2.3 Metrics for Learning Algorithms . 18

2.3 Existing Testing and Visualizing Methodologies 18

3 Methodology 21

3.1 Techniques . 21

3.1.1 Dimensionality Reduction Techniques . 21

3.1.2 Social Network Metrics . 22

3.2 Tools . 24

3.2.1 MATLAB Dimensionality Reduction Toolbox: a Tool for Dimensionality
Reduction . 24

3.2.2 tnet: a Tool for Computing Network Measures on Weighted Networks . . 25

3.2.3 NetLogo: a Tool for Modeling Multiagent Systems 25

3.3 Experimental Settings . 26

3.3.1 Settings for Task 1: Testing Different Combinations of Dimensionality
Reduction Techniques and Social Network Measures 26

3.3.2 Settings for Task 2: Testing the Visualization Techniques on Networks of
Adaptive Agents . 27

4 Results and Discussion 29

4.1 Results of Task 1: Comparative Study on Combinations of Dimensionality Re-
duction Techniques and Social Network Measures 29

5

4.1.1 Question 1: Which dimensionality reduction technique to use? 29

4.1.2 Question 2: Which network measure(s) to use? 30

4.1.3 Question 3: What values for setting the parameters of network metrics? . 31

4.2 Results of Task 2: Testing Dimensionality-Reduced Network Metrics on Networks
of Adaptive Agents . 32

4.2.1 Question 1: Can it distinguish different learning algorithms? 32

4.2.2 Question 2: Can it capture disruptions in learning? 32

4.2.3 Question 3: Can it capture disruptions in network structure? 41

4.2.4 Question 4: Can it be used to identify the type and source of disruption? 41

4.3 Discussion . 42

5 Conclusion and Future Work 46

6

List of Figures

2.1 A sample of a trajectory plot for a Q-learner. Grayscales are used to indicate
the direction of convergence [20]. 19

2.2 A sample of a simplex plot for the climbing game (with 3× 3 game matrix) [20]. 19

2.3 A sample of a directional field plot (FALA learning algorithm in the Battle of
the Sexes game) [20]. 19

2.4 A sample of a cumulative reward plot (FALA learning algorithm in the dispersion
game) [20]. 20

3.1 Platform developed with NetLogo for running learning algorithms on adaptive
agents that are organized in a network and engage in repeatedly playing games. . 25

4.1 Different dimensionality reduction techniques on two datasets (called ”type0”
and ”type9”) representing edgelists of two dynamic networks (No network mea-
sures are used). 30

4.2 Comparison between the results of PCA on two datasets corresponding to two
different dynamic networks with network measures applied. 31

4.3 comparison between the results of Isomap on two datasets corresponding to two
different dynamic networks with network measures applied. 32

4.4 comparison between the results of MDS on datasets corresponding to two differ-
ent dynamic networks with network measures applied. 33

4.5 Results of PCA on a weighted network (size 100 × 3) in which 10 random links
are disrupted at time 36 as depicted by the red circle. No network metrics are
used. 33

4.6 Results of PCA on a weighted degree centrality of nodes corresponding to a
weighted network of 100 nodes and average node degree of 3 in which 10 random
links were disrupted at time 36 as depicted by the red circle. 34

4.7 Comparison between results of PCA on different evolving networks generated by
different mechanisms (5 runs for each mechanism with no network metrics applied). 34

4.8 Comparison between results of MDS on different evolving networks generated by
different mechanisms (5 runs for each mechanism with no network metrics applied). 35

4.9 Comparison between results of PCA on different evolving networks generated by
different mechanisms (5 runs for each mechanism with network metrics). 35

4.10 Comparison between results of MDS on evolving network generated by different
mechanisms (5 runs for each mechanism with network metrics). 36

4.11 Result of PCA on different evolving networks generated by different mechanisms
(5 runs for each mechanism with 5 network metrics) with weighted in-degree
eliminated. 36

7

4.12 Result of PCA on different evolving networks generated by different mechanisms
(5 runs for each mechanism with 5 network metrics) with weighted out-degree
eliminated . 37

4.13 Result of PCA on different evolving networks generated by different mechanisms
(5 runs for each mechanism with 5 network metrics) with weighted betweenness
eliminated . 37

4.14 Result of PCA on different evolving networks generated by different mechanisms
(5 runs for each mechanism with 5 network metrics) with weighted closeness
eliminated . 38

4.15 Result of PCA on different evolving networks generated by different mechanisms
(5 runs for each mechanism with 5 network metrics) with weighted clustering
eliminated . 38

4.16 Results of PCA (2 dimensions) on a weighted network of adaptive agents. The
first column shows the results of weighted degree(in and out with α = 0.5), the
second column shows the results of node strength (weighted degree with α = 1),
and the third column is for the c-degree. Each row corresponds to a different
experiment with all experiments performed with variable learning parameters as
follows: 1: Q-learning, learning disruption, 2: IGA: learning disruption, 3: Q,
link disruption, 4: IGA, link disruption. 39

4.17 Results of PCA (2 dimensions) on a weighted network of adaptive agents. The
first column shows the results of weighted degree(in and out with α = 0.5), the
second column shows the results of node strength (weighted degree with α = 1),
and the third column is for the c-degree. Each row corresponds to a different
experiment with all experiments performed with variable learning parameters
as follows: 1: Q, learning disruption, 2: IGA: learning disruption, 3: Q, link
disruption, 4: IGA, link disruption. 39

4.18 Result of PCA (with target dimensions is 1) on weighted closeness for weights
corresponding to values of the iterator (Q vector in Q-learning and policy in
IGA) in 10 different runs on a network of 5 nodes and average node degree of 2.
The game played is Battle of the Sexes.Parameters for the learning algorithms
are as follows: Q (ε initially is 1 and iteratively decays in multiples of 0.98, α =
0.1, γ = 0.9). IGA (η initially is 0.03 and then iteratively decays in multiples of
0.99). 40

4.19 Results of PCA (2 dimensions) on weighted degree (in-degree and out-degree
with α = 0.5 corresponding to weighted networks of different node and average
link degrees. The learning of 20% random nodes is disrupted at different times
after convergence. Learning algorithm is Q-learning. 41

4.20 Results of PCA (2 dimensions) on weighted degree (in-degree and out-degree
with α = 0.5 corresponding to weighted networks of different node and average
link degrees. The learning of 20% random nodes is disrupted at different times
after convergence. Learning algorithm is IGA. 42

4.21 Results of PCA (2 dimensions) on weighted degree (in-degree and out-degree
with α = 0.5) corresponding to different weighted networks. Random links are
disrupted at different times after convergence. Learning algorithm is Q-learning. 43

4.22 Results of PCA (2 dimensions) on weighted degree (in-degree and out-degree
with α = 0.5) corresponding to different weighted networks. Random links are
disrupted at different times after convergence. Learning algorithm is IGA. 44

4.23 Plotting weighted degree centrality of six nodes, three of which have their learning
disrupted (the ones in red) at time 20. 45

8

4.24 Results of PCA on different weighted degree centrality of nodes corresponding
to different weighted networks. Different disruptions occurred at different times
and the point of disruption is marked by a red circle. The first row corresponds
to runs that used Q-learning and the second row corresponds to runs that used
IGA. 45

9

Chapter 1

Introduction

Multiagent systems (MAS) are systems composed of multiple interacting intelligent agents,
where an intelligent agent is a computational element that is capable of interacting with its
environment (as well as with other agents) and taking intelligent actions. The most important
aspects of an intelligent agent are that its rationality, in the sense that it performs the action(s)
that would result in the outcome that best serves its goal, and its capability of learning or using
its knowledge in choosing such actions.

Although the subject of multiagent systems has its roots in Game theory (which analyses
situations where the action of one agent depends on the others’ choices) and distributed artificial
intelligence (which studies the development of distributed solutions for complex problems that
require intelligence), multiagent systems have been recognized as a field in its own right since
about 1980, and has gained widespread interest in the mid 1990s. This acknowledgement of the
individuality of the field was largely driven by having the researchers recognizing that placing
multiple intelligent agents in one collective system is a non-trivial problem that has its own
considerations and issues. These difficulties stem from the fact that MAS involves two levels:
the micro level, with individual agents each with its local goals, knowledge, and learning, and
the macro level, in that all the elements of the system have to achieve one desired global
behaviour. This particular property of MAS gives rise to an important challenge (the one we
are addressing in this study): the difficulty of visualizing the performance and analysing the
dynamics of multiagent systems on both levels: the micro level (that of the individual agents
each with its own set of local parameters) and the macro level (that of the whole system).

While traditional techniques have relied heavily on using global performance metrics the
system is trying to optimize, such as the social welfare, or other summarizing statistics of the
local performance parameters such as the average number of wins, in visualizing the performance
of multiagent systems, but these techniques can overlook important information pertinent to
the performance on the micro level such as the malfunction of some agent (in its behaviour due
to a disruption in its learning functionality for example). Moreover, experiments have shown
that depending on the global performance alone can not reveal hidden instability [1].

Thus, we define the problem we are tackling in this research as follows:

to find a technique for visualizing the performance of multiagent systems in a way that is
capable of summarizing the global performance of the whole system (on its macro level) by as
few parameters as possible, while being able to remain sensitive to the dynamics of the individual
agents (the micro level).

In our search for a solution, we were inspired by two main subjects: a) dimensionality
reduction which is defined as the process of reducing the number of parameters of a dataset
consisting of a large number of parameters into a dataset with fewer parameters while retaining
as much as possible of the features (i.e. the variation in parameters); and b) organizing agents
in a network and looking at their interaction through the spectacle of social network analysis,
where a number of metrics have been devised to summarize characteristics pertinent to the

10

local centrality of individual nodes as well as the global structure of the network.

We relate the first of these two subjects (the dimensionality reduction) to the first criteria
we are looking for in the visualization technique (that is of being able to summarize the macro
level of the system), and the second subject (social network analysis) to the second criteria
(that is of being able to embed the system performance on the micro level). Also we relate the
second subject to a recent work [1] that suggests the use of graph analysis to study networks
of adaptive agents and, moreover, extends one most-commonly used social network metric (the
node degree centrality) into a new measure (called the C-degree) that accounts for the disparity
in interaction between a node and its neighbours.

We combine these two subjects, namely the dimensionality reduction and the social network
analysis, into one technique, the dimensionality-reduced network metrics, for visualizing the
performance of multiagent systems in a manner that would preserve characteristics of the local
as well as the global level.

To achieve this, we outline two main tasks to be achieved:

Task-1 carry out a comparative study of different combinations of dimensionality reduction
techniques and of social network metrics in order to come up with one combination that would
achieve good visualization results, and,
Task-2 test this dimensionality-reduced network metrics combination on networks of adaptive
agents.

Through the first task, of conducting a comparative study, we aim at finding a combination
that is capable of demonstrating several properties, which we are going to evaluate later in our
second task. These desired properties are addressed in the following research questions.

RQ1. Can this visualization technique differentiate between different macro-level settings of
multiagent systems by being able to distinguish between different learning algorithms applied
to the system?
RQ2. Can this visualization technique capture the performance of nodes (the micro-level) by
being sensitive to disruptions in the learning of agents as well as in the network structure?
RQ3. Can this visualization technique explain the performance of the system, for example by
identifying the type and source of any disruption or malfunctioning in the system?

In this thesis we show how we approach the problem of visualizing multiagent systems (as
defined above), by achieving both tasks (of conducting initial experiments to find a suitable
combination and then by applying this combination on a network of learning agents). We
discuss how the experimental findings succeed at positively answering the first two research
questions, while not being able to provide a clear answer to the last question, hence it remains
as a future work.

The remaining of this thesis in organized as follows. Chapter 2 provides the necessary
background. In it we introduce the multiagent problem formulation, a brief survey of the
most common multiagent learning approaches, as well as existing visualization techniques for
multiagent systems. Chapter 3 describes our methodology we follow for testing our visualization
method by describing the techniques we are employing, namely dimensionality reduction and the
social network measures, the tools we are using, and the experimental settings we are applying.
Chapter 4 demonstrates the results of the various experiments we conducted in attempt to
answer the research questions we posed above, and discusses these results. We conclude in
Chapter 5 by summarizing the work done and suggesting future work.

11

Chapter 2

Background

2.1 Multiagent Problem Formulation

”The goal of multiagent systems’ research is to find methods that allow us to build complex sys-
tems composed of autonomous agents who, while operating on local knowledge and possessing
only limited abilities, are capable of enacting the desired global behaviors” [22].

To provide some intuition about the problem of multiagent learning, consider the game
described by the payoff matrix below.

Left Right
Up 1,0 3,2

Down 2,1 4,0

The row player would get a higher payoff by playing Down whether the column player plays
Left or Right, hence, Down is a strictly dominant strategy. If, however, we assume that this
game is played repeatedly with the row player consistently playing Down. After a while, the
column player will respond by playing Left. By repeatedly playing its dominant strategy, the
row player had caused the column player to adapt.

2.1.1 Preliminary Concepts

Agents are typically modelled as utility maximizers who inhabit some kind of Markov decision
process and whose actions can affect each other’s utilities. A utility function can be defined
as follows given that S is the set of states in the world.

ui : S → ℜ

In a non-deterministic environment the expected utility is computed instead based on the
probability of reaching the next state ś, given state s and action a. This probability is given
by a transition function T(s,a,ś) and the expected utility is computed as follows.

E[ui, s, a] = Σś∈ST (s, a, ś)ui(ś)

A policy (π) is a mapping from states to actions. The agent’s goal thus becomes that of
finding the optimal policy, i.e. the policy that maximizes its expected utility. Optimal policy
can thus be defined as

π∗
i (s) = argmaxa∈AE[ui, s, a]

.

12

The idea that an agent inhabits an environment, takes an action that changes the state of
the environment (the state of the environment can also change due to some external event),
and receives a reward accordingly, is captured by a Marcov decision process (MDP).

Definition 1. (Marcov Decision Process). An MDP consists of an initial state s1 ∈ S (set of
states), a transition function T(s,a,s

′
) and a reward function r: S → ℜ.

2.1.2 Game Theory

Game theory is the branch of Mathematics for analyzing strategic decisions amongst multiple
players, where the actions of one party impact all other parties. Game theory was first in-
troduced in the book ”The Theory of Games and Economic Behavior” by von Neumann and
Morgenstern [23] and gained prominence with the work of John Nash [10].

In this dissertation we consider games in normal form (also known as standard or strategic
form and it is the simplest and most familiar form of games). In the simplest type of these
games where we have two players each of which must take one of two actions and receive a
payoff (here we use the words payoff, utility, and reward interchangeably) based on their joint
actions, the game can be represented as an n-dimensional payoff matrix.

A sample payoff matrix for two players is shown in the the following payoff matrix. Each
player can take one of two actions and receive a payoff accordingly. The first value in any
cell (i, j) is the payoff of the row player (ri), whereas the second value is the payoff of the
column player (cj), when the row player takes action i and the column player takes action j
simultaneously.

c d
a 1,2 4,3
b 3,2 2,4

In normal-form games we always assume that the players play simultaneous actions. Another
assumption is that the players have common knowledge of the utilities that all players can
receive.

When an agent deterministically take a specific action, then it is playing a pure strategy. In
contrast, if the player takes different actions according to a probability distribution σ then it
is playing a mixed strategy.

A game with non-deterministic actions falls under the general class of stochastic games
where the non-deterministic property is captured with probabilistic transitions. In stochastic
games, a game is played in a sequence of stages. In each stage when all agents take actions, the
game moves to a new random state whose distribution depends on the previous state and the
actions taken by the agents. A special case of stochastic games that concern us in this study is
the repeated game which is basically a stochastic game with only one stage game.

Stochastic games share some considerations that need to be specified a priori. For example,
we need to specify whether the agents can observe the stage games, the actions available to
them, and the transition probabilities. The simplest setting is to make the game fully observable.
Another consideration is whether agents know about the other agents, their actions, strategies,
or the rewards they receive after the game has been played. In many models, agents can learn
about other agents’ strategies so that they can devise a best response.

The most important question about games, and the one that flows naturally and receives
most consideration from researchers of the field, is how to reason about such games. While
the problem can be reduced in single-agent settings to that of finding the optimal strategy
(i.e. the strategy that is strictly better than all other possible strategies) which is equivalent
to choosing a utility-maximizing action in multi-agent settings, but in multiagent settings it
is more complex and even not meaningful. This is mainly because of the presence of multiple
agents all of whom are trying to maximize their payoffs, and each of whom interests are equally

13

as important as every one else’s interests. Instead, game theorists have identified a number of
”interesting” solutions concepts, where a solution concept is a subset of outcomes that satisfies
certain conditions of acceptability.

Probably the simplest solution concept is the maximum social welfare which prefers the
strategy profile that maximizes the sum of individual rewards. A more sophisticated solution
concept is the Pareto optimality. While this solution concept does not answer the question of
identifying a single ”best” strategy, but it can identify a strategy that is better than another.
It does so by preferring the strategy that can make some player better off without making any
other player worse off.

Another solution concept is the Nash equilibrium which is considered the most influential
solution concept in game theory. This solution concept identifies the ”most interesting” strategy
profile to be the one in which every agent is playing its best response to every other agent. This
results in the stability of the system, since no agent would want to unilaterally change his
strategy. Moreover, Nash proved that all game matrices have at least one equilibrium strategy,
although this strategy might be mixed (i.e with probability assigned to each action).

According to the type of Nash equilibrium in the payoff matrix, we can subdivide the
normal-form games into three categories [21]: (a) games with one pure equilibrium (one unique
solution), (b) games with one mixed equilibrium and (c) games with two pure equilibria and
one mixed equilibrium. The following three paragraphs present one example of each category.

The Prisoner Dilemma is the most classical example of the normal-form games of type (a).
In this game each player may cooperate (C) of defect (D). The payoff matrix of this game is
given below.

C D
C 3,3 0,5
D 5,0 1,1

The unique solution is (D,D) and it also satisfies the Pareto optimality (since cooperating
is strictly dominated by defecting).

Matching Pennies is an example of category (b) and is represented by the following payoff
matrix:

H T
H 1,-1 -1,1
T -1,1 1,-1

Each player must choose among two actions H (for head) and T (for tail). There is no strategy
in this game that is said to be a best response to a best response, thus it has no pure Nash
equilibrium. Instead, the unique Nash equilibrium of this game is the mixed strategy reached
by having each player plays head and tail with equal probabilities.

The Battle of the Sexes is the third example representing games of category (c) and is a
sample of a coordination game. In this game each player has to choose among two actions F
(for football) ,and I (for Ice-Hockey) and while each of the two players has its own preferences
(the row player prefers F, whereas the column player prefers I), but both players like to be
with the other, i.e. by choosing the same action. The game can be defined by the following
payoff matrix:

I F
I 4,7 0,0
F 3,3 7,4

The pure equilibria is given by the two pairs of (F,F) and (I,I), and the mixed equilibrium

is defined by the strategy (
2

3
,
1

3
) and (

1

3
,
2

3
) for the row player and column player respectively.

14

An example of a game with three actions is the climbing game (as shown in the payoff
matrix below), which is an example of symmetric games, that are games with equal payoff for
both players.

 11 −10 0
−10 7 6
0 0 5


The previously introduced games were originally devised for two players. To study systems

with multiple players, symmetric games with n players and n actions (where n can be any finite
integer) have been suggested. An example of such games is the dispersion game (also called
the anti-coordination game). In this game each player i of the n players selects an action ai
simultaneously from an action set of size n. If all players guess different actions (i.e. a sole
action is picked by each player) then the reward will be maximal; if a player chooses a duplicate
action his reward will be minimal. To represent this game a payoff function is used, since it is
more convenient than a payoff matrix, as follows. First the number of players selecting action
j is defined as

S(j) =
n∑

i=1

id(ai, j)

where

id(i, j) =

{
1 ifi = j
0 Otherwise

The payoff function is defined as

ri =

{
1 ifS(ai) = 1
0 Otherwise

2.1.3 Formal Definitions

In this subsection we introduce the formal definitions of the major concepts in Game Theory
for normal-form games and solution concepts [15].

Definition 2. (Normal-form game) A finite, n-person normal-form game is a tuple (N, A, u),
where:

• N is a finite set of n players, indexed by i;

• A = A1 × × An, where Ai is a finite set of actions available to player i. Each vector
a = (a1,...,an) ∈ A is called an action profile;

• u = (u1,...,un), where ui: A 7→ ℜ is the payoff of player i.

Definition 3. (Stochastic game) A stochastic game can be represented as a tuple: (N, S,
−→
A ,

−→
R , T), where:

• N is a set of agents indexed 1,...,n;

• S is a set of n-agent stage games;

•
−→
A = A1,..., An, where Ai is the set of actions of agent i;

• −→R = R1,..., Rn, with Ri: S × −→A → ℜ is the reward function of agent i for stage game S;

• T: S ×
−→
A →

∏
(S) is a stochastic transition function that represents the probability of

getting into the next stage given the current stage and the actions played in it.

15

Definition 4. (Mixed strategy) Let (N, A, u) be a normal-form game, and let σ be the set of
all probability distributions. Then the set of mixed strategies for player i is Si = σ(Ai).

Definition 5. (Mixed strategy profile) The set of mixed-strategy profiles for n agents is S1× ...
× Sn.

Definition 6. (Maximum social welfare profile) Let the maximum social welfare be maxπω(π) =
maxπΣ

n
i=1R

i(π), the strategy profile π∗ is π∗ = argmaxπω(π)

Definition 7. (Pareto domination) Strategy profile s Pareto-dominates strategy profile ś if for
all i ∈ N, ui(s) ≥ ui(ś), and there exists some j ∈ N, for which uj(s) > uj(ś)

Definition 8. (Pareto optimality) Strategy profile s is Pareto optimal if there does not exist
another strategy profile ś ∈ S that Pareto dominates s.

Definition 9. (Best response) Player i’s best response to the strategy profile s−i is a mixed
strategy s∗i ∈ Si such that ui(s

∗
i , s−i) ≥ ui(si, s−i) for all strategies si ∈ Si.

Definition 10. (Nash equilibrium) A strategy profile s = (s1, ..., sn) is a Nash equilibrium if,
for all agents i, si is a best response to s−i.

2.2 Multiagent Learning Approaches

Algorithms for multiagent learning in repeated games can be classified under broader classes
based on different criteria. One such criteria is whether the technique explicitly considers other
agents’ strategies for its own learning, as in the model-based approaches, or just learns using
the rewards received by the possible actions as in the model-free approaches.

In the following couple subsections we briefly introduce each category.

2.2.1 Model-based approaches

The algorithms which fall under this category aim at learning explicit models of the other
players, assuming that they adhere to a stationary policy so that the player can then play its
best response. Typically, in these algorithms learning occurs in the policy space, hence they
are sometimes also called policy-based algorithms.

While this type of algorithms is rational (guarantees best-response), but it offers no guar-
antee of convergence. This is because it only plays pure policies, and hence cannot converge in
games with non-pure equilibria.

The abstract scheme of model-based algorithms is as follows.

1. Start with some model of the opponent’s strategy.

2. Compute and play the best response.

3. Observe the opponent’s play and update your model of its strategy.

4. Goto step 2.

The most common and earliest instance of this scheme is fictitious play. Assuming that the
opponent is playing a fixed strategy, the agent builds a model of its opponent’s strategy based
on its past experience (i.e. previous plays) and uses this model to choose its best response. The
computed model is simply the probability distribution for the opponent’s expected strategy.
For repeated games, when it is assumed that all players are using fictitious play, it has been
shown that fictitious play converges to Nash for certain types of games (those are games that
are iterated dominance solvable).

16

Extensions to the fictitious play in a reinforcement learning context include the Opponent
Modelling or Joint-Action Learners (JALs). In opponent modelling Q-learning algorithm, the
action selected in the learning step for some state is the action that maximizes Q for that state
multiplied by the estimate the other players will select that joint action based on their previous
plays.

Another well-known algorithm is the gradient ascent [16]. This algorithm deals with the
multiagent problem as an optimization problem that aims at finding the strategy that maximizes
its expected reward, where in the setting of a two-action game, a strategy (i.e. a probability
distribution over the two possible actions) can be represented as a single numerical value.

After each iteration the player will adjust its strategy so as to increase its expected payoff
by moving their strategy in the direction of the current gradient with some small step size η.
The gradient represents the effect of changing the current strategy on the expected payoff. It
is computed by finding the partial derivative of the expected payoff with respect to the current
strategy. The details of these computations are as follows.

Let α ∈ [0, 1] be a strategy that corresponds to the probability of the row player selecting the
first action and 1− α be the probability the row player selecting the second action. Similarly,
let β be a strategy for the column player. Let Vr(α, β) be the expected payoff the row player
will receive. Then,

Vr(α, β) = αβr11 + α(1− β)r12 + (1− α)βr21 + (1− α)(1− β)r22

= uαβ + α(r12 − r22) + β(r21 − r22) + r22

where,

u = r11 − r12 − r21 + r22.

Then, the player can compute partial derivative of its expected payoff with respect to its
strategy as follows.

∂Vr(α, β)

∂α
= βu+ (r12 − r22).

The new strategy will then be,

αk+1 = αk + η
∂Vr(α, β)

∂α
.

In a similar manner the strategy of the column player, β, can be computed.

In the case of an infinitesimal step size, the algorithm is called Infinitesimal Gradient Ascent
(IGA). It has been shown that if both players follow IGA with an appropriately decreasing step
size, then their strategies will converge to a Nash equilibrium or the average payoffs over time
will converge in the limit to the expected payoffs of a Nash equilibrium [16].

2.2.2 Model-free approaches

Another class of techniques that stems mainly from the recent works in AI, mostly under the
general heading of reinforcement learning [17], is the model-free class. In this approach the
agent is not concerned with learning the opponent’s strategy. Instead, it tries to learn overtime
about the returns of its own possible actions. Consequently, it can make a choice about the
action that will maximize its expected utility. This is formally captured by Bellman’s equation:

u(s) = r(s) + γmaxaΣT (s, a, ś)u(ś)

This equation is considered the root from which algorithms that belong to this approach stem.
The most common algorithm in this category is the Q-learning [24] which is defined, in its
simplest form, by

Q(s, a)← (1− γt)Q(s, a) + αt(r(s, a) + γmaxáQ(ś, á))

17

.

To extend the Q-learning algorithm to the multi-agent stochastic game each agent can
assume that the environment is passive by updating the Q values without regard for the other
agent’s strategies. To implement this the Q-values is defined as a function of all the agents’
actions (in the equation of Q above, a is replaced by the vector −→a).

2.2.3 Metrics for Learning Algorithms

The performance of learning algorithms for agents are evaluated in terms of convergence (does it
converge?) and rationality (does it best serve the interest of the agent?). Various metrics have
been suggested as numerical measures to help making quantitative evaluation and comparisons
between algorithms.

While it is possible in single agent settings to measure convergence to the optimal strategy
(along with other metrics related to optimality) [7], in multi-agent settings alternative metrics
are needed due to the difficulties in defining what an optimal solution would be.

Convergence to Nash equilibrium is considered the multi-agent version of convergence to
optimal solution. Other metrics are proposed to evaluate the rationality considered in multi-
agent learning systems such as: reward maximization, number of wins, regret, and incentive
to deviate (to any mixed strategy). Regret is computed by finding the difference between the
reward obtained with the agent’s current strategy and the reward that could have been obtained
under the best pure strategy [3]. Incentive to deviate compares the current stage play to what
would have been the best response action.

2.3 Existing Testing and Visualizing Methodologies

In [20] four methods for visualizing the performance and understanding the learning dynamics
of multiagent learning algorithms have been listed: a) policy trajectory plot, b) directional field
plot, c) percentage-wise convergence table with confidence intervals, and d) cumulative reward
plot.

The first two methods are visual means to plot the policy space. These two methods can
be used to plot games in 2D (Figures 2.1 and 2.3) or 3D (Figure 2.2). However, to better study
the performance in higher dimensional games, the results can be listed in a table that show the
convergence percentage with confidence intervals. The last method (cumulative reward plot) is
used to plot some descriptive statistics such as the cumulative or average reward or the social
welfare (Figure 2.4).

18

Figure 2.1: A sample of a trajectory plot for a Q-learner. Grayscales are used to indicate the
direction of convergence [20].

Figure 2.2: A sample of a simplex plot for the climbing game (with 3× 3 game matrix) [20].

Figure 2.3: A sample of a directional field plot (FALA learning algorithm in the Battle of the
Sexes game) [20].

19

Figure 2.4: A sample of a cumulative reward plot (FALA learning algorithm in the dispersion
game) [20].

20

Chapter 3

Methodology

In this dissertation we propose the use of dimensionality-reduced network metrics as a visualiza-
tion technique for multiagent systems. In the Introduction we outlined two tasks to be achieved
for that purpose. These tasks were: first, to test several combinations of dimensionality reduc-
tion techniques and social network metrics; and, second, to test the resulting combination on
networks of adaptive agents.

In this chapter, we delve into these two tasks by first detailing the proposed techniques,
namely the dimensionality reduction and the social network metrics. We then introduce the
tools we used for applying these techniques and describe the settings we applied prior to con-
ducting the experiments.

3.1 Techniques

In this section we provide details on the two techniques we are proposing for visualizing the
performance of multiagent systems. We introduce dimensionality reduction by first defining it
and then by providing a summary of its main techniques; the techniques we made use of in this
research. We then move to social network metrics.

3.1.1 Dimensionality Reduction Techniques

Dimensionality reduction is the process of reducing the number of features or parameters of
a data set consisting of a large number of interrelated variables, called latent variables, while
retaining as much as possible of the variation. It is a key tool for analysing high-dimensional
data. The number of latent variables is referred to as intrinsic dimensions or simply number
of dimensions. For a random vector y, intrinsic dimension is defined as the minimal number of
parameters needed to describe y [8].

The most common linear dimensionality reduction methods are the Principal Component
Analysis (PCA) and the Multidimensional Scaling (MDS). Non-linear dimensionality reduction
algorithms can be divided into two classes [8]: a) distance-preserving methods, such as Isomap
and Semidefinite Embedding (SDE), and b) topology preserving methods, such as Locally
Linear Embedding (LLE) and Isotop. The remainder of this section summarizes three of these
algorithms (namely PCA, MDS, and Isomap) since they are used in this study.

Principal Component Analysis (PCA)

PCA is one of the oldest, simplest, and most commonly used mathematical techniques for
reducing dimensionality in a large set of observations [14]. PCA works by transforming the

21

original data set into a new set of uncorrelated variables (PCs) which are ordered so that the
first few retain most of the variation in all of the original variables [6].

Given x, a vector of p random variables (latent variables), PCA first looks for a linear
function α1x of the elements of x having maximum variance, where α1 is a vector of p constants
(α11, α12, .., α1p). It then looks for a linear function α2x uncorrelated with α1x having maximum
variance, and so on until p PCs could be found. The complexity is reduced by having the original
variables transformed into p PCs. The linear function αi is the eigenvector of the covariance
matrix corresponding to its ith largest eigenvalue.

Multidimensional Scaling (MDS)

MDS tries to find a set of vectors in p-dimensional space such that Euclidean distances among
them corresponds as closely as possible to some function of the input matrix according to
a criterion called stress [19]. It tries to preserve pairwise distances that are measured along
straight lines.

The algorithm works as follows:

1. Arbitrarily assign points to coordinates in p-dimension space.

2. Compute Euclidean distances in D
′
matrix.

3. Compare D
′
matrix with the input D matrix and evaluate the stress function.

4. Adjust coordinates of each point in the direction that best maximizes stress.

5. Repeat 2-4 until stress wont get any better.

Isomap

Isomap extends MDS by incorporating geodesic distances imposed by weighted graphs [18]. It
tries to preserve pairwise distances that are measured along shortest paths.

The steps taken by the algorithm are:

1. Determine a neighbourhood graph G.

2. Compute shortest paths in the graph for all pairs of data points. Each edge in the graph
is weighted by its Euclidean length.

3. Apply MDS to the resulting shortest path matrix.

3.1.2 Social Network Metrics

Network measures are functions that summarize a graph into numeric values to simplify the
analysis of the network. A key network metric is the centrality of a node which is concerned
with measuring the extent to which a node is ”central” in the network. A node is said to be
more central than others if: it has more ties, it can reach all others more quickly, or it controls
the flow between the others. These three properties form the three measures of node centrality:
degree, closeness, and betweenness [5].

The degree of a node is the number of edges adjacent to that node. If the network is directed,
we can differentiate in-degree (i.e. number of incoming links) and out-degree (i.e. number of
outgoing links). Closeness is the degree an individual node is near all others. It is defined as
the inverse of the sum of the shortest distances to all other nodes from this focal node. For this,
closeness can not be applied if the network has disconnected components. Betweenness is the
extent to which a node lies on the shortest path between each other couple of nodes. Degree is

22

a feature of the local structure of the network, while betweenness and closeness considers the
global structure.

These measures of centrality have been devised originally for binary networks, i.e. networks
where links have no numerical values (a link can either exist or not), however they were gen-
eralized by later works for weighted networks [2, 11, 13]. Degree was extended to weighted
networks by defining it as the sum of weights of the adjacent links (of a focal node) [2]. This is
also called the strength of the node. For computing closeness and betweenness the Dijkstra’s
shortest path was used since it takes into account the cost of the path [4].

To formally describe the different measures, we list the different notations and definitions
as follows.

Given a network N = ⟨V,E⟩, where V is the set of nodes and E is the set of edges, the
degree of a node v ∈ V is k(v) = |E(v)|, where E(v) is the set of edges incident to node v.

The node’s strength is defined as:

si =

N∑
j

wij

, where w is the adjacency matrix with values representing the weights of the links (note that
in binary networks the adjacency matrix values can either be 0 or 1).

In [13] the number of ties, i.e. the degree, is also taken into consideration (besides the
weights of the links) in computing weighted centrality. The relative importance between the
number of links and their weights can be tuned by a variable parameter α. Thus, the weighted
degree combines both the degree and the strength of the node as in the following formula.

Cwα
D = ki × (

si
ki
)α = k

(1−α)
i × sαi

where α is a positive parameter between 0 and 1. When α is 1 the measure’s value equals the
node’s strength, and when it is set to 1 it gives the degree (as in binary networks).

The length of the shortest path, required for computing the closeness and betweenness, is
found in binary networks by finding the minimum number of ties linking two nodes. Formally
it is defined by

l = d(i, j) = min(xih + ...+ xhj)

, where h corresponds to intermediary nodes on the linking path between nodes i and j. Di-
jkstra treated the weights as costs of transmitting [4]. To extend the computation of distance
in weighted networks, the weights are inverted since in social networks the weights are opera-
tionalizations of strength of communications not the cost of them. Thus,

dw(i, j) = min(
1

wih
+ ...+

1

whj
)

.

Closeness and betweenness are formally defined as

CC(i) = [
N∑
j=1

d(i, j)]−1

CB(i) =
gjk(i)

gjk

respectively, where gjk is the number of shortest paths between nodes j and k, and kjk(i) is
the number of paths passing through node i from j to k.

In [13] Dijkstra’s shortest path algorithm is extended to include the number of intermediary

23

nodes. Formally, the length of the shortest path is defined as:

dwα(i, j) = min(
1

(wih)α
+ ...+

1

(whj)α
)

where α is a positive tuning parameter. Thus, closeness and betweenness are redefined in terms
of this parametrized weighted distance function as follows:

Cwα
C (i) = [

N∑
j=1

dwα(i, j)]−1

Cwα
B (i) =

gwα
jk (i)

gwα
jk

.

Another measure, that is of importance to our work, is the continuous degree, of the C-degree
[1]. This measure is formally defined as:

r(v) = 2
(
∑

e∈E(v)

w(e)

s(v)
log2

s(v)

w(e)
)

. If node v is disconnected, then r(v) = 0. This measure uses the entropy of the interaction
probability distribution, or how many bits are required to encode the interaction probability
distribution, to quantify the disparity in the interaction in contrast to the traditional degree
measure that assumes uniform interaction across the node’s neighbors.

3.2 Tools

In order for applying the techniques we are making use of for our visualization method, we
made use of several available tools. The tools we have used are: MATLAB dimensionality
reduction toolbox for applying different dimensionality reduction techniques [9], tnet [12] for
computing the weighted network measures, and NetLogo [25] for building a platform for testing
the proposed visualization technique on networks of adaptive agents.

The following subsections briefly describe each of these tools.

3.2.1 MATLAB Dimensionality Reduction Toolbox: a Tool for Di-
mensionality Reduction

MATLAB is a high-level language and interactive environment for technical computing. Be-
sides the built in tools for numerical, algebraic, and statistical analysis, it also provides many
add-on toolboxes as extensions to solve particular classes of problems in different areas. In this
research, we make use of the Matlab add-on toolbox of dimensionality reduction [9]. At the
time of writing this thesis, this toolbox contained Matlab implementations of 33 techniques of
dimensionality reduction. In addition, it also contains implementations of 6 techniques (as of
the time of writing this thesis) for intrinsic dimensionality estimation. Access to any of the DR
techniques can be done through the same command:

mapped data = compute mapping(data, method, no. of dimensions, parameters).

In this thesis we use Matlab for dimensionality reduction using the following techniques:
PCA, Isomap, and MDS (for MDS we use two implementations MDS-fast, and MDScale which
is a built-in function in Matlab). In addition we use it for any additional computational task
such as importing the data or performing any pre-processing on it. We also use it for coding
and testing the C-degree measure (as defined in [1]).

24

3.2.2 tnet: a Tool for Computing Network Measures on Weighted
Networks

tnet is a package written in R, a free software environment for statistical computing and graph-
ics, for calculating weighted social network measures. The currently implemented network
measures in tnet are centrality measures (degree, closeness, and betweenness), clustering coef-
ficient, and the weighted rich-club effect framework.

In this thesis we use the following weighted measures: degree, betweenness, closeness node
centralities as have been defined in [13] and implemented in tnet [12].

3.2.3 NetLogo: a Tool for Modeling Multiagent Systems

NetLogo is a multiagent programmable modeling environment. It uses a simple multiagent
programming language (the Logo dialect that is extended to support agents) with a visual
interface builder that makes it easy to create complex systems by programming mobile agents
and specifying the parameters of the environment.

In this thesis we use NetLogo for the sake of running different learning algorithms on different
networks of adaptive agents. For this sake, we developed a platform in which agents engage in
playing some game and use their payoffs in learning and choosing their actions overtime.

In this platform, agents are situated in a network, with pre-specified number of nodes and
average node degree, where each node represents an agent. Each tie links two players that (may)
engage in playing the selected game. The network is weighted in a manner similar to weighted
social networks where weights typically represent the amount of communication between the
corresponding nodes. Moreover, the links are directed. Thus, a weight wij of a link that goes
from node i to node j represents the valuation of node i to the communication with node j
(based on the Q value the source node associates with the target node according to the payoff
it receives via playing with it). The output of each run is the edge-list corresponding to the
evolving weighted network.

A snapshot of the platform is illustrated in Figure 3.1.

Figure 3.1: Platform developed with NetLogo for running learning algorithms on adaptive
agents that are organized in a network and engage in repeatedly playing games.

25

3.3 Experimental Settings

In this section we detail the settings of the experiments we need to conduct for the accomplish-
ment of tasks 1 and 2.

For the first task we have to compare different combinations of different dimensionality
reduction techniques and different social network measures. For this, we conduct a couple
of experiments. In the first experiment we test different dimensionality reduction techniques
on a couple of existing datasets each of which correspond to some learning algorithm. The
purpose of the second experiment is to identify the effect of different social network measures
of the visualization of some evolving network. For this we use an existing dataset of a static
network and then apply three different evolution mechanisms. Then we conduct a third set of
experiments to test different values for the α parameter of the social network measures. We use
the experimental findings of the first task to suggest an combination of dimensionality reduction
technique(s) and social network measure(s).

For the second task we have to apply the resulting visualization method (from the first
task) to different adaptive networks with different learning algorithms. For this task we use the
platform as described in the previous section. The output of each run is an edgelist correspond-
ing to a weighted network. We use this edgelist to compute the desired network measure(s)
using tnet, then we fed the computed measures into Matlab to apply the desired dimensionality
reduction technique(s).

It is worth-mentioning that prior to applying dimensionality reduction in MatLab we pre-
process the dataset generated by tnet so that each row corresponds to a single snapshot of
time. Thus, the number of dimensions to be reduced equals the number of computed network
measures multiplied by the number of nodes.

The remainder of this section describes further details of experimental settings.

3.3.1 Settings for Task 1: Testing Different Combinations of Dimen-
sionality Reduction Techniques and Social Network Measures

For accomplishing task 1, we conduct two experiments. In the first experiment we test different
dimensionality reduction techniques on two dataset corresponding to implementations of two
agent learning algorithms. To verify the effect of social network measures, we apply the tests
first directly to the datasets, then to results of computing different social network measures on
these datasets.

In the second experiment we test the effect of using different network measures on capturing
the evolution trend of three versions of a social network, where each version corresponds to a
different evolution mechanism.

The remainder of this subsection details these two experiments.

Experiment 1: Comparing Different Dimensionality Reduction Techniques on Ex-
isting Datasets of Two Learning Algorithms

In the first experiment, we obtained the data from a simple network configuration in which
each node interact with the surrounding neighbours with varying weights in each run. Two
simulations were conducted each with a different learning algorithm used by the agents (nodes)
in the network and the behaviour of the network was recorded in 499 time snapshots for each
simulation. Two datasets (called ”type0” and ”type9”), each in the form of an edgelist, were
fed to the next step of dimensionality reduction.

Dimensionality Reduction of the Edgelist With No Network Measures .

We pre-processed each dataset such that each snapshot represents an instance and each

26

corresponding edge-list, after transposing it into a single vector, represents the number of
original dimensions to be reduced (in this case we had a matrix of size 499 × 1500).

Dimensionality Reduction with Social Network Metrics In the second part, we com-
puted four metrics that are most common in social network analysis, namely, out-degree, in-
degree, betweenness, and closeness. For all of these measures, we used the weighted version of
the measure. We also added one other measure and called it ”self-load” to represent the weight
of the link sent by a node to itself. We then applied some dimensionality reduction techniques
(PCA, Isomap, and MDS) on the matrix preprocessed as in the previous part.

Experiment 2: Comparing Different Evolution Mechanisms on a Static Weighted
Network

In this experiment we deal with a single static weighted network that is available on the Internet,
namely, the Freeman’s EIES network with 48 nodes and 695 directed weighted links. To test
the hypothesis we imposed in this research, it is necessary to have an evolving network. For
this reason we developed three different mechanisms for generating an evolving network from
a stationary one as follows.

Mechanism 1

1. Let network 0 = network original with weights set to 0 (or some small value)

2. Set network current = network 0

3. Let growable edges = all edges in network current (at this point all edges have weights <
their weight in network original)

4. Let e = an edge selected randomly from growable edges

5. If network current.weight(e) ≥ network original.weight(e) then
network current.weight(e) = network original.weight(e)
remove e from growable edges
else
Increase the edge’s weight by some small constant

6. repeat steps 4,5 until no more edges in growable edges

Mechanism 2 is same as mechanism 1 but with step 4 replaced with:
4. Let e = an edge selected from growable edges proportionally to network original.weight(e).

Mechanism 3 is same as mechanism 1 but with step 4 replaced with:
4. Let e = an edge selected from growable edges proportionally to network current.weight(e) - in
network original.weight(e).

3.3.2 Settings for Task 2: Testing the Visualization Techniques on
Networks of Adaptive Agents

In this subsection we describe the settings required for generating edgelists of weighted networks
of adaptive agents using the platform we built using NetLogo for this purpose.

For our platform, the parameters that need to be specified for the network to be created are
the number of nodes (n) and the average node degree (k̄). A random network is created (when
the ”set up” button is pressed) by setting n nodes at random positions, where each node is
randomly assigned one of two types: ”row” (for row player) or ”column” (for column player),
and then link each node to its possible nearest k neighbors based on the its type (a ”row” node
can only link to a ”column” node and vice-versa).

27

Other parameters that need to be specified by the user prior to running the system are:
the value type to be associated with the weights (this can be the value of the iterator, reward,
number of wins, or incentive to deviate), the game to be played (e.g. battle of the sexes), the
learning algorithm (e.g. Q-learning, IGA), and whether the learning parameters are variable or
constant. This last parameter (variable or constant learning parameters) controls the condition
of convergence. In variable learning the parameters of the learning algorithm (exploration
rate in Q-learning, and step size in IGA for example) decrease by a very small amount after
each stage and the system is said to reach convergence when they approach zero. Whereas in
constant learning these parameters never change, i.e. they are fixed, and convergence is tested
by checking the stability of the ’behavior’ rather than the parameters. For example, when the
agents tend to choose the same action repeatedly for some time, or when the average (or total)
payoff is constant over some period of time (say 100 ticks for example) then we can say that
the behavior of the system is stable.

In each iteration each player has to learn two things: what action to play (one action among
all players) and which neighbor(s) to play with. Learning about the action uses the learning
algorithm as set by the user (Q or IGA), whereas learning about the neighbor to play with
always uses Q-learning.

For imposing disruptions either in the learning of k random nodes or by disconnecting k
random links (where k is a positive integer) we devised two buttons ”disrupt a learning” and
”disrupt a link” disrupt a random node’s learning functionality or a random link, respectively.
When the learning functionality of some agent is disrupted, the agent stops learning and it
plays a random action instead and it will not update its learning parameters (Q or IGA policy).
On the other hand, when a link is disrupted it is disconnected, thus, it will not be engaged in
game playing in later stages. Practically, this means that it will receive zero as its payoff in
each later stage.

The final step before running the test experiments is to decide upon the values of the
different parameters. For the setting of platform we use battle of the sexes as the game to be
played. The learning algorithms we test the visualization on are Q-learning and IGA. For fixed
learning parameters in Q-learning we set exploration rate ϵ = 0.05 and learning rate α = 0.1.
The reward discount is set to 0.9. In variable learning exploration rate and learning rates are
initially set to 1, and it decays by percentage of 98% after each iteration, whereas the learning
rate decays by 99%. In fixed learning parameters for IGA, the step size(η) is set to 0.01, whereas
in variable learning it is initially set to 0.5 and then it decays by 99% after each iteration.

28

Chapter 4

Results and Discussion

In this thesis we identified two tasks and for each task we outlined several research questions that
we seek to answer experimentally. The first task was to study comparisons between different
combinations of dimensionality reduction techniques on different combinations of social network
measures. The second task was to test the resulting combination on networks of learning agents.

The questions we seek to answer in the first task are:

1. Which dimensionality reduction technique is good for visualizing evolving networks?

2. Which social network measure (or combination of measures) is good for visualizing evolv-
ing networks?, and what are the suitable parameter settings of these measures?

Whereas the questions we seek to experimentally answer in the second task are:

1. Can the plots of dimensionality reduction on weighted network metrics capture differ-
ences in the dynamics of different learning algorithms, i.e. can we use this technique of
visualization in distinguishing learning algorithms?

2. Can dimensionality-reduced weighted network metrics be used to plot and indicate dis-
ruptions in learning and disruptions in network structure?

3. Can we use weighted network metrics for identifying the disrupted nodes?

To answer these questions we conducted several experiments with settings as explained in
the previous chapter. In this chapter we demonstrate the results of these experiments and
discuss the findings.

4.1 Results of Task 1: Comparative Study on Combina-
tions of Dimensionality Reduction Techniques and So-
cial Network Measures

4.1.1 Question 1: Which dimensionality reduction technique to use?

In experiment 1 we have two datasets of a dynamic network, with each dataset corresponding
to a different learning algorithm applied on the agents in the network. We applied four di-
mensionality reduction techniques, namely PCA, Isomap, MDS-fast, and MDScale, on each of
the two datasets with one target dimension and without using any social network metric yet.
Figure 4.1 illustrates the result.

29

Figure 4.1: Different dimensionality reduction techniques on two datasets (called ”type0” and
”type9”) representing edgelists of two dynamic networks (No network measures are used).

We notice that the resulting figures of all the methods are very similar although the differ-
ences in the computation time are quite noticeable with PCA proved to be the method with
least computational time (1:2:7:75 were the ratios for PCA:Isomap:MDS scale, and MDS fast
respectively). We also make the note that while the two plots that represent the two different
data sets are distinctive, but they are linear with no hidden trends captured.

We then test the different dimensionality reduction techniques with social network measures
(out-degree, in-degree, betweenness, closeness, and self-load). Figures 4.2 - 4.4 show the results.

We observe that, unlike the first part of the experiment where no network measures are
used, at least one plot line deviate from the linear trend as in the result of applying PCA and
MDS on the ”type9” dataset. This strengthens the case of using PCA as well as social network
measures. However, to plot the effect of each network measure we move to experiment 2 as in
the following subsection.

4.1.2 Question 2: Which network measure(s) to use?

Before delving into answering this question, we first verify that using network measures in
visualization is useful. We do so by comparing the results when network measures are not used
with the plots when network measures are used.

As an example we plot the PCA mapping of two lists: one is the edgelist without network
metrics (Figure 4.5) and the other is the list of nodes with computed weighted degree centrality
over time (Figure 4.6). In this run we disrupt 10 links at time 36.

We notice that the visualization without network metrics fails to capture this disruption in
contrast to the case where network metrics were used for the visualization. All the other runs
we test (25 more runs) confirm this same conclusion.

We then proceed to the second experiment (explained in details in 3.3). In this experiment
we applied three different evolving mechanisms on a social network to turn it from a static one
into a dynamic network. We had five runs for each mechanism. We then applied dimensionality

30

Figure 4.2: Comparison between the results of PCA on two datasets corresponding to two
different dynamic networks with network measures applied.

reduction (PCA and MDS with 1 target dimension) on the resulting matrices, as in the previous
experiment, first with no network measurements (Figures 4.7 and 4.8), and then with five
weighted network metrics, namely, out-degree, in-degree, betweenness, closeness, and clustering
coefficient(Figures 4.9 and 4.10).

Two important observations are made. Firstly, dimensionality reduction with network met-
rics could capture the different trends of network evolution as opposed to dimensionality re-
duction of the raw matrix, i.e. with no network metrics, where all the plots were identical and
linear. Secondly, there exists a distance between plots of different mechanisms which implies
that using dimensionality reduction with social network measures for different evolutions of
network metrics can be used to differentiate between the underlying mechanisms and, hence,
can be used in the classification of networks based on their underlying evolution dynamics.

After confirming the usefulness of a combination of social network measures in visualization,
we need to test the effect of each measure individually in order to pinpoint the most effective
network metric. For this, we examined the effect of eliminating each of the five network measures
we employed on the result of dimensionality reduction. Figures 4.11 - 4.15 illustrate the results.

We observe that the weighted betweenness, followed by the out-degree, have the greatest
effect on maximizing the distance, i.e. difference, between the different mechanisms in this case.

However, after conducting several experiments on adaptive networks we favour weighted
degree centrality over betweenness.

4.1.3 Question 3: What values for setting the parameters of network
metrics?

Before testing different values for degree centrality, we compare it with the C-degree measure.
In the following experiment we compare degree centrality with both α = 0.5 and α = 1 (which
represents strength) and c-degree (Figures 4.16 and 4.17). We found that degree centrality was

31

Figure 4.3: comparison between the results of Isomap on two datasets corresponding to two
different dynamic networks with network measures applied.

more effective in capturing disruptions in some cases (see the last experiment in Figure 4.17).
Also we found that node strength did not offer extra information over weighted degree with
α = 0.5. Thus, we choose to use degree centrality with α = 0.5 in following experimentations.

4.2 Results of Task 2: Testing Dimensionality-Reduced
Network Metrics on Networks of Adaptive Agents

Task 2 involves conducting experiments on different networks of adaptive agents. For this we
built a platform (as described in Section 3.3) from which we generate edgelists of weighted
networks where adaptive agents engage in playing some game (battle of the sexes in this case)
using different learning algorithms (Q-learning or IGA in our case). The resulting edgelist is
used to compute the desired network metrics to which we apply dimensionality reduction. This
section shows the results of these experiments.

4.2.1 Question 1: Can it distinguish different learning algorithms?

We conducted different runs using both learning algorithm (Q-learning and IGA) and then we
tried to use the dimensionality-reduced network metric technique of visualization on these runs
as in Figure 4.18.

We can clearly observe the distinction made by this visualization technique on the two
learning algorithms.

4.2.2 Question 2: Can it capture disruptions in learning?

32

Figure 4.4: comparison between the results of MDS on datasets corresponding to two different
dynamic networks with network measures applied.

0 10 20 30 40 50 60
−300

−200

−100

0

100

200

300

Figure 4.5: Results of PCA on a weighted network (size 100× 3) in which 10 random links are
disrupted at time 36 as depicted by the red circle. No network metrics are used.

33

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4.6: Results of PCA on a weighted degree centrality of nodes corresponding to a weighted
network of 100 nodes and average node degree of 3 in which 10 random links were disrupted at
time 36 as depicted by the red circle.

0 5 10 15 20 25
−300

−200

−100

0

100

200

300

400
PCA

mechanism 1−a
mechanism 1−b
mechanism 1−c
mechanism 1−d
mechanism 1−e
mechanism 4−a
mechanism 4−b
mechanism 4−c
mechanism 4−d
mechanism 4−e
mechanism 2−a
mechanism 2−b
mechanism 2−c
mechanism 2−d
mechanism 2−e

Figure 4.7: Comparison between results of PCA on different evolving networks generated by
different mechanisms (5 runs for each mechanism with no network metrics applied).

34

0 5 10 15 20 25
−300

−200

−100

0

100

200

300

400
MDScale

mechanism 1−a
mechanism 1−b
mechanism 1−c
mechanism 1−d
mechanism 1−e
mechanism 4−a
mechanism 4−b
mechanism 4−c
mechanism 4−d
mechanism 4−e
mechanism 2−a
mechanism 2−b
mechanism 2−c
mechanism 2−d
mechanism 2−e

Figure 4.8: Comparison between results of MDS on different evolving networks generated by
different mechanisms (5 runs for each mechanism with no network metrics applied).

Figure 4.9: Comparison between results of PCA on different evolving networks generated by
different mechanisms (5 runs for each mechanism with network metrics).

35

Figure 4.10: Comparison between results of MDS on evolving network generated by different
mechanisms (5 runs for each mechanism with network metrics).

0 5 10 15 20 25
−400

−300

−200

−100

0

100

200
PCA

mechanism 1−a
mechanism 1−b
mechanism 1−c
mechanism 1−d
mechanism 1−e
mechanism 4−a
mechanism 4−b
mechanism 4−c
mechanism 4−d
mechanism 4−e
mechanism 2−a
mechanism 2−b
mechanism 2−c
mechanism 2−d
mechanism 2−e

Figure 4.11: Result of PCA on different evolving networks generated by different mechanisms
(5 runs for each mechanism with 5 network metrics) with weighted in-degree eliminated.

36

0 5 10 15 20 25
−150

−100

−50

0

50

100

150
PCA

mechanism 1−a
mechanism 1−b
mechanism 1−c
mechanism 1−d
mechanism 1−e
mechanism 4−a
mechanism 4−b
mechanism 4−c
mechanism 4−d
mechanism 4−e
mechanism 2−a
mechanism 2−b
mechanism 2−c
mechanism 2−d
mechanism 2−e

Figure 4.12: Result of PCA on different evolving networks generated by different mechanisms
(5 runs for each mechanism with 5 network metrics) with weighted out-degree eliminated

0 5 10 15 20 25
−200

−150

−100

−50

0

50

100

150

200
PCA

mechanism 1−a
mechanism 1−b
mechanism 1−c
mechanism 1−d
mechanism 1−e
mechanism 4−a
mechanism 4−b
mechanism 4−c
mechanism 4−d
mechanism 4−e
mechanism 2−a
mechanism 2−b
mechanism 2−c
mechanism 2−d
mechanism 2−e

Figure 4.13: Result of PCA on different evolving networks generated by different mechanisms
(5 runs for each mechanism with 5 network metrics) with weighted betweenness eliminated

37

0 5 10 15 20 25
−400

−300

−200

−100

0

100

200
PCA

mechanism 1−a
mechanism 1−b
mechanism 1−c
mechanism 1−d
mechanism 1−e
mechanism 4−a
mechanism 4−b
mechanism 4−c
mechanism 4−d
mechanism 4−e
mechanism 2−a
mechanism 2−b
mechanism 2−c
mechanism 2−d
mechanism 2−e

Figure 4.14: Result of PCA on different evolving networks generated by different mechanisms
(5 runs for each mechanism with 5 network metrics) with weighted closeness eliminated

0 5 10 15 20 25
−400

−300

−200

−100

0

100

200
PCA

mechanism 1−a
mechanism 1−b
mechanism 1−c
mechanism 1−d
mechanism 1−e
mechanism 4−a
mechanism 4−b
mechanism 4−c
mechanism 4−d
mechanism 4−e
mechanism 2−a
mechanism 2−b
mechanism 2−c
mechanism 2−d
mechanism 2−e

Figure 4.15: Result of PCA on different evolving networks generated by different mechanisms
(5 runs for each mechanism with 5 network metrics) with weighted clustering eliminated

38

Figure 4.16: Results of PCA (2 dimensions) on a weighted network of adaptive agents. The
first column shows the results of weighted degree(in and out with α = 0.5), the second column
shows the results of node strength (weighted degree with α = 1), and the third column is for the
c-degree. Each row corresponds to a different experiment with all experiments performed with
variable learning parameters as follows: 1: Q-learning, learning disruption, 2: IGA: learning
disruption, 3: Q, link disruption, 4: IGA, link disruption.

Figure 4.17: Results of PCA (2 dimensions) on a weighted network of adaptive agents. The
first column shows the results of weighted degree(in and out with α = 0.5), the second column
shows the results of node strength (weighted degree with α = 1), and the third column is for the
c-degree. Each row corresponds to a different experiment with all experiments performed with
variable learning parameters as follows: 1: Q, learning disruption, 2: IGA: learning disruption,
3: Q, link disruption, 4: IGA, link disruption.

39

Figure 4.18: Result of PCA (with target dimensions is 1) on weighted closeness for weights
corresponding to values of the iterator (Q vector in Q-learning and policy in IGA) in 10 different
runs on a network of 5 nodes and average node degree of 2. The game played is Battle of the
Sexes.Parameters for the learning algorithms are as follows: Q (ε initially is 1 and iteratively
decays in multiples of 0.98, α = 0.1, γ = 0.9). IGA (η initially is 0.03 and then iteratively
decays in multiples of 0.99).

40

When learning is disrupted at some stage for some agent, it will simply stop learning. This
is simulated by having it playing a random action in each forthcoming stage. Thus, it will stop
maintaining the values of the learning parameters.

We examined different runs for adaptive agents situated in random networks of different sizes
(number of nodes × average node degree),ranging from 5× 3 to 100× 4, where the learning of
random node(s) is disrupted at different times after convergence. We then computed the degree
centrality for the resulting edgelist on which we used PCA to reduce the dimensionality. We
plot the results of dimensionality reduction in 2D and mark the point of disruption in each run
as shown in Figures 4.19 (with Q-learning) and 4.20 (with IGA) .

−20 −15 −10 −5 0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Q−Learning with disruptions in learning

Figure 4.19: Results of PCA (2 dimensions) on weighted degree (in-degree and out-degree
with α = 0.5 corresponding to weighted networks of different node and average link degrees.
The learning of 20% random nodes is disrupted at different times after convergence. Learning
algorithm is Q-learning.

4.2.3 Question 3: Can it capture disruptions in network structure?

When a link is disrupted, i.e. disconnected, at some stage it will not take part in playing
games with neighbors and, hence, will receive a zero payoff. As in the previous section, we plot
the results of the weighted degree centrality of different runs where in each run one or more
random links are disconnected after convergence. Figures 4.21 and 4.22 illustrate these plots in
2D where each plot correspond to a different run and the point of disruption is circled in red.

4.2.4 Question 4: Can it be used to identify the type and source of
disruption?

If we can distinguish between different types of disruptions and identify the source of this dis-
ruption, then we can say that our visualization technique can be used as a means of explanatory
data analysis for multiagent systems.

41

−30 −25 −20 −15 −10 −5 0 5 10
−2

−1

0

1

2

3

4
IGA with disruptions in learning

Figure 4.20: Results of PCA (2 dimensions) on weighted degree (in-degree and out-degree
with α = 0.5 corresponding to weighted networks of different node and average link degrees.
The learning of 20% random nodes is disrupted at different times after convergence. Learning
algorithm is IGA.

As an experiment we plotted different lists of weighted node degree centrality metric that
we computed for previous runs over time and we could observe that these network metrics of
disrupted nodes show different trends than those of undisrupted nodes (see for example Figure
4.23 below).

However, in the experiments we conducted it was not clear how to distinguish between
different types of disruption.

4.3 Discussion

In this section we summarize the findings we reached at for tasks 1 and 2 by presenting the
answers provided by the experiments we conducted to the questions we posed earlier.

The questions we aimed at answering in the first task pertain to finding a combination of a
dimensionality reduction technique and social network measures. From experiment 1 we could
conclude that using PCA as a dimensionality reduction technique is good for our visualization
purposes. It shows same patterns illustrated by other techniques (Isomap and MDS) while
outperforming theses methods in its computational time (it required much more less time
for pruducing the outputs). Moreover, we found that setting the target number of intrinsic
dimensions to 1 or 2 is sufficient for our visualization purposes. Thus, we succeeded at reducing
the large number of parameters to only one or tow parameters.

In the second experiment we aimed at testing different social network measures. We could
observe that using a combination of these measures is informative. This was verified when
comparing plots of dimensionality reductions in edgelists (with no network measures computed),
to lists of network measures computed. We observe that the plots of network measures could
capture hidden patters that could not be captured using the edgelists alone.

42

−15 −10 −5 0 5 10 15
−4

−3

−2

−1

0

1

2

3
Q with disruptions in links

Figure 4.21: Results of PCA (2 dimensions) on weighted degree (in-degree and out-degree with
α = 0.5) corresponding to different weighted networks. Random links are disrupted at different
times after convergence. Learning algorithm is Q-learning.

Moreover, when used individually these measures also succeed at plotting the underlying
trends. This experiment evaluated the use of betweenness, centrality degree, closeness, clus-
tering coefficient, and c-degree and found that the use of weighted centrality degree suffices to
our visualization purpose. Finally, we conducted some experiments to find a suitable value for
the α parameter used in computing the weighted degree centrality. We found that setting this
parameter to the value of 0.5 (which places equal importance on the number of ties and the
weights of these ties) generates better results. We summarize these findings of the first task in
the following central claim.

Claim 1: using dimensionality reduction with social network measures in visual-
izing the performance of networks of adaptive agents can capture the performance
of the system using few parameters (1 or 2) while being able to capture hidden
patterns (that could not be captured using weights alone without computing the
network measures).

In the second task, we applied this technique of dimensionality-reduced network measures
on networks of adaptive agents. We succeeded at answering the research questions pertinent to
task 2 as stated in the following claims which collectively prove the capability of the proposed
technique in capturing the performance of multiagent systems at the macro level (claim 2) as
well as at the micro level (claims 3,4, and 5).

Claim 2: using network metrics in visualizing the performance of adaptive net-
works under different learning algorithms can produce distinctive plots for each
learning mechanism.

We experimentally tested this claim as summarized in Section 4.2.1 and showed that the
resulting plots of weighted network metrics corresponding to two different learning algorithms,
namely Q-learning and IGA (where the weights represent the values of Qa and max(α, α − 1)
respectively), are distinguishable.

43

−30 −20 −10 0 10 20
−10

−8

−6

−4

−2

0

2

4

6

8
IGA with disruptions in links

Figure 4.22: Results of PCA (2 dimensions) on weighted degree (in-degree and out-degree with
α = 0.5) corresponding to different weighted networks. Random links are disrupted at different
times after convergence. Learning algorithm is IGA.

Claim 3: using network metrics in visualizing the performance of adaptive net-
works can be informative in capturing disruptions in the agent learning process

As shown in Section 4.2.2, when reducing the dimensionality (to two dimensions in this
case) of a list of node degree centrality of some dynamic network in which we incur learning
disruptions in a number of random nodes, the resulting plots significantly show the point of
disruption. Moreover when plotting the result of PCA mapping in one dimension, where the
other dimension is the time, we can identify the unique point of time at which the disruption
occurred as shown in Figure 4.24 below.

Claim 4: using network metrics in visualizing the performance of adaptive net-
works can be informative in capturing disruptions in the network structure.

Similar to the previous claim, we conducted several runs of different adaptive networks in
which we disconnected random links after convergence and used the visualization technique we
are proposing to test whether it can capture the incurred disruptions. Results of these runs are
shown in Section 4.2.3. This confirms our claim.

Claim 5: using network metrics in visualizing the performance of adaptive net-
works can be informative in identifying the type and source of disruption.

While in this research, we could not prove the first part of this claim (that we can use this
visualization technique in identifying the type of disruption, whether it is in learning or network
structure), but experimental results suggested that we can use it in identifying the source of
disruptions (i.e. which nodes are disrupted). This was shown in Section 4.2.4 .

44

Figure 4.23: Plotting weighted degree centrality of six nodes, three of which have their learning
disrupted (the ones in red) at time 20.

Figure 4.24: Results of PCA on different weighted degree centrality of nodes corresponding to
different weighted networks. Different disruptions occurred at different times and the point of
disruption is marked by a red circle. The first row corresponds to runs that used Q-learning
and the second row corresponds to runs that used IGA.

45

Chapter 5

Conclusion and Future Work

In this dissertation we aimed at finding a technique for visualizing the performance of multiagent
systems in a way that is capable of summarizing the global performance of the whole system
(on its macro level) by as few parameters as possible, while being able to remain sensitive
to the dynamics of the individual agents (the micro level). For this we proposed the use of a
combination of dimensionality reduction and weighted network metrics as a means of visualizing
the performance in networks of adaptive agents. We suggested this technique as one possible
solution to satisfy all the conditions of (still not fully realized in other existing MAS visualization
techniques): a) summarizing the many parameters in one or two parameters, b) summarizing
the performance of the system on its macro level (i.e. the global performance of the whole
system) , and c) capturing the performance on the micro level (i.e. being sensitive to the
dynamics of individual nodes).

To verify our proposed method in terms of these requirements, we specified two tasks: firstly,
we were required to perform a comparative study of different combinations of dimensionality
reduction techniques and social network measures, and secondly had to test this technique,
based on the findings from the first task, on networks of adaptive agents.

For the first task we conducted a couple of initial experiments with the purposes of testing
different dimensionality techniques with as few target parameters as possible (1 or 2 intrinsic
parameters), testing the effectiveness of a combination of social network metrics (as opposed to
cases where no network measures are used), and to identify the most effective network measures
for our purpose of visualization.

The experimental tests we conducted for the first task could verify the following claim.

Claim 1: Using dimensionality reduction with social network measures in visualizing the
performance of networks of adaptive agents can capture the performance of the system using
few parameters (1 or 2) while being able to capture hidden patterns (that could not be captured
using weights alone without computing the network measures).

Moreover, the findings suggested that the use of PCA as a dimensionality reduction tech-
nique with weighted degree centrality (with α = 0.5) and/or weighted closeness with (with
α = 0.5) gives good visualization results.

Then we proceeded into testing dimensionality-reduced weighted network metrics on net-
works of adaptive agents who engage in playing games with each other, as required in the second
task. For this we developed a testing platform using NetLogo [25], the multiagent programmable
modelling environment. We conducted our runs on ”the battle of the sexes” game using two
learning algorithms: the Q-learning and the IGA. The output of this developed system is a
weighted edgelist that we fed into t-net [12], a software for analysing weighted networks, to
produce the corresponding list of the desired weighted network metrics for the nodes over time.
We then applied PCA, a dimensionality reduction technique that is part of the dimensionality
reduction toolbox in Matlab, on the lists of computed network metrics to generate the desired

46

visualization.

The results of the experiments have confirmed several claims we made in this study as in the
following list. These claims collectively satisfy both requirements of the desireed visualization
technique, that is of being able to capture the performance of the multiagent systems at the
macro level (claim 2), as well as at the micro level (claims 3-5).

Claim 2: Using network metrics in visualizing the performance of adaptive networks under
different learning algorithms can produce distinctive plots for each learning mechanism.

Claim 3: Using network metrics in visualizing the performance of adaptive networks can be
informative in capturing disruptions in the the multiagent learning algorithm.

Claim 4: Using network metrics in visualizing the performance of adaptive networks can be
informative in capturing disruptions in the network structure.

Claim 5: Using network metrics in visualizing the performance of adaptive networks can be
informative in identifying the type and source of disruption.

Many things can be done, as a future work, to consolidate our findings and build on top
of it. For example, we can extend the testing to other games (such as the Prisoner’s Dilemma
and Matching Pennies) and other learning algorithms. We can also increase the degree of
freedom pertinent to the dynamics of the network by letting the agents create new links and
collapse existing ones. We can also investigate other metrics for weighted networks. Different
dimensionality reduction techniques can also be tested.

Aside from trying different tunings and parameters, one important extension to this work
is by testing whether this technique can be used for explaining the performance of the system,
for example by unambiguously identifying the type of the disruption in case it occurred in the
system.

47

Bibliography

[1] S. Abdallah. Using graph analysis to study networks of adaptive agent. In Proceedings of
the 9th International Conference on Autonomous Agents and Multiagent Systems: volume
1 - Volume 1, AAMAS ’10, pages 517–524, Richland, SC, 2010. International Foundation
for Autonomous Agents and Multiagent Systems.

[2] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. The architecture of
complex weighted networks. Proceedings of the National Academy of Sciences of the United
States of America, 101(11):3747–3752, March 2004.

[3] M. Bowling. Convergence and no-regret in multiagent learning. In Lawrence K. Saul, Yair
Weiss, and Léon Bottou, editors, Advances in Neural Information Processing Systems 17,
pages 209–216. MIT Press, Cambridge, MA, 2005.

[4] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271, December 1959.

[5] L. C. Freeman. Centrality in social networks conceptual clarification. Social Networks,
1(3):215 – 239, 1978-1979.

[6] I. T. Jolliffe. Principal Component Analysis. Springer, second edition, October 2002.

[7] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence, 4(1):237–285, 1996.

[8] J. A. Lee and M. Verleysen. Nonlinear Dimensionality Reduction. Springer Publishing
Company, Incorporated, 1st edition, 2007.

[9] MathWorks. Matlab toolbox for dimensionality reduction. http://homepage.tudelft.

nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html, November 2010.

[10] J.F. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences of the United States of America, 36:48–49, 1950.

[11] M. E. J. Newman. Analysis of weighted networks. PHYS.REV.E, 70:056131, 2004.

[12] T. Opsahl. Structure and Evolution of Weighted Networks. PhD thesis, University of
London, London, UK, 2009. pp. 104-122.

[13] T. Opsahl, F. Agneessens, and J. Skvoretz. Node centrality in weighted networks: Gener-
alizing degree and shortest paths. Social Networks, 32(3):245–251, July 2010.

[14] K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine, 2(6):559–572, 1901.

[15] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press, Cambridge, UK, 2009.

[16] S. P. Singh, M. J. Kearns, and Y. Mansour. Nash convergence of gradient dynamics in
general-sum games. In Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence, UAI ’00, pages 541–548, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

48

[17] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction (Adaptive Com-
putation and Machine Learning). The MIT Press, March 1998.

[18] J. B. Tenenbaum, V. Silva, and J. C. Langford. A Global Geometric Framework for
Nonlinear Dimensionality Reduction. Science, 290(5500):2319–2323, 2000.

[19] W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika, 17:401–
419, 1952.

[20] H. van den Herik, D. Hennes, M. Kaisers, K. Tuyls, and K. Verbeeck. Multi-agent Learning
Dynamics: A Survey. In Cooperative Information Agents XI, Lecture Notes in Computer
Science, pages 36–56. Springer Berlin / Heidelberg, September 2007.

[21] F. Vega-Redondo. Game Theory and Economics. Cambridge University Press, Cambridge,
MA, 2001.

[22] J. M. Vidal. Fundamentals of Multiagent Systems: Using NetLogo Models. Unpublished,
2006.

[23] J. von Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton
University Press, 1947.

[24] C. Watkins. Learning from Delayed Rewards. PhD thesis, University of Cam-
bridge,England, 1989.

[25] U. Wilensky. Netlogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learn-
ing and Computer-Based Modeling, Northwestern University, Evanston, IL., 1999.

49

