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Abstract

Cooperation is one key aspect of human social behavior. Principally, punishment drives the
evolution of cooperation in societies. The issue of how to promote and maintain cooperation
is one of the main topics of the game theory. Punishment is an effective and successful
mechanism in promoting the cooperation in public good interactions. Although peer
punishment is a key mechanism for sanctioning free-riders to promote cooperation, it is
unstable because of the second-order free-riders, such as cooperators who refuse to punish
defectors. Centralized sanctioning institutions punish defectors and eliminate second-order
free-rides by sanctioning cooperators. Centralized institutions have complete dominance over
the population including peer punishment, which results into a stable regime. However, this
behavior raises some questions; is this centralized institution really stable? If so, then why
does strong centralized punishment sometimes fail to maintain cooperation? Does
cooperation in societies require decentralized enforcement in addition to the centralized
authority? Why some countries tolerate a form of peer punishment as legitimate? This thesis
introduces corruption in the model to study the stability of the strong centralized institutions
and the evolving of peer punishment together with the centralized authority. This thesis PGG
(Public Good Game) model shows that the effectiveness of this strong centralized authority is
compromised when corruptors bribe pool-punishers. With strong centralized institution
sanctioning, this institution is considered as a single point of failure and is susceptible to
corruption, which prevents peer punishment from maintaining cooperation while the social
welfare is worsened. On the contrary, with weaker centralized institution sanctioning, the
peer punishment is given a room to restore the cooperation and relatively the social welfare.
This thesis results prove that in the presence of corruption, the stability of strong centralized
authority collapses and social welfare deteriorates. This strong centralized institution can
promote cooperation and restore social welfare, if and only if, it allows a legitimate form of
citizen-driven peer punishment form.



dadAl)
4aS e | Claainall (& oy slaill ) shai lial) aday (b1 g il celaia¥) & slull (e i) Guila sl
Ostaill 3y 8 Aaalig Allad A1 o il Auall) Ay il A 1) sl gl (g B2l 5 o8y gladll Aliaal gy
e AN Gyl e il sie Gaal dnalad A1 g8 Gl B Glie o e ae ) e Ll il cdlels b
Oad oy Ol glatiall Jie Al Aaal) a S1oAY) Gl Al s 3 e e A1 Ledl W) e slail) 3 dad S
IR (e A Aa g 1A ool e a5 el et 4 38 el liall e, (piiiall 48las
Laa ¢Ol_AY) ling o (e A Lay Sl e ALalS Qg Leaal 4338 el ilisns gall | (i laiall e il sie (a8
e S 1) Slan B e 43S pall A sall 028 o ALY Gany L) 138 i celld pay i plai ) (505
M) Claainall o sbedl) allaty Ja S sbadl) o Lliall 3 Ulal g sl (538 5all Cliall Jidy 13lald (Sl
S b ol Ol AY) Glie JISET (e JS& (8 Jsall (amy el 130a) 4, 5 jall Adalual) ) A8Lal g 38 53U
Aaludl ae Lee o)) EY) (lie 5y shat g 3 8l Ay 3 el s sl l jiaal dusl jal 23 gaill ) dliadll s g 1Y) 028 a0
oot Lovie [ oaxii 4y il 4538 pall Aaludl oda Alad o Canall 13g) alall elliall daad 4y pkai 3 5a3 (s Ay 3S Al
Ll L sall 028 il Ay S pall dusssall Ga Ay Cligie (b ae Ao senall Qling a6l (50 59 0 () sudall
e aia Yl ol )l ¢ s Laiy o slaill e Llaadl (e o)) 81 lie aiay o) 51 caludll A je 5 Juill Alaine ddais
Lt 5 (sl BalaiasY Aalise ol 8V lie glac) Aty a4y 3S pall G 3all (o Chmiial lie ae clld (o uSall e
ol 1 gty g Ay gall 4y 3 pall Adalud) ) il ety coluadll dgn s 8 il da g HlaY) oda il i e laiaY) oli
Cinans o)) Jadh g 1) ¢ elaia¥l old )l it G 5 oglatll a3 G A sl S el dsns3all 03g) (S o Lain Y]

ob) sall LS ay ) ol 81 i JISET e g 5 e S



Acknowledgements

| would like to express my thanks to all whom supported me in this thesis. First and foremost,
| dedicate special thanks to my mentor and supervisor, Professor Doctor Sherief Abdalla. Had
it not been for his guidance, advices, and consistent support, 1 would not have been here
discussing my thesis nor its results that are currently under review by the Journal of the Royal
Society Interface as part of the research paper titled “Corruption Drives the Emergence of
Civil Society.”

| would also like to thank my family; my husband, my mother and my children for their
relentless support, patience, and understanding.



Declaration

| declare that this thesis was composed by myself, that the work contained herein is my own
except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except as specified.

(Rasha Sayed Abdelhamid Ibrahim)



Contents

LEST OF FIQUIES. ..ottt b bbbt n e viii
LIST OF TADIES ... ettt nre e X
R O 1Y T oV 1= TSROSO PP TRPRPRI 1
I R 11 oo [3Tox 1 o] RSOOSR 1
1.2 ProbIem SAteMENT .........ooiiiiiiice s 1
1.3 Questions the RESEArCh AUAIESSES ........civiiiriiiiecciee ettt re e 3
I S O 1 o111 o] RSSO PRPR 3
O o0 o[RS PPN 4
1.6 THESIS OULHNES ...ttt ettt sttt bbb neenes 5
2 LITEIrAtUIE SUINVEY ...ooiiiieiie ettt ettt e et e s te e te et e e be e beentenreesreenee e 6
3 The PGG Model With PUNISNMENT ........coiiiiiiiiiiieee s 9
3.1 PGG MOdel DEfINITION ....cveieiiiiiiiicieeee et 9
3.2 PGG POPUIALION. ...ttt bbbt 10
3.3 SOCIAL LEAIMING ...ttt bbbttt bbbt ene s 11
3.4 NO PUNISNMENT STrALEOIES .....cvvevieieiiee e 11
3.5 P00l PUNISNMENT STrAtEQY ....eeveeuieieiiiieiiesii sttt 13
3.6 Peer PUNISNMENT STrAtEQY ......cviiiiiiiiiecierie e 14
3.7 Pool-Punishers and Peer-Punishers COMPEtItioN.............ccocoriririniniienenie e 15
3.8 PGG MOUEI RESUILS. ... .ottt eneenns 15
4 Replicating Previous PGG Model ReSUILS.............ccoiiiiiiiiiiiceeee s 17
4.1 SIMUIAtION MOEL ..o e 17
4.2 Simulation IMpIemeNtation ... s 17
4.3 Simulation without Second-order PUNiShMENt...........cccooveiiiieiiierece e 25
4.4  Simulation with Second-order PUNISHMENt...........cooiiiiiiiii e 26
4.5 RESUILS QN0 DISCUSSION......eiiiiiiiitieiieiie ettt sttt ettt ettt sbe e be et esreeneeenee e 27
5 The Study of the Centralized Institutions Stability............ccccoccviiiiiiiiii 30
5.1  The Effect of Centralized Punishment Severity on the PGG Model..............cccovvene.n. 30
5.2 COITUPLION SEFALEOY .. veeivieeiiei it e sttt ettt s e et e s et e s e e be e s seeeteeenee e 36
5.3  Applying Corruption Strategy to the PGG Model ............ccooveiieiiiiiiiiie e, 38
5.4 RESUILS AN DISCUSSION ... .couiiiiiitieiiiiesiee ittt sttt ettt esbeeneesneenes 44
6 Hybrid-punishers as Legitimate Form of Peer-Punishers..........c.ccccccooveviiiiiiiiciie e, 46
6.1  Hybrid-punishers Strategy.........cocoiiiiiiiiie e s 46

Vi



6.2  Applying both Corruptors and Hybrid-punishers Strategies to the PGG Model ........... 48

6.3 RESUILS AN DISCUSSION.....ccuiiiiiitieieeiieitie it et siee ettt e sbe et sneeste e e s e sbeeneesneenes 52
T SOCIAI WEITAIE ... ettt ettt nreennas 54
7.1 Case OF the PGG MOUEN .......ocooiiiiieiie e 54
7.2 Applying Corruption Strategy to the PGG Model .............cooviiiiiiiicis 56
7.3 Applying both Corruptors and Hybrid-punishers Strategies the PGG Model ............... 57
7.4 ReSUILS aNd DISCUSSION.......ccieiiiiiiieitesiesie sttt sttt bbb e eneas 59
ST O] o Tod 11 ] o] o RSOOSR PSRRI 61
T R YU {1 11 -1V PRSP PPR 61
8.2 DiscusSion and FULUIE WOTK ..........cciiiiiiiiiiisieie e e 62
] (=] £ 1= OSSPSR 64
A o] 0 1=T o [ Tor L OSSPSR 67
A Collected Data from Studying the Effect of Centralized Punishment Severity............. 67
A.1 Collected Data from Applying the PGG Model ..........ccccoveiviiiiiiiiiecc e 67
A.2 Collected Data from Applying Corruption Strategy to the PGG Model ....................... 69
B Collected Data from Applying both Corruptors and Hybrid-punishers Strategies to
TNE PGG IMOUEL ...ttt bbb e b neenes 72
C Collected Data from Studying the Social Welfare.............ccccccovveviiieiicce e 75
C.1  Collected Data from Applying the PGG Model ............ccooeiiiiiiiiiiccece e, 75
C.2  Collected Data from Applying Corruption to the PGG Model ...........cccoeeveiiieiinenen, 75

C.3 Collected Data from Appling Corruptors and Hybrid-punishers to the PGG Model.... 76

D The Competition between Pool-punishers and Hybrid-punishers along Time

Evolution in the Absence of COrrUPLION ........cocviiiiiiie e 77
D.1  Applying Hybrid-punishers to the PGG Model ..o 77
D.2  RESUILS @Nd DISCUSSION ...eeivveiieiiesiieiesiesiee e eseesieesie e saeesae e sseesesseessaesesneessaeneesneenees 82

vii



List of Figures

Figure 3.1: Pool-punishment and peer-punishment time evolution competition, (a) without

second-order punishment, (b) with (Sigmund et al. 2010) ........cccooveiirieiieiiee e, 16
Figure 4.1: PGG Simulator USEr INTErTaCe. ........cccveviiiieiieiecie e 18
FIQUre 4.2: SUMMATY FEPON ....c.uveiteiieitieiteeieeeeste e et e e te e s e e steasaesraesteeseesseesreeneesneesraenseanes 20
Figure 4.3: StatiStICS FEPOM ... ...veiieeie e ettt e st e e e sneesreenreanes 20
Figure 4.4: Parameters and VAIUES ...........cccoeiieiieie ettt sra e 20
Figure 4.5: Simulator result without second-order punishment..............cccocveiiiniiicienenn. 28
Figure 4.6: Simulator first set of result with second-order punishment .............c.cccceoeieiennn, 28
Figure 4.7: Simulator second set of results with second-order punishment...............ccccccoeee. 29
Figure 5.1: Simulation result of population percentage of five strategies when B=0.0001.....31
Figure 5.2: Simulation result of population percentage of five strategies when B=0.06......... 32
Figure 5.3: Simulation result of population percentage of five strategies when B=0.7........... 32
Figure 5.4: Simulation result of population percentage of five strategies when B=2.1........... 33
Figure 5.5: Simulation result of population percentage of five strategies when B=6.3........... 33
Figure 5.6: Simulation result of population percentage of five strategies when B=7.0........... 34
Figure 5.7: Simulation result of population percentage of five strategies when B=186......... 34
Figure 5.8: Simulation result of population percentage of five strategies when B=55.8......... 35
Figure 5.9: Simulation result showing average population percentage of five strategies for

various B values, second-order punishment SEVEItY ..........ccccovevieiieiieie e 36

Figure 5.10: Simulation result of population percentage of six strategies when B=0.0001 ....39
Figure 5.11: Simulation result of population percentage of six strategies when B=0.06 ........ 39
Figure 5.12: Simulation result of population percentage of six strategies when B=0.7 .......... 40
Figure 5.13: Simulation result of population percentage of six strategies when B=2.1.......... 40
Figure 5.14: Simulation result of population percentage of six strategies when B=6.3 .......... 41
Figure 5.15: Simulation result of population percentage of six strategies when B=7.0 .......... 41
Figure 5.16: Simulation result of population percentage of six strategies when B=18.6 ........ 42
Figure 5.17: Simulation result of population percentage of six strategies when B=55.8 ........ 42
Figure 5.18: Simulation result showing average population percentage of six strategies for

various B values, second-order punishment SEVEFtY ...........ccccvveiiiieiiicie i 43

Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:

various B values, second-order punishment severity

Figure 7.1:

second-order punishment severity

Figure 7.2:

second-order punishment severity

Simulation result of population percentage of seven strategies when B=0.0001..48
Simulation result of population percentage of seven strategies when B=0.1........ 49
Simulation result of population percentage of seven strategies when B=0.7......... 50
Simulation result of population percentage of seven strategies when B=2.1........ 50
Simulation result of population percentage of seven strategies when B=7.0........ 51
Simulation result of population percentage of seven strategies when B=18.6......51
Simulation result of population percentage of seven strategies when B=55.8......52
Simulation result showing average population percentage of seven strategies for

Simulation result showing social welfare of five strategies for various B values,

Simulation result showing social welfare of six strategies for various B values,



Figure 7.3: Simulation result showing social welfare of seven strategies for various B values,

second-order PUNISNMENT SEVEIILY ....ccvvcviiieieeie et aeenaesneas 58
Figure 7.4: Simulation result showing social welfare of three different cases for various B
values, second-order pUNISHMENT SEVEIILY .......ccviiiieiieieiese e 60
Figure D.1: Simulation result for pool punishment and hybrid punishment competition when
B=0.000L ... ettt re et Re Rt e r et et aenEeeReereene et e te e 77
Figure D.2: Simulation result for pool punishment and hybrid punishment competition when
o O PO PR PRSP 78
Figure D.3: Simulation result for pool punishment and hybrid punishment competition when
B, 7 ettt bR R e £ bbb b bbbt n e et e 78
Figure D.4: Simulation result for pool punishment and hybrid punishment competition when
2 USSR 79
Figure D.5: Simulation result for pool punishment and hybrid punishment competition when
2 O OSSR 80
Figure D.6: Simulation result for pool punishment and hybrid punishment competition when
o R TSROSO PR PSSRSO 80
Figure D.7: Simulation result for pool punishment and hybrid punishment competition when
B, B bRttt bbb beer e n e e et e 81
Figure D.8: Simulation result for pool punishment and hybrid punishment competition when
B 70,0 ettt e et e Rt R e et et et e tenRenEeeReereene et ere e 82
Figure D.9: Simulation result showing average population for pool punishment and hybrid
punishment competition for various B values, second-order punishment severity ................. 83
Figure D.10: Simulation result showing social welfare for pool punishment and hybrid
punishment competition for various B values, second-order punishment severity ................. 84



List of Tables

Table 4.1: Simulator parameters and corresponding ValUES ............ccccoerereieneniinisieeee, 21
Table 5.1: Population average of five strategies when B=0.0001............cccceeverrrirniiereninnnnn, 31
Table 5.2: Population average of five strategies when B=0.06.............ccccccevvevrriieiieeiniiiennn, 32
Table 5.3: Population average of five strategies when B=0.7............ccccccevveiiviieieiiein e, 32
Table 5.4: Population average of five strategies when B=2.1...........ccccccovviiviieiieiicincienn, 33
Table 5.5: Population average of five strategies when B=6.3.............cccccooveiviveiieieciecienn, 33
Table 5.6: Population average of five strategies When B=7.0..........cccccoeviiiniininniiniencninn, 34
Table 5.7: Population average of five strategies when B=18.6...........ccccovvriinvniieniencninnnn, 34
Table 5.8: Population average of five strategies when B=55.8..........ccccciiiiiiiiiiinnniiinn, 35
Table 5.9: Simulation result showing average population percentage of five strategies for
various B values, second-order punishment SEVEItY ..........cccocveieiieieeie e 36
Table 5.10: Population average of six strategies when B=0.0001 .............ccccoveveiiieieeinsiinnnnn, 39
Table 5.11: Population average of six strategies when B=0.06.............ccccoevveveiieieeiesiiennnn, 39
Table 5.12: Population average of six strategies When B=0.7 ..........ccccecoviieviviveiicsecce e, 40
Table 5.13: Population average of six strategies When B=2.1 ........ccccccevviiiiiininnieniene e, 40
Table 5.14: Population average of six strategies When B=6.3 ...........cccoccvvvvrvnrenieneene s, 41
Table 5.15: Population average of six strategies When B=7.0 ........cccccevviiiivnienienieneninens 41
Table 5.16: Population average of six strategies When B=18.6..........cccccvvevrveveiienieencniinnnn, 42
Table 5.17: Population average of six strategies when B=55.8 ............cccccoevviiiiiciiciecienn, 42
Table 5.18: Simulation result showing average population percentage of six strategies for
various B values, second-order punishment SEVEritY ...........ccccveiiiiiicie i, 43
Table 6.1: Population average of seven strategies when B=0.0001...........c..cccccvevvevieireeiiennnn, 49
Table 6.2: Population average of seven strategies when B=0.1............cccccocevviviiieveeieciennnn, 49
Table 6.3: Population average of seven strategies When B=0.7...........ccccooerivevrnienieeninninnnnn, 50
Table 6.4: Population average of seven strategies When B=2.1..........ccccccoovvivevrieneennninnnn, 50
Table 6.5: Population average of seven strategies When B=7.0..........ccccoeveriveiriienieennninnnn, 51
Table 6.6: Population average of seven strategies when B=18.6...........ccccccovevevvnieneennniinnnnn, 51
Table 6.7: Population average of seven strategies when B=55.8...........ccccccvveviiciiciiciennn, 52
Table 6.8: Simulation result showing average population percentage of seven strategies for
various B values, second-order punishment SeVErity .........ccccovvevieiiieiii i 52
Table 7.1: Social welfare average of five strategies for various B values, second-order
PUNISNIMENT SEVETTLY ...t bbbttt bbb 55
Table 7.2: Social welfare average of six strategies for various B values, second-order
PUNISNIMENT SEVETTLY ...ttt bbbt 56
Table 7.3: Social welfare average of seven strategies for various B values, second-order
PUNISNIMENT SEBVEIILY ...ttt et e et b e e te e saaeabeeaneeeree e 57
Table 7.4: Simulation result showing social welfare of three different settings for various B
values, second-order pUNISNMENT SEVEIILY .......ccoiiviiiiiiiiccic e 59
Table A.1: Simulation result of population percentage of five strategies when B=0.0001 .....67
Table A.2: Simulation result of population percentage of five strategies when B=0.06 ......... 67
Table A.3: Simulation result of population percentage of five strategies when B=0.7 ........... 68
Table A.4: Simulation result of population percentage of five strategies when B=2.1 ........... 68



Table A.5: Simulation result of population percentage of five strategies when B=6.3 ........... 68

Table A.6: Simulation result of population percentage of five strategies when B=7.0 ........... 68
Table A.7: Simulation result of population percentage of five strategies when B=18.6 ......... 69
Table A.8: Simulation result of population percentage of five strategies when B=55.8 ......... 69
Table A.9: Simulation result of population percentage of six strategies when B=0.0001....... 69
Table A.10: Simulation result of population percentage of six strategies when B=0.06......... 70
Table A.11: Simulation result of population percentage of six strategies when B=0.7........... 70
Table A.12: Simulation result of population percentage of six strategies when B=2.1........... 70
Table A.13: Simulation result of population percentage of six strategies when B=6.3........... 70
Table A.14: Simulation result of population percentage of six strategies when B=7.0........... 71
Table A.15: Simulation result of population percentage of six strategies when B=18.6......... 71
Table A.16: Simulation result of population percentage of six strategies when B=55.8......... 71
Table B.1: Simulation result of population percentage of seven strategies when B=0.0001...72
Table B.2: Simulation result of population percentage of seven strategies when B=0.1......... 72
Table B.3: Simulation result of population percentage of seven strategies when B=0.7......... 73
Table B.4: Simulation result of population percentage of seven strategies when B=2.1......... 73
Table B.5: Simulation result of population percentage of seven strategies when B=7.0......... 73

Table B.6: Simulation result of population percentage of seven strategies when B=18.6....... 74
Table B.7: Simulation result of population percentage of seven strategies when B=55.8....... 74
Table C.1: Simulation result showing social welfare of five strategies for various B values,
second-order PUNISHMENT SEVEIILY ........coiiiiiiiiiieieiese e 75
Table C.2: Simulation result showing social welfare of six strategies for various B values,
second-order PUNISHMENT SEVETILY ........c.ooiiiiiiiiieieiene e 76
Table C.3: Simulation result showing social welfare of seven strategies for various B values,
second-order PUNISNMENT SEVETILY .......ecviiieieeiecie et nneas 76
Table D.1: Simulation result for pool punishment and hybrid punishment competition when
BI0.000L ...ttt bRt R e Rt n bt bbb beer e n e et et e e 77
Table D.2: Simulation result for pool punishment and hybrid punishment competition when
O OSSPSR 78
Table D.3: Simulation result for pool punishment and hybrid punishment competition when
O OSSPSR 79
Table D.4: Simulation result for pool punishment and hybrid punishment competition when
o OSSPSR PRSPPSO 79
Table D.5: Simulation result for pool punishment and hybrid punishment competition when
e O SO PRPSSSRSTN 80
Table D.6: Simulation result for pool punishment and hybrid punishment competition when
2l OSSPSR 81
Table D.7: Simulation result for pool punishment and hybrid punishment competition when
LR TSSO RTPRSSSSRSRSN 81
Table D.8: Simulation result for pool punishment and hybrid punishment competition when

B 70,0 ettt bR Rt Rt e sttt e et benEeeReereene et ente e 82
Table D.9: Simulation result showing average population for pool punishment and hybrid
punishment competition for various B values, second-order punishment severity ................. 82

Xi



Table D.10: Simulation result showing social welfare for pool punishment and hybrid
punishment competition for various B values, second-order punishment severity .................

xii



List of Equations

Equation 3.1: Imitation Probability............cccoovriiiiiic e 11
Equation 3.2: Cooperators payoff in a population of X and Y ........ccccccevviiiiinniiiciin e 12
Equation 3.3: Defectors payoff in a population of X and Y .........cccceiiiiiininnnnceee, 12
Equation 3.4: Loners probability in a population of X, Y and Z ..., 12
Equation 3.5: Cooperators payoff in a population of X, Y and Z.........cccccevvvviiiininieennnne 12
Equation 3.6: Defectors payoff in a population of X, Y and Z........c.ccccoeviiiiiiiiiiicicien, 12
Equation 3.7: Loners payoff in a population of X, Y and Z .........ccccccevvvevviieiieie e 12
Equation 3.8: Pool-punishers payoff in a population of X, Y, Zand V........ccccevvevviinivennenne. 13
Equation 3.9: Defectors payoff in a population of X, Y, Zand V.........cccccevviieiviieiicieeen 13
Equation 3.10: Cooperators payoff in a population of X, Y, Zand V.......c.ccccoovvviviiininennene, 13
Equation 3.11: Peer-punishers payoff in a population of X, Y, Zand W ........cccccceevvivrvernnnne. 14
Equation 3.12: Defectors payoff in a population of X, Y, Zand W..........ccoceviriiinnninienenn. 14
Equation 3.13: Peer-punishers payoff in a population of X, Y, Zand W .........c.ccccvvevviiieienn, 14
Equation 3.14: Cooperators payoff in a population of X, Y, Zand W..........ccccoeevvnviiiinnenn. 15
Equation 3.15: Peer-punishers payoff in a population of X, Y, Z, V,and W.............cccevennnn. 15
Equation 4.1: Loners probability in M population...........cccoeiieiiiic i 25
Equation 4.2: Cooperators payoff without second-order punishment ............cccccoeviveivenenne. 25
Equation 4.3: Defectors payoff without second-order punishment ............c.cccceeveiviieivennennn 25
Equation 4.4: Loners payoff without second-order punishment.............cccoocevvvnivnienininennene 25
Equation 4.5: Pool-punishers payoff without second-order punishment............ccccccocevvenenne. 25
Equation 4.6: Peer-punishers payoff without second-order punishment............cccccooevvennne. 26
Equation 4.7: Loners probability with second-order punishment............ccccoovevviiriinieenene 26
Equation 4.8: Peer-punishers second-order probability............cccccooiiiiiiiiiieicce e 26
Equation 4.9: Cooperators payoff with second-order punishment .............c.ccoceeviiiiiicieennene 26
Equation 4.10: Defectors payoff with second-order punishment ............c.ccccooeviiiiiieieennene. 27
Equation 4.11: Loners payoff with second-order punishment.............c.cccooeiieiicie v, 27
Equation 4.12: Pool-punishers payoff with second-order punishment...............c.cccoovevvennne. 27
Equation 4.13: Peer-punishers payoff with second-order punishment...........ccccccoccvvvrrvennnnne. 27
Equation 5.1: Corruptors payoff in a population of X, Y, Z, V,Wand C........cccccceevrvrrcvernrnne. 37
Equation 5.2: Loners probability in the presence of COrruption ..........cccccevevercveinsievnenene 37
Equation 5.3: Peer-punishers second-order probability in the presence of corruption............ 37
Equation 5.4: Cooperators payoff in the presence of corruption...........cccceveveeiieiiieiiecenennn, 37
Equation 5.5: Defectors payoff in the presence of corruption..........cccoecveveiiiiiie e cie e, 38
Equation 5.6: Loners payoff in the presence of COrruption ..........ccccocevvveiiiiiic e, 38
Equation 5.7: Pool-punishers payoff in the presence of corruption............cccceovevivivieiieennnnnn, 38
Equation 5.8: Peer-punishers payoff in the presence of corruption.........ccccceevvvevviinivcnnene, 38
Equation 6.1: Hybrid-punishers payoff in a population of X, Y, Z,V, W, C,and H ................ 46
Equation 6.2: Loners probability in the presence of hybrid-punishers..............ccocooviiinnnnn. 47
Equation 6.3: Peer-punishers second-order probability in the presence of hybrid-punishers .47
Equation 6.4: Cooperators payoff in the presence of hybrid-punishers...........cccccovveiieennnne, 47
Equation 6.5: Defectors payoff in the presence of hybrid-punishers............cccooeiiiiiienenn 47
Equation 6.6: Loners payoff in the presence of hybrid-punishers...........ccccccooeiiiiiiniinnnnn 47

xiii



Equation 6.7: Pool-punishers payoff in the presence of hybrid-punishers..............cc.cccovenenne.
Equation 6.8: Peer-punishers payoff in the presence of hybrid-punishers ............ccccccovvennne.

Equation 6.9: Corruptors payoff in the presence of hybrid-punishers

Xiv



Chapter 1

1 Overview

1.1 Introduction

Cooperation is a fundamental aspect of human social behavior. Social sanctioning is an
effective strategy for promoting and maintaining cooperation among selfish individuals.
Peer punishment is a key mechanism for sanctioning free-riders to promote cooperation in
public good provisions. Nevertheless, it is still considered unstable because of the second-
order free-riders such as cooperators who refuse to punish defectors. Experimental
evidences from PGG show that centralized sanctioning institutions punish defectors and
eliminate second-order free-rides by sanctioning cooperators, thus leading to greater levels
of cooperation. Centralized institutions, pool-punishers, prevail, replace all populations
including peer punishment and establish a stable regime.

The dominance and the stability of the pool punishment create some issues; is this
centralized institution really stable? If the centralized institution is stable, why does strong
centralized punishment sometimes fail to maintain cooperation? If the centralized
institution is dominant, why cooperation in some societies requires decentralized
enforcement in addition to the centralized authority? Why some countries tolerate a form
of peer punishment as legitimate?

This thesis introduces the strategy of corruption in the model to explain why centralized
institution sometimes fail, why societies want to limit the severity of centralized
punishment, and why peer punishment evolves together with the centralized authority.
This thesis PGG model shows that the effectiveness of this strong centralized authority
gets compromised when corruptors bribe pool-punishers. This thesis also introduces the
strategy of hybrid-punishers in the PGG model to explain why peer punishment is more
effective in increasing the cooperation level in the presence of corruption.

This thesis results shows that with strong centralized institution sanctioning, this
institution is considered as a single point of failure and is prone to corruption, which
prevents peer punishment from maintaining cooperation while the social welfare
deteriorates. In contrast, with weaker centralized institution sanctioning, the peer
punishment is given a chance to restore the cooperation and relatively the social welfare.
This thesis results also prove that in the presence of corruption, the stability of strong
centralized authority completely collapses and social welfare is worsened. This strong
centralized institution can promote cooperation and relatively restore social welfare, if and
only if, it allows a form of citizen-driven peer punishment in policing the commons.

1.2 Problem Statement
Since long time ago, to best govern a society and promote collaborative efforts is one of
the main topics of the game theory (Hardin 1968; Hobbes 1960). Punishment is an



effective mechanism in promoting the cooperation in public good interactions (Géchter,
Renner & Sefton 2008; Henrich et al. 2006; Herrmann, Thoeni & Géchter 2008).

Although the importance of punishment for promoting cooperation is confirmed, the best
way to maintain cooperative behavior in a society is debatable. Is it well-maintained by a
centralized sanctioning authority via sanctioning institutions (Hardin 1968; Hobbes 1960)
or is it best preserved by more decentralized enforcement via peer-punishers (Dietz,
Ostrom & Stern 2003; Kropotkin 1907).

Decentralized enforcement is a key mechanism to ensure cooperation in societies (Nowak
2006). Different forms of peer punishment have been extensively studied and assessed
using evolutionary models and behavioral experiments (Axelrod 2006; Boyd & Richerson
1992; Egas & Riedl 2008; Fehr & Gé&chter 1999; Ohtsuki et al. 2006; Santos, Pacheco &
Lenaerts 2006), however, this costly punishment evolution and stability is still a debatable
question (Fehr & Géchter 2002). Alternatively, individuals’ punishment for free-riders can
be done by adopting social-ties for avoiding free-riders interaction (Santos, Pacheco &
Lenaerts 2006).

Although the vital role of peer punishment in promoting cooperation is highly respected, it
suffers from the presence of counter-punishment (Fehr & Gachter 1999; Nikiforakis
2008). It also suffers from second-order free-riders (Dreber et al. 2008; Fowler 2005b;
Panchanathan & Boyd 2004). Solving this second-order free-riders problem by
punishment mechanism leads to unlimited revert (Fowler 2005b). Moreover, costly peer
punishment positively affects the cooperation level but has a negative effect on the
average payoff of the group (Dreber et al. 2008). Various peer punishment mechanisms in
PGG models impose fines on free-riders after the PGG (Yamagishi 1986).

Recently, several researches show that the centralized authority, pool-punishers, is proven
to be performing better punishment than decentralized authority, peer-punishers, despite of
being costly as it eliminates second-order free-riders (Ostrom 1990; Sigmund et al. 2010;
Traulsen, Rohl & Milinski 2012). Sigmund et al. (2010) presents a pool punishment model
where individuals contribute to centralized authority which sanctions free-riders. This pool
punishment model avoids second-order free-riders as the central authority punishes
whoever does not contribute to common pool punishment. Though, human societies prefer
delegating punishment to centralized sanctioning and legitimate authority regardless of
being costly (Baldassarri & Grossman 2011; Sigmund et al. 2010; Traulsen, Rohl &
Milinski 2012;).

Although Sigmund et al. (2010) model shows that the centralized pool punishment
prevails, replaces all populations including peer punishment and establishes a stable
regime; this kind of pool punishment dominance creates three riddles.

First; Sigmund et al. (2010) results imply that the centralized and legitimate authority
ultimately establishes a very stable regime and thus increases cooperation in societies.
However, low levels of participation in public goods are observed in several authoritarian
states that have the tendency to increase the level of individuals’ punishment (Acemoglu
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& Robinson 2012; Deacon 2009; Lake & Baum 2001). Second; Sigmund et al. (2010)
results also imply that centralized authority, pool-punishers, promptly prevail, replacing
other population including peer-punishers and establishing a stable regime. On the other
hands, most of human societies demonstrate combination of centralized and decentralized
forms of punishment (Harcourt 2011; Moghadam 2012; Morsi 2013). Third; Sigmund et
al. (2010) results also imply that the pool-punishers punish peer-punishers as they do not
contribute to the common pool punishment, however, in human societies, several forms of
political participation, such as jury duty are considered as social peer punishment (Fowler
& Kam 2007; Grechenig, Nicklisch & Thoni 2010; Smirnov et al. 2010).

1.3 Questions the Research Addresses
This thesis aims to answer the following research questions?

1. Can the evolutionary game model explain why strong centralized punishment
sometimes fails to maintain cooperation in societies? Could it be because of
corruption? Does cooperation in societies require decentralized enforcement in
addition to the centralized authority?

2. Can the evolutionary game model explain why some countries tolerate a form of
peer punishment as legitimate?

3. Can the evolutionary game model explain the correlation of social welfare to
strong stability of centralized authority? to corruption? and to legitimate pool-peer-
punishers?

1.4 Contributions
In this section, thesis main contributions are outlined. The following illustration shows
how the thesis work answers the research questions in details.

1. Can the evolutionary game model explain why strong centralized punishment
sometimes fails to maintain cooperation in societies? Could it be because of
corruption? Does cooperation in societies require decentralized enforcement in
addition to the centralized authority?

This thesis results imply that using the Sigmund et al. (2010) PGG model, as the
second-order punishment severity increases, the pool-punishers have a complete
dominance over the population and totally replaces peer-punishment, thus,
cooperation increases. A new corruption strategy is applied to Sigmund et al.
(2010) PGG model. This thesis results also prove that the effectiveness of this
centralized authority is compromised when corruptors bribe pool-punishers.
Moreover, the increase in second-order punishment severity increases corruption
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and decreases cooperation. Furthermore, in the presence of corruption, peer
punishment becomes more effective in increasing the cooperation level

2. Can the evolutionary game model explain why some countries tolerate a form of
peer punishment as legitimate?
The hybrid punishment is introduced as a form of legitimate peer punishment and
is applied to Sigmund et al. (2010) PGG model in the presence of corruption. The
thesis results prove that centralized authorities should legalize certain forms of
social peer punishment to maintain cooperation in the presence of corruption. The
results imply that in the presence of corruption, the hybrid punishment is more
effective in maintaining cooperation even if with severe second-order punishment.
As the second-order punishment severity increases, the hybrid-punishers have
almost complete dominance over the population and the cooperation increases

3. Can the evolutionary game model explain the correlation of social welfare to

strong stability of centralized authority? to corruption? and to legitimate pool-peer-
punishers?
This thesis results imply that in general, as the second-order punishment severity
increases, the cooperation increases and the social welfare is worsened. The results
also imply that as the second-order punishment severity increases, corruptors
eventually result in the collapse of the centralized authority and the diminishing of
the social welfare. This collapse of central authority can be mitigated by hybrid-
punishers, who re-emerge to maintain cooperation and relatively restore social
welfare.

Briefly, the contributions of this thesis are:

1. Develop a simulator of Sigmund et al. (2010) PGG model to replicate the results of
studying the competition between the peer punishment and pool punishment along
time evolution

2. Apply different levels of second-order institutional punishment severity to the
developed simulator, then study and evaluate its effect on the centralized authority
stability and social welfare

3. Apply corruption strategy to the developed simulator with different levels of
second-order institutional punishment severity, then study and evaluate its effect
on the centralized authority stability and social welfare

4. Apply both corruption and hybrid punishment strategy to the developed simulator
with different levels of second-order institutional punishment severity, then study
and evaluate its effect on the centralized authority stability and social welfare.
Hybrid-punisher is also studied as a legitimate form of peer-punishers.

1.5 Scope
The simulator is based on Sigmund et al. (2010) evolutionary game dynamics for fixed
populations’ model. It follows the same settings including the population strategies, the
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parameters settings, and the payoff calculations. Moreover, this PGG is not obligatory;
each player can choose not to participate to the PGG. Furthermore, the individuals are
allowed to imitate the successful models and to explore new strategies. The simulation
runs has been tuned to various levels of second-order punishment severity while other
levels have not been tested. The corruption strategy introduced in this thesis is limited to
the corruptors who participate but do not contribute to the PGG, and also bribe the central
authority to avoid being punished. This corruption strategy is minimalistic but it helps to
test the centralized authority stability and the need for decentralized authority in addition
to the centralized one. The hybrid-punishers strategy introduced in this thesis is limited to
the one who is acting as peer-pool-punishers and who can punish as peer-punishers and
pool-punishers without being punished by the centralized authority. This limited hybrid-
punishers strategy explains why many centralized institutions tolerate such kind of peer-
punishers. Thus, this thesis deals with a certain type of evolutionary game settings
applying two new limited strategies and studies the centralized authority stability and the
social welfare.

1.6 Thesis Outlines

The remaining of this thesis is organized as follows: Chapter 2 discusses the related work
to this thesis. Chapter 3 represents Sigmund et al. (2010) model developed by previous
researches and discusses the results. Chapter 4 explains the developed simulator, presents
and evaluates the results, and compares it to Sigmund et al. (2010) model. Chapter 5
presents the results of running the simulator with various second-order punishment
severity levels; it also presents the corruption strategy, applies the corruption strategy to
the simulator with various second-order punishment severity levels, presents and evaluates
the results, compares the results of the two cases and discusses the stability of the
centralized authority. Chapter 6 presents the hybrid-punishers strategy, applies both
corruption and hybrid-punishers strategy to the simulator with various second-order
punishment severity levels, presents and evaluates the results. Chapter 7 discusses the
overall social welfare, presents the social welfare when applying various second-order
punishment severity levels in the case of Sigmund et al. (2010) model, in the case of
corruption presence, and in the case of both corruption and hybrid-punishers presence, it
also presents, compares and evaluates the results. Chapter 8 concludes and summarizes
this thesis; discusses the results and presents the future work.



Chapter 2

2 Literature Survey

Since almost the beginning of the twentieth century, researchers’ attention was drawn to
how to best govern the society and promote collaborative efforts. The issue of how to
promote and maintain cooperation among selfish individuals is the main topic of game
theory (Hardin 1968; Hobbes 1960).

Numerous hypothetical and experimental researches discuss and emphasize on the
essential role of punishment, or sanctioning free-riders (also known as defectors or non-
cooperators), to ensure cooperation in society. Principally, punishment is an effective and
successful mechanism in promoting the cooperation in public good interactions (Géachter,
Renner & Sefton 2008; Henrich et al. 2006; Herrmann, Thoeni & Géchter 2008).

Although researches emphasize on the importance of the punishment for promoting
cooperation and policing the commons, the debate still exists around whether the
cooperative behavior in a society can be best maintained by a centralized sanctioning
authority via sanctioning institutions (Hardin 1968; Hobbes 1960) or it is best preserved
by more decentralized enforcement via peer-punishers (Dietz, Ostrom & Stern 2003;
Kropotkin 1907)

Decentralized enforcement, Peer punishment, or also called individual sanctioning of free-
riders, is a key mechanism to ensure cooperation in societies (Nowak 2006). Peer
Punishment is a form of direct reciprocity. Different forms of peer punishment have been
extensively studied and assessed using evolutionary models and behavioral experiments
(Axelrod 2006; Boyd & Richerson 1992; Egas & Riedl 2008; Fehr & Géchter 1999;
Ohtsuki et al. 2006; Santos, Pacheco & Lenaerts 2006). Individuals’ punishment for free-
riders can be done implicitly via simple behavioral reciprocity, as in the case of simple,
effective and successful tit for tat strategy in game theory, where the agent who is using
this strategy will cooperate first, then the agent imitates his opponent’s earlier action, if his
opponent earlier was cooperating, then he is cooperating, if he was defecting, then he will
defect (Axelrod 2006). On the other hand, Individuals’ punishment for free-riders can be
done explicitly via costly punishment, where individuals are acting altruistically, incurs
cost for themselves to punish defectors with no material gain, to flourish and maintain
cooperation in societies. Punishers are seen as altruistic because other players can get
benefits from the punisher’s costly punishment. However, even this costly punishment
evolution and stability is still a debatable question (Fehr & Gé&chter 2002). Alternatively,
Individuals’ punishment for free-riders can be done by adopting social-ties for avoiding
free-riders interaction, where each individual adjusts his strategy and his social ties based
on his own interest through evolution, This individual strategy and social structure
evolution is a key mechanism for maintaining cooperation behavior in societies (Santos,
Pacheco & Lenaerts 2006).



Although the vital role of peer punishment in promoting cooperation is highly respected, it
suffers from many problematic issues. One of these issues, under the presence of counter-
punishment, is that the individuals become less or un-willing to punish or that it results in
a sequence of revengeful punishment .This results into a reasonably payoff loss compared
to applying no punishment strategy (Fehr & Gachter 1999; Nikiforakis 2008). Second
issue, cooperation yield as a result of peer punishment is a public game by itself. This
generated cooperation can collapse by second-order free-riders, players who cooperate
with others but do not punish free-riders, which ultimately results into free-riders re-
emergence (Dreber et al. 2008; Fowler 2005b; Panchanathan & Boyd 2004). Besides, if
the second-order free-riders problem is solved by punishment mechanism, third-order free-
riders should be spread which ultimately results into free-riders re-emergence and so on,
leading to unlimited revert. This unlimited sequence of free-riding challenges the peer
punishment mechanism to promote and maintain cooperation (Fowler 2005b). Third issue;
peer costly punishment affects positively on the cooperation level but negatively at the
average payoff of the group. The player who earns the highest payoff does not have
tendency to punish others in the group (Dreber et al. 2008).

A various sanctioning systems has been investigated and assessed. Many public good
games experiments have modeled peer punishment mechanism as imposing fines on free-
riders after the PGG (Yamagish 1986). Other experiments have applied the institutional
sanctioning mechanism for punishing free-riders (Ostrom 1990).

Recently, several researches show that the centralized authority, pool-punishers, have been
proved to be doing better punishment than decentralized authority, peer-punishers, despite
of being costly as it eliminates second-order free-riders (Sigmund et al. 2010; Traulsen,
Rohl & Milinski 2012). Sigmund et al. (2010) presents a pool punishment model where
individuals contribute to centralized authority that sanctions free-riders. This pool
punishment model avoids second-order free-riders as the central authority punishes who
do not contribute to common pool punishment, in other words, the central authority
punishes whoever do not want to punish free-riders even if he contributes to the joint
effort. This facilitates pool-punishers to prevail, replacing all other population and
establishing a stable regime (Sigmund et al. 2010). Over time and due to these advantages,
human societies prefer delegating punishment to centralized sanctioning and legitimate
authority regardless of being costly (Baldassarri & Grossman 2011; Sigmund et al. 2010;
Traulsen, Rohl & Milinski 2012), and also centralized institutions continue to gain
unilateral and undisputed power for legitimate punishment over different forms of peer-
punishers by stigmatizing (Rosenbaum 2011) and criminalizing (Hallam 1821).

However, Sigmund et al. (2010) model shows that the centralized pool punishment
prevails, replaces all populations including peer punishment and establishes a stable
regime. This kind of pool punishment dominance creates three dilemmas.

First; Sigmund et al. (2010) results imply that the centralized and legitimate authority
eventually establishes very stable regime and thus increases cooperation in societies.
However, low levels of participation and public goods are observed in several



authoritarian states that already have the ability to increase the level of individuals’
punishment (Acemoglu & Robinson 2012). Alternatively, western democracies
(Acemoglu & Robinson 2012; Deacon 2009; Lake & Baum 2001) and other states with
well-participation in public goods tend to limit the centralized punishment of individuals
and give more room for different forms of peer-punishers.

Second; Sigmund et al. (2010) results also imply that centralized authority, pool-
punishers, promptly prevail, replacing other population including peer-punishers and
establishing a stable regime, although most of human societies demonstrate combination
of centralized and decentralized forms of punishment. Even in societies in which
centralized punishment is applied, where individuals pay taxes to a centralized police,
individuals participate in costly actions to stand against other individuals who apply any
kind of harm to public goods. As a recent example, the Occupy protests to the Arab Spring
demonstrate that even if the centralized authority punishes protestors, they still stand
against who harm the public goods at their own cost (Harcourt 2011; Morsi 2013;
Moghadam 2012).

Third; Sigmund et al. (2010) results also imply that the pool-punishers punish peer-
punishers as they do not contribute to the common pool punishment. In Sigmund et al.
(2010) model, the peer-punishers are considered illegitimate. Although in human societies,
several forms of political participation, such as civil litigation, jury duty and anti-
incumbent voting are considered as altruistic and social peer punishment (Fowler & Kam
2007; Grechenig, Nicklisch & Thoni 2010; Smirnov et al. 2010).



Chapter 3

3 The PGG Model with Punishment

Sigmund et al. (2010) proposed a model of centralized sanctioning institution, and pool-
punishers; in which pool-punishers contribute to common punishment pool before joining
the collaborative effort as willing to punish free-riders. Pool punishment enables the
second-order free-riders punishment. As it is well known in societies, sanctioning
institutions forbid individuals to apply the society law by their own hands, Sigmund et al.
(2010) investigated the prevalent model and the competition between pool punishment and
peer punishment through social learning. As a result of his investigation, it is found out
that in the absence of second-order punishment, peer-punishers dominate most of the time
and do better than pool punishment. On the other hand, in the presence of second-order
punishment, pool-punishers prevail and take over and they become the dominant
population dispatching free-riders and all other forms of punishment including peer-
punishers (Sigmund et al. 2010).

In this section, the Sigmund et al. (2010) PGG model will be described in details. Further,
the five strategies will be listed and their corresponding payoff computation will be
illustrated. Moreover, different punishment strategies will be compared. At the end, the
results will be illustrated and discussed.

3.1 PGG Model Definition

Sigmund et al. (2010) PGG Model is based on the original evolutionary game dynamics
for fixed populations. The model baseline is a PGG with five different strategies including
two different punishment strategies. PGG is a simple model for studying contributions to a
common pool before the collaborative effort as a guarantee for a social sanctioning system
to promote and maintain cooperation in the society.

In this PGG model, let M symbolizes the total population and let N symbolizes the players
count that are arbitrarily picked to play a round of game, where N < M. As the game is not
obligatory, each player has the right to decide whether to participate or not to the PGG
(Sigmund et al. 2010; Fowler 2005a; Hauert 2002a, 2002b). Each player has also has the
right to decide whether to contribute or not to the PGG with fixed amount ¢ where ¢ > 0.

The population includes cooperators; X, who participate and contribute c, defectors (free-
rides); Y, who participate and do not contribute, loners; Z, who choose not to participate
and not to contribute, peer-punishers; W, who participate and contribute ¢ but also impose
fines at defectors at cost on themselves, and pool-punishers; V, who contribute a fixed
amount to a common punishment pool before contributing ¢ to the PGG and impose fines
on any player who does not contribute to the common punishment pool.



Once each player chooses his own strategy, each player gets a payoff based on arbitrarily
selection of the interacted groups, each player will gain an amount equal to X whether or
not they contribute, where the contribution amount, c, is magnified by a factor, r > 1, and
both are multiplied by a ratio of the number of contributors, Nc, to the number of
participants. If all players contribute that means¥-=1 , then each player will obtain the
maximum welfare that can ever be obtained, rc (Sigmund et al. 2010).

Briefly, this PGG model is a simple model for studying contributions to a common pool
before the collaborative effort as a guarantee for a social sanctioning system to promote
and maintain cooperation in the society. Each player follows one of five different
strategies. Arbitrarily selection for the interacted groups from the population is done.

3.2 PGG Population
In this PGG, five different strategies are included and can be explained as follows
(Sigmund et al. 2010):

e Cooperators (X): Cooperators participate, and contribute ¢ to the PGG but do not
impose any fines on free-riders.

o Defectors (Y): Defectors are free-riders who participate but do not contribute to
the PGG. Defectors also by definition do not contribute to the common pool.

e Loners (Z): This game is not obligatory, each player has the right to decide
whether to participate or not to the PGG (Hauert 2002a, 2002b; Sigmund et al.
2010; Fowler 2005a). Loners neither participate nor contribute to the PGG.
Although, these loners prefer doing other stuff instead of participating in the PGG,
they still get a fixed small payoff, . Loners are also called non-participants. If all
players are free-riders, then loner payoff, ¢ = 0. On the contrary, if all players
contribute to the PGG and the common punishment pool, then loner payoff, ¢ =
(r-1)c-G. so o lies between 0 and (r-1)c-G.

e Peer-punishers (W): Peer punishment is a key mechanism for direct reciprocity
that facilitates the free-riders elimination. Peer-punishers participate and
contribute c to the PGG but after the game, they impose fine, f, on each free-rider
(defector) at cost, y exists in their group (Nowak 2006).

If the peer-punishers in the group is Nwand the free-riders at the same group is Ny,
then each free-rider pays SNw as a total fine and each peer-punisher incurs yNy.

e Pool-punishers (V): As an alternative to peer-punishers’ direct punishment
strategy, pool-punishers do not directly punish free-riders. Otherwise, pool-
punishers pay a fixed amount, G, to a common punishment pool before
participating and contributing c to the PGG. Any player, such as free-riders and
peer-punishers, who does not contribute to the common punishment pool, pays
fine, BNv, where Nv is the number of pool-punishers and B > 0. This strategy
eliminates the second-order free-riders problem (Sigmund et al. 2010) as it
punishes any player who does not contribute to the common punishment pool.
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Briefly, in this PGG model, five different strategies; cooperators, defectors, loners, peer-
punishers and pool-punishers, are followed. Each player payoff is computed according to
its strategy and based on arbitrarily selection of the interacted groups.

3.3 Social Learning

Social learning is a perception about the individuals’ learning attitude within a society; the
individual social behavior is principally learned by exploring, observing and imitating
others’ successful actions. Several models for social learning have been investigated. In
this model, it is assumed that individuals prefer to imitate successful strategies.

In this PGG social learning model, two players i and j are selected arbitrarily where the
players’ payoff, Pi and Pj, were previously calculated according to their strategy (X, Y, Z,
W, or V). Each player imitates and adopts other player’s strategy with a probability which
increases as the difference between their payoff increases and as s increases (Sigmund et

al. 2010).
1
1+ exp[—s(Pj— Pi)]

Equation 3.1: Imitation Probability

Where s > 0, s is the imitation strength. There are three different cases for imitation:
e If s=0 or Pi=Pj, then toss a coin to decide on whether to imitate or not
e If s = small values, weak imitation regime is followed when a more successful
player is more often imitated by other players
e If stends to infinity, strong imitation regime is followed when the most successful
player is always imitated by other players

The imitating regime can reach a limit when imitation cannot yield any situation change so
that an exploration regime has been also embedded in this PGG. A very small exploration
rate; W, is considered in this PGG model where each player can change its strategy
randomly without any imitation to other players (Sigmund et al. 2010).

Briefly, in this PGG model, Social learning by imitation and exploration are applied to
players that are arbitrarily picked and directly influences their current strategy.

3.4 No Punishment Strategies
To have clearer explanation of the payoff calculations, it is better to illustrate the payoff
computation starting from its baseline where there is no punishment (Sigmund et al. 2010).

In a population; M, which consists of cooperators; X, and defectors; Y, where Y = M — X
and N players are arbitrarily picked to play the PGG. Then, the cooperators payoff is
calculated as follows (Sigmund et al. 2010):
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X-1

Px =rc -c
M-1

Equation 3.2: Cooperators payoff in a population of X and Y
While, the defector payoff is calculated as follows:

X
M-1

Py = rc

Equation 3.3: Defectors payoff in a population of X and Y

In a population; M, which consists of cooperators; X, defectors; Y, and loners; Z, X =M —
Z —Y, and N players are arbitrarily picked to play the PGG. Then, the probability that (N-
1) players are not intending to participate in the PGG as follows:

(o)
1)

Equation 3.4: Loners probability in a population of X, Y and Z

Ps =

Substituting with the loners’ probability and the added strategy, then, the cooperators
payoff is calculated as follows:

M-Z-Y-1
Px=Pso + 1 - Po)er——— - 1)
M-Z-1
p (%) (J) M-z-v-1
x = M—1) o+1- M_l))c(r M —7 1 -1
N-1 N-1

Equation 3.5: Cooperators payoff in a population of X, Y and Z

While, the defectors payoff is calculated as follows:

M-7Z-Y
Py=PcrO'+(1—PJ)rcm
A A
p (N—l) 1 (N—l) M-Z-Y
Y= M—1)0+( - M_l)rCM—Z—l
N-1 N-1

Equation 3.6: Defectors payoff in a population of X, Y and Z
While, the loners payoff is calculated as follows:
P:=0
Equation 3.7: Loners payoff in a population of X, Y and Z

Analyzing the X, Y and Z parameters in equations 3.6 and 3.7, it is found out that
(Sigmund et al. 2010):
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e |f there is no loners, Z =0, the defectors perform better than cooperators, Py > Px
e If there is no defectors, Y =0, the cooperators perform better than loners, Px > Pz
e |f there is no cooperators, X =0, the loners perform better than defectors, P-

Briefly, in a population; M, which consists of cooperators; X, defectors; Y, and loners; Z,
the model behavior is analyzed and the payoff for each strategy is illustrated.

3.5 Pool Punishment Strategy

In a population; M, which consists of cooperators; X, defectors; Y, loners; Z, and pool-
punishers; V, where M = X +Y + Z + V and N players are arbitrarily picked to play the
PGG. Pool-punishers pay a fixed amount G to a common punishment pool before
participating and contributing ¢ to the PGG. Free-riders will be punished by the pool-
punishers and their fine will be proportional to their number BNv, where Nv is the number
of pool-punishers and B > 0. The pool-punishers payoff is calculated as follows (Sigmund
et al. 2010):

(Z) (Nl) M-Z-Y—-1

PU—( (Ml)[c(r M—7—1

-1 -G

Equation 3.8: Pool-punishers payoff in a population of X, Y, Z and V
Two cases were studied for pool-punishers (Sigmund et al. 2010):

e With no second-order punishment: the average payoff of cooperators and loners
remains the same as equations 3.5 and 3.7. The defectors payoff is calculated as
follows:

(N 1) (N 1) M-z-v B(N — 1)V
( ( ) ‘M—z-1 M-1

Py

Equation 3.9: Defectors payoff in a population of X, Y, Z and V

e With second-order punishment: the average payoff for loners remains the same as
equations 3.7. The cooperators must also be punished as they do not pay the fixed
amount, G, to the common punishment pool. The cooperators payoff is calculated
as follows:

(Nl) (Nl) M—Z—-Y-1 B(N - 1)V
( ( N Ty Zzo1 )T T M1

P

Equation 3.10: Cooperators payoff in a population of X, Y, Zand V
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Briefly, applying pool punishment strategy, V, to a population; M, which consists of
cooperators; X, defectors; Y, and loners; Z, with and without second-order punishment.
The model behavior is analyzed and the payoff for each strategy is illustrated.

3.6 Peer Punishment Strategy

In a population; M, which consists of cooperators; X, defectors; Y, loners; Z, and peer-
punishers; W, where M = X +Y + Z + W and N players are arbitrarily picked to play the
PGG. Peer-punishers participate and contribute ¢ to the PGG but after the game. They
impose fine; S, on each free-rider (defector) at cost; y exists in their group. If the peer-
punishers in the group is Nw and the free-riders at the same group is Ny, then each free-
rider pays SNw as a total fine and each peer-punisher incurs yNy. The peer-punishers payoff
is calculated as follows (Sigmund et al. 2010):

(N-1)Y

Pw = Px - 1 y
(Nzl) (N 1) M_Z_Y_l_ _(N—l)Y
( (Ml)c(r M—7-1 ) M — 1

Equation 3.11: Peer-punishers payoff in a population of X, Y, Zand W
Two cases were studied for peer-punishers (Sigmund et al. 2010):

e With no second-order punishment: the payoff of cooperators and loners remain
unchanged. The defectors payoff is calculated as follows:

(Z) (Nl) M-z-v (N-Dw
Py_( ( ) ‘M—z-1 m-1 ?

Equation 3.12: Defectors payoff in a population of X, Y, Z and W

e With second-order punishment: The cooperators must also be punished by peer-
punishers since they do not punish free-riders. The peer-punishers consider that
cooperators fail to punish defectors so that they impose fine § on cooperators at
cost y at themselves.

(%) () M-z-v-1 (N-1Dy (N-1Dx
Pw = x:1)0'+ A]:D)C(r M —7 -1 -1 - M —1 Y - M—1 ya
M—Y—Z)
Ty
MN)_/ZZ)

Equation 3.13: Peer-punishers payoff in a population of X, Y, Z and W

The cooperators payoff is calculated as follows:
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(N—1)0_+(1 ( ) M—-Z-Y-1 (N_I)Wﬁ (

Px = 7= )e(r -1 - —
wot) wa)  M-Z-1 M-1 (M”

Equation 3.14: Cooperators payoff in a population of X, Y, Zand W

3.7 Pool-Punishers and Peer-Punishers Competition

In a population; M, which consists of cooperators; X, defectors; Y, loners; Z, pool-
punishers; V, and peer-punishers; W, where M = X +Y + Z + V+W and N players are
arbitrarily picked to join the PGG. Two cases were studied in this PGG model. First;
without second-order punishment, peer-punishers dominate most of time in long run
although sometimes second-order free-riders try to invade. Second; with second-order
punishment, pool-punishers ultimately prevail and set up a very stable regime, as pool-
punishers punish peer-punishers for not paying in the common punishment pool. The peer-
punishers payoff is calculated as follows (Sigmund et al. 2010):

(N 1) (N 1))(TM—Z—Y—1_1)_B(N—1)V_(N—1)Y S (v-x .
( ("“ TM-z-1 M—1 m-1 ' m-1 7
M-Y-2
_ N—Z)

Equation 3.15: Peer-punishers payoff in a population of X, Y, Z, V, and W

Briefly, in Sigmund et al. (2010) model, pool punishment punishes peer-punishers as they
do not contribute to the common pool punishment; peer-punishers are considered
illegitimates.

3.8 PGG Model Results

Sigmund et al. (2010) model is based on evolutionary game theory in a population of fixed
size; M, including five different strategies; X, Y, Z, V, and W. Random samples of N
players who have the chance to join the game. Each player payoff is calculated according
to his strategy. The players are allowed to imitate each other strategy through social
learning according to a defined probability that is counted on the difference between the
players’ payoffs. Moreover, the players can change arbitrarily to another strategy
according to a defined exploration rate. Additionally, participating in the game is optional
rather than obligatory. Eventually, the prevalent model of pool-punishment and peer-
punishment was compared.

The results will be clearly mentioned as follows (Sigmund et al. 2010), as shown in Figure
3.1
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e The competition between the pool-punishers and the peer-punishers are determined
by the presence or the absence of the second-order punishment

e In the absence of second-order punishment, peer-punishers dominate most of time
but sometimes second-order free-rider tries to conquer the population.
Occasionally, the defectors invade then loners take over but peer-punishers
remerge again to stabilize for quite a long time. In general, peer-punishers perform
better than pool-punishers in this case

e In the presence of second-order punishment, pool-punishers apply sanctioning to
the second-order free-riders even though they all contribute to the collaborative
effort. Pool-punishers consider any player who doesn’t contribute to the common
punishment pool, even if he contributes to the common good, as a free-rider
including defectors, cooperators and even peer-punishers. Pool-punishers emerge
and eventually lead to a very stable regime. In general, pool-punishers perform
better than pool-punishers in this case

e Both pool-punishment and peer-punishment are costly mechanisms to impose
penalties on free-riders. Pool-punishment is considered more expensive within
society than peer-punishment since a fixed cost has to be paid to the common
punishment pool. On the other hand, pool-punishment is more stable regime than
peer-punishment. Moreover, peer-punishment is absolutely not suitable for second-
order punishment

a Cooperators, X Non-participants, Z Peer-punishers, W
Defectors, Y Pool-punishers, V
1.0F ¢ a1 T SN - ' - 3
& o8f ||/ il | [ :
g 0.6¢ ||If VML || / \ 3
8 04F Il ,J ! [ [] . 1 f M ’ 3
& 0.2 é IR ' 3
00_44*_A._.u ! ﬂl l" .‘.)..._..L_JJ_AJL__L‘_L_.L.W . &_}‘v-J_L_J.L e
0 2,000 4,000 6,000 8.000 10,000
b :
- 1.0F 1ny E
2] 085 | 3
< 0.6§ ‘ E
w 0.2F | Y E
0.0fF 4& t.uL,iA_._...;,LJL ‘_L-_.L..w . -
0 2,000 4,000 6,000 8,000 10,000

Period

Figure 3.1: Pool-punishment and peer-punishment time evolution competition, (a) without
second-order punishment, (b) with (Sigmund et al. 2010)

Briefly, In the presence of second-order punishment, pool-punishers emerge and
ultimately lead to a very stable regime. Pool-punishers perform better than peer-punishers.
In the absence of second-order punishment, peer-punishers dominate most of time. Peer-
punishers perform better than pool-punishers.
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Chapter 4

4 Replicating Previous PGG Model Results

In this section, the Sigmund et al. (2010) PGG model and his results have been replicated.
The simulation model is reviewed briefly, and the simulation implementation is illustrated
in details. Consequently, simulation without and with second-order punishment are
described, and finally, the results are presented and discussed

4.1 Simulation Model

This simulator uses the same Sigmund et al. (2010) PGG model including the same
population strategies, social learning regime, and payoff calculations described in Chapter
3. Briefly, evolutionary game is applied to population of fixed size M. Let M symbolizes
the total population and let N symbolizes the players count that are arbitrarily picked to
play a round of the game, where N < M. As the game is not obligatory, each player has the
right to decide whether to participate or not to the PGG. Each player has the right to
decide whether to contribute or not to the PGG with fixed amount ¢ where ¢ > 0.

The population includes:

e Cooperators; X: who participate and contribute ¢ to the PGG

e Defectors (free-rides); Y: who participate and do not contribute to the PGG

e Loners; Z: who choose neither participate nor contribute to the PGG

e Peer-punishers; W: who participate and contribute ¢ to the PGG but also impose
fines at defectors at cost on themselves

e Pool-punishers; V: who contribute a fixed amount to a common punishment pool
before contributing ¢ to the PGG and impose fines on any player who does not
contribute to the common punishment pool.

Once each player chooses his own strategy, he gets a payoff based on arbitrarily selection
of the interacted groups. Each player imitates and adopts other player’s strategy with a
probability which increases as the difference between their payoff increases, and as s
increases, where s > 0, and s is the imitation strength. Each player can change its strategy
arbitrarily without any imitation to other players; the players’ exploration is directly
proportional to a very small exploration rate; 1, where u>0.

4.2 Simulation Implementation

The Sigmund et al. (2010) PGG model has been developed and tested to replicate the same
results as his research. The following is a detailed explanation of the software used, the
user interface, simulator parameters, the simulator algorithm, pseudo code and the pay-off
calculations
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4.2.1 Software Used
Two different Software packages have been used for developing the simulator:

Eclipse which is a multi-language software development environment
comprising an Integrated Development Environment (IDE) and an extensible
plug-in system. It is used to develop applications in Java. It was used to
implement all parts of the simulator*

EpsGraphics2D library which is a perfect choice for creating high quality EPS
Graphics. It is used in the simulator implantation to obtain high quality
graphics result®

4.2.2 User Interface and Outputs

} % Perind: 4311
E E Population:100.0

§ £ Cooperators: 39.0%
} % Defectors: 0.0% @ mt
! & Loners: 0.0% i

§ % Peer Punishers: 61.0%
t : Pool Punishers: 0.0%

__E & cormuptors: 0.0% o -
15 & Hybrid: 0.0% e

I © avgPayofiCoop: 0.6666666666666666
! avgPayofiDef. 0.0

! g + avgPayofiLoner: 0.0

£} avgPayofPeer. 0.5573770481803278
¢ & avgPayoftPool: 0.0

! % avgPayofiCorrupt 0.0
§ & avgPayofiHybrid: 0.0

Figure 4.1: PGG Simulator user interface

As shown in Figure 4.1, the simulator user interface has six main components:

1.

Legend: A color key to indicate each strategy. These colors are used in other
components where each color represents its population strategy.

Strategy Map: At each period step, this map shows the strategy of each
individual in the overall population. The map is a grid of 100 squares which
equals to M population. Each square represents an individual in the population
and is colored to reflect the strategy of that individual at the very instant
period step. In other words, the Strategy Map takes presents a snapshot of the
overall population at each period step showing the strategies of all the
individuals.

! Eclipse IDE for Java Developers, accessed June 12th, 2013, available for download from
http://www.eclipse.org/

2 EpsGraphics2D, accessed January 1%, 2013, available for download from
http://www.jibble.org/epsgraphics/
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3. Statistics: This component shows a set of statistics at each period step. It
shows the period step counter, the percentage for each strategy within the
overall population, and the average payoff for each strategy from the
beginning of the simulation run up to the very instant step period.

4. Strategy Population Graph: This graph component has two axes; the x-axis
represents period steps during the simulation run, and the y-axis represents the
population. Up to seven graphs are shown, each representing the population of
a specific strategy. Each graph is denoted by its strategy color key as defined
in the Legend. As opposed to the Strategy Map, which shows a snapshot at the
very instant period step, the Strategy Population Graph shows the population
of each strategy at the very instant period step in addition to the historic period
steps as well. For instance, let us assume that the simulation starts at to, then at
to period step, the Strategy Population Graph will plot up to seven points in
seven colors each represents the population of that specific strategy. When the
simulation advances to t1, this graph component will shift the points plotted at
to to the left on step on the x-axis, and plot new seven points that represent the
population per strategy at t1.As a result of that, at t1 we shall see seven graphs
plotted, each shows the population per its strategy at to and ti. As the
simulation goes on, each of the seven graphs will always show the population
value of its strategy at tn and all of the values of tn-1, tn-2, tn-3, and so on. At any
given tn, the sum of the values of the seven graphs equals the overall
population, which is 100 in our simulation.

5. Strategy Payoff Graph: This graph component has two axes; the Xx-axis
represents period steps during the simulation run, and the y-axis represents the
average payoff. Up to seven graphs are shown, each representing the average
payoff for specific strategy. Each graph is denoted by its strategy color key as
defined in the Legend. Similar to the Strategy Population Graph, this Strategy
Payoff Graph shows the average payoff for each strategy at the very instant
period step in addition to the historic period steps as well. For instance, let us
assume that the simulation starts at to, then at to period step, the Strategy
Payoff Graph will plot up to seven points in seven colors each represents the
average payoff for that specific strategy. When the simulation advances to tu,
this graph component will shift the points plotted at to to the left on step on the
x-axis, and plot new seven points that represent the average payoff per
strategy at t1.As a result of that, at t1 we shall see seven graphs plotted, each
shows the average payoff per its strategy calculated at to and ti. As the
simulation goes on, each of the seven graphs will always show the average
payoff value for its strategy calculated at tr and all of the previously calculated
values at tn-1, tr-2, th-3, and so on.

6. Control Panel: is a group of buttons and controls that allow the user to:

e Start Button: To start the simulation run

e Summary Button: To display the Strategy Population Graph in a
separate window showing covering the entire simulation run as shown
in Figure 4.2
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e Statistics Button: To open a separate window that shows the Statistics
for the entire simulation run as shown in Figure 4.3

e Parameters Button: To open a separate window with all the model
parameters and their values. The user can use this window to alter the
simulation parameters as shown in Figure 4.4

e Pause Check Box: Where the user can pause and resume the
simulation

&

T

Ty v v

AERN

Population:

Period Population:
Period Population Check:
payofftotalperiod:

Avg payofftotalperiod:
Deftotalperiod
Cooptotalperiod:
Lonertotalperiod:
Peertotalperiod:
Pooltotalperiod:
Cortotalperiod:
Hybridtotalperiod:
Deftotalperiod Percent:%

Figure 4.2: Summary report
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Figure 4.3: Statistics report

4.2.3 Simulator Parameters

Figure 4.4: Parameters and values

As shown in Table 4.1 below, the parameters and their corresponding values have
been used in simulating this PGG model.
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Population size M 100
Random sample size N 5
PGG contribution C 1.0
PGG multiplier r 3.0
Exploration rate p | 0.001
Imitation Strength s | 100000
Loner payoff o 1.0
Pool punishment fine factor | B 0.7
Pool punishment cost G 0.7
Peer punishment fine factor | 0.7
Peer punishment cost Y 0.7

Table 4.1: Simulator parameters and corresponding values

4.2.4 Payoff Calculations
Once each player chooses his own strategy, each player gets a payoff based on
arbitrarily selection of the interacted groups. Each player will gain an amount equal to

rc% whether or not he contributes, where the contribution amount; c, is multiplied
by a factor; r > 1, and both are multiplied by a ratio of the number of contributors, Nc,
to the number of participants. If all players contribute, this means % =1, then each

player will obtain the maximum welfare that can ever be obtained; rc. Each player
imitates and adopts other player’s strategy with a probability which increases as the
difference between their payoff increases and as s increases, where s > 0, and s is the
imitation strength. Each player can change its strategy arbitrarily without any
imitation to other players; the players’ exploration is directly proportional to a very
small exploration rate, .

Cooperators participate and contribute; c to the PGG but do not impose any fines on
free-riders. Defectors participate but do not contribute to the PGG. Defectors also, by
model definition, do not contribute to the common pool. Although loners neither
participate nor contribute to the PGG, they still get a fixed small payoff; o. Loners are
also called non-participants. If all players are free-riders, then loner payoff; ¢ = 0. On
the contrary, if all players contribute to the PGG and the common punishment pool,
then loner payoff; ¢ = (r-1)c-G. So o lies between 0 and (r-1)c-G. Peer-punishers
participate and contribute; c to the PGG but after the game, they impose fine; S, on
each free-rider at cost; y exists in their group. If the peer-punishers in the group is Nw
and the free-riders at the same group is Ny, then each free-rider pays; fNw as a total
fine and each peer-punisher incurs yNy. Pool-punishers pay a fixed amount; G to a
common punishment pool before participating and contributing; ¢ to the PGG. Pool-
punishers punish any player who does not contribute to the common punishment pool
by imposing fine; BNv, where Nv is the number of pool-punishers and B > 0.

The average payoff of each individual is calculated according to its strategy. Each
time the individual is selected in the arbitrarily selection of the interacted groups; N
after the PGG, the individual payoff is added to his accumulated payoff and the
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4.2.5

individual accumulated count of his instances is increased by one, then the individual
average payoff is calculated by dividing the accumulated payoff by the accumulated
number of instances. The accumulated payoff and the accumulated number of
instances for any individual are reset if and only if this individual changes his strategy
by imitation or exploration routine.

Simulator Algorithm

In this section, the existing Sigmund et al. (2010) model has been simulated and all its
processes have been summarized in the following algorithms. The main process of the
simulator that is responsible for the PGG modeling is summarized as algorithm 4.1.

Algorithm 4.1: PGG modeling

Input: Five strategies and M population
Output: one complete run of PGG
foreach period step i in 100,000 period steps (one complete run) do
Get N samples from M population randomly;
Calculate the average payoff per each player in N;
foreach f iteration in M do
Generate a random value r;
if random value r < exploration rate then
Pick a random player from population M and change its strategy arbitrarily
to one of the rest four strategies;
else
Choose randomly any two players from M population;
Calculate the imitation probability according to the two players’ payoff;
if imitation probabilities == 0.5 then
Toss a coin
if coin probability > 0.5 then
Update the strategy of one player by the strategy of the other;
Reset the accumulated count and payoff of the player who updated his
strategy;
end
else
if imitation probability < 0.5 then
| Do nothing;
else
Update the strategy of one player by the strategy of the other;
Reset the accumulated count and payoff of the player who updated his
strategy;
end

end
end

end

Algorithm 4.1 shows the simulator main process which works as follows: Each complete
run considered as 100,000 period steps, each period step contains 100 iterations of social
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learning either by imitation or exploration. M symbolizes the total population, where
M=100, and N symbolizes the players count, where N =5. For this PGG model, five
strategies; cooperators, defectors, loners, peer-punishers and pool-punishers, are applied to
the M population. Initially, all the individuals are assigned to defectors strategy. For each
period step i in 100,000 period steps, choose N players arbitrarily to play a game round.
After playing the game round, the average payoff for each player in N samples is
calculated. For each iteration f in 100 iterations, a random value r is picked. If this random
value r is less than the exploration rate 4, where p=0.001, then the exploration routine is
executed. The exploration is implemented so that a random player is picked from M
population and changes its strategy arbitrarily to one of the other four strategies. If this
random value r is more than the exploration rate, then the imitation routine is executed.
The imitation routine is implemented that two players i and j are selected randomly from
M population where the players’ payoff are Pi and Pj, the imitation probability is
calculated as a function of the two players, i and j, payoffs difference (Pj-Pi) and the
imitation strength s, where s=100,000. If the imitation probability is 0.5 then toss a coin to
decide on whether to imitate or not, if the coin probability is more than 0.5, then update
the strategy of player i by the strategy of player j and reset the accumulated count and
payoff of player i. If the imitation probability is less than 0.5 then do nothing. If the
imitation probability is more than 0.5 then update the strategy of player i by the strategy of
player j and reset the accumulated count and payoff of player i. This process shows briefly
one complete run of the modeled PGG.

Algorithm 4.2: Average payoff calculations

Input: Five strategies, N samples, M population, and one period step
Output: Average payoff of each player in N is calculated at one period step
foreach player i in N samples do
Calculate the payoff for player i according to its current strategy;
Increment the accumulated count of player i by one;
Add the payoff to the accumulated payoff of player i;
Calculate the average payoff for player i using its accumulated count and payoff;
end

Algorithm 4.2 shows the simulator average payoff calculator routine which works as
follows: Given the five strategies; cooperators, defectors, loners, peer-punishers and pool-
punishers, M population and N samples. For each player i in N samples, the player i payoff
is calculated according to its strategy with the option of second-order punishment model.
The accumulated count is the number of times player i has been chosen in N samples and
to be in the PGG. It started to count up since the last time player i changed his strategy;
this accumulated count for any player was reset at the last time this player changed his
strategy. This accumulated count for player i is incremented by one. The accumulated
payoff for player i sum up the payoffs of this player each time he is chosen in N samples
and to be in the PGG; this accumulated payoff for any player was reset the last time this
player changed his strategy. Thus, the player i payoff is added to his accumulated payoff.
The average payoff of player i is calculated by dividing the accumulated payoff by the
accumulated count.
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Algorithm 4.3: Calculate the average payoff for each population per strategy at one
period step and the total welfare of all populations at one period step

Input: Five strategies, M population, individuals payoff, and one period step
Output: The count and the average payoff of each population per strategy in M is
calculated at one period step

foreach individual i in M population do
Add the average payoff for individual i to the accumulated pay off of the
population of his strategy;
Increment the accumulated count of of the individual population i strategy by one;
Add the average payoff for individual i to the total payoff for all populations; e.g
accumulate the welfare for all populations;

end

Calculate the average payoff for each population per strategy;

Algorithm 4.3 shows the simulator average payoff for each population per strategy and
total welfare for all populations at one period step calculator routine which works as
follows: Given the five strategies; cooperators, defectors, loners, peer-punishers and pool-
punishers, M population, individuals payoff and one period step. For each individual i in
M population, the individual i average payoff is added to the accumulated payoff of the
population of his strategy. Then, the accumulated count of the population of individual i is
incremented by one. The individual i average payoff is also added to the accumulated
payoff of all individuals at M population at this period step. After summing up all the
average payoffs of all individuals that follow same strategy, the average payoff for each
population per strategy is calculated by dividing the accumulated payoff by the
accumulated count for each population per strategy at this period step .Thus, at each
period step, the total average payoff for all individuals that follows the same strategy is
calculated and the social welfare of all individuals in M population is summed up.

Algorithm 4.4: Calculate the average welfare of all populations for one complete run

Input: M population, and welfare for all populations at one period step
Output: The average welfare of all populations is calculated for one complete run
foreach period step p in one complete run do

Add the welfare in M population at period step p to the accumulated welfare;
end
Calculate the average welfare for all populations for one complete run;

Algorithm 4.4 shows the average welfare for all populations at one complete run
calculator routine which works as follows: Given M population and welfare at one period
step, for each period step p in one complete run, equals to 100,000 period while each
period step includes 100 iterations of imitation and exploration, the welfare in M
population is added up to the accumulated welfare. After executing one complete run, the
average welfare for all population is calculated.
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4.3 Simulation without Second-order Punishment

The Simulator has been executed for massive number of runs to test the PGG model
described in Chapter 3 and to study the competition between pool punishment and peer
punishment. This section illustrates the simulation runs without second-order punishment.
In the absence of second-order punishment, peer-punishers impose fines on only free-
riders, defectors, at their own cost. Similarly, Pool-punishers impose fines on only free-
riders, defectors, by paying a fixed amount to common punishment pool. As continuity to
the payoff calculations in Chapter 3, this section illustrates the payoff calculation for each
player according to his strategy without applying second-order punishment.

Following Sigmund et al. (2010); in a population; M, which consists of cooperators; X,
defectors; Y, loners; Z, pool-punishers; V, and peer-punishers; W, where M = X +Y + Z +
V+W. N players are arbitrarily picked to join the PGG. Then, the probability that (N-1)
players are not intending to participate in the PGG is calculated as follows:

( A
N—-1
M—l)
N-1

Equation 4.1: Loners probability in M population

Ps =

The cooperator under the absence of second-order punishment is not punished by the peer-
punisher or pool-punishers; the cooperators payoff is calculated as follows:

M-Z-Y-1
Px=Poo + (1 - Po)erm—— - 1)
M-7Z-1
Equation 4.2: Cooperators payoff without second-order punishment

The defector is punished by the pool-punishers and peer-punishers; the defectors payoff is
calculated as follows:
M-zZ-y BWIN-1)Vv (N-1)W
M-Z-1 M-1  M-1

Py = Poo + (1 — Poyrc

B

Equation 4.3: Defectors payoff without second-order punishment
While, the loners payoff is calculated as follows:
Pz=0
Equation 4.4: Loners payoff without second-order punishment

The pool-punishers payoff is calculated as follows:

Py_p P M-Z-Y-1
=Pso+(1- —_— 1)-G
v=Po0 +1-Poler————-1 -Gl

Equation 4.5: Pool-punishers payoff without second-order punishment

The peer-punishers payoff is calculated as follows:
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M—-Z-Y-1 (N-1)Y
PW=PO’O-+(1—PO')C(T——1)_
M-Z-1 M-1

Equation 4.6: Peer-punishers payoff without second-order punishment

4.4 Simulation with Second-order Punishment

The Simulator has been executed for massive number of runs to test the PGG model
described in Chapter 3 and to study the competition between pool punishment and peer
punishment. This section illustrates the simulation runs applying second-order
punishment. Peer-punishers apply second-order punishment by imposing fines on
cooperators at their own cost. The cooperators are punished by peer-punishers as they do
not punish free-riders. Similarly, Pool-punishers impose fines on cooperators and peer-
punishers, by paying a fixed amount to common punishment pool. Pool-punishers punish
peer-punishers and cooperators as they do not contribute to the common pool punishment;
they are considered illegitimates. As continuity to the payoff calculations in Chapter 3, this
section illustrates the payoff calculation for each player according to his strategy with
applying second-order punishment.

Following Sigmund et al. (2010) PGG model ; in a population; M, which consists of
cooperators; X, defectors; Y, loners; Z, pool-punishers; V, and peer-punishers; W, where M
= X +Y + Z + V+W. N players are arbitrarily picked to join the PGG. Then, the probability
that (N-1) players are not intending to participate in the PGG is calculated as follows:

PO‘ _ (Nil)
M-1
(N—l

Equation 4.7: Loners probability with second-order punishment

M-Y-2
Psecond = %
(N—Z
Equation 4.8: Peer-punishers second-order probability

With second-order punishment, the cooperator is punished by the peer-punishers because
he does not punish free-riders, and the cooperator is also punished by the pool-punishers
as he does not contribute to the common pool punishment; the cooperators payoff is
calculated as follows:

M-Z-Y-1 B(N-1)Vv (N-1DW

Px=Poo + 1 - Po)eg—— - 1) -
M-Z-1 M-1 M-1

‘B (1 — Psecond)

Equation 4.9: Cooperators payoff with second-order punishment

The defector is punished by the pool-punishers and peer-punishers; the defectors payoff is
calculated as follows:
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M—-zZ-Y B(N-1)V (N-1W
M-Z-1 M-1  M-1

Py = Poo + (1 - Po)rc ,B

Equation 4.10: Defectors payoff with second-order punishment
While, the loners payoff is calculated as follows:
Pz=0
Equation 4.11: Loners payoff with second-order punishment

The pool-punishers payoff is calculated as follows:

Py_p p M-Z-Y-1
=Pso+(1- —_— 1)-G
v=Po0 +1-Pocr————-1 -Gl

Equation 4.12: Pool-punishers payoff with second-order punishment

With second-order punishment, the peer-punisher is also punished by the pool-punishers
as he does not contribute to the common pool punishment; he is considered as
illegitimates. The peer-punishers payoff is calculated as follows:
M—-Z-Y-1 B(N-1)v (N—-1)Yy (N-1)X
Pw = Poo + (1 - Po)c(r -1 - - Y-
M-7Z-1 M-1 M-1 M-1
- Psecond)

ya

Equation 4.13: Peer-punishers payoff with second-order punishment

4.5 Results and Discussion

The results of the numerous simulation runs were averaged to end up with one result set. It
was found that this result set is comparable to the existing results in Sigmund et al. (2010)
research paper:

e Without second-order punishment:

As shown in Figure 4.5, the competition between pool-punishers and peer-
punishers over period steps obtained from the simulator is to a large extent similar
to Sigmund at al. (2010) results shown in Figure 3.1. Peer-punishers dominate
most of time but sometimes second-order free-rider try to conquer the population.
Occasionally, the defectors invade then loners take over but peer-punishers
remerge again to stabilize for a quiet long time. In general, peer-punishers perform
better than pool-punishers in this case
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Figure 4.5: Simulator result without second-order punishment

With second-order punishment

As shown in Figure 4.6, the competition between pool-punishers and peer-
punishers over period steps obtained from the simulator is to a large extent similar
to the Sigmund et al. (2010) results shown in 3.1. The slight difference between
this simulator and Sigmund et al. (2010) results is the fact that some of this
simulation runs showed pool-punishers prevailing very early even without
competing with peer-punisher as shown in Figure 4.7. Pool-punishers apply
sanctioning to the second-order free-riders even though they all contribute to the
collaborative effort. Pool-punishers consider any player who doesn’t contribute to
the common punishment pool even if he contributes to the common good as an
outlaw including also cooperators and peer-punishers. Pool-punishers emerge and
ultimately lead to a very stable regime. In general, pool-punishers perform better
than pool-punishers in this case

Cooperators, X' Defectors, ¥ Loners, Z Pool-punishers, V Peer-punishers, W
(—— ) ] e

H
MMM.M - -
0

Period 100,000

Figure 4.6: Simulator first set of result with second-order punishment
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Figure 4.7: Simulator second set of results with second-order punishment

The simulator replicates to a large extend the Sigmund et al. (2010) results. This thesis is
focusing on studying this model with second-order punishment. Three problematic debates
popped up from analyzing these result:

It ensures that centralized institutions continue to gain unilateral and undisputed
power for legitimate punishment over peer-punishers. The centralized pool
punishment prevails, replaces peer punishment and establishes a stable regime. The
results also imply that increasing the severity of the centralized and legitimate
authority increases cooperation in societies.

This point leads to these questions: Is strong centralized authority stable? why
strong centralized punishment sometimes fails to maintain cooperation in
societies? Could it be because of corruption? Does cooperation in societies require
decentralized enforcement in addition to the centralized authority?

The results also imply that the pool punishment punishes peer-punishers as they do
not contribute to the common pool punishment. In Sigmund et al. (2010) model,
the peer-punishers are considered illegitimates.

This point leads to the question: why some countries tolerate a form of peer
punishment as legitimate?
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Chapter 5

5 The Study of the Centralized Institutions Stability

Sigmund el al. (2010) showed that centralized institutions gain unilateral and undisputed
power for legitimate punishment over peer-punishers. The centralized pool punishment
prevails, replaces all population including peer-punishers and establishes a stable regime.
The centralized pool punishment model eliminates second-order free-riders problem as it
applies sanctioning to the second-order free-riders even though they all contribute to the
collaborative effort. Pool-punishers consider any player who doesn’t contribute to the
common punishment pool as second-order free-rider including peer-punisher, even if he
contributes to the common goods (Sigmund et al. 2010).

Pool-punishers in Sigmund et al. (2010) model pay a fixed amount; G to a common
punishment pool before participating and contributing; c¢ to the PGG. Applying second-
order punishment, any player, such as free-riders and peer-punishers, who does not
contribute to the common punishment pool, pays fine; BNv, where Nv is the number of
pool-punishers and B > 0, where B is the severity of second-order punishment. As

illustrated in Chapter 3 payoff calculations, the pool punishment fine is represented by
B(N-1)V

mM-1 '
arbitrarily picked to play a round of game, M is the overall population and V is the pool-
punishers population that knows that the game is not obligatory.

where B is the severity of second-order punishment, N is the players count that are

In this chapter, the first set of research questions to be answered includes: Is strong
centralized authority stable? Can the evolutionary game model explain why strong
centralized punishment sometimes fails to maintain cooperation in societies? Could it be
because of corruption? Does cooperation in societies require decentralized enforcement in
addition to the centralized authority?

The answers to these research questions will be obtained by:

e Investigating the effect of manipulating the second-order punishment severity
parameter; B, when it is applied to the simulator PGG model on the centralized
authority stability

e Modeling the corruption strategy

e Applying the corruption strategy to the simulator PGG model investigating the
effect of manipulating of second-order punishment severity parameter on the
centralized authority stability

e Comparing the PGG model behavior for the simulation runs with and without
applying the corruption strategy while tuning the B parameter

5.1 The Effect of Centralized Punishment Severity on the PGG Model
For the Sigmund et al. (2010) PGG model described in Chapter 3, in a population; M,
which consists of cooperators; X, defectors; Y, loners; Z, pool-punishers; V, and peer-
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punishers; W, and N players are arbitrarily picked to join the PGG where second-order
punishment is applied. Fifteen sample simulation runs were executed for different values
of B parameter. Each sample simulation run contains 100,000 period steps including one
million generations. B values vary along wide range, from weak pool punishment (low B
values) to strong pool punishment (high B values). Various B values are chosen to be
0.0001, 0.06, 0.7, 2.1, 6.3, 7.0, 18.6 and 55.8, where B = 0.7 is the default value that was
used by Sigmund et al. (2010) model. The results have been collected (Appendix A.1) and
analyzed as follows:

As shown in Figure 5.1 and Table 5.1 when B = 0.0001 (weaker pool punishment), peer-
punishers are more stable and perform better than pool-punishers. Occasionally, the
defectors and pool-punishers try to take over but peer-punishers remerge and stabilize
again.

Cooperators, X' Defectors, ¥ Loners, Z Pool-punishers, ¥ Peer-punishers, W

—
=]
S

Frequency

il It

0 Period 100,000

[==]

Figure 5.1: Simulation result of population percentage of five strategies when B=0.0001

Pop X Y Z W V
% 5.65 4.50 5.38 83.5 0.85
Table 5.1: Population average of five strategies when B=0.0001

As shown in Figure 5.2 and Table 5.2 when B = 0.06 (weak pool punishment), peer-
punishers are still more stable and perform better than pool-punishers, but frequently, the
defectors and pool-punishers try to take over as the second-order punishment severity
slightly increases but peer-punishers remerge and stabilize again.
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Figure 5.2: Simulation result of population percentage of five strategies when B=0.06

Pop

X

Y

Z

W

V

%

6.30

4.98

5.64

82.2

0.78

Table 5.2: Population average of five strategies when B=0.06

As shown in Figure 5.3 and Table 5.3 when B = 0.7 (intermediate pool punishment),
although there are real competition between pool-punishers and peer-punishers, pool-
punishers perform better than pool-punishers, it eventually succeed to invade the peer-
punishers and ultimately lead to a very stable regime.
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Figure 5.3: Simulation result of population percentage of five strategies when B=0.7

Pop

X

Y

A

w

V

%

1.58

1.30

1.56

20.8

74.6

Table 5.3: Population average of five strategies when B=0.7

As shown in Figure 5.4 and Table 5.4 when B = 2.1 (intermediate pool punishment),
although the competition between pool-punishers and peer-punishers is very weak, pool-
punishers perform better than pool-punishers, it succeed to invade the peer-punishers and
ultimately lead to a very stable regime.
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Figure 5.4: Simulation result of population percentage of five strategies when B=2.1

Pop X Y Z W V
% 0.41 0.63 0.58 4.28 94.0
Table 5.4: Population average of five strategies when B=2.1

As shown in Figure 5.5, 5.6, 5.7 and 5.8, also in Table 5.5, 5.6, 5.7 and 5.8 when B = 6.3,
B =7.0, B =18.6, B =55.8 (strong pool punishment), pool-punishers are more stable and
perform much better than peer-punishers. As the second-order punishment severity
becomes stronger, the pool punishment has approximately complete dominance of the
system and entirely replaces peer-punishment.

Frequency g

)

Cooperators, X' Defectors, ¥ Loners, Z Pool-punishers, ¥ Peer-punishers, W
] ] ] ]
L

0 Period 100,000

Figure 5.5: Simulation result of population percentage of five strategies when B=6.3

Pop X Y z W \Y
% 0.14 0.26 0.45 0.51 98.6
Table 5.5: Population average of five strategies when B=6.3
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Figure 5.6: Simulation result of population percentage of five strategies when B=7.0

Pop X Y Z W V
% 0.08 0.22 0.39 0.43 98.8
Table 5.6: Population average of five strategies when B=7.0
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Figure 5.7: Simulation result of population percentage of five strategies when B=18.6

Pop X Y z W Vv
% 0.21 0.37 0.49 0.24 98.6
Table 5.7: Population average of five strategies when B=18.6
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Figure 5.8: Simulation result of population percentage of five strategies when B=55.8

Pop X Y Z W V
% 0.16 0.22 0.52 0.19 98.8
Table 5.8: Population average of five strategies when B=55.8

As predicted, Table 5.9 and Figure 5.9 ensured that as the sanctioning severity of the
institutional authority escalates, the stability of the system increases, since the institutional
authority becomes more dominant and diminishes the peer-punishment. Table 5.9 and
Figure 5.9 can be analyzed as follows:

e With weak second-order punishment severity (low B, approximately when B<0.7),
peer-punishers are more stable and perform better than pool-punishers.
Occasionally, the defectors invade then loners take over but peer-punishers
remerge and stabilize again. As the second-order punishment severity becomes
weaker, the peer punishment emerges more easily.

e With intermediate second-order punishment severity (intermediate B,
approximately when 0.7<B<2.1) , although there is real competition between pool-
punishers and peer-punishers, the pool -punishers emerge and ultimately lead to a
very stable regime

e With strong second-order punishment severity (high B, approximately when
B>2.1), pool-punishers are more stable and perform much better than peer-
punishers. As the second-order punishment severity becomes stronger, the pool
punishment has approximately complete dominance of the system and entirely
replaces peer-punishment. Pool-punishers are ultimately preventing peer-
punishers from gaining ground.
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0.0001 | 0.06 0.7 2.1 6.3 7 18.9 55.8
5.657 | 6.305 | 1.588 | 0.409 | 0.144 | 0.087 | 0.218 | 0.164
4509 | 4.984 | 1.302 | 0.629 | 0.269 | 0.219 | 0.374 | 0.224
5.381 | 5.646 | 1.561 | 0.587 | 0451 | 0.392 | 0.495 | 0.523
83.58 | 82.27 | 20.89 | 4.282 | 0510 | 0432 | 0.245 | 0.199
0.857 | 0.783 | 74.65 | 94.08 | 9862 | 98.86 | 98.66 | 98.88

Table 5.9: Simulation result showing average population percentage of five strategies for

various B values, second-order punishment severity
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Figure 5.9: Simulation result showing average population percentage of five strategies for
various B values, second-order punishment severity

These results imply that the dominance of strong centralized institutional punishment and
the demise of the peer punishment ensure the stability of the cooperation. However, this
stability by definition opposes the concept of protestors and revolution against central
authorities. That leads us to the rest of the thesis questions: Can the evolutionary game
model explain why strong centralized punishment sometimes fails to maintain cooperation
in societies? Could it be because of corruption? Does cooperation in societies require
decentralized enforcement in addition to the centralized authority?

5.2 Corruption Strategy

Centralized authority that has monopoly, unilateral and undisputed power for legitimate
punishment over peer-punishment, is considered a single point of failure and will be
susceptible to corruption.
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Corruptors are a certain form of defectors, a corruptor pays the central authority a fixed
fee; KG, when KG < G+c, to avoid punishment for not contributing to the PGG.
Corruptors participate but do not contribute to the PGG. The fixed fee KG must be less
than G+c, the total contribution of the pool-punishers. Corruptors by definition do not
contribute to the common pool but bribe the centralized authority. Parameter K € [0,1], this
parameter controls the bribe amount as a percentage of G, when G is the fixed amount
paid by the pool-punishers to the common punishment pool. Corruptors are not punished
by the pool-punishers as they bribe them but they do not bribe peer-punisher so they are
punished by peer-punisher.

Adding corruptor strategy to the PGG model (Sigmund et al. 2010) in chapter 3, in a
population; M, which consists of cooperators; X, defectors; Y, loners; Z, pool-punishers; V,
peer-punishers, W, and Corruptors C, where M = X +Y + Z+V + W +C and N players are
arbitrarily picked to join the PGG where second-order punishment is applied. The
Corruptors payoff is calculated as follows, when K € [0,1] and KG < G+c:

M—-Z-Y-C (N-1DW

Pc=Poo + (1 - Po)ge————— - KG) -
M-Z-1 M-1

Equation 5.1: Corruptors payoff in a population of X, Y, Z, V, Wand C

The simulated PGG model payoff equations have been updated after applying the
corruption strategy. Corruptors are manipulated at the payoff equations similar to defector
except corruptors are not punished by the centralized authority as they do bribe them.
Corruptors are punished only by peer-punishers. The payoff equations are illustrated as
follows:

G4
(o

Equation 5.2: Loners probability in the presence of corruption

P

M-Y—-C-2
Psecond = [[‘\/ll—:;
(V=2
Equation 5.3: Peer-punishers second-order probability in the presence of corruption

M—-Z-Y-C-1 B(N-1)v (N-1DW
Px = Poo + (1 — Po)c(r -1 - -
M-Z-1 M-1 M-1

‘B (1 — Psecond)

Equation 5.4: Cooperators payoff in the presence of corruption
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M—-Z-Y-c B(N-1)Vv (N-1DW

Py = Poo + (1 - Po)rc
M-7Z-1 M-1 M-1

B

Equation 5.5: Defectors payoff in the presence of corruption
P:=0

Equation 5.6: Loners payoff in the presence of corruption

p p p M-Z-Y-C-1
= o+ (1- - -G
v o ( o)[c(r M—7—1 ) ]

Equation 5.7: Pool-punishers payoff in the presence of corruption

M—-Z-Y-C-1 B(IN-1)V (N-1)(Y+0)
Pw = Poo + (1 - Po)c(r -1 - -
M-Z-1 M-1 M-1
(N-1)x p
- 1- d
M1 Y( second)

Equation 5.8: Peer-punishers payoff in the presence of corruption

The corruption strategy is introduced in this thesis to investigate both why strong
centralized punishment sometimes fails to maintain cooperation in societies, and also why
the strong centralized authority should tolerate the peer punishment as legitimate.

5.3 Applying Corruption Strategy to the PGG Model

Corruption strategy is applied to the Sigmund et al. (2010) PGG model described in
chapter 3. In a population; M, which consists of cooperators; X, defectors; Y, loners; Z,
pool-punishers; V, peer-punishers; W, and corruptors, C, where N players are arbitrarily
picked to join the PGG where second-order punishment is applied. The corruptor
parameter K = 0.5. Fifteen sample simulation runs were executed for different values of B
parameter. Each sample simulation run contains 100,000 period steps including one
million generations. B values varied along wide range, from weak pool punishment (low B
values) to strong pool punishment (high B values). Various B values are chosen to be
0.0001, 0.06, 0.7, 2.1, 6.3, 7.0, 18.6 and 55.8, where B = 0.7 is the default value that was
used by Sigmund et al. (2010) model. The results have been collected (Appendix A.2) and
analyzed as follows:

As shown in Figure 5.10 and Table 5.10 when B = 0.0001 (weaker pool punishment),
peer-punishers dominate and prevent corruptor to gain ground. Peer-punishers are more
stable and perform better than pool-punishers. Occasionally, the defectors and corruptors
try to take over but peer-punishers prevent them to gain ground. Peer-punishers remerge
and stabilize again.
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Figure 5.10: Simulation result of population percentage of six strategies when B=0.0001

Pop X Y Z W \% C
% 4.48 3.99 6.82 82.7 0.78 1.18
Table 5.10: Population average of six strategies when B=0.0001

As shown in Figure 5.11 and Table 5.11 when B = 0.06 (weak pool punishment), peer-
punishers become less dominate but still prevent corruptors to gain ground. Peer-punishers
are still stable and perform better than pool-punishers. Occasionally, the defectors and
corruptors try to take over but peer-punishers prevent them to gain ground. Peer-punishers
remerge and stabilize again.
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Figure 5.11: Simulation result of population percentage of six strategies when B=0.06

Pop X Y z W Vv C
% 487 4.25 7.42 81.3 0.74 1.35

Table 5.11: Population average of six strategies when B=0.06

As shown in Figure 5.12 and Table 5.12 when B = 0.7 (intermediate pool punishment),
peer-punishers become less dominate but still prevent corruptors to gain ground. Peer-
punishers are still stable and perform better than pool-punishers. Occasionally, the
defectors and corruptors try to take over but peer-punishers prevent them to gain ground.
Peer-punishers remerge and stabilize again. Interestingly, Loners starts to gain ground.
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Figure 5.12: Simulation result of population percentage of six strategies when B=0.7

Pop

X

Y

Z

W

V

C

%

4.68

5.21

9.56

75.2

3.05

2.33

Table 5.12: Population average of six strategies when B=0.7

As shown in Figure 5.13 and Table 5.13 when B = 2.1 (intermediate pool punishment),
peer-punishers become less dominate but still prevent corruptors to gain ground. Peer-
punishers are still stable and perform better than pool-punishers. Occasionally, the
defectors, pool-punishers and corruptors try to take over but peer-punishers prevent them
to gain ground. Peer-punishers remerge and stabilize again. Interestingly, Loners gain

more ground.
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Figure 5.13: Simulation result of population percentage of six strategies when B=2.1

Pop

X

Y

Z

W

V

C

%

5.00

3.86

10.8

71.0

5.80

3.39

Table 5.13: Population average of six strategies when B=2.1
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As shown in Figures 5.14, 5.15, 5.16, and 5.17, also in Tables 5.14, 5.15, 5.16, and 5.17,
when B = 6.3, B = 7.0, B = 18.6, and B = 55.8 (Strong pool punishment), peer-punishers
diminish, corruptors increase, pool-punishers gain some ground, and interestingly loners
become the most adopted strategy. As B increases, the strong centralized authority loses its
unilateral and undisputed power in the presence of corruption and the cooperation
decreases as loners, which are the majority of the population, do not participate in the
PGG.
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Figure 5.14: Simulation result of population percentage of six strategies when B=6.3

Pop

X

Y

Z

W

V

C

%

5.43

6.37

23.4

36.4

19.5

8.74

Table 5.14: Population average of six strategies when B=6.3
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Figure 5.15: Simulation result of population percentage of six strategies when B=7.0

Pop

X

Y

Z

W

V

C

%

4.93

6.34

22.7

36.5

20.0

9.36

Table 5.15: Population average of six strategies when B=7.0
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Figure 5.16: Simulation result of population percentage of six strategies when B=18.6

Pop X Y Z W V C
% 5.35 7.71 31.7 17.3 25.5 12.3
Table 5.16: Population average of six strategies when B=18.6
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Figure 5.17: Simulation result of population percentage of six strategies when B=55.8

Pop X Y Z W V C
% 411 6.76 32.9 13.2 29.1 13.7
Table 5.17: Population average of six strategies when B=55.8

As Predicted, Table 5.18 and Figure 5.18 can be analyzed as follows:

e With weak second-order punishment severity (low B, approximately when B<0.7),
peer-punishers dominate and prevent corruptors to gain ground. Peer-punishers
are more stable and perform better than pool-punishers. Occasionally, the
defectors and corruptors try to take over but peer-punishers prevent them to gain
ground, peer-punishers remerge and stabilize again. Weak centralized punishment
allows the peer-punishers to evolve together with the centralized institution. As
per this corruption model , only peer-punishers are capable of imposing fines on
corruptors
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e With intermediate second-order punishment severity (intermediate B,
approximately when 0.7<B<2.1), peer-punishers become less dominate but still
prevent corruptors to gain ground. Peer-punishers are still stable and perform
better than pool-punishers. Occasionally, the defectors and corruptors try to take
over but peer-punishers prevent them to gain ground, peer-punishers remerge and
stabilize again. Interestingly, Loners starts to gain ground.

e With strong second-order punishment severity (high B, approximately when
B>2.1), As B increases, peer-punishers diminish as they are severely punished by
pool-punishers, corruptors increase as they bribe pool-punishers to avoid
punishment and no fines imposed by peer-punishers , pool-punishers gain some
ground, and interestingly loners becomes the most adopted strategy. As B
increases, the strong centralized authority loses its unilateral and undisputed
power in the presence of corruption and fails to maintain cooperation evolution as
loners, which are the majority of the population, do not participate in the PGG

0.0001 | 0.06 0.7 2.1 6.3 7 18.9 55.8
4.488 4.872 4.630 5.001 5.432 4.929 5.350 4.106

3.989 | 4254 | 5209 | 3.863 | 6.371 | 6.346 | 7.712 | 6.758
6.823 | 7.422 | 9567 | 10.89 | 2346 | 2275 | 3172 | 32.94
8272 | 81.34 | 7520 | 71.04 | 3647 | 3659 | 17.32 | 13.24
0.786 | 0.741 | 3.050 | 5.801 | 19.50 | 20.00 | 2554 | 29.19
1.180 | 1.358 | 2.338 | 3.394 | 8.742 | 9366 | 1234 | 13.75
Table 5.18: Simulation result showing average population percentage of six strategies for

various B values, second-order punishment severity
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Figure 5.18: Simulation result showing average population percentage of six strategies for
various B values, second-order punishment severity
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These results imply that in the presence of corruption, as the sanctioning severity of the
institutional authority escalates, the system becomes unstable as the institutional authority
loses its unilateral and undisputed power while the peer-punishment is diminished, and the
centralized authority is no longer capable of maintaining the cooperation. Meanwhile,
weaker centralized authority allows the peer-punishers to evolve together with the
centralized institution punishment, prevent the corruptors and defectors to gain ground and
maintain the cooperation evolution.

Using this PGG model, the results imply that strong centralized punishment sometimes
fails to maintain cooperation in the presence of the corruption and that cooperation
evolution requires decentralized enforcement in addition to the centralized authority.

5.4 Results and Discussion

The strong centralized authority stability is investigated by manipulating the severity of
second-order punishment parameter, B, at the simulator PGG model. Corruption strategy
is introduced and applied to the PGG model with various levels of second-order
punishment severity to re-investigate the strong centralized authority stability. The PGG
model behavior with and without applying the corruption strategy are compared while
tuning second-order punishment severity.

Fifteen sample simulation runs were executed for different values of B parameter. Each
sample simulation run contains 100,000 period steps including one million generations. B
values varied along wide range, from weak pool punishment (low B values) to strong pool
punishment (high B values). Various B values are chosen to be 0.0001, 0.06, 0.7, 2.1, 6.3,
7.0, 18.6 and 55.8, where B = 0.7 is the default value that was used by Sigmund et al.
(2010) model. The results have been collected and analyzed for two different cases:

e In the absence of corruption as shown in Figure 5.9 and Table 5.9, for weak
second-order punishment severity, peer-punishers are more stable and perform
better than pool-punishers. Occasionally, the defectors invade then loners take
over but peer-punishers remerge and stabilize again. As the second-order
punishment severity becomes weaker, the peer punishment emerges more easily.
As the second-order punishment severity increases, pool-punishers are more stable
and perform much better than peer-punishers. As the second-order punishment
severity becomes stronger, the pool punishment has approximately complete
dominance of the system and entirely replaces peer-punishment. Pool-punishers
ultimately prevent peer-punishers from gaining ground

e In the presence of corruption as shown in Figure 5.18 and Table 5.18, weak
centralized authority allows the peer-punishers to evolve together with the
centralized institution punishment, prevent the corruptors and defectors to gain
ground and maintain the cooperation evolution; peer-punishers perform better than
pool-punisher as they can impose fines on the corruptors. Meanwhile, as the
sanctioning severity of the institutional authority escalates, the system becomes
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unstable as the institutional authority loses its unilateral and undisputed power
while the peer-punishment is diminished, corruptors increase as they bribe pool-
punishers to avoid punishment and no fines are imposed by peer-punishers as peer-
punisher diminished, and the centralized authority is no longer capable of
maintaining the cooperation as loners, which are the majority of the population, do
not participate in the PGG

The corruption model helps in explaining if strong centralized authority is stable? And
why strong centralized punishment sometimes fails to maintain cooperation? If
cooperation evolution requires decentralized enforcement in addition to the centralized
authority? The strong centralized authority loses its unilateral power for legitimate
punishment and it fails to maintain cooperation in the presence of corruption. Although,
peer-punishers prevent the corruptors to gain ground with weak centralized authority, they
diminish as well when they are severely punished by pool-punishers. However, societies
require decentralized punishment authorities in addition to the centralized one. In this
PGG model, peer-punisher is punished by the centralized authority as it is considered as
outlaw. Some countries legalize certain form of social peer punishment such as jury duty
to maintain cooperation in the presence of corruption (Fowler & Kam 2007; Grechenig,
Nicklisch & Thoni 2010; Smirnov et al. 2010). That leads to the rest of the thesis
questions; can the evolutionary game model explain why some countries tolerate a form of
peer punishment as legitimate?
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Chapter 6

6 Hybrid-punishers as Legitimate Form of Peer-Punishers

As the strong centralized authority loses its monopoly, unilateral and undisputed power for
legitimate punishment and fails to maintain cooperation in the presence of corruption, a
need to legalize a certain form of social peer punishment such as jury duty (Fowler & Kam
2007; Grechenig, Nicklisch & Thoni 2010; Smirnov et al. 2010) arises. Peer-punishers
perform better in the face of corruption in maintaining cooperation despite of being
punished by the centralized authority as it is considered as outlaw.

In this chapter, the second research question will be answered: Why the strong centralized
authority should tolerate the peer punishment as legitimate?

The answer for this research question will be obtained by:

e Modeling the hybrid punishment strategy
e Applying the hybrid punishment strategy to the simulator PGG model investigating
the effect of tuning the second-order punishment severity parameter

6.1 Hybrid-punishers Strategy

Hybrid-punishers are a certain form of peer-punishers. A hybrid-punisher pays a fixed
amount; G to the common punishment pool, same as the pool-punisher, hybrid-punisher
participates and contributes; ¢ to the PGG but after the game, they impose fine; 3, on each
free-rider (defector) at cost; y exists in their group. Hybrid-punisher is a peer-pool-
punisher. Hybrid-punishers are not punished by the pool-punishers as they pay a fixed
amount; G to the common punishment pool. Hybrid-punishers are not also punished by
peer-punishers as they are cooperators and act as peer-punishers in punishing free-riders;
in general, hybrid-punishers are not punished.

Adding hybrid-punisher strategy to the PGG model (Sigmund et al. 2010) in chapter 3, in
a population; M, which consists of cooperators; X, defectors; Y, loners; Z, pool-punishers;
V, peer-punishers, W, Corruptors C, and hybrid-punishers, H, where M = X +Y + Z+ V +
W + C+ H and N players are arbitrarily picked to join the PGG where second-order
punishment is applied. The hybrid-punishers payoff is calculated as follows:
M—-Z-Y-C-1 N-1Dry+0) (N-1X

Ph=Pso+@d-P -1H-G
o0 +( o)[e(r M—Z—1 ) — @] M — 1 14 M1

ya

-P second)

Equation 6.1: Hybrid-punishers payoff in a population of X, Y, Z, V, W, C, and H
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The simulated PGG model payoff equations have been updated after applying the hybrid-
punishment strategy; Hybrid-punishers are not punished by any punishment strategy,
including the pool-punishers as they pay a fixed amount; G, to the common punishment
pool and the peer-punishers as they act similar to peer-punishers in punishing free-riders.
Hybrid-punisher punishes all other population except the pool-punishers; Hybrid-punisher
punishes defectors for not contributing to the PGG and to the common punishment pool,
while punishes cooperators for not punishing free-riders and not contributing to the
common punishment pool. The payoff equations are illustrated (Sigmund et al. 2010) as
follows:

(-

Equation 6.2: Loners probability in the presence of hybrid-punishers

Ps =

M—Y—C—Z)
N-=2

M—Z)
N-2

Equation 6.3: Peer-punishers second-order probability in the presence of hybrid-punishers

Psecond =

M—-Z-Y-C-1 B(N-1)W+H) (N-—1)W +H)
Px = Poo + (1 = Po)c(r -~ -
M-zZ-1 M-1 M-1

-P second)

Equation 6.4: Cooperators payoff in the presence of hybrid-punishers

M-Z-Y-C B(N-1)W+H (N-1)W+H)
M—z-1 M-1 B M-1

Py = Poo + (1 — Poyrc

Equation 6.5: Defectors payoff in the presence of hybrid-punishers
Pz=0

Equation 6.6: Loners payoff in the presence of hybrid-punishers

p p P M-Z-Y-C-1
= g+ - -D-G
v o ( o)[e(r M—7— 1 ) ]

Equation 6.7: Pool-punishers payoff in the presence of hybrid-punishers

M—Z-Y-C-1 B(N-1)(V+H) ((N-1)F+0)
Pw = Poso + (1 - Po)c(r -1 - -
M-Z-1 M-1 M-1
(N-1)x p
— M1 Y (1 — Fsecond)

Equation 6.8: Peer-punishers payoff in the presence of hybrid-punishers
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M—-Z-Y-C (N-1)(W + H)
— K6 -
M-Z-1 M-1

Pc = Poo + (1 - Po)(rc

Equation 6.9: Corruptors payoff in the presence of hybrid-punishers

Briefly, the hybrid punishment strategy is introduced in this thesis to investigate why the
strong centralized authority should tolerate the peer punishment as legitimate.

6.2 Applying both Corruptors and Hybrid-punishers Strategies to the

PGG Model
Corruption and hybrid-punishers strategies are applied to the Sigmund et al. (2010) PGG
model described in chapter 3, In a population; M, which consists of cooperators; X,
defectors; Y, loners; Z, pool-punishers; V, peer-punishers; W, corruptors, C, and hybrid-
punishers, H, where N players are arbitrarily picked to join the PGG where second-order
punishment is applied. Fifteen sample simulation runs were executed for different values
of B parameter. Each sample simulation run contains 100,000 period steps including one
million generations. B values varied along wide range, from weak pool punishment (low B
values) to strong pool punishment (high B values). Various B values are chosen to be
0.0001, 0.1, 0.7, 2.1, 7.0, 18.6 and 55.8, where B = 0.7 is the default value that was used
by Sigmund et al. (2010) model. The results have been collected (Appendix B) and
analyzed as follows:

As shown in Figure 6.1 and table 6.1 when B = 0.0001 (weaker pool punishment), peer-
punishers dominate and prevent corruptors to establish a stable regime. Peer-punishers are
more stable and perform better than pool-punishers. Peer-punishers promote and maintain
the cooperation evolution. Occasionally, the defectors, corruptors, pool-punishers and
hybrid-punishers try to take over but peer-punishers prevent them to gain ground. Peer-
punishers remerge and stabilize again.

Cooperators, X  Defectors, ¥ Loners, Z  Pool-punishers, ¥ Peer-punishers, W Corruptors, "  Hyprid, H
.| I |
100 i I
g
5 | I (0
o
O ] |
—~
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b |mal ] ] |
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0 Period 100,000

Figure 6.1: Simulation result of population percentage of seven strategies when B=0.0001
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Pop

X

Y

Z

W

V

C

H

%

3.22

3.45

3.86

87.2

0.56

0.98

0.67

Table 6.1: Population average of seven strategies when B=0.0001

As shown in Figure 6.2 and Table 6.2 when B = 0.1 (weak pool punishment), peer-
punishers become less dominant but still prevent corruptors to gain ground. Peer-punishers
are still stable and perform better than pool-punishers. Occasionally, the defectors,
corruptors, pool-punishers and hybrid-punishers try to take over but peer-punishers
prevent them to gain ground. , Peer-punishers re-remerge and re-stabilize, they promote
and maintain the cooperation evolution.

H
Frequency g

<

Cooperators, X  Defectors, ¥

Loners, Z

Pool-punishers, V¥ Peer-punishers, # Corruptors, W Hyprid, H

)
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Period
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Figure 6.2: Simulation result of population percentage of seven strategies when B=0.1

Pop

X

Y

Z

W

V

C

H

%

4.59

3.78

4.82

83.8

0.48

1.25

1.18

Table 6.2: Population average of seven strategies when B=0.1

As shown in Figure 6.3 and Table 6.3 when B = 0.7 (intermediate pool punishment), peer-
punishers become less dominant but still prevent corruptors to gain ground. Peer-punishers
perform better than pool-punishers. Hybrid-punishers emerge and gain ground. Hybrid-
punishers prevent corruptors to gain ground and perform better than pool-punishers. Peer-
punishers and hybrid-punishers promote and maintain the cooperation evolution.
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Figure 6.3: Simulation result of population percentage of seven strategies when B=0.7

Pop

X

Y

Z

W

V

C

H

%

2.55

2.56

4.89

48.6

3.87

1.77

35.6

Table 6.3: Population average of seven strategies when B=0.7

As shown in Figure 6.4 and Table 6.4 when B = 2.1 (strong pool punishment), peer-
punishers starts to diminish. Hybrid-punishers become more stable preventing the
corruptors from gaining ground. Hybrid-punishers perform better than pool-punishers and
peer-punishers. Pool-punishers start to emerge and gain ground. Peer-punishers and

hybrid-punishers promote and maintain the cooperation evolution.
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Figure 6.4: Simulation result of population percentage of seven strategies when B=2.1

Pop

X

Y

Z

W

V

C

H

%

1.83

1.94

6.27

25.6

6.67

2.60

54.9

Table 6.4: Population average of seven strategies when B=2.1

As shown in Figures 6.5, 6.6, and 6.7, also in Tables 6.5, 6.6, and 6.7, when B =7.0, B =
18.6, and B = 55.8 (stronger pool punishment), peer-punishers are totally diminished.
Hybrid-punishers dominate and prevent corruptors, loners, and peer-punishers to gain
ground. Hybrid-punishers are more stable and perform better than pool-punishers. Hybrid-
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punishers promote and maintain the cooperation evolution. Pool-punishers try to emerge
and gain ground.
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Figure 6.5: Simulation result of population percentage of seven strategies when B=7.0

Pop

X

Y

Z

W

V

C

H

%

0.90

1.91

5.21

3.70

6.19

2.70

79.3

Table 6.5: Population average of seven strategies when B=7.0
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Figure 6.6: Simulation result of population percentage of seven strategies when B=18.6

Pop

X

Y

Z

W

V

C

H

%

0.87

1.81

5.95

1.37

7.68

3.23

79.0

Table 6.6: Population average of seven strategies when B=18.6
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Figure 6.7: Simulation result of population percentage of seven strategies when B=55.8

Pop

X

Y

Z

W

V

C

H

%

0.52

1.16

5.95

1.22

8.87

2.89

79.3

Table 6.7: Population average of seven strategies when B=55.8

6.3 Results and Discussion
While the strong centralized authority loses its unilateral power for legitimate punishment
and fails to maintain cooperation in the presence of corruption, peer-punishers perform
better in the face of corruption despite of being punished by the centralized authority as
they are considered as outlaw. Hybrid punishment strategy is introduced and applied to the
PGG model with various levels of second-order punishment to explain why some
countries tolerate a form of peer punishment as legitimate?

Fifteen sample simulation runs were executed for different values of B parameter. Each
sample simulation run contains 100,000 period steps including one million generations. B
values varied along wide range, from weak pool punishment (low B values) to strong pool
punishment (high B values). Various B values are chosen to be 0.0001, 0.1, 0.7, 2.1, 7.0,
18.6 and 55.8, where B = 0.7 is the default value that was used by Sigmund et al. (2010)
model. The results have been collected and analyzed as shown in Figure 6.8 and Table 6.8.

B 0.0001 0.1 0.7 2.1 7 18.9 55.8
X 3.224 4.594 2.554 1.834 0.902 0.871 0.525
Y 3.455 3.785 2.561 1.944 1.913 1.816 1.167
Z 3.868 4.822 4.899 6.275 5.216 5.957 5.949
W 87.22 83.87 48.63 25.69 3.699 1.369 1.225
\% 0.564 0.484 3.878 6.678 6.196 7.685 8.879
C 0.984 1.253 1.777 2.604 2.707 3.236 2.892
H 0.677 1.180 35.69 54.96 79.36 79.06 79.35

Table 6.8: Simulation result showing average population percentage of seven strategies for
various B values, second-order punishment severity
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Figure 6.8: Simulation result showing average population percentage of seven strategies
for various B values, second-order punishment severity

Under weak pool punishment, peer-punishers dominate and prevent corruptor to gain
ground. Peer-punishers are more stable and perform better than pool-punishers. Peer-
punishers promote and maintain the cooperation evolution. Occasionally, the defectors,
corruptors, pool-punishers and hybrid-punishers try to take over but peer-punishers
prevent them to gain ground. Peer-punishers remerge and stabilize.

While centralized punishment is severe, peer-punishers are totally diminished. Hybrid-
punishers dominate and prevent corruptors, loners, and peer-punishers to gain ground.
Hybrid-punishers promote and maintain the cooperation evolution. Hybrid-punishers are
more stable and perform better than pool-punishers. Although hybrid-punishers pay more
than pool-punishers, hybrid-punishers engage in peer punishment without being
sanctioned. Hence, hybrid-punishers have a complete dominance over the population.

Briefly, cooperation rarely flourishes with only strong centralized authority in the presence
of corruption. Cooperation needs peer-punishers who act against corruptors without being
punished by the centralized authority. This gives a chance for hybrid-punishers who act as
peer—punishers and pool-punishers.
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Chapter 7

7 Social Welfare

Both pool-punishment and peer-punishment are costly mechanisms to impose penalties on
free-riders. Pool-punishment is considered more expensive within society than peer-
punishment since a fixed cost has to be paid to the common punishment pool regardless
the number of the free-riders. Pool punishment is absolutely uneconomic when the number
of free-riders is low. As the number of free-rides increases, pool punishment becomes
more economic. Although, second-order free-riders pay fines imposed by both pool-
punishers and peer-punishers, peer-punishment is absolutely not suitable for second-order
punishment. If all contribute to the PGG, then peer-punishers are considered as second-
order free-riders. Thus, pool-punishment is a more stable regime than peer-punishment
when second-order punishment is applied. In many experiments, it is found out that
cooperation in collaborative effort increases as a result of costly punishment strategies.
Thus, the overall all welfare is reduced (Egas & Riedl 2008).

In this chapter, the third research questions set will be answered; can the evolutionary
game model explain the correlation of social welfare to strong stability of centralized
authority? to corruption? and to legitimate pool-peer-punishers?

The answer for this research question will be obtained by:

e Investigating the effect of manipulating the second-order punishment severity
parameter in the Sigmund et al. (2010) model on the social welfare

e Applying the corruption strategy to the simulator PGG model, investigating the
effect of manipulating the second-order severity punishment parameter on the
social welfare

e Applying the corruption and hybrid punishment strategies to the simulator PGG
model, investigating the effect of manipulating the second-order punishment
severity parameter on the social welfare

7.1 Case of the PGG Model

For the Sigmund et al. (2010) PGG model described in chapter 3, In a population; M,
which consists of cooperators; X, defectors; Y, loners; Z, pool-punishers; V, and peer-
punishers; W, and N players are arbitrarily picked to join the PGG where second-order
punishment is applied. Fifteen sample simulation runs were executed for different values
of B parameter. Each sample simulation run contains 100,000 period steps including one
million generations. B values varied along wide range, from weak pool punishment (low B
values) to strong pool punishment (high B values). Various B values are chosen to be
0.0001, 0.06, 0.7, 2.1, 6.3, 7.0, 18.6 and 55.8, where B = 0.7 is the default value that was
used by Sigmund et al. (2010) model. The social welfare has been collected (Appendix C)
corresponding to each B value and the results are analyzed as follows:
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Pop 0.0001 0.06 0.7 2.1 6.3 7.0 18.6 55.8

%

0.465 0.462 0.359 0.331 0.324 0.323 0.329 0.309

Table 7.1: Social welfare average of five strategies for various B values, second-order

punishment severity
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Figure 7.1: Simulation result showing social welfare of five strategies for various B values,

second-order punishment severity

As shown in Table 7.1 and Figure 7.1, there are three different parts to be analyzed:

For weak second-order punishment severity (low B, approximately when B<0.7),
where peer-punishers are more stable, perform better than pool-punishers, and
maintain cooperation, the social welfare is relatively high when peer-punishers are
the dominance population

For intermediate second-order punishment severity (intermediate B, approximately
when 0.7<B<2.1), where pool-punishers perform better than pool-punishers, as it
eventually succeeded to invade the peer-punishers and ultimately lead to a very
stable regime, the social welfare decreases. In this transit area, there is a strong
competition between pool-punishers and peer-punishers that ends up with the
dominance of pool-punisher. This pool-punishers invasion decreases the social
welfare as the pool-punishers have to pay a fixed amount to the common pool
punishment even in the absence of free-riders

For strong second-order punishment severity (high B, approximately when B>2.1),
pool-punishers are more stable as they become the dominant population and
entirely replace other population. Pool-punishers ultimately prevent peer-punishers
from gaining any ground. Although, this is a relatively stable payoff area as the
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pool-punishers are the dominant populations, the social welfare decreases relative
to the area where the peer-punishers were the dominant population. This is due to
the fixed amount which is paid by the pool-punishers to the common pool
punishment even in the absence of free-riders

Briefly, as the second-order punishment severity increases, the social welfare decreases. In
general, this drop in social welfare resulted from the invasion of pool-punishers who have
to pay a fixed amount to the common pool punishment even in the absence of free-riders

7.2 Applying Corruption Strategy to the PGG Model

Corruption strategy is applied to the Sigmund et al. (2010) PGG model described in
chapter 3, In a population; M, which consists of cooperators; X, defectors; Y, loners; Z,
pool-punishers; V, peer-punishers; W, and corruptors, C, where N players are arbitrarily
picked to join the PGG where second-order punishment is applied. The corruptor
parameter K = 0.5. Fifteen sample simulation runs were executed for different values of B
parameter. Each sample simulation run contains 100,000 period steps including one
million generations. B values varied along wide range, from weak pool punishment (low B
values) to strong pool punishment (high B values). Various B values are chosen to be
0.0001, 0.06, 0.7, 2.1, 6.3, 7.0, 18.6 and 55.8, where B = 0.7 is the default value that was
used by Sigmund et al. (2010) model. The social welfare has been collected corresponding
to each B value and the results are analyzed as follows:

Pop 0.0001 0.06 0.7 2.1 6.3 7.0 18.6 55.8
% 0.458 0.454 0.435 0.427 0.331 0.329 0.271 0.246
Table 7.2: Social welfare average of six strategies for various B values, second-order

punishment severity
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Figure 7.2: Simulation result showing social welfare of six strategies for various B values,
second-order punishment severity

56



As shown in Table 7.2 and Figure 7.2, there are three different parts to be analyzed:

e For weak second-order punishment severity (low B, approximately when B<0.7),
peer-punishers dominate, prevent corruptors to gain ground and maintain
cooperation. The social welfare is relatively high when peer-punishers are the
dominant population

e For intermediate second-order punishment severity (intermediate B, approximately
when 0.7<B<2.1), peer-punishers become less dominant but still prevent corruptors
and loners to gain ground. In this transit area, the social welfare relatively
decreases as corruptors, loners, and pool-punishers try to gain ground.

e For strong second-order punishment severity (high B, approximately when B>2.1)
As B increases, peer-punishers diminish, corruptors increase, pool-punishers gain
some ground, interestingly loners becomes the most adopted strategy, the
cooperation diminishes. The increase of corruptors is due to the absence of peer-
punishers and the bribe paid to the pool-punishers. The increase of corruptors,
pool-punishers, and loners lead to the decrease of social welfare

Briefly, as the second-order punishment severity increases, the social welfare decreases.
This drop in social welfare resulted from the invasion of corruptors who bribes the pool-
punishers who have to pay a fixed amount to the common pool punishment even in the
absence of free-riders, and the loners who do not participate in the PGG.

7.3 Applying both Corruptors and Hybrid-punishers Strategies the

PGG Model

Corruption and hybrid-punishers strategies are applied to the Sigmund et al. (2010) PGG
model described in chapter 3, In a population; M; which consists of cooperators; X,
defectors; Y, loners; Z, pool-punishers; V, peer-punishers; W, corruptors, C, and hybrid-
punishers, H, where N players are arbitrarily picked to join the PGG where second-order
punishment is applied. Fifteen sample simulation runs were executed for different values
of B parameter. Each sample simulation run contains 100,000 period steps including one
million generations. B values varied along wide range, from weak pool punishment (low B
values) to strong pool punishment (high B values). Various B values are chosen to be
0.0001, 0.1, 0.7, 2.1, 7.0, 18.6 and 55.8, where B = 0.7 is the default value that was used
by Sigmund et al. (2010) model. The social welfare has been collected corresponding to
each B value and the results are analyzed as follows:

Pop 0.0001 0.1 0.7 2.1 7.0 18.6 55.8
% 0.468 0.462 0.398 0.354 0.331 0.304 0.299
Table 7.3: Social welfare average of seven strategies for various B values, second-order

punishment severity
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Figure 7.3: Simulation result showing social welfare of seven strategies for various B

values, second-order punishment severity

As shown in Table 7.3 and Figure 7.3, there are three different parts to be analyzed:

For weak second-order punishment severity (low B, approximately when B<0.7),
peer-punishers, prevent corruptors to gain ground, and maintain cooperation. The
social welfare is relatively high when peer-punishers are the dominant population.
For intermediate second-order punishment severity (intermediate B, approximately
when 0.7<B<2.1), peer-punishers and hybrid-punishers prevent corruptor to gain
ground. Peer-punishers and hybrid-punishers perform better than pool-punishers.
In this transit area, the social welfare relatively decreases as hybrid-punishers gain
some ground

For strong second-order punishment severity (high B, approximately when B>7.0)
peer-punishers totally diminish. Hybrid-punishers dominate and prevent
corruptors, loners, and peer-punishers to gain ground. The social welfare decreases
but is relatively stable as hybrid-punishers are the dominant population. This
decrease in social welfare is because of the hybrid-punishers who pays the fixed
amount to the common pool punishment even in the absence of free-riders and the
cost of punishing the corruptors

Briefly, as the second-order punishment severity increases, the social welfare decreases. In
general, this drop in social welfare resulted from the invasion of hybrid-punishers who
have to pay a fixed amount to the common pool punishment even in the absence of free-
riders and the cost of punishing the corruptors
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7.4 Results and Discussion

The above three cases of welfare analysis have been collected together for further
investigation; the case of Sigmund et al. (2010) model, the case of applying corruptors
strategy to Sigmund et al. model (2010), and the case of applying both corruptors and
hybrid-punishers strategy to Sigmund et al. model (2010).

As shown in Table 7. 4and Figure 7.4, for the three cases, there are three periods to be
assessed as follows:

For weak second-order punishment severity (low B, approximately when B<0.7),
the social welfare is relatively high when peer-punishers are the dominant
population. The three cases have approximately the same welfare even in the
presence of corruption

For intermediate to strong second-order punishment severity (low to intermediate
B, approximately when 0.7<B<7.0), surprisingly, having corruptors in the
population increases the social welfare compared to the other two cases. This
phenomenon is due to the fact that in the case of corruption, the competition is
between peer-punishers and corruptors; while in the case of hybrid-punishers, the
competition is between peer-punishers, hybrid-punishers and corruptors;
meanwhile, in the case of pool-punishers, the competition is between peer-
punishers and pool-punishers

For stronger second-order punishment severity (high B, approximately when
B>7.0), the pool-punishers case welfare is better than the other two cases. This is
due to the fact that pool-punishers are the dominant population and pay only the
fixed amount to the common pool punishment. In the corruption case, the loner
strategy becomes the most adopted strategy which makes this case the one with the
least welfare. The welfare in the case of corruption and hybrid-punishers is
intermediate between the corruption case and the pool-punishers case. This is due
to the fact that hybrid-punishers are the dominant population and they pay the fixed
amount to the common pool punishment and the cost of punishing corruptors.

Briefly, in general, as the second-order punishment severity increases, the social welfare
decreases. As the second-order punishment severity increases, corruptors eventually result
in the collapse of the centralized authority and the demise of the social welfare. This
collapse of central authority can be mitigated by hybrid-punishers, a form of peer-
punishers, who re-emerge to maintain cooperation and relatively restore social welfare.

0.0001 0.1 0.7 2.1 7 18.6 55.8
Without Corruptor &
Without Hybrid 0.465 0.461 | 0.359 | 0.330 | 0.323 | 0.328 | 0.309
Corruptor 0.457 0.453 | 0434 | 0427 | 0.328 | 0.271 | 0.246
Corruptor & Hybrid 0.467 0.461 | 0.397 | 0.353 | 0.312 | 0.304 | 0.298

Table 7.4: Simulation result showing social welfare of three different settings for various

B values, second-order punishment severity
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Figure 7.4: Simulation result showing social welfare of three different cases for various B
values, second-order punishment severity
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Chapter 8

8 Conclusion

8.1 Summary

Cooperation is a key aspect in society. Human society is based to a large extent on
punishment mechanisms that promote and maintain cooperation among selfish individuals.
The issue of how to promote and maintain cooperation is one of the main topics of the
game theory. The essential role of punishment or sanctioning free-riders (also known as
defectors or non-cooperators) promotes and maintains cooperation in a society. Although,
peer punishment is a key mechanism for sanctioning free-riders to promote cooperation, it
is unstable as cooperators refuse to punish defectors. Sigmund et al. (2010) proves that
with second-order punishment, the centralized sanctioning institution emerges through
social learning and ultimately prevails displacing all other populations including peer
punishment, hence leading to a stable regime. Peer-punishers are considered as outlaws in
this model as they do not contribute to the common punishment pool.

This thesis introduces a developed simulator that successfully replicates Sigmund et al.
(2010) results based on evolutionary game dynamics for fixed populations’ model. With
tuning the second-order punishment severity of centralized and legitimate authority, it is
found out that as this punishment severity increases, the pool-punishers become the
dominant population, peer-punishers diminish, cooperation in collaborative effort
increases, and the social welfare decreases. Thus, this centralized authority becomes the
source of all forms of punishment; hence it becomes a single point of failure.

This thesis introduces and applies corruption model to this stable centralized regime, it
destabilizes cooperation and causes peer punishment to evolve as a sustainable strategy.
The effectiveness of this centralized authority is compromised when corruptors bribe pool-
punishers. Moreover, the increase of second-order punishment severity increases
corruption and decreases cooperation and eventually decreases social welfare. Corruptors
eventually result in the collapse of the centralized authority, the demise of the peer-
punishers; the decrease in welfare and surprisingly, loners become the most adopted
strategy. That explains why some countries fail to maintain cooperation in the face of
corruption. It also illustrates that decentralized enforcement, peer punishment, is required
in societies in addition to the centralized authority. Cooperation rarely flourishes with only
strong centralized authority in the presence of corruption.

Peer-punishers perform better in the face of corruption to maintain cooperation despite of
being punished by the centralized authority as it is considered as outlaw. This thesis
modeled a new form of peer-punishers, hybrid-punisher. This hybrid-punisher is
considered a legitimate form of peer-punishers that is not punished by central authority as
they contribute to the common punishment pool. It is literally considered as a mix of peer-
punishers and pool-punishers strategies. The results imply that in the presence of
corruption the hybrid punishment are more effective in maintaining cooperation even if
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with severe second-order punishment. As the second-order punishment severity increases,
the hybrid-punishers become the dominant population, peer-punishers diminish,
cooperation in collaborative effort increases, and the social welfare is relatively restored.
This explains why some countries tolerate certain forms of peer punishment as legitimate.

This thesis results imply that, in general, as the second-order punishment severity
increases, the cooperation increases and the social welfare decreases. These results also
imply that as the second-order punishment severity increases, corruptors eventually result
in the collapse of the centralized authority and the diminishing of the social welfare. This
collapse of central authority can be mitigated by hybrid-punishers, who re-emerge to
maintain cooperation and relatively restore social welfare.

8.2 Discussion and Future Work

Sigmund et al. (2010) model presents pool punishment model where individuals contribute
to centralized authority which dominates, replaces other populations including peer
punishment and establishes a highly stable regime for promoting cooperation. This thesis
results imply that increasing the severity of the centralized and legitimate authority
increases the level of cooperation in collaborative effort (Sigmund et al. 2010). This means
that all forms of punishments are assigned to this strong centralized authority. However, in
this thesis, although the dominance of strong centralized authority maintains a stable and
cooperative regime, it is considered as its single point of point of failure. Introducing
corruption to this stable centralized regime destabilizes cooperation and cause peer
punishment to evolve as a sustainable strategy. The effectiveness of this centralized
authority is compromised when corruptors bribe pool-punishers. Moreover, the increase in
the second-order punishment severity increases corruption and decreases cooperation.
These results confirm that corruption is highly destructive in the presence of strong
centralized authority as the individuals are severely punished if they try to stand in the face
of this corruption (Kopstein 200).

Peer-punishers perform better in the face of corruption to maintain cooperation despite
being punished by the centralized authority as they are considered as outlaw. These results
explain why some centralized authorities legalize certain forms of social peer punishment
to maintain cooperation in the presence of corruption (Fowler & Kam 2007; Grechenig,
Nicklisch & Thoni 2010; Smirnov et al. 2010; Egorov, Guriev & Sonin 2009). Aligning
with Sigmund et al. (2010) model, this thesis model considers the peer-punishers as outlaw
and to be punished by the centralized authority. Alternatively, another form of peer-
punishers is introduced in this thesis named as hybrid-punisher. As opposed to Sigmund et
al. (2010) model, hybrid-punishers are not penalized by the centralized authority. This
hybrid-punisher is considered a legitimate form of peer-punishers that is not punished by
central authority but it is literally considered as a mix of peer-punishers and pool-
punishers strategies. Hybrid-punisher is also considered legitimate in this model as it
contributes to the common pool punishment. The results imply that in the presence of
corruption the peer punishment and hybrid punishment are more effective in maintaining
cooperation even if with severe second-order punishment. This explains why some
countries tolerate a form of peer punishment as legitimate.
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As per many experiments, it is found out that cooperation in collaborative effort increases
as a result of costly punishment strategies. Thus, the overall all welfare is reduced (Egas &
Riedl 2008). Agreeing with this conclusion, this thesis results imply that, in general, as the
second-order punishment severity increases, the cooperation increases and the social
welfare decreases. These results also imply that as the second-order punishment severity
increases, corruptors eventually result in the collapse of the centralized authority and the
demise of the social welfare. This collapse of central authority can be mitigated by hybrid-
punishers, a form of peer-punishers, who re-emerge to maintain cooperation and relatively
restore social welfare.

Future research might relay on this thesis model as follows: in the face of corruption and
with severe second-order punishment, the only population that tries to destabilize hybrid-
punishers is pure pool-punishers. An investigation should take place to punish pure pool-
punishers as they do not engage as hybrid-punishers. The stability of hybrid-punishers in
the face of corruption must be investigated; hybrid punishment may be even more stable
than peer punishment or pool punishment alone. In the absence of corruption, pool-
punishers prevail and establish a stable regime. Applying hybrid-punishers strategy to this
stable regime may destabilize pool-punishers; preliminary investigation is done in
Appendix A for studying this competition between the pool-punishers and hybrid-
punishers in the absence of corruption. Social learning is applied in this model where
individuals are allowed to learn by exploring and imitating others’ successful actions.
Some important issues are not modeled such as individuals’ reputation, equity and
reciprocity. Another research aspect has to be investigated; the stability of the centralized
authority which tolerates a legitimate form of peer punishment in the absence of
corruption.
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Appendices

A Collected Data from Studying the Effect of Centralized Punishment
Severity

In this appendix, the detailed data for applying different settings to the PGG model is
collected and listed.

Al Collected Data from Applying the PGG Model

In a population; M, which consists of cooperators; X, defectors; Y, loners; Z, pool-
punishers; V, and peer-punishers; W, and N players are arbitrarily picked to join the PGG
where second-order punishment is applied. Fifteen sample simulation runs were executed
for different values of B parameter. Each sample simulation run contains 100,000 period
steps including one million generations. B values vary along wide range, from weak pool
punishment (low B values) to strong pool punishment (high B values). Various B values
are chosen to be 0.0001, 0.06, 0.7, 2.1, 6.3, 7.0, 18.6 and 55.8. The results have been
collected as follows:

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 931 | 3.96 | 5.28 6.6 6.25 | 546 | 3.64 | 394 | 5.01 6.3 5.49 4.2 3.88 | 10.3 | 499 | 5.65
Y 8.18 2.03 3.70 | 9.10 382 | 435 1.75 2.2 2.71 74 457 3.9 2.87 8.92 199 | 450
z 9.09 | 210 | 447 | 900 | 515 | 646 | 275 | 455 | 3.18 6.2 541 | 539 | 275 | 10.6 | 343 | 538
w 727 | 917 | 88 | 735 | 838 | 828 | 91.3 | 87.7 | 883 | 787 | 83.7 | 857 | 90.0 | 68.8 | 889 | 835
\% 069 | 018 | 065 | 1.72 | 094 | 085 | 049 | 153 | 0.70 13 0.81 0.7 042 | 119 | 059 | 0.85
Table A.1: Simulation result of population percentage of five strategies when B=0.0001

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 6.40 6.31 6.00 | 6.21 748 | 441 6.77 7.30 7.32 6.89 | 6.37 5.45 5.06 6.17 | 6.37 6.30
Y 581 | 4.74 2.60 | 6.50 5.14 | 5.02 490 | 5.68 3.98 6.80 | 4.37 6.31 354 | 494 | 437 | 498
z 7.05 546 | 4.06 | 6.63 7.06 | 3.14 764 | 569 | 491 6.50 | 6.91 5.57 3.16 394 | 6.91 5.64
W 80.0 82.2 86.9 | 79.7 79.1 86.4 79.4 | 81.0 83.1 78.7 | 818 815 87.4 845 | 818 82.2
\% 067 | 117 | 041 | 088 | 116 | 094 | 126 | 0.28 | 0.60 | 1.07 | 049 | 1.07 | 0.79 | 039 | 049 | 0.78

Table A.2: Simulation result of population percentage of five strategies when B=0.06
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Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 1.50 5.20 | 093 | 0.07 3.64 | 051 1.00 | 0.70 | 4.77 135 | 0.21 3.42 0.27 0.08 | 0.08 1.58
Y 093 | 408 | 0.79 | 0.20 | 186 | 051 | 097 | 0.71 | 267 | 1.21 | 090 | 2.08 | 1.38 | 0.60 | 0.58 | 1.30
Z 1.36 3.73 | 081 0.23 3.04 | 132 294 | 0.58 282 | 0.72 0.50 344 | 056 0.75 | 0.54 1.56
w 565 | 311 | 29.2 | 007 | 912 | 0.08 | 228 | 7.18 | 895 | 239 | 0.08 | 120 | 0.10 | 0.08 | 0.08 | 20.8
\% 905 | 558 | 68.1 | 994 | 017 | 975 | 722 | 90.8 | 0.16 | 727 | 982 | 79.0 | 976 | 984 | 986 | 74.6

Table A.3: Simulation result of population percentage of five strategies when B=0.7

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 100 | 050 | 029 | 017 | 0.08 | 0.08 | 0.08 | 0.10 | 1.27 | 099 | 0.08 | 0.60 | 0.13 | 058 | 0.11 | 041
Y 196 | 087 | 1.24 | 062 | 012 | 067 | 0.22 | 0.31 | 066 | 0.60 | 0.13 | 0.32 | 0.81 | 0.30 | 0.54 | 0.63
z 079 | 068 | 083 | 052 | 031 | 049 | 031 | 0.34 | 1.03 | 082 | 029 | 057 | 0.75 | 050 | 051 | 0.58
w 171 | 208 | 0.08 | 0.08 | 0.08 | 0.07 | 0.08 | 007 | 254 | 16.7 | 0.08 | 9.24 | 0.09 | 7.03 | 546 | 4.28
\% 945 | 771 | 975 | 985 | 993 | 986 | 99.2 | 99.1 | 944 | 80.8 | 994 | 89.2 | 981 | 915 | 933 | 94.0

Table A.4: Simulation result of population percentage of five strategies when B=2.1

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 0.11 | 0.08 | 0.35 | 0.08 | 0.29 | 0.09 | 008 | 0.09 | 0.07 | 0.17 | 0.08 | 0.12 | 0.08 | 0.09 | 032 | 0.14
Y 0.14 050 | 035 | 0.20 032 | 015 | 014 | 0.17 0.12 | 0.15 | 0.29 0.25 0.28 0.22 | 0.67 0.26
A 0.56 041 | 050 | 0.24 103 | 028 | 0.71 | 054 | 020 | 0.27 0.27 0.40 0.27 0.31 | 0.72 0.45
w 0.72 | 0.07 | 048 | 008 | 0.09 | 053 | 0.07 | 008 | 0.08 | 094 | 0.08 | 0.08 | 1.05 | 2.18 | 1.05 | 051
\% 984 | 989 | 982 | 993 | 982 | 989 | 989 | 99.1 | 995 | 984 | 99.2 | 99.1 | 98.2 | 97.1 | 97.2 | 98.6

Table A.5: Simulation result of population percentage of five strategies when B=6.3

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 0.08 | 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.09 | 0.08 | 0.07 | 0.08 | 0.08 | 0.08 | 0.13 | 0.08
Y 028 | 020 | 015 | 020 | 0.17 | 018 | 030 | 0.27 | 012 | 012 | 0.26 | 043 | 023 | 0.13 | 0.17 | 0.22
A 021 | 027 | 091 | 033 | 0.38 | 0.17 | 040 | 043 | 060 | 032 | 0.30 | 0.60 | 0.16 | 0.35 | 0.38 | 0.39
w 0.08 | 0.08 | 0.08 | 0.07 | 0.08 | 0.08 | 0.08 | 008 | 273 | 055 | 1.29 | 0.96 | 0.08 | 0.09 | 0.08 | 0.43
\% 99.3 | 993 | 987 | 992 | 99.2 | 994 | 991 | 99.1 | 96.4 | 989 | 98.0 | 979 | 994 | 99.3 | 99.2 | 98.8

Table A.6: Simulation result of population percentage of five strategies when B=7.0
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Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 0.09 | 044 1.37 0.08 | 0.08 | 0.08 | 0.10 | 0.11 | 0.08 | 0.39 0.08 0.08 0.08 | 0.08 0.08 0.21
Y 011 | 058 | 059 | 019 | 0.18 | 029 | 042 | 089 | 033 | 0.29 | 0.16 | 0.17 | 064 | 014 | 055 | 0.37
z 028 | 0.74 | 0.85 023 | 0.70 | 040 | 052 | 0.44 | 0.62 0.42 0.31 0.85 041 | 0.25 0.35 0.49
W 0.07 | 008 | 0.29 | 008 | 1.00 | 068 | 008 | 0.08 | 0.08 | 0.08 | 0.08 | 0.71 | 0.08 | 0.13 | 0.08 | 0.24
\% 994 | 981 | 96.8 | 99.3 | 98.0 | 985 | 988 | 984 | 988 | 987 | 99.3 | 981 | 987 | 99.3 | 989 | 98.6
Table A.7: Simulation result of population percentage of five strategies when B=18.6
Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 0.34 | 012 | 0.08 | 0.10 | 0.08 | 0.07 | 008 | 0.08 | 0.09 | 066 | 0.38 | 0.08 | 0.08 | 0.08 | 0.08 | 0.16
Y 0.18 056 | 0.17 0.17 021 | 010 | 0.10 | 0.17 055 | 018 | 0.11 0.11 0.19 0.23 | 0.27 0.22
z 056 | 063 | 0.30 | 0.31 | 045 | 024 | 041 | 035 | 049 | 150 | 026 | 0.28 | 0.33 | 0.34 | 133 | 052
w 0.09 | 0.08 | 0.79 | 0.08 | 0.64 | 008 | 052 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.07 | 0.19
\% 988 | 985 | 986 | 99.3 | 986 | 99.4 | 988 | 99.2 | 987 | 975 | 99.1 | 994 | 993 | 99.2 | 98.2 | 98.8
Table A.8: Simulation result of population percentage of five strategies when B=55.8
A2 Collected Data from Applying Corruption Strategy to the
PGG Model
In a population; M, which consists of cooperators; X, defectors; Y, loners; Z, pool-
punishers; V, peer-punishers; W, and corruptors, C, where N players are arbitrarily picked
to join the PGG where second-order punishment is applied. The corruptor parameter K =
0.5. Fifteen sample simulation runs were executed for different values of B parameter.
Each sample simulation run contains 100,000 period steps including one million
generations. B values varied along wide range, from weak pool punishment (low B values)
to strong pool punishment (high B values). Various B values are chosen to be 0.0001, 0.06,
0.7,2.1,6.3, 7.0, 18.6 and 55.8. The results have been collected as follows:
Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 451 6.47 | 410 | 2.75 5.49 5.29 737 | 4.28 333 | 394 | 485 274 | 271 522 | 422 | 448
Y 325 | 522 | 536 | 391 | 366 | 468 | 689 | 3.08 | 337 | 364 | 169 | 227 | 329 | 369 | 575 | 3.99
z 4.75 8.70 105 | 5.32 5.08 9.89 13.2 | 455 5.15 5.85 | 447 4.10 6.03 750 | 7.06 6.82
W 85.7 75.9 1.7 86.5 83.6 78.6 69.5 | 86.4 | 85.1 85.1 | 87.6 90.2 85.1 82.1 | 81.1 82.7
\ 0.56 143 1.52 094 | 056 | 0.52 0.90 | 0.98 144 | 0.25 | 0.17 0.20 0.75 0.42 1.06 0.78
C 119 | 215 | 0.73 | 049 | 156 | 0.99 | 198 | 060 | 150 | 1.10 | 1.10 | 046 | 2.00 | 1.03 | 0.74 | 1.18

Table A.9: Simulation result of population percentage of six strategies when B=0.0001
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Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 9.32 448 | 491 241 551 7.31 3.49 7.15 520 | 3.83 2.99 3.89 | 439 4.22 3.90 | 487
Y 6.24 | 514 | 395 | 142 | 460 | 870 | 280 | 542 | 398 | 227 | 465 | 265 | 285 | 473 | 436 | 4.25
z 13.9 7.42 6.41 | 3.96 7.79 143 3.38 9.57 586 | 5.67 6.21 7.23 | 6.01 8.45 5.04 | 7.42
W 66.6 | 811 | 836 | 915 | 803 | 638 | 881 | 741 | 836 | 867 | 851 | 848 | 850 | 79.8 | 852 | 813
\% 111 | 119 | 044 | 022 | 026 | 186 | 050 | 160 | 048 | 059 | 042 | 025 | 065 | 1.16 | 0.33 | 0.74
C 2.68 0.63 0.66 | 0.37 142 3.89 161 204 | 080 | 0.83 0.55 1.17 1.04 153 1.08 1.35

Table A.10: Simulation result of population percentage of six strategies when B=0.06

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 4.08 2.77 246 | 492 5.02 2.96 3.28 6.07 433 | 6.38 7.12 7.10 | 4.76 457 3.56 | 4.63
Y 5.73 4.74 1.20 5.54 564 | 247 329 | 421 2.74 10.6 111 | 454 | 6.13 6.60 352 | 521
z 7.69 9.80 | 4.25 | 8.10 7.80 | 5.55 8.98 9.37 741 10.0 15.8 124 171 9.57 9.35 | 9.56
W 78.8 74.7 90.9 75.5 77.1 85.6 76.1 74.6 81.8 | 655 59.7 70.7 | 60.8 76.0 79.3 | 75.2
\ 155 | 496 | 062 | 353 | 3.02 | 143 | 471 | 322 | 123 | 341 | 344 | 270 | 716 | 1.76 | 2.94 | 3.05
C 2.05 297 04 2.33 1.29 1.90 3.59 245 239 | 391 2.66 236 | 391 1.46 129 | 233

Table A.11: Simulation result of population percentage of six strategies when B=0.7

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 421 | 335 | 593 | 580 | 480 | 6.27 | 6.14 | 494 | 405 | 624 | 485 | 393 | 656 | 3.92 | 3.95 | 5.00
Y 397 | 316 | 668 | 408 | 329 | 299 | 464 | 3.05 | 386 | 3.07 | 319 | 414 | 441 | 358 | 3.77 | 3.86
Z 8.87 9.32 13.0 | 857 14.3 15.8 15.6 124 104 | 3.99 114 125 11.7 7.27 7.78 10.8
W 757 | 781 | 598 | 813 | 63.0 | 59.2 | 57.1 | 699 | 673 | 8.5 | 726 | 66.8 | 696 | 77.8 | 80.3 | 71.0
\ 454 | 436 | 863 | 006 | 993 | 105 | 114 | 488 | 898 | 0.06 | 450 | 790 | 405 | 465 | 246 | 5.80
C 260 | 164 | 582 | 0.08 | 460 | 513 | 499 | 464 | 538 | 0.07 | 3.40 | 458 | 353 | 275 | 164 | 3.39

Table A.12: Simulation result of population percentage of six strategies when B=2.1

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 6.57 6.27 6.60 5.82 743 | 3.63 5.07 593 | 470 | 273 | 443 551 | 5.61 5.93 5.17 | 543
Y 9.04 | 688 | 633 | 702 | 632 | 532 | 9.02 | 489 | 542 | 485 | 571 | 489 | 753 | 6.88 | 541 | 6.37
Z 26.9 185 | 255 20.9 28.0 | 247 24.6 19.7 219 | 235 26.6 21.0 19.3 255 248 | 234
w 288 | 386 | 365 | 404 | 330 | 352 | 320 | 469 | 371 | 363 | 306 | 40.7 | 46,6 | 326 | 31.2 | 364
\Y 206 | 205 | 183 | 16.6 | 147 | 23.7 | 191 | 154 | 210 | 241 | 224 | 183 | 144 | 19.0 | 23,6 | 195
C 8.00 | 9.12 6.67 9.06 103 | 7.24 10.0 6.92 9.71 | 841 10.1 950 | 6.35 9.91 9.66 | 8.74

Table A.13: Simulation result of population percentage of six strategies when B=6.3
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Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 450 | 451 5.79 | 8.66 6.16 | 459 | 4.69 3.36 575 | 524 | 254 358 | 471 522 | 456 | 4.93
Y 487 | 456 | 734 | 915 | 7.03 | 476 | 623 | 7.11 | 963 | 6.05 | 507 | 6.41 | 565 | 6.18 | 5.08 | 6.34
z 25.6 18.1 25.2 26.0 249 | 25.2 20.8 20.7 22.7 | 215 21.8 20.3 | 25.2 20.0 226 | 227
W 337 | 423 | 330 | 270 | 296 | 295 | 36.2 | 417 | 29.0 | 39.1 | 399 | 474 | 380 | 456 | 36.2 | 36.5
\% 215 | 221 | 189 | 189 | 215 | 254 | 221 | 189 | 206 | 193 | 195 | 146 | 186 | 146 | 22.7 | 20.0
C 9.65 | 8.31 9.57 10.1 10.7 10.3 9.90 8.05 120 | 859 11.0 759 | 7.67 8.19 8.71 | 9.36

Table A.14: Simulation result of population percentage of six strategies when B=7.0

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 6.27 5.78 552 | 454 | 414 | 6.86 5.37 743 | 448 | 7.06 3.46 359 | 4.29 5.55 584 | 535
Y 8.34 | 8.07 7.70 9.58 10.2 9.40 6.35 5.95 759 | 7.27 5.50 7.26 | 7.70 7.37 724 | 7.71
z 338 | 316 | 364 | 318 | 319 | 303 | 286 | 30.1 | 320 | 309 | 30.3 | 30.2 | 288 | 329 | 356 | 317
w 15.8 16.5 11.8 17.4 18.3 16.0 16.2 20.3 9.77 15.1 16.8 215 | 253 219 16.4 17.3
\ 237 | 258 | 253 | 246 | 233 | 240 | 306 | 235 | 345 | 256 | 319 | 265 | 223 | 199 | 21.0 | 255
C 11.9 12.0 13.1 11.8 11.9 13.2 12.6 12.4 115 13.9 11.9 10.7 114 12.2 13.8 12.3

Table A.15: Simulation result of population percentage of six strategies when B=18.6

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 346 | 488 | 440 | 6.12 | 528 | 3.70 | 350 | 235 | 323 | 283 | 429 | 486 | 527 | 407 | 335 | 411
Y 8.01 6.78 5.97 7.17 7.78 6.87 6.69 | 6.15 3.55 7.14 823 | 7.75 5.36 7.66 | 6.28 6.76
z 283 | 344 | 36.7 | 354 | 328 | 351 | 325 | 299 | 30.8 | 327 | 339 | 33.0 | 340 | 311 | 329 | 329
W 17.2 113 11.7 13.0 13.1 10.4 154 12.3 13.8 10.6 12.0 10.3 11.3 16.4 19.1 13.2
\% 284 | 315 295 245 | 28.1 28.3 28.7 | 329 334 | 314 27.7 | 29.8 29.3 29.0 | 247 29.1
C 14.4 11.0 11.6 13.6 12.7 15.3 13.0 16.2 15.0 15.1 13.6 141 14.6 11.6 13.6 13.7

Table A.16: Simulation result of population percentage of six strategies when B=55.8
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B Collected Data from Applying both Corruptors and Hybrid-punishers
Strategies to the PGG Model

In this appendix, the detailed data for applying both corruptors and hybrid-punishers to the
PGG model is collected and listed. In a population; M, which consists of cooperators; X,
defectors; Y, loners; Z, pool-punishers; V, peer-punishers; W, corruptors, C, and hybrid-
punishers, H, where N players are arbitrarily picked to join the PGG where second-order
punishment is applied. Fifteen sample simulation runs were executed for different values
of B parameter. Each sample simulation run contains 100,000 period steps including one
million generations. B values varied along wide range, from weak pool punishment (low B
values) to strong pool punishment (high B values). Various B values are chosen to be
0.0001, 0.1, 0.7, 2.1, 7.0, 18.6 and 55.8. The results have been collected as follows:

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 288 | 329 | 242 29 407 | 572 | 282 | 3.70 | 244 | 223 | 205 | 265 | 2.06 | 6.35 | 2.67 | 3.22
Y 197 6.26 2.53 5.37 3.35 7.85 124 | 299 2.13 | 4.60 0.82 194 277 | 3.06 | 4.87 3.45
z 280 | 3.71 | 347 | 523 | 572 | 6.06 | 1.87 | 332 | 225 | 445 | 085 | 298 | 410 | 656 | 460 | 3.86
W 90.7 | 85.1 89.3 845 | 83.6 75.7 92.6 88.7 90.6 | 87.0 95.0 91.2 88.7 | 784 | 86.4 87.2
\ 038 | 036 | 089 | 050 | 047 | 076 | 0.19 | 069 | 119 | 031 | 0.09 | 041 | 032 | 141 | 043 | 0.56
C 109 | 0.78 | 069 | 087 | 1.00 | 195 | 065 | 0.39 | 0.81 | 0.96 | 063 | 036 | 1.25 | 296 | 0.30 | 0.98
H 0.10 | 0.42 0.65 0.50 171 184 | 054 | 0.16 | 0.49 | 0.33 0.51 0.32 0.70 120 | 0.62 0.67

Table B.1: Simulation result of population percentage of seven strategies when B=0.0001
Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg

X 5.04 5.59 6.07 263 | 473 5.05 1.77 519 | 4.99 5.67 424 | 432 | 4.42 228 | 6.87 | 459

Y 5.29 | 459 2.79 2.75 3.95 3.13 3.16 | 3.64 | 3.17 7.07 194 | 435 249 222 | 6.19 3.78

A 4.43 6.23 5.05 | 240 554 | 531 214 | 345 3.14 | 752 294 | 484 | 790 | 406 | 7.30 | 482

w 80.7 | 795 | 848 | 91.1 | 826 | 804 | 911 | 8.3 | 8.1 | 76.3 | 885 | 847 | 809 | 90.2 | 753 | 838

\% 111 | 025 | 036 | 012 | 052 | 085 | 097 | 030 | 022 | 062 | 054 | 0.38 | 0.20 | 0.16 | 0.61 | 0.48

C 142 165 | 047 0.81 0.66 2.61 0.57 1.35 1.26 1.95 1.28 0.37 1.97 021 | 213 1.25

H 189 | 207 | 036 | 014 | 192 | 260 | 0.22 | 0.74 | 1.00 | 0.75 | 050 | 1.00 | 2.07 | 0.84 | 153 | 1.18

Table B.2: Simulation result of population percentage of seven strategies when B=0.1
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Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 3.98 127 | 3.16 | 2.50 3.36 | 3.89 1.01 | 3.60 3.27 | 0.76 1.69 2.10 2.54 3.29 1.83 2.55
Y 234 | 236 | 296 | 213 | 553 | 381 | 221 | 289 | 437 | 098 | 121 | 1.75 | 146 | 229 | 2.07 | 256
Z 4.23 3.80 513 | 7.63 5.97 6.07 3.07 9.94 | 641 214 1.80 2.96 5.71 6.12 | 243 | 4389
w 69.1 | 803 | 417 | 682 | 626 | 434 | 216 | 438 | 26.2 | 178 | 53.6 | 580 | 605 | 658 | 16.3 | 48.6
\% 300 | 219 | 381 | 497 | 407 | 3.06 | 691 | 9.08 | 548 | 1.38 | 209 | 0.85 | 247 | 430 | 445 | 3.87
C 211 0.64 247 2.62 284 | 230 156 | 3.16 3.03 | 040 | 0.61 0.33 1.90 1.32 131 1.77
H 151 | 938 | 406 | 119 | 155 | 37.3 | 636 | 274 | 511 | 765 | 389 | 339 | 253 | 168 | 715 | 356
Table B.3: Simulation result of population percentage of seven strategies when B=0.7

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 092 | 079 | 220 | 052 | 203 | 1.04 | 101 | 137 | 296 | 113 | 069 | 3.81 | 210 | 344 | 344 | 183
Y 154 201 | 424 111 141 1.55 110 | 2.27 2.54 121 | 097 4.05 1.80 1.65 1.65 194
z 529 | 330 | 532 | 643 | 682 | 397 | 397 | 555 | 9118 | 476 | 518 | 9.26 | 835 | 834 | 834 | 6.27
w 205 | 217 | 692 | 543 | 236 | 256 | 191 | 351 | 46.4 | 289 | 274 | 29.1 | 584 | 183 | 183 | 25.6
\Y 6.56 | 4.15 | 8.20 10.0 7.46 6.56 5.27 | 425 10.8 6.11 | 6.26 491 5.00 722 | 7.22 6.67
C 209 | 1.03 | 340 | 362 | 351 | 150 | 201 | 138 | 404 | 190 | 1.34 | 347 | 3.05 | 3.33 | 3.33 | 2.60
H 630 | 669 | 696 | 728 | 55.0 | 59.7 | 674 | 50.0 | 23.8 | 559 | 58.0 | 453 | 21.1 | 57.6 | 57.6 | 54.9
Table B.4: Simulation result of population percentage of seven strategies when B=2.1

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 1.23 0.43 1.59 0.45 0.30 | 048 151 127 1.00 | 040 | 0.33 231 0.54 116 | 043 0.90
Y 136 | 194 | 282 | 356 | 164 | 1.18 | 240 | 1.08 | 1.02 | 091 | 033 | 340 | 3.06 | 364 | 031 | 191
Z 3.43 6.84 | 428 | 654 | 493 | 445 725 | 421 6.25 | 4.04 1.69 794 | 4.86 841 | 3.04 | 521
W 0.21 3.62 5.21 3.88 152 | 0.10 | 4.17 0.23 6.11 | 0.13 | 054 | 5.60 3.68 16.9 | 3.48 3.70
\% 415 | 784 | 357 | 6.17 | 630 | 699 | 994 | 563 | 559 | 3.03 | 329 | 129 | 461 | 885 | 3.97 | 6.19
C 2.66 | 4.56 1.22 2.07 141 2.26 5.29 1.79 2.73 247 0.62 3.75 3.02 | 487 1.82 2.70
H 86.9 747 | 81.2 77.3 83.8 | 845 69.4 | 85.7 77.2 88.9 | 93.1 64.0 80.1 56.0 | 86.9 79.3

Table B.5: Simulation result of population percentage of seven strategies when B=7.0
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Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 0.61 0.63 | 045 | 2.01 1.00 | 0.37 0.63 | 0.25 0.54 1.64 1.50 0.40 1.04 0.39 155 0.87
Y 078 | 257 | 192 | 467 | 341 | 040 | 060 | 213 | 147 | 152 | 184 | 139 | 218 | 116 | 114 | 181
Z 5.87 | 453 | 3.59 124 | 8.27 | 497 4.32 5.24 | 477 530 | 5.70 3.20 8.80 6.63 | 5.66 5.95
w 084 | 140 | 053 | 468 | 090 | 214 | 141 | 055 | 158 | 1.75 | 069 | 147 | 212 | 035 | 0.07 | 1.37
\% 780 | 756 | 6.77 | 138 | 100 | 519 | 7.34 | 938 | 520 | 261 | 741 | 846 | 110 | 456 | 7.97 | 7.68
C 330 | 421 283 | 551 3.77 2.82 204 | 391 3.65 245 | 314 | 2.07 5.24 1.08 | 245 3.23
H 80.7 | 79.0 | 838 | 56.8 | 725 | 84.0 | 836 | 785 | 827 | 846 | 796 | 829 | 695 | 858 | 811 | 79.0
Table B.6: Simulation result of population percentage of seven strategies when B=18.6

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 063 | 1.05 | 1.08 | 0.18 | 030 | 038 | 0.77 | 025 | 015 | 062 | 024 | 0.05 | 059 | 091 | 0.62 | 0.52
Y 1.38 193 1.99 0.25 0.90 1.15 233 | 0.70 0.69 1.70 | 0.89 0.21 0.88 0.75 1.70 1.16
z 441 | 748 | 10.7 | 645 | 545 | 493 | 9.77 | 346 | 6.02 | 924 | 526 | 268 | 6.87 | 1.36 | 504 | 595
W 0.53 1.66 2.68 | 0.66 1.10 1.67 3.09 1.09 2.20 1.12 044 | 0.72 0.59 0.31 | 0.46 1.22
\% 853 | 123 | 108 | 124 | 108 | 986 | 833 | 560 | 845 | 10.7 | 446 | 559 | 105 | 3.05 | 114 | 887
C 286 | 476 | 507 | 1.72 | 340 | 262 | 350 | 146 | 242 | 399 | 255 | 1.08 | 190 | 183 | 414 | 289
H 81.6 70.7 675 | 78.2 77.9 79.3 721 | 87.4 | 80.0 725 | 86.1 89.6 78.6 91.7 | 76.5 79.3

Table B.7: Simulation result of population percentage of seven strategies when B=55.8
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C Collected Data from Studying the Social Welfare

In this appendix, the detailed data for different settings of the PGG model is collected and
listed to study the correlation of social welfare to strong stability of centralized authority,
to corruption and to legitimate hybrid-punishers.

C.l Collected Data from Applying the PGG Model

In a population; M, which consists of cooperators; X, defectors; Y, loners; Z, pool-
punishers; V, and peer-punishers; W, and N players are arbitrarily picked to join the PGG
where second-order punishment is applied. Fifteen sample simulation runs were executed
for different values of B parameter. Each sample simulation run contains 100,000 period
steps including one million generations. B values varied along wide range, from weak pool
punishment (low B values) to strong pool punishment (high B values). Various B values
are chosen to be 0.0001, 0.06, 0.7, 2.1, 6.3, 7.0, 18.6 and 55.8, where B = 0.7 is the default
value that was used by Sigmund et al. (2010) model. The social welfare has been collected
corresponding to each B value as follows:

B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
0(.)(;0 0.439 | 0.486 | 0.471 | 0.432 | 0.469 | 0.463 | 0.485 | 0.476 | 0.478 | 0.448 | 0.465 | 0.468 | 0.479 | 0.431 | 0.482 | 0.465
0.06 | 0455 | 0.463 | 0.477 | 0.452 | 0.458 | 0.468 | 0.456 | 0.459 | 0.468 | 0.451 | 0.462 | 0.455 | 0.475 | 0.467 | 0.462 | 0.462

0.7 0.334 | 0373 | 0.375 | 0.324 | 0.483 | 0.323 | 0.361 | 0.336 | 0.480 | 0.364 | 0.322 | 0.343 | 0.321 | 0.322 | 0.322 | 0.359
2.1 0.322 | 0.359 | 0.320 | 0.322 | 0.323 | 0.322 | 0.324 | 0.323 | 0.329 | 0.353 | 0.324 | 0.340 | 0.322 | 0.337 | 0.332 | 0.331
6.3 0.324 | 0321 | 0.323 | 0.322 | 0.322 | 0.324 | 0.324 | 0.323 | 0.323 | 0.325 | 0.322 | 0.323 | 0.324 | 0.326 | 0.323 | 0.324
7.0 0.322 | 0322 | 0323 | 0.322 | 0.323 | 0.322 | 0.323 | 0.322 | 0.327 | 0.323 | 0.324 | 0.323 | 0.322 | 0.323 | 0.322 | 0.323
18.6 | 0.319 | 0.318 | 0.321 | 0.320 | 0.321 | 0.320 | 0.319 | 0.316 | 0.319 | 0.320 | 0.319 | 0.320 | 0.318 | 0.319 | 0.458 | 0.329
55.8 | 0.309 | 0.308 | 0.310 | 0.308 | 0.309 | 0.310 | 0.310 | 0.309 | 0.307 | 0.309 | 0.309 | 0.309 | 0.307 | 0.309 | 0.309 | 0.309

Table C.1: Simulation result showing social welfare of five strategies for various B values,
second-order punishment severity

C.2 Collected Data from Applying Corruption to the PGG Model
In a population; M, which consists of cooperators; X, defectors; Y, loners; Z, pool-
punishers; V, peer-punishers; W, and corruptors, C, where N players are arbitrarily picked
to join the PGG where second-order punishment is applied. The corruptor parameter K =
0.5. Fifteen sample simulation runs were executed for different values of B parameter.
Each sample simulation run contains 100,000 period steps including one million
generations. B values varied along wide range, from weak pool punishment (low B values)
to strong pool punishment (high B values). Various B values are chosen to be 0.0001, 0.06,
0.7, 2.1, 6.3, 7.0, 18.6 and 55.8. The social welfare has been collected corresponding to
each B value as follows:
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B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
0(')%0 0.466 | 0.441 | 0.442 | 0.464 | 0.462 | 0.448 | 0.424 | 0.469 | 0.461 | 0.462 | 0.476 | 0.477 | 0.458 | 0.459 | 0.450 | 0.458
0.06 0.422 | 0.452 | 0.462 | 0.481 | 0.452 | 0.401 | 0.469 | 0.437 | 0.461 | 0.470 | 0.459 | 0.464 | 0.465 | 0.448 | 0.461 | 0.454
0.7 0.440 | 0.429 | 0.479 | 0.436 | 0.442 | 0.462 | 0.435 | 0.439 | 0.454 | 0.397 | 0.388 | 0.432 | 0.396 | 0.434 | 0.448 | 0.435
2.1 0.437 | 0.444 | 0.391 | 0.458 | 0.408 | 0.403 | 0.394 | 0.422 | 0.413 | 0.475 | 0.430 | 0.411 | 0.423 | 0.441 | 0.448 | 0.427
6.3 0.311 0.336 0.339 | 0.336 | 0.320 | 0.333 | 0.309 0.364 | 0.332 | 0.331 | 0.314 | 0.342 | 0.356 | 0.319 | 0.320 | 0.331
7.0 0.324 | 0.349 0.319 | 0.305 | 0.311 0.316 | 0.328 0.338 | 0.297 | 0.338 | 0.329 | 0.351 | 0.337 | 0.351 | 0.333 | 0.329
18.6 0.267 0.270 0.257 | 0.265 | 0.263 | 0.265 | 0.277 0.283 | 0.262 | 0.267 | 0.276 | 0.283 | 0.287 | 0.279 | 0.265 | 0.271
55.8 0.248 | 0.253 | 0.254 | 0.248 | 0.246 | 0.231 | 0.253 | 0.238 | 0.252 | 0.237 | 0.237 | 0.235 | 0.242 | 0.257 | 0.255 | 0.246
Table C.2: Simulation result showing social welfare of six strategies for various B values,
second-order punishment severity
C.3 Collected Data from Appling Corruptors and Hybrid-
punishers to the PGG Model
In a population; M; which consists of cooperators; X, defectors; Y, loners; Z, pool-
punishers; V, peer-punishers; W, corruptors, C, and hybrid-punishers, H, where N players
are arbitrarily picked to join the PGG where second-order punishment is applied. Fifteen
sample simulation runs were executed for different values of B parameter. Each sample
simulation run contains 100,000 period steps including one million generations. B values
varied along wide range, from weak pool punishment (low B values) to strong pool
punishment (high B values). Various B values are chosen to be 0.0001, 0.1, 0.7, 2.1, 7.0,
18.6 and 55.8. The social welfare has been collected corresponding to each B value as
follows:
B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
0(')?_0 0.478 | 0.455 | 0.473 | 0.456 | 0.462 | 0.433 | 0.485 | 0.475 | 0.477 | 0.462 | 0.490 | 0.480 | 0.468 | 0.451 | 0.462 | 0.468
0.1 0.452 | 0.451 | 0.470 | 0.476 | 0.460 | 0.453 | 0.475 | 0.466 | 0.469 | 0.436 | 0.475 | 0.463 | 0.455 | 0.477 | 0.438 | 0.462
0.7 0.435 | 0455 | 0.382 | 0.429 | 0.409 | 0.384 | 0.350 | 0.382 | 0.348 | 0.351 | 0.414 | 0.421 | 0.421 | 0.430 | 0.344 | 0.398
2.1 0.346 0.351 0.312 | 0.315 | 0.348 | 0.358 0.346 | 0.372 | 0.383 | 0.363 | 0.362 | 0.351 | 0.408 0.340 | 0.340 | 0.354
7.0 0.310 | 0.304 | 0.319 | 0.308 | 0.313 | 0.310 0.303 | 0.314 | 0.319 | 0.311 | 0.321 | 0.308 | 0.307 0.319 | 0.321 | 0.313
18.6 0.306 0.299 0.304 | 0.290 | 0.295 | 0.310 0.312 | 0.298 | 0.304 | 0.310 | 0.304 | 0.310 | 0.295 0.310 | 0.308 | 0.304
55.8 0.297 | 0.290 | 0.290 | 0.305 | 0.297 | 0.299 | 0.291 | 0.307 | 0.300 | 0.292 | 0.299 | 0.309 | 0.302 | 0.305 | 0.292 | 0.299

Table C.3: Simulation result showing social welfare of seven strategies for various B
values, second-order punishment severity

76




D The Competition between Pool-punishers and Hybrid-punishers
along Time Evolution in the Absence of Corruption

D.1 Applying Hybrid-punishers to the PGG Model

Corruption and hybrid punishment strategies are applied to the Sigmund et al. (2010) PGG
model described in chapter 3, In a population; M, which consists of cooperators; X,
defectors; Y, loners; Z, pool-punishers; V, peer-punishers; W, and hybrid-punishers, H,
where N players are arbitrarily picked to join the PGG where second-order punishment is
applied. Fifteen sample simulation runs were executed for different values of B parameter.
Each sample simulation run contains 100,000 period steps including one million
generations. B values varied along wide range, from weak pool punishment (low B values)
to strong pool punishment (high B values). Various B values are chosen to be 0.0001, 0.1,
0.7,2.1, 7.0, 18.6 and 55.8, where B = 0.7 is the default value that was used by Sigmund et
al model. The results have been collected and analyzed as follows:

As shown in Figures A.1 and A.2, also in Tables A.1 and A.2, when B =0.0001and B =
0.1 (weaker pool punishment), peer-punishers dominate and perform better than pool-
punishers and hybrid-punishers. Peer-punishers promote and maintain the cooperation
evolution.
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Figure D.1: Simulation result for pool punishment and hybrid punishment competition
when B=0.0001

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 940 | 915 | 892 | 662 | 134 | 102 | 104 | 3.71 | 768 | 764 | 3.02 | 820 | 834 | 9.66 | 3.45 | 8.00
Y 524 | 800 | 680 [ 491 | 830 | 6.09 | 100 | 2.87 | 3.83 | 496 | 148 | 445 | 576 | 563 | 181 | 535
z 551 | 453 | 618 | 435 | 924 | 406 | 680 | 269 | 3.18 | 293 | 1.79 | 470 | 3.72 | 6.34 | 165 | 451
W 776 | 742 | 763 | 825 | 665 | 786 | 704 | 899 | 838 | 83.6 | 928 | 80.6 | 805 | 76.9 | 927 | 805
\Y 119 | 101 | 117 | 034 | 063 | 061 | 060 | 027 | 1.03 | 031 | 0.14 | 0.70 | 0.70 | 0.69 | 0.13 | 0.63
H 099 | 300 | 056 | 118 | 1.72 | 031 | 165 | 051 | 043 | 050 | 0.71 | 1.33 | 092 | 066 | 0.16 | 0.98

Table D.1: Simulation result for pool punishment and hybrid punishment competition
when B=0.0001
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Figure D.2: Simulation result for pool punishment and hybrid punishment competition

when B=0.1
Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 576 | 3.96 | 505 | 6.08 | 968 | 605 | 278 | 3.19 | 985 | 7.78 | 500 | 8.08 | 508 | 9.68 | 576 | 6.25
Y 555 | 228 | 380 | 3.70 | 839 | 553 | 275 | 212 | 743 | 701 | 309 | 3.67 | 498 | 839 | 555 | 495
Zz 6.15 | 268 | 1.75 | 3.17 | 7.27 | 469 | 183 | 229 | 6.75 | 793 | 288 | 425 | 246 | 7.27 | 6.15 | 4.50
w 80.2 | 884 | 881 | 853 | 733 | 820 | 918 | 918 | 733 | 753 | 884 | 828 | 866 | 73.3 | 80.2 | 827
\% 063 | 034 | 088 | 069 | 088 | 051 | 025 | 045 | 135 | 1.37 | 035 | 0.20 | 0.41 | 0.88 | 0.63 | 0.66
H 164 | 227 | 036 | 096 | 041 | 1.09 | 046 | 011 | 1.21 | 056 | 023 | 0.94 | 042 | 041 | 1.64 | 0.85

Table D.2: Simulation result for pool punishment and hybrid punishment competition
when B=0.1

As shown in Figures A.3, A.4, A5, A6, and A.7, also in Tables A.3, A.4, A5, A6, and
A7, when B=0.7,B=2.1, B=7.0,B=18.6 and B = 55.8 (intermediate to strong pool
punishment), There are strong competition between pool-punishers and hybrid-punishers.
Pool-punishers perform slightly better than hybrid-punishers. Although pool-punishers
prevail for some time, the hybrid-punishers invade and gain ground but pool-punishers
remerge and stabilize again.
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Figure D.3: Simulation result for pool punishment and hybrid punishment competition
when B=0.7
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Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 1.56 0.53 | 0.16 | 0.06 0.07 | 0.06 | 0.06 | 0.06 0.07 146 | 0.35 0.61 0.06 0.74 | 0.06 0.42
Y 284 | 248 | 064 | 020 | 094 | 016 | 049 | 054 | 018 | 142 | 136 | 0.89 | 017 | 0.76 | 0.16 | 0.78
Z 1.29 1.18 | 053 | 049 043 | 034 | 021 | 0.59 052 | 064 | 0.63 0.82 0.32 1.00 | 021 | 434
w 198 | 502 | 327 | 0.06 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | 158 | 395 | 109 | 0.06 | 144 | 0.06 | 3.60
\% 572 | 143 | 399 | 459 | 496 | 422 | 462 | 289 | 369 | 735 | 642 | 80.1 | 423 | 57.2 | 735 | 486
H 35.0 764 | 554 | 53.1 | 488 | 57.1 529 | 69.8 62.2 706 | 294 | 6.52 56.9 25.7 | 259 | 441
Table D.3: Simulation result for pool punishment and hybrid punishment competition

when B=0.7
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Figure D.4: Simulation result for pool punishment and hybrid punishment competition
when B=2.1

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 0.06 | 0.07 | 006 | 1.02 | 191 | 0.07 | 008 | 0.06 | 0.06 | 0.80 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.30
Y 014 | 043 | 013 | 063 | 114 | 022 | 026 | 0.12 | 066 | 062 | 0.15 | 0.27 | 011 | 054 | 0.27 | 0.38
A 0.36 0.72 | 031 1.03 0.73 | 025 | 0.28 | 0.17 0.28 148 | 041 0.31 0.82 050 | 031 0.53
w 0.06 | 0.06 | 0.06 | 888 | 140 | 0.06 | 350 | 0.07 | 0.06 | 173 | 0.07 | 0.07 | 0.06 | 0.06 | 0.07 | 2.97
\% 59.9 | 439 | 549 | 443 | 306 | 254 | 346 | 498 | 355 | 506 | 653 | 504 | 70.1 | 61.7 | 50.4 | 485
H 39.3 547 | 444 | 440 514 | 739 61.2 | 49.6 63.3 29.0 | 339 48.8 28.7 37.0 | 488 | 47.2

Table D.4: Simulation result for pool punishment and hybrid punishment competition

when B=2.1
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Figure D.5: Simulation result for pool punishment and hybrid punishment competition

when B=7.0
Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 0.11 | 0.06 | 006 | 006 | 0.36 | 0.06 | 0.05 | 0.07 | 0.14 | 006 | 0.06 | 0.06 | 0.06 | 011 | 0.35 | 0.11
Y 030 | 039 | 032 | 025 | 049 | 029 | 061 | 035 | 1.25 | 025 | 049 | 045 | 098 | 0.26 | 0.36 | 4.76
4 018 | 021 | 041 | 062 | 050 | 025 | 019 | 035 | 1.19 | 027 | 033 | 0.23 | 0.46 | 0.28 | 0.40 | 0.39
w 0.76 | 0.07 | 0.06 | 0.06 | 0.06 | 0.07 | 0.06 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 059 | 0.06 | 0.15
\% 748 | 69.0 | 459 | 469 | 403 | 599 | 631 | 70.1 | 343 | 645 | 819 | 753 | 434 | 681 | 526 | 59.3
H 238 | 30.1 | 532 | 520 | 582 | 394 | 359 | 29.0 | 629 | 347 | 170 | 238 | 549 | 305 | 46.1 | 394

Table D.5: Simulation result for pool punishment and hybrid punishment competition

when B=7.0
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Figure D.6: Simulation result for pool punishment and hybrid punishment competition
when B=18.6
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Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 0.11 | 0.07 0.07 0.06 | 0.07 0.07 0.06 | 0.06 | 0.07 | 0.06 0.07 0.07 0.06 | 0.06 0.06 0.07
Y 023 | 049 | 061 | 046 | 015 | 055 | 0.17 | 012 | 095 | 0.09 | 068 | 057 | 067 | 022 | 0.21 | 041
z 026 | 020 | 044 | 016 | 029 | 038 | 024 | 0.20 | 032 | 0.24 | 0.33 0.25 066 | 044 | 0.25 0.31
W 0.11 | 0.06 | 0.06 | 0.06 | 0.07 | 0.06 | 0.09 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07
\% 296 | 702 | 648 | 67.3 | 46.1 | 653 | 79.7 | 698 | 61.2 | 609 | 66.7 | 50.1 | 57.3 | 60.2 | 52.0 | 60.1
H 69.5 28.8 | 339 31.8 | 53.2 335 19.6 29.6 37.3 | 385 321 | 488 | 412 | 389 | 473 38.9
Table D.6: Simulation result for pool punishment and hybrid punishment competition
when B=18.6
Cooperators, X’ Defectors, ¥ Loners, Z Pool-punishers, ¥  Peer-punishers, #  Hybrid, H
(- ]
100 1F 'L"\ | O ‘ -Irv -4 -y \"l i | ‘. |I 4 ‘|"r LA r ‘II! Y l - YY,, ﬂl“ o f - [ LAl TY
I ‘ o A
5 [ | | ’
5 ! |
o} i
=] 1
= | !
£l | | |
i ! | 1
| l | I H ’ f Rt |
1L ‘.]l\ b ). l A 1 A i [ 1 h “,‘ W ;l.u
0 Period 100,000
Figure D.7: Simulation result for pool punishment and hybrid punishment competition
when B=55.8
Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
X 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.06 | 0.06 | 0.07 | 0.06 | 0.06 | 0.07 | 0.07 | 0.06 | 0.06
Y 014 | 0.18 | 013 | 053 | 033 | 010 | 0.72 | 0.38 | 043 | 021 | 051 | 0.13 | 0.214 | 022 | 0.31 | 0.30
Z 0.51 | 0.56 0.35 0.27 | 047 0.12 020 | 025 | 0.26 | 0.27 0.25 0.23 0.22 | 0.27 0.30 0.30
W 0.06 | 026 | 049 | 006 | 0.07 | 0.06 | 0.06 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.11
\Y 64.7 | 333 | 608 | 48.7 | 489 | 599 | 436 | 518 | 358 | 716 | 584 | 66.9 | 419 | 326 | 654 | 523
H 34.4 65.5 | 38.0 50.2 50.1 | 39.6 | 55.2 | 47.3 63.2 | 27.7 40.6 325 575 | 66.7 33.7 | 46.8

Table D.7: Simulation result for pool punishment and hybrid punishment competition

when B=55.8

As shown in Figure A.8 and Table A.8 when B = 70.0(stronger pool punishment),
surprisingly, although there are strong competition between pool-punishers and hybrid-
punishers, hybrid-punishers perform slightly better than pool-punishers. When hybrid-
punishers prevail for some time, the pool-punishers invade and gain ground but pool-
punishers remerge again.
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Figure D.8: Simulation result for pool punishment and hybrid punishment competition
when B=70.0

Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg

0.06 | 0.19 | 0.06 [ 0.09 | 0.06 | 0.06 | 0.06 | 0.06 | 0.14 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.08

061 | 052 | 031 | 021 | 015 | 015 | 015 | 035 | 050 | 022 | 051 | 029 | 023 | 015 | 037 | 0.31

043 | 038 | 033 | 0.70 | 024 | 022 | 031 | 026 | 031 | 021 | 036 | 025 | 0.22 | 025 | 0.36 | 0.32

017 | 023 | 0.06 [ 0.14 | 0.06 | 0.07 | 0.06 | 0.06 | 006 | 0.26 | 0.06 | 0.06 | 0.23 | 0.20 | 0.07 | 0.12

636 | 383 | 316 | 550 | 312 | 294 | 583 | 29.7 | 60.7 | 40.0 | 31.1 | 56.4 | 575 | 511 | 344 | 445

I | <|[S|N|=<|X

351 | 60.2 | 676 | 438 | 682 | 69.9 | 410 | 694 | 382 | 59.1 | 67.8 | 428 | 416 | 482 | 646 | 545

Table D.8: Simulation result for pool punishment and hybrid punishment competition
when B=70.0

D.2 Results and Discussion

Fifteen sample simulation runs were executed for different values of B parameter. Each
sample simulation run contains 100,000 period steps including one million generations. B
values varied along wide range, from weak pool punishment (low B values) to strong pool
punishment (high B values). Various B values are chosen to be 0.0001, 0.1, 0.7, 2.1, 7.0,
18.6, 55.8 and 7.0 as shown in Table A.9 and Figure A.9.

0.0001 0.1 0.7 2.1 7 18.9 55.8 70.0
8.003 | 6.257 0.427 0.304 | 0.116 | 0.072 | 0.068 | 0.082

5.350 | 4.955 | 0.783 | 0.3854 | 4.761 | 0.417 | 0.301 | 0.319
4515 | 4507 | 4347 | 0535 | 0396 | 0.316 | 0.308 | 0.327
80.508 | 82.766 | 3.606 | 2.970 | 0.149 | 0.0715 | 0.109 | 0.124
0.6391 | 0.660 | 48.692 | 48.544 | 59.375 | 60.139 | 52.349 | 44.598
0.9810 | 0.852 | 44.184 | 47.258 | 39.486 | 38.981 | 46.861 | 54.548
Table D.9: Simulation result showing average population for pool punishment and hybrid

punishment competition for various B values, second-order punishment severity
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Figure D.9: Simulation result showing average population for pool punishment and hybrid
punishment competition for various B values, second-order punishment severity

Under weak centralized punishment, peer-punishers dominate and perform better than
pool-punishers and hybrid-punishers. Peer-punishers promote and maintain the
cooperation evolution.

While centralized punishment is severe, peer-punishers are totally diminished. Hybrid-
punishers and pool-punishers dominate and promote the cooperation evolution.

Briefly, in the absence of corruption, peer-punishers maintain cooperation under weak
centralized authority, while pool-punishers and hybrid-punishers maintain it under severe
centralized punishment. Further investigation must be done to study the competition
between hybrid-punishers and pool-punishers in the absence of corruption.

B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
06?-0 0.459 | 0.445 | 0.450 | 0.464 | 0.435 | 0.460 | 0.432 | 0.479 | 0.472 | 0.469 | 0.489 | 0.465 | 0.462 | 0.457 | 0.4838 | 0.462
0.1 0.454 | 0.479 | 0.476 | 0.472 | 0.441 | 0.461 | 0.481 | 0.484 | 0.444 | 0.444 | 0.477 | 0.471 | 0.470 | 0.441 | 0.454 | 0.464
0.7 0.321 | 0325 | 0.329 | 0.324 | 0.322 | 0.324 | 0.323 | 0.322 | 0.324 | 0.350 | 0.328 | 0.342 | 0.324 | 0.348 | 0.324 | 0.412
2.1 0.324 | 0323 | 0.324 | 0.339 | 0.348 | 0.324 | 0.329 | 0.324 | 0.322 | 0.352 | 0.324 | 0.324 | 0.324 | 0.322 | 0.324 | 0.329
7.0 0.323 | 0.323 | 0.322 | 0.323 0.32 0323 | 0322 | 0322 | 0.319 | 0323 | 0.321 | 0.323 | 0.320 | 0.323 | 0.323 | 0.323
18.6 | 0.320 | 0.320 | 0.318 | 0.319 | 0.320 | 0.320 | 0.320 | 0.320 | 0.318 | 0.320 | 0.320 | 0.318 | 0.318 | 0.320 | 0.320 | 0.320
55.8 | 0.311 | 0.312 | 0.312 | 0.312 | 0.312 | 0.313 | 0.309 | 0.312 | 0.310 | 0.312 | 0.310 | 0.313 | 0.312 | 0.311 | 0.312 | 0.312
70.0 | 0.308 | 0.307 | 0.310 | 0.310 | 0.310 | 0.308 | 0.310 | 0.310 | 0.307 | 0.310 | 0.308 | 0.310 | 0.310 | 0.310 | 0.307 | 0.309

Table D.10: Simulation result showing social welfare for pool punishment and hybrid
punishment competition for various B values, second-order punishment severity
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Figure D.10: Simulation result showing social welfare for pool punishment and hybrid
punishment competition for various B values, second-order punishment severity

As shown in Table A.10 and Figure A.10, under weak centralized punishment, peer-
punishers dominate and the social welfare is relatively high. While under strong
centralized punishment, pool-punishers and hybrid-punishers dominate and the social
welfare relatively decreases. This is due to the fact that pool-punishers and hybrid-
punishers pay the fixed amount to the common pool punishment even in the absence of

free-riders.
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