
1 | P a g e

ENHANCEMENT OF INFORMATION RETRIEVAL

RANKING USING FUZZY LOGIC

BY

Lubna Nassar Abd Al Aziz.

SUPERVISED BY

Dr. Khaled Shaalan

A dissertation submitted to the IT Department

In fulfilment of the requirements

for the master degree in IT

The British University in Dubai

Dubai, UAE

June 2011

2 | P a g e

Acknowledgements

First of all I want to thank god that he granted me the opportunity to meet my dedicated sincere

supervisors, Dr. Khaled Shaalan and Dr. Farahad Oroumchian. I feel grateful for all our motivating

inspiring discussions, providing me with helpful comments on my thesis and their patience and motivation. I

have learned a lot from them. I thank Dr. Khaled for the opportunities he provided me, his insightful

comments and directions and his motivating spirit and support that kept me going despite of all faced

obstacles. I enjoyed working with Dr. Farahad who never refused a meeting despite of his tight schedule, I

am grateful for his best ideas, strong algorithmic knowledge, suggestions to orientate my research towards

fuzzy Information Retrieval and for teaching me how to apply the discussed ideas using fuzzy logic. We

had fruitful collaboration that allowed me to understand and learn most of the needed background

knowledge about fuzzy information retrieval.

3 | P a g e

 TABLE OF CONTENT:

1. Introduction ... 7

1.1 Research Questions ... 7

1.2 Scope ... 8

1.3 Contribution summary... 8

2. Background and Literature review ... 9

2.1 Overview of Information retrieval ... 9

2.1.1 Indexing .. 10

2.1.2 Scoring models ... 13

2.1.2.1 Vector space .. 13

2.1.2.2 Probabilistic model... 15

2.1.2.3 Boolean information retrieval (BIR) model.. 17

2.1.2.4 Fuzzy model... 18

2.1.2.5 Early fuzzy logic retrieval models 21

2.1.3 Information retrieval system evaluation .. 22

2.2 Related applications of fuzzy logic.. 23

3. Proposed solution …... 25

3.1 Proposed IR system Architecture ... 25

3.1.1 Preprocessing and indexing .. 25

3.1.2 Fuzzification ... 26

3.1.3 Fuzzy inference system (FIS) .. 28

3.1.4 Using hedges ... 29

3.1.5 Defuzzification ... 31

3.2 Proposed processes ... 31

4. Experiments and result analysis ... 34

4.1 Evaluation criteria ... 34

4.2 Finding best membership functions ... 35

4.2.1 The title membership function .. 35

4.2.2 The overlap membership function ... 36

4.2.3 The df-ratio membership function ... 40

4.2.4 The tf-ratio membership function ... 40

4.3 Experimenting with FIS rules ... 42

4.4 Finding the best weights for the defuzzification .. 42

4.5 Finding Hedges function for IR ….. 42

4.6 Combining the best of all trials ... 44

4.7 Discussion ……….. 46

5. Conclusion & Future enhancements .. 47

5.1 Conclusion ………... 47

5.2 Future scope ….. 48

Reference ... 49

Appendix A: Statistical distributions and experiments results .. 50

Appendix B: Source code of system modules ... 60

4 | P a g e

LIST OF FIGURES 3

2.1 Example for an index: .. 11

2.2 Instead of keeping (termID, docIDs) pairs in the index the 3-tuple (termID, docfrequency,

docIDs) is kept.. 12

2.3 Characteristics Summary of the statistical retrieval approaches ... 16

2.4 Fuzzy system information flow.. 18

2.5 Membership function in the high relevance fuzzy variable ... 19

2.6 Sample of a topic in TREC 7[6]... 22

3.1 System processes ... 25

3.2 The S-shape and bell-shape membership functions for the tf ratio and df ratio....................... 27

3.3 The medium membership functions for the title and overlap.. 28

3.4 The intuitive rule base of the FIS …... 28

3.5 Data flow diagram of the system.. 31

4.1 Old and new title fuzzy membership functions ... 36

4.2 Comparison between overlap fuzzy membership functions .. 37

4.3 The triangle, L-shape membership functions for df ratio .. 40

4.4 The triangle, L-shape membership functions for tf ratio .. 41

4.5 Old and new rules ... 42

4.6 Precision at P10 contributed by Lucene and my IR-FIS different hedge functions at P10...... 44

4.7 The improvement contributed by Rubens R-FIS and my IR-FIS different hedge functions to
Lucene at P10.. 44

4.8 Performance based on precision at interpolated recall .. 45

4.9 Performance based on precision at documents cut offs ... 45

LIST OF FUNCTIONS

2.1 N-dimensional vector space…... 13

2.2 High document relevance …………………………………... 19

2.3 Relevance defuzzification …... 21

2.4 Precision and recall.. 23

3.1 Term Frequency Ratio (tfr) .. 26

3.2 Document Frequency (df) .. 26

3.3 Overlap .. 26

3.4 Title ………………………………………………………….. 26

3.5 S-shape function ….. 27

3.6 Standard hedges function….. 30

3.7 Customized hedges function…... 30

3.8 Weighted average relevance defuzzification …... 31

4.1 Defuzzification of relevance …………………………………... 42

5 | P a g e

 LIST OF TABLES

2.1 Classical IR V.s. web ... 10

2.2 Information Retrieval V.s. Data Retrieval ... 10

2.3 This table shows how weights are calculated in the vector space model................................. 14

2.4 Term document matrix .. 17

4.1 The structure of Report one of the TREC-Eval evaluation Software 34

4.2 Precision at different Recall levels (TREC-Eval Report two) .. 35

4.3 Precision at Document cut offs (TREC-Eval Report three) .. 35

4.4 Comparison between old and new title fuzzy membership functions...................................... 36

4.5 Comparison between overlap fuzzy membership functions runs... 38

4.6 Comparison between the overlap fuzzy membership functions runs when only the overlap
parameter is considered …... 39

4.7 Comparison between the title fuzzy membership function with and without hedges when

only the title parameter is considered... 39

4.8 Comparison between df fuzzy membership functions (triangle and S-shape) with and

without hedges when only the df parameter is considered... 40

4.9 How using hedges with tf S-shape function outperformed the function without hedges……. 41

4.10 Comparison between tfr fuzzy membership functions (triangle and S-shape) with and

without hedges when only the tfr parameter is considered... 41

4.11 Using different weights for defuzzification: …………………………………………..….…. 42

4.12 Comparing the new hedge function 3.7 with performance without hedges............................. 43

4.13 Comparing the new hedge function 3.7 with the old one 3.6... 43

4.14 Rubens R-FIS improvement over Lucene’s…….…... 43

4.15 My IR-FIS improvement over Lucene’s with the different hedge functions 43

4.16 Comparison between system performance using different function combinations.................. 44

4.17 Comparison between system performances with and without title fuzzy variable 45

4.18 How my IR-FIS outperformed Lucene & R-FIS... 46

4.19 Comparing the percentages of improvement over Lucene’s by the two tried hedge functions 46

LIST OF ALGORITHMS

2.1 Preprocessing sub-module …... 11

2.2 Indexing module .. 11

3.1 System processes ... 33

6 | P a g e

Abstract:

Having high precision is essential for improving the quality of information retrieval

(IR). In this dissertation an IR model is presented to improve the IR ranking function

by trying to utilize fuzzy logic in the process of document ranking. Fuzzy logic is

chosen since it is a formal, flexible, high performance model for information retrieval

that tolerates the uncertainty inherent in natural language [14]. This work extends

earlier fuzzy IR models by adding more fuzzy linguistic values, fuzzy variables, using

different membership functions, using hedges
1
 and rules that consider the document

structure. The document is quantified by describing it using features/linguistic

variables that contribute most to its relevance to the query like the term frequency

ratio, the document frequeny ratio, the title frequency and the document query term

overlap. Linguistic values are assigned to each of these variables that associate them

with fuzzy membership degrees of high, low, and medium using fuzzy membership

functions. Different membership functions were investigated for each of these

linguistic variables and the best function was chosen for each variable which

contributed the most to the IR precision. An inference engine was built using fuzzy

rules that handle these variables to measure the degree of document relevance to the

query. Moreover, adding hedges to the query terms was investigated. Hedges served as

modifiers of the relevance values by allowing users to emphasize the importance of

the query terms to their information needs. It was found that using the standard hedges

functions improved the performance slightly by 1.6% over the baseline results,

achieved by Lucene
2
 at the 10

th
 document cutoff. However their meaning contradicted

the IR assumptions which necessitated a modification to the hedges functions to match

the purpose behind using them in information retrieval. After modifying the hedges

function the performance was raised up to 4.7%; which is more than three times better

than the standard hedges functions. Furthermore, after comparing my Improved

Ranking Fuzzy Inference System (IR-FIS) results to a comparable fuzzy logic system,

Ruben’s R-FIS, it was found that my model’s improvement to Lucene’s precision is

five times better than Rubens’ improvement at the 10
th
 document cutoff.

Hedges
1
: Hedges are adjectives or adverbs that precede atomic terms like very, slightly and indeed. In any

language there are atomic terms like heavy, old, sick, etc. These terms are referred to as linguistic variables in

fuzzy logic. These variables are used to describe uncertain concepts. The membership function for these terms
can be modified using linguistic hedges[29].

Lucene
 2

: Lucene is a state of the art vector based search engine written in Java [19]. It is a free open source

IR software library with full features. It allows indexing and text search with high performance [16].

7 | P a g e

Chapter 1

Introduction

In the proposed IR model, fuzzy logic was successfully used as an attempt to improve the

performance of the information retrieval. To achieve this, four fuzzy variables or parameters that

can quantify the main features of text documents were used; the term frequency ratio (tfr),

document frequency ratio (dfr), title frequency and the ratio of the number of query terms that

appear in one document to the length of the query (overlap). Three fuzzy values were associated

with each variable, which are high, medium and low, to represent their linguistic values. A

variety of membership functions were tested for these values to explore their effect on

performance; like the bell shaped, S-shaped, L-shaped, trapezoidal and triangular functions.

Afterwards, all these variables were considered in the construction of the rule base of the fuzzy

inference system. Using hedges, which are unary operators on fuzzy sets [30], was investigated

and it did improve the precision especially after changing the function to fit the IR field. IR-FIS

Search engine results were compared to other two IR models, one model was the Lucene which

is based on the vector space model and another model was a fuzzy logic model called R-FIS by

Rubens. IR-FIS outperformed both at the 10
th
 document cutoff (P10). In this dissertation,

particularly in chapter 2, an overview is given for the main models used in information retrieval

like the vector space, binary, probabilistic models, and the fuzzy logic model. Detailed

explanation of the proposed fuzzy system is given in chapter 3. Chapter 4 describes experiments

setup and result discussion. Finally, chapter 5 sums up the achievements and has also the needed

future enhancements.

1.1 Research Questions

The dissertation is addressing the following questions.

 How different membership functions would affect the precision in a fuzzy information

retrieval?

 How the structure of a document can be utilized in a fuzzy IR and what would be its effect?

 How using more fuzzy values such as high, medium, and low would affect precision?

 Whether incorporating fuzzy hedges in queries will improve precision or not?

8 | P a g e

1.2 Scope

The main aim is to study using fuzzy logic in the field of information retrieval for

retrieving English documents. The dissertation concentrated on improving the precision of the IR

system which is having high relevant fraction of documents in the returned list. This was

approached by utilizing the structure of the document (title,body), ratio of match between the

query and the document (overlap), using more fuzzy values, enhancing the fuzzy membership

functions, adding more inference rules and investigating the effectiveness of using hedges.

The speed of the retrieval process was not considered as a main search objective in this

study since it is immaterial for the purpose of this thesis. Using languages other than English,

enhancing the efficiency of the IR process, or considering other retrieval models other than the

fuzzy logic were all considered as out of scope topics.

1.3 Contribution summary

I was able to build a fuzzy IR model (IR-FIS) that has outperformed Lucene [16] at

document cut off P10 by 4.7% which is 5 times better improvement than the one reached by

Rubens R-FIS [19]. I experimented with my IR system to find answers for my research

questions.

 First, after studying the different membership functions I discovered that the S-shape

function and the bell function were more effective than the triangle and L-shape functions.

 Second, considering the document structure as (title, body) in the retrieval process didn’t

help the performance which made me recommend investigating the importance of

considering more important contextual factors like having the term in the first line of the

paragraph or beginning of the document.

 Third, using more fuzzy values, like medium and low, plus considering them in the fuzzy

rules led to better results than those achieved by the systems that ignored them like Rubens

R-FIS in [19].

 It was found that using hedges did improve precision only when it was used in a way that

matched the information retrieval field. After experimenting with using hedges in the same

way others are using it in other fields, I discovered that their way was counterintuitive when

used in the IR field. Therefore, I deduced that the hedges function should be adjusted to

match the goal behind using it in IR. Changing the function resulted in improving the

performance by nearly three times compared to the performance achieved when the old

commonly used hedges function 3.6 was used.

More elaboration on my contribution will be given in sections 3.1 and 4.5.

9 | P a g e

Chapter 2

Background and Literature review

This chapter starts by defining the basic meaning of information retrieval and how

it differs from other data retrieval systems. It also elaborates the two stages of

information retrieval; indexing and scoring. This is followed by a description of the most

commonly used retrieval models. Four scoring models are discussed, the vector space,

probabilistic, binary and fuzzy models. The results of using each of these models are

usually evaluated using a standard IR evaluation system to be able to compare their

performance. Section 2.1.3 gives a brief description of the commonly used IR system

evaluation techniques. Finally, the chapter ends by discussing applications of fuzzy logic

in the IR field as well as other fields and how this affected the IR-FIS construction.

 2.1 Overview of Information retrieval

The formal definition for information retrieval is as follows:

―Information retrieval (IR) is finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from within large

collections (usually stored on computers) “[4].

Nowadays information retrieval is replacing old sorts of database search or data retrieval

systems where the value of a key field is used to search a table for the required record. In

relational databases the data searched is usually well structured while with information retrieval

the documents can be unstructured or semi-structured, where the documents have some sort of

basic structure like the title and body. In information retrieval, each document is perceived as a

set of words and the collection of documents over which we perform information retrieval is

called a corpus. The main task of any information retrieval system is to provide a list of

documents which are relevant to the user information need that is conveyed to the computer

through the query provided by the user. The user usually needs relevant documents even if the

exact terms s/he used in the provided query were not present in these documents. Therefore, a

major difference between information retrieval (IR) systems and other kinds of information

systems is the uncertainty nature of IR. Table 2.2 elaborates on the difference between the IR

and data retrieval systems [15].

 The data retrieval systems were first used in libraries and then the need was evident for

journals and doctors record keeping where information used to have a well-defined structure;

records with predefined fields. But then there was also a high need for information retrieval in

governments and other organizations where access is available only to unstructured information

which is the focus of this study.

11 | P a g e

This type of information retrieval is also different from the web IR systems that aim at

finding information over the web where billions of web pages are available and fast search

engines are required [4]. Table 2.2 compares the web IR and the classical IR systems [15].

2.1.1 Indexing:

To simplify and speed up the process of information retrieval, preprocessing of the

documents available should first take place. One of the main processes that should be completed

before starting the retrieval process is indexing. The input to this process is all the documents in

the corpus and the output is an index that has all the main terms available across all these

documents, a term here is any non-trivial word reduced to its word stem, along with its

associated list of documents where the term occurred at least once. This index should be built in

advance in order to gain the benefits of indexing at retrieval time. The indexing process includes

four main sub-processes which are document tokenization, stop words removal, tokens

normalization, and stemming; see algorithms 2.1 and 2.2.

After collecting the documents to be indexed, i.e. the corpus, the preprocessing algorithm

2.1, which is considered as a sub-module for the indexing process, is applied not only to each

document in the document corpus but to each query as well. The sub-module preprocessing

accepts the list of raw documents or queries and preprocesses it to prepare it for indexing. The

indexing module calls the preprocessing one at the beginning and then creates the index using

the main terms in all the corpus documents. These terms form the content of what is sometimes

called the IR dictionary.

Here are detailed steps of the preprocessing and indexing modules. After collecting the

documents and the queries the first step is to tokenize each document or query and this means

turning each document or query into a list of tokens. As a result, any sentence in the text will be

split at spaces and any punctuation characters will be removed. The second step is dropping stop

words or frequent terms which occur with high frequency across the corpus to the extent that it

loses its significance. For example, common words like ―the‖, ―and‖, or ―what‖ are irrelevant to

the document or query content. These words should be found and deleted before starting the

retrieval process to reduce the amount of processing and speed up the retrieval. The following

list has twenty five most commonly used stop words; a, an, and, are, as, at, be, by, for, from, has,

he, in, is, it, its, of, on, that, the, to, was, were, will, or with [3].

 Information retrieval Data Retrieval

Data Free text, unstructured Database tables,
structured

Queries Keywords, Natural
language

SQL, Relational algebras

Results Approximate matches Exact matches

Results Ordered by relevance Unordered

Accessibility Non-expert humans Knowledgeable users or
automatic processes

 Classical IR Web IR

Volume Large Huge

Data quality Clean, no dups Noisy, dups

Data change

rate

Infrequent In flux

Data

accessibility

Accessible Partially
accessible

Format diversity Homogeneous Widely diverse

Documents Text HTML

of matches Small Large

IR techniques Content-based Link-based

Table 2.2: Information Retrieval V.s. Data Retrieval [15] Table 2.1: Classical IR V.s. web IR [15]

11 | P a g e

The third step is the normalization of tokens so term matching can be achieved regardless

of differences in the token character sequence [4]. The index should only contain terms from the

IR dictionary not tokens and the difference is that a term is a normalized type which is a class of

all tokens containing the same character sequence. This can be achieved for example by

changing everything into lower case so that ―Hard‖ is the same as ―hard‖. Also by removing

characters like hyphens which allows two tokens like ―pre-process‖ and ―preprocess‖ to be

mapped into the same term ―preprocess‖.

The fourth and last step before indexing is stemming which should take place to bring the

words to their root. The performance of an IR system will be improved if term groups like

(direct directive directed directing direction directions), are mapped into a single term like

_direct which is good since it will lead to finding the word regardless of its format. This may be

done by removing the various suffixes (-ED, -ING, -ION, IONS) to leave the single term. So the

process refers to getting rid of the ends of the words and the removal of derivational affixes like

chopping the ―ness‖ from the end of the word so that two words like ―clever‖ and ―cleverness‖

are mapped to the same term _clever[4]. This process will reduce the total number of terms in

the IR system, and hence reduce the size and complexity of the data in the system, which is

always advantageous.

All mentioned steps should be applied in the same way to the queries before starting the

retrieval process. Now that the documents are preprocessed we can consider the group of terms

available in the documents as the IR dictionary. Finally, the index is created according to

algorithms 2.1 and 2.2. Figure 2.1 shows the output as a sample index which has the term and the

list of documents where it occurred.

 Term Document list

brutus d1,d3,d6,d7

caesar d1, d2, d4, d8, d9

julius d10

killed d8

noble d5

with d1, d2, d3, d5

Figure 2.1: Example of an index [4]

Preprocessing(x)

{ for each document (d) in x

 {
d = Tokenize(d)
d=Stop-word-removal(d)

d= Normalization(d)
d=stemming(d)
add d to the preprocessed-x
}

 Return (preprocessed-x) }

Algorithm 2.1: Preprocessing sub-module

Indexing (corpus)

{ preprocessed-corpus = Preprocessing(corpus)
 index=an empty file
 for each document(d) in the preprocessed-corpus

 for each term (t) in d
 {

 if (t in index) then append d to the document list of t
 else add a new index entry to index that has t and d

 }
 return(index)}}

Algorithm 2.2 : Indexing module

12 | P a g e

 An index can also have the list of terms in the IR dictionary and associated with each

term, not only the list of document ids where the term is found, but also the frequency of its

occurrence in each of these documents as shown in Figure 2.2. So instead of keeping (termID,

docIDs) pairs in the index, the 3-tuples (termID, docIDs, termfrequency) are kept. Here the

frequency can be utilized in the ranking process later on.

Doc 1
I did enact Julius Caesar: I was killed i’ the capitol;
Brutus killed me.

Doc 2
So let it be with Caesar. The noble Brutus hath
told you Caesar was ambitious:

Term docID



term docID



term Doc.

Freq.

 Postings

lists

I 1 ambitious 2 ambitious 1  2

did 1 be 2 be 1  2

enact 1 brutus 1 brutus 2  1 2

julius 1 brutus 2 capitol 1  1

caesar 1 capitol 1 caesar 2  1 2

I 1 caesar 1 did 1  1

was 1 caesar 2 enact 1  1

killed 1 caesar 2 hath 1  2

i’ 1 did 1 I 1  1

the 1 enact 1 i’ 1  1

capitol 1 hath 1 it 1  2

brutus 1 I 1 julius 1  1

killed 1 I 1 killed 1  1

me 1 i’ 1 let 1  2

so 2 It 2 me 1  1

let 2 julius 1 noble 1  2

it 2 killed 1 so 1  2

be 2 killed 1 the 2  1 2

with 2 let 2 told 1  2

caesar 2 me 1 you 1  2

the 2 noble 2 was 2  1 2

noble 2 so 2 with 3  2

brutus 2 the 1

hath 2 the 2

told 2 told 2

you 2 you 2

caesar 2 was 1

was 2 was 2

ambitious 2 with 2

Figure 2.2: Instead of keeping (termID, docIDs) pairs in the index the 3-tuple (termID, docfrequency, docIDs) is kept [4]

13 | P a g e

2.1.2 Scoring models:

To be able to give a score for each document according to its relevance to the query, there

should be a method by which documents can get a weight representing their degree of relevance

which is the scoring model. There is more than one model for scoring and they differ in their

ranking process. One model may base the document weight on the query term frequency of

occurrence in the document regardless of where it appears. Other models can give different

weights according to the position of the term in the document or the importance of the term in the

query. For example, the vector space scoring model [11], uses the free text queries where the

order of the query terms has no significance. The query and the document are considered as an

unordered set of terms with no difference in term importance resulting from the order of term

appearance in the query or in the document. Ranked Boolean retrieval [27], on the other hand, is

another way of scoring that relies on zone scoring which means different weights are given to the

terms according to the place or the zone they appear in within the document. So the weight given

to the terms occurring in the title is different from that given to the terms occurring in the body

[4].

These models of information retrieval also differ in their document as well as query

representation in addition to their methods of matching them and ranking the results [14]. Several

models of information retrieval were used before fuzzy logic, like the vector space model, the

binary model and the probabilistic IR model as will be discussed in the coming sections.

2.1.2.1 Vector space:

Vector space retrieval can be used to find documents with high term frequency. The idea

behind the vector space is that each document is represented by the weights of its terms (t1 to tn)

as a vector of weights. Therefore an n-dimensional vector space has n unique terms and each

unique term in the document or the query corresponds to a dimension in the space.

 V(d) = (w(t1, d), w(t2, d), . . . , w(tn, d)) as in [11] [2.1]

These weights are usually calculated by the tf – idf measures as shown in Table 2.3. The

use of term-weighting based on the distribution of a term within a collection, like using the tf

measure, always improves the performance or at least does not have negative effect on

performance. The vector space also gives higher weights to infrequent terms across the

documents even if they appear frequently in the document itself; like using the IDF measure [2].

Each query is represented as a vector too which is V(q) and the relevance of the

document to the query is represented by a score that is calculated by finding the inner product of

the query vector and the document vector, (score(q, d) = v (q).v (d)). This similarity value can be

normalized afterward by dividing the score by the document length, scores[d] <- scores[d]

divided by length[d][4].

14 | P a g e

Ranking according to this score should take place to limit the results returned since large

document sets are often retrieved so only the top K scores should be selected [11]. Ranking

models can be divided into two types: those that rank the query against each document and those

that rank the query against the group of related documents [5]. The first type of ranking model is

the one used in the vector space model as well as the probabilistic model. The following table

shows an example of how weight calculation is done based on the tf and IDF measures. It

assumes having three documents and one query and ends up with three document vectors for

D1,D2 and D3

Like any IR model, the vector space model has advantages as well as draw backs. The

first benefit of using vector space is having ranked retrieval. The second is the fact that weighing

the terms is done according to their importance. The third is being able to achieve partial

matching [31]. On the other hand, the model has its disadvantages as well. One of the vector

space weaknesses is that the weights are calculated intuitively since they are not based on a

formal theory [31]. Another main disadvantage of using vector space is that the model assumes

that there are no relations between the terms and this assumption is not realistic and can

negatively affect precision. This is due to the fact that it can lead to the retrieval of irrelevant

documents because of ―Polysemy‖; which refers to having the same term referring to two

different meanings depending on the context. Recall can also decline by failing to retrieve

documents that are relevant and this is due to ―Synonymity‖; where two different terms can refer

to the same thing [6].

Table 2.3: This table shows how weights are calculated in the vector space model [5]

15 | P a g e

2.1.2.2 Probabilistic model:

Another main IR ranking model is the probabilistic model which is another model that

provides reasoning under uncertainty. It is an information retrieval system that takes into account

the uncertainty in the presentation of information needs and documents. This model ranks the

documents based on their probability of relevance to the query, given all the evidences available.

There can be many sources of evidence used by the probabilistic retrieval model; the most

common one is the statistical distribution of the terms in both the relevant and non-relevant

documents. Information about the statistical distribution of terms was used by researchers as a

trial to improve the IR performance, which means the frequencies with which terms occur in

documents, document corpus, or subsets of document collections such as documents considered

relevant to a query [6]. The information about the term distribution is used to assign probability

of relevance to each document in the set so that ranking of the retrieved documents is based on

its probability of relevance [2].

One of the first and most influential information retrieval methods that uses probability is

the Binary Independence Model [4], where document d is relevant iff P(R=1|d,q) > P(R=0|d,q).

A document (d) and a query (q) are represented by the vector where xt=1 if the

term (t) is present in the document d or the query q and xt=0 if t is not present in d or q [1]. The

model doesn’t recognize any association between terms. Documents are then ordered in

descending order by the estimated probability of relevance or the P(Info need | document), which

is the probability that an information need is satisfied by a given document.

The model usually needs prior knowledge before retrieval which is sometimes considered

as a main disadvantage. For example, weight computation considers term frequency in the

relevant and irrelevant documents, which necessitates that the relevant documents are known or

that these frequencies can be reliably estimated. So if we knew the percentage of relevant

documents in the collection, then we could use this number to estimate and

[20]. Moreover, it requires the use of at least a few relevant documents then the

user can assign relevance judgments to documents in relation to his query then the task of the IR

system is to reach an approximation of the set of relevant documents which are ranked using

their probabilities. When users provide the retrieval system with relevance feedback, this

information is used to re-compute the probabilities so that the probabilities of the documents that

have the query terms which appeared in the user list of relevant documents are increased,

whereas the probabilities are decreased for those that have the query terms but did not appear in

the user relevant list. That is why some people see using probabilistic indexing as related to

relevance feed-back more than to term-weighting schemes as the case with vector space model

[2].

16 | P a g e

The statistical approaches as shown in Figure 2.3, whether the vector space or the

probabilistic models, have their benefits as well as drawbacks. As for the benefits, first, they

provide rank of relevance that enables the user to specify relevance threshold to reduce the

amount of retrieved documents and get the most relevant ones. Second, queries can be

formulated using natural language which is easier for the user than using Boolean expressions.

Third, the uncertainty nature of query concepts can be represented by these models. However,

there are disadvantages as well like having a limited expressive power so (A and B) or C can’t be

represented by a vector space query. They also lack the structure to express phrases. In addition,

their relevance finding has a high computation cost. Moreover, they can’t suggest how to modify

a query if needed; they only provide the user with limited ranked linear list of results.

Additionally, users should use words used in the relevant documents and the queries need to

contain a large number of words in order to improve the retrieval performance [2].

Figure 2.3: Characteristics summary of the statistical retrieval approaches; vector space and
probabilistic model [2]

17 | P a g e

2.1.2.3 Boolean information retrieval (BIR) model:

The Boolean model of information retrieval (BIR) is a classical IR model and, at the

same time, the first and most adopted one. It was used by virtually all commercial IR systems

[26]. To avoid linear processing of documents, for each query a document index is created in

advance which might look as follows:

Where one means that the term exists in the document and zero means it does not. Boolean

systems are used heavily in IR systems for searching large document collections. In a Boolean

IR system, documents are represented by sets of keywords, usually stored in an inverted file; an

inverted file is a list of keywords associated with the identifiers of the documents in which they

occur. Boolean queries can be seen as keywords connected by the Boolean logical operators

(AND, OR, NOT).

Queries are given in a disjunctive normal form so information retrieval can be done in

two steps. If we consider the query as a set of terms tj’s then the first step is to get the set of

documents (Sj) where the term tj exists and do this for each query term then we get the union of

the intersection of all these document sets (Sj’s) and this is considered the set of relevant

documents.

 Q = (Wi OR Wk OR ...) AND ... AND (Wj OR Ws OR ...)

1. Sj = {Di|Wj element of Di} …depending on whether W=tj or Wj=NON tj

2. UNION (INTERSECTION Sj) …this is the set of relevant documents [26]

The advantages of such model can be summarized in its clean formalism, simple

implementation, and in being intuitive. Despite of this, it can be seen as a process of data

retrieval more than information retrieval and this is due to its disadvantages that can be evident

in its reliance on exact matches which can lead to having too few or too many results. Moreover,

it deals with all the terms as having equal weights which is unrealistic. Beside the fact that it is

difficult to rank retrieved documents although there are documents which are more important

than others. Finally, it is not always an easy straight forward process to translate the information

need into a well formed Boolean expression [26].

 Term 1 Term 2 Term 3

Doc 1 1 1 1

Doc 2 0 1 1

Doc 3 1 0 1

 Table 2.4: Term document matrix

http://en.wikipedia.org/wiki/Information_retrieval

18 | P a g e

2.1.2.4 Fuzzy model

The Fuzzy logic model combines the advantages of the vector space model as well as the

Boolean model. Its flexibility and high performance resemble the vector space where weights are

utilized in the ranking function plus having the formalism and simplicity of the Boolean model

[19]. Furthermore, fuzzy logic can be seen as a computation with words instead of numbers, due

to using linguistic variables, which makes it tolerate the imprecision and uncertainty that is

inherent in the representation of textual information which is based on natural language [14]. All

this makes fuzzy logic a good candidate model for information retrieval where natural language

is used in forming the queries and documents.

The fuzzy model accepts document statistics and produces one relevance value

representing the degree of document relevance to the considered query. It has three main tasks as

shown in Figure 2.4. The fuzzification, the fuzzy inference system and it ends by the

defuzzification. In this section each task will be explained by using an example.

In 1965, Lotfi Zadeh introduced the theory of fuzzy logic in a paper. He introduced the

idea of fuzzy sets where the membership of domain values in any of these sets is represented by

a membership function that maps the values of the domain into a number that ranges from zero,

which means the value is not a member in the set, and one, which means the value is a full

member of the set [14]. The range of membership values that are greater than zero and less than

one mean that the domain value has a partial membership in the fuzzy set with a degree

proportional to the membership value that is a fraction of one. On the other hand, in the binary or

discrete sets the membership function can be represented as follows ;

so the range will either be zero or one. In fuzzy logic the range of values will not only be 0 or 1

but will be any value in the interval that starts by zero and ends at one: .

The difference between using the discrete and the fuzzy model will be elaborated by

giving an example. When using a query term to retrieve relevant documents, if we are using the

discrete method then we want a function that will say either the document is relevant or not

relevant but will not be able to find documents that are partially relevant. If we base the

relevance on one variable like the term frequency ratio (tfr) which is the term frequency divided

by the document length (tf divided by doc-length) then a discrete method of deciding the

relevance can be represented as follows: if (tfr > 0.3)  document relevance = 1

 if (tfr ≤ 0.3) document relevance = 0

Document

parameters

Figure 2.4: Fuzzy system information flow

Relevance

value

Fuzzification FIS
De-

fuzzification

19 | P a g e

 relevance(d) =

Here the membership of the document in the set of relevant documents is decided based

on the value of the query term ratio in that document. So the term ratio values are mapped only

to two discrete values 0 or 1, it is either a non-member or a full member in the set of relevant

documents.

This means that any document can only be either relevant or not but there are no degrees

of relevance which excludes a whole range of documents that may be partially relevant.

Conversely, the fuzzy way of representing the relevance is different in that it allows for degrees

of relevance which we call the relevance fuzzy values. So we can have high, medium and low

relevance fuzzy values. Other fuzzy values like very high and very low relevance can always be

added to achieve higher precision. Moreover, these values are fuzzy which allows any document

to have degrees of membership not only be a member or non-member.

We will keep our assumption that the relevance will only be decided based on one

variable which is the term frequency ratio. In addition, we will only consider one fuzzy value,

which is the high relevance value. The membership would be calculated using a function like the

following, which can be seen as an example of using the L-shape membership function.

high-relevance (d) = [2.2]

Other functions can be investigated as well like the triangular, trapezoidal, and the S-

shape function or a combination of some of them [24]. Furthermore, we can add more variables

other that the term frequency (tfr) like the document frequency ratio (df) or the overlap. More

fuzzy values other than high relevance can also be added like medium and low relevance.

This stage of deciding the fuzzy variables, fuzzy values, the fuzzy membership functions

and getting the membership values is called fuzzification. Now if we decide to use more than

one fuzzy variable then each variable should have its own fuzzy values. For example, if we

consider the df variable beside using the tfr variable then we should have fuzzy values for the tfr

as well as the df. The df represents the document frequency ratio, or the number of documents

where the term appeared divided by the number of documents in the corpus.

0 tfr <= 0.3

1 tfr > 0.3

0 tfr <= 0.2

 0.2 < tfr <0.7

1 tfr >= 0.7

0.2 0.7

1

Figure 2.5: membership function in the high relevance fuzzy variable.

21 | P a g e

The tfr fuzzy values can be the high tfr, medium tfr, and low tfr. Each document has three

values associated with each of its terms. These values represent the degree of document

membership in each of these sets depending on the value of the term frequency in the document.

The same thing can be said with regard to the document frequency ratio variable (df) where the

fuzzy values can be low df, medium df, and high df.

Each term will have three fuzzy values associated with it that represent the degree of the

term membership to each of these values depending on the fraction of corpus documents that has

the term t appearing in it. These fuzzy values should then be related to the document relevance

using fuzzy rules which can be intuitive rules or based on experience. This stage of rule

evaluation is the FIS stage. Assume that we have three rules as a sample of a fuzzy rule base and

that we have two relevance fuzzy values; high relevance and low relevance then the rule base

will be as follows:

 if ((high-tfr) And (low-df)) then high-relevance …rule 1

 if ((medium-tfr) And (low-df)) then high-relevance …rule 2

 if ((low-tfr) And (high-df)) then low-relevance …rule 3

We can then replace the parameter (high-tfr) by the document high-tfr fuzzy value which is

based on the term frequency in the document. We should do the same thing with the rest of the

parameters.

It is worth mentioning here that there are two types of operators used in fuzzy logic,

numeric and linguistic operators. When using the Boolean logic operators AND, OR, and NOT

in fuzzy logic they are redefined according to [9] as the minimum, maximum, and complement

respectively and they are called the Zadeh operators. In [9], for the fuzzy variables x and y:

NOT x = (1 - truth(x))

x AND y = minimum(truth(x), truth(y))

x OR y = maximum(truth(x), truth(y))

The linguistic operators on the other hand are called hedges. These are generally adverbs

such as "very", or "Indeed", which are sometimes called modifiers since they change the

meaning of a set by using a mathematical formula as will be elaborated in section 3.1[9].

Since these rules can be seen as disjunctions of conjunctions and according to the

definition of Zadeh operators, we take the minimum of any two Anded values then we take the

maximum of the relevance values that belong to the same fuzzy value. We should end up with

three relevance values high, medium and low relevance. This is best described by the following

example. Assume that (high-tfr = 0.7, medium-tfr =0.4, low-tfr =0.1, high-df = 0.3, low-df=0.6),

it follows that:

high relevance = minimum (0.7, 0.6) = 0.6 ….this is after applying rule 1

high relevance = minimum (0.4, 0.6) = 0.4 ….this is after applying rule 2

low relevance = minimum (0.1, 0.3) = 0.1 ….this is after applying rule 3

These rules are ORed since it is a disjunction, then the first two rules can be combined together

as follows: high relevance = maximum (0.6, 0.4) =0.6.

http://en.wikipedia.org/wiki/Formula

21 | P a g e

Now we have two fuzzy values for the considered document representing its degree of high and

low relevance; in other words the document is 0.1 low relevant and 0.6 high relevant to the

query. The last task that should start now is defuzzification, which is moving from fuzzy values

into having one value that represents the relevance of the document to the query and can be used

to rank the document among all retrieved documents. The defuzzification can be done by

applying a centroid function as in [19] or the weighted average method. The weighted average is

calculated by combining the deduced values for the high and low relevance after multiplying

them by their weights and dividing by the sum of these weights which results in a single value.

We will assume the weights; 1 for the high and 0.1 for the low relevance. After using the

weighted average , the resulting document relevance is 0.554 which is calculated as follows:

Relevance-Value

 [2.3]

In this example only two document fuzzy variables were considered; the term frequency ratio

(tfr) and the document frequency ratio (df) and we ended up with 0.554 as the relevance value.

2.1.3 Early fuzzy logic retrieval models:

There was more than one fuzzy logic model used before the recent models. The earliest

models were the Mixed Min and Max model (MMM) and the Paice model [10]. In the MMM

model there is a fuzzy set for each index term. Each document has a weight dTi proportional to its

membership in the fuzzy set Ti that is associated with the index term ti. For the following queries

Query 1- ti or tj

Query 2- ti and tj

In the first one the relevant document should be in the union of the two fuzzy sets Ti Tj while

for the second query it should be in the intersection Ti Tj. The degree of relevance of

document d to both queries is calculated as follows:

Query 1- d Ti Tj = min(dTi , dTj)

Query 2- d Ti Tj = max(dTi ,,dTj)

The resulting values are softened by the MMM model as follows:

Given a document D with index-term weights dT1, dT2, ..., dTn for terms t1,t2, ..., tn, and the queries:

Qor = (t1 or t2 or ... or tn)

Qand = (t1 and t2 and ... and tn)

According to [10], MMM uses softness coefficients are Cor1, Cor2 where Cor1 = 1 - Cor2 ,Cand1 = 1

- Cand2 while calculating the similarity between the query and the document as follows:

S (Qor, D) = Cor1 * max(dT1, dT2, ..., dTn) + Cor2 * min(dT1, dT2, ..., dTn) where Cor1 > Cor2

S (Qand, D) = Cand1 * min(dT1, dT2, ..., dTn) + Cand2 * max(dT1, dT2 ..., dTn) where Cand1 > Cand2

On the other hand, the Paice model was an improvement to the MMM model. It incorporates all of

the term weights when calculating the similarity:

 SIM(Q, D) =  r
i-1

 * dTi /  r
i-1

Where r is a constant coefficient and dTi is arranged in ascending order for And queries and

descending order for Or queries[10].

22 | P a g e

More recent models dealt with the term as a concept rather than a single term. The term is

given a weight representing the importance of the term concept to the document. This improved

Paice on the average precision and recall at P5[10].

2.1.4 Information retrieval system evaluation:

Usually a test collection is used to evaluate information retrieval systems in a

standardized way. This collection consists of a document set, a query set and a record of

relevance that relates each query to each available document. It was decided to consider fifty

topics in the test collection .We should emphasize here the difference between a query and an

information need. The query can find any document that contains any of the query terms or even

all of them but there is no guarantee that the found documents satisfy the user information need

behind his query [4].

One source for standard test collections commonly used is the Text Retrieval Conference

(TREC). In TREC large test collections of documents along with their relevance records to a

large set of topics or information needs are made available for competitor systems. For each

topic, there is a clear statement written based on a human judgment describing items that should

be considered relevant to each topic [4]. Early TRECs consisted of fifty topics with their

relevance record evaluated against a variant subset of documents that can have 100,000 different

documents in each subset. There are now many test collections that are built with the same

format as TREC collections. One such collection is the CLEF 2009 INFILE collection which is

used in the IR-FIS experiments as will be elaborated on in section 4.1[22].

Recall and precision measures are frequently used to evaluate the effectiveness of the

information retrieval systems. Recall represents the retrieved fraction of relevant documents so

it requires that you know the whole set of relevant documents in advance. On the other hand,

precision represents the relevant fraction of retrieved documents which does not require any

knowledge of the total set of relevant documents. An optimal retrieval system is a system that

would return relevant documents only and will not miss any of them. So according to the

formula 2.4, it provides precision and recall values of 1, while in real world systems, precision

usually decreases with greater recall [28].

 [4]

For ranked sets, the precession at PN, where N is the number of documents retrieved

whether relevant or non-relevant, can be used to calculate the precision so far. For example,

precision at P10 is calculated by summing the precisions found till the 10
th

 retrieved document

and dividing by 50 or the number of queries[4].

23 | P a g e

Figure 2.6: Sample of a topic in TREC 7 [6].

The recall would require knowing the total number of all relevant documents so it cannot

be found gradually like precision. In Web search the N is usually chosen to represent the number

of pages people usually look at. Hence, P10 is important since ten can be considered as the usual

number of pages or documents usually considered by the user.

2.2 Related applications of fuzzy logic

Fuzzy logic was used in more than one way in the field of information retrieval, to serve

different aspects of the retrieval process, plus other fields. In the field of information retrieval

fuzzy logic was used to measure the similarity between documents as in [23], or to match queries

with documents as in [14] and [19]. It was also used in other fields that have nothing to do with

the information retrieval as in [24]. In our IR-FIS a concept was borrowed from each of these

applications. An overview of how fuzzy logic was used in each case plus how the IR-FIS was

affected by each application is given below. IR-FIS can mainly be seen as an enhancement to the

system used in [19] by utilizing all learned concepts from all other applications.

 In [14], fuzzy logic was used to match queries with relevant documents. The query was

perceived as a logical formula and the documents as interpretations of that formula. The terms in

the query are given weights according to the importance of the term to the query. The document,

on the other hand, is seen as a fuzzy set of keywords and the membership of a keyword

represents its importance in representing the meaning of the document. In IR-FIS the importance

of the query terms was represented by using hedges and the document features were represented

as fuzzy sets as will be seen later.

In [23], fuzzy IR system was used to retrieve documents based on their similarity to the

query document. The proposed system was tested using Arabic documents. The aim was to

retrieve similar documents to a query document and they used fuzzy logic to measure the

similarity between the documents.

Sample TREC 7 topic:

<num>Number: 396

<title> sick building syndrome

 Indentify documents that discuss sick building syndrome or building related

 illnesses.

<narr> Narrative:

A relevant document would contain any data that refers to the sick

building or building-related illnesses, including illnesses cause by

asbestos, air conditioning, pollution controls. Work-related illnesses

relevant.

Precision and Recall according to [3]

Precision = % of first n ranked documents that are relevant

Recall = % of R relevant documents among the first n ranked [2.4]

24 | P a g e

The fuzzy values used were ―near duplicate‖, ―very similar‖, ―dissimilar‖ and ―very

dissimilar‖. This was one reason behind using more than one fuzzy value in IR-FIS. The model

in [23] is different in that all documents that are relevant to the query document are retrieved

based on the document content similarity even if the terms used are different. This is considered

as a future enhancement to IR-FIS.

One of the applications of fuzzy logic in other fields is explained in [24]. They did not

use fuzzy logic for information retrieval but used it to interpret the shoot length of a mustard

plant which is decided by certain variables such as humidity, rain fall, temperature, pollution,

water, soil, distance and crop management. In IR-FIS this was imitated by looking for the main

document features that affect its relevance to query terms and representing these features as

fuzzy variables. In [24], because of the uncertainty of plant growth, fuzzification was needed.

They experimented with five different membership functions, the bell shaped, S-shaped, L-

shaped, trapezoidal and triangular membership functions. They stressed on the importance of

selecting a valid membership function. They stated that using a wrong function leads to wrong

data being fed to the fuzzy system which leads to wrong fuzzy output that results in having high

error in the defuzzified values. This was one of the reasons behind considering all these

functions inorder to reach the best one while trying to enhance the IR-FIS performance.

In [19], the fuzzy logic model was actually used in information retrieval in a very similar

way to IR-FIS. Rubens used fuzzy logic for information retrieval and he came up with a ranking

model that he called R-FIS. We can consider IR-FIS as an enhancement of Ruben’s R-FIS

model. The R-FIS ranking model had rules for fuzzification based on three fuzzy variables; tf,

idf and overlap. A third variable that considers the document structure was added in IR-FIS

which is the title variable that reflects the term frequency in the document title. Rubens idf was

calculated by log(

), where N is the number of documents in the corpus and n is the number of

documents that had the considered term. In IR-FIS the tf was changed to be a ratio relative to the

document length. The df was also used instead of the idf. The df is calculated by

 for

simplicity, and its meaning was handled in the IR-FIS rules. Moreover, Rubens used for each of

the three used fuzzy variables only one fuzzy value and its negation, high and not high. He also

manipulated these variables using only three rules. In IR-FIS three fuzzy values were used, high,

medium and low, and eleven rules in the FIS. Rubens used only the triangular and trapezoidal

membership functions. The operators use by Rubens were product (*) for and and sum (+) for

OR while in IR-FIS the min is used for And and the max for OR. For the defuzzification Rubens

used the centroid function while in IR-FIS the weighted average was used. Rubens compared his

findings to Lucene’s performance; his system outperformed Lucene at P10 by +0.0092.

Therefore Lucene was used as a baseline system to compare IR-FIS performance to Rubens’ R-

FIS. This was done by comparing each model’s improvement to Lucene’s precision at P10.

25 | P a g e

Chapter 3

The Proposed solution

 The system architecture and processes will be explained in this chapter. The system has

five main tasks which are : 1) Preprocessing 2)Indexing 3)Fuzzification 4)FIS 5)Defuzzification

 Each of these tasks has processes to achieve it. In section 3.1, an explanation of each of these

tasks is give. This is followed by the system chart and algorithm provided in section 3.2.

3.1 Proposed IR system Architecture:

The IR-FIS model has the following processes that achieve five main tasks

preprocessing, indexing, fuzzification, rules application and defuzzification as shown in Figure

3.1:

Processing goes as follows; first, removing the stop words from the documents then returning the

document terms to their origin or stem. Second, indexing should start. The final index should be

reached based on the frequency ratio which should be fuzzified to reach three fuzzy values for

each term. These fuzzy values represent the level of term frequency in the document. Also

hedges are added to the query to give more weight for the important query terms. The final stage

is the query matching and defuzzification to reach a relevance value for each document that is

used for ranking. The best 1000 documents should be choosen after sorting the documents in

descending order based on their rank. Processes details are provided in the coming sections.

3.1.1 Preprocessing and indexing

The preprocessing of documents in the corpus, as well as the queries, helps improve the

efficiency of the retrieval process. Therefore, it was decided to implement the same indexing

steps mentioned earlier in the indexing algorithm 2.2 in the IR-FIS system. The first step was to

get rid of the stop words, for more elaboration on the stop word removal algorithm used see

appendix B. The second is stemming the corpus documents and the queries. The Porter stemmer

[25] was chosen for stemming the corpus and queries as it is considered to be the most

commonly used stemmer for English documents and proved to be very effective. The Porter

stemming algorithm is a process for removing the affixes from words in English to return them

to their stem[17]. Stemmers usually use language specific rules.

Figure 3.1 System processes

System Processes

Preprocessing

Indexing

Fuzzification

FIS & Hedges

Defuzzification

Stop
words

removal
Stemming

Indexing
&Document

length

calculation

Indexing
using

frequency

ratio

Fuzzification
& adding
hedges

Defuzzification

& result sorting

Query matching

FIS
Applying Hedges

26 | P a g e

A stemming example can be having the group of terms (e.g., operate operating operates

operation operative operatives operational) stemmed by the Porter stemmer to one common

stem word which is ―oper‖. The suffix stripping program will usually be given an explicit list of

suffixes, and the conditions under which each suffix may be removed from a word to leave a

valid stem [17]. For more elaboration on the Porter stemmer see appendix B.

3.1.2 Fuzzification:

In the fuzzification stage, the main document features that have direct effect on the

relevance had to be chosen to be used as fuzzy variables that quantify the documents before

processing. Two types of features were chosen, term related features and document related

features. The term related features are the term frequency ratio (tfr), the document frequency

(df), and the document query overlap , while the document related one was the title.

It was evident that using the tf directly is not effective and that most of those who used

fuzzy logic usually use log in order to make using tf more effective. Therefore, the term

frequency ratio variable was used instead which is calculated as follows :

Furthermore, the document frequency variable is used instead of the inverse document

frequency since the meaning of these parameters was handled implicitly by using the fuzzy rules.

The overlap variable is calculated as follows:

Finally, title term variable is quantified as follows:

For each of these fuzzy variables three linguistic values high, medium, and low were

used. Different membership functions for each variable like the bell shaped, S-shaped, L-shaped,

trapezoidal and triangular functions were tried. Figure 3.2 and 3.3 show the main membership

functions used for each of the four fuzzy variables and here is the function used to formulate the

used S-shape function [18].

27 | P a g e

S-shape function: [3.5]

As can be seen in Figure 3.2, the S-shape function was used for the two fuzzy variables,

term frequency ratio and the document frequency ratio. Figure 3.3, on the other hand, shows how

the title term frequency and the overlap membership values are decided. The medium fuzzy

value was the only considered value for the term frequency in the title, the membership is

described as follows:

if (term frequency in the title =1) then medium-title(tf) = 0.7

else if (term frequency in the title =2) then medium-title(tf) = 0.8

else if (term frequency in the title = 3 or 4) then medium-title(tf) = 0.9

else if (term frequency in the title >=5) then medium-title(tf) = 1

while the overlap membership in the medium overlap fuzzy set is decided as follows:

if (overlap-ratio < 0.7) then medium-overlap(ovlpratio)=ovlpratio+0.3

else medium-overlap(ovlpratio)=1

Figure 3.2: The S-shape and bell-shape membership functions for the tf ratio and df ratio

Figure 3.3 : The medium membership functions for the title and overlap

28 | P a g e

3.1.3 Fuzzy inference system (FIS):

The rules shown in Figure 3.4 were used in the fuzzy inference system of IR-FIS. One of

the main objectives of this study was to explicitly specify the assumptions underlying the

retrieval system. In the majority of the retrieval systems these assumptions are implicitly defined

and buried in their program code. Most of these rules match the common sense behind

information retrieval and relevance judgment. Some other rules came after experimenting and

getting the best performance like the overlap and title rules; explanation of the experiments

conducted with these rules can be found in chapter 4.

The system rule base

if (df is low) and (tf is high) then relevance is high

if (df is medium) and (tf is high) then relevance is medium

if (df is high) and (tf is high) then relevance is medium

if (df is low) and (tf is medium) then relevance is high

if (df is medium) and (tf is medium) then relevance is medium

if (df is high) and (tf is medium) then relevance is low

if (df is low) and (tf is low) then relevance is medium

if (df is medium) and (tf is low) then relevance is low

if (df is high) and (tf is low) then relevance is low

if (overlap is medium) then relevance is medium

if (title is medium) then relevance is medium

Figure 3.4: The intuitive rule base of the FIS

29 | P a g e

3.1.4 Using hedges:

The fuzzy system has the facility of defining linguistic modifiers of fuzzy values like the

hedges [30]. Hedges are terms like ―a little‖, ―very‖, ―slightly‖, ―extremely‖, ―somewhat‖, or

―indeed‖ that can be added before the query term to emphasize the degree of the term importance

to the query. They are used to help keep close to natural language, and to use mathematical

expressions representing the truth value of fuzzy statements. One example was mentioned by

James in [12] where he transformed the statement "Jane is old" to "Jane is very old." He

explained how the hedge "very" is usually defined and how this affects the truth value

mathematically as follows:

m"very"A(x) = mA(x)
2

Thus, if mOLD(Jane) = 0.8, then mVERYOLD(Jane) = 0.8
2
=0.64[12].

As hedges are used to change the truth values according to mathematical functions, the

hedges’ role in the IR-FIS system is to strengthen the impact of query terms and to weaken other

terms according to the level of importance of the term to the query stated by the user. Two main

hedges were used before the query terms the first is ―slightly‖ which means that the query term is

not that essential for the query or user information need and the second is ―Indeed‖ which was

used to stress the importance of essential query terms. The ―indifferent‖ hedge was used only as

a place holder infront of neutral query terms. At the beginning, the operator for the hedge

―slightly‖ was high_relevance(d)
1/3

 which was intended to weaken the high relevance of the

documents that are relevant to the query term preceded by the hedge ―slightly‖. On the other

hand, the high_relevance(d)
3

operator was used to strengthen the high relevance of the

documents that have the query term preceded by the hedge ―Indeed‖. This was based on the

suggested hedges by Jan Jantzen[13], who used the hedge extremely a = a
3
 and slightly a = a

1/3
;

Indeed was used instead of extremely to match the meaning of the hedge in the query context.

After conducting experiments, as will be elaborated in chapter 4, it was found that the

performance after adding hedges has improved only by +0.015 as in Table 4.13, which

necessitated removing the hedges and repeating the experiment. It was discovered that removing

the hedges improved performance by +0.037 as in Table 4.15. After trying to analyze the results,

It was noticed that Jan’s way of handling hedges was counterintuitive to the role of hedges in

IR. In the field of IR the main objective behind using hedges is to increase or decrease the

relevance of the document that has a query term based on the importance of that term for the

query. Therefore, documents retrieved based on a query term that has high importance should

have higher relevance than those retrieved based on a less important term. In this context it was

found that using hedges in the same way that is used in other fields is counterintuitive. As

explained in [13], hedges like Indeed and slightly are translated into the mathematical function

3.6. If we apply these hedges in this way to the high relevance value in IR-FIS, it will lower the

importance of the important terms and increase the relevance of less important terms which is the

opposite of what we want to achieve.

31 | P a g e

So using hedges in IR and queries as everybody else used it was unreasonable. The

reason behind this is that in IR-FIS, hedges were used to affect the high relevance value since

this matched the meaning of hedges as an importance modifier. There are two rules in IR-FIS

that contribute to the high relevance which are:

if (df is low) and (tf is high) then relevance is high

if (df is low) and (tf is medium) then relevance is high

This means that the high relevance is calculated by taking the maximum of two minimums as in

the following formula:

hrlv = max(min(ldf,htf),min(ldf,mtf))

Knowing that the values for df and tf are between zero and one since they are ratios as apparent

in Figure 3.2 then the expected values for the high relevance (hrlv) will range also from zero to

one. Therefore, if we use the hedges in the IR field as it is commonly used in other fields like in

[13] where :

Indeed a = a
3
 and slightly a = a

1/3
 [3.6]

 Indeed hrlv = hrlv
3
 and slightly hrlv = hrlv

1/3

we will be going against the core goal behind using the hedges. For example, if the user says ―I

am interested indeed in information retrieval‖ and the document’s hrlv to ―information retrieval‖

is weighted 0.8 then its membership after utilizing the Indeed hedge will be (0.8)
3
 which is

0.512. In this case using hedges lowered the relevance value. On the other hand, when the user

says ―I am interested slightly in data mining‖ and the document’s high relevance to ―data

mining‖ is 0.8 then after considering the slightly hedge, hrlv will be (0.8)
1/3

 which is equal to

0.93. Here using hedges led to a higher relevance. Using hedges in this way pushes down the

membership value of important terms and increases the importance of the less important terms

which is the opposite of what we actually need. Therefore the current functions and definition of

hedges in fuzzy logic is counterintuitive to what IR needs. This necessitated customizing the use

of hedges in IR-FIS to closely match the purpose behind using it in the IR field. The functions

used for the two hedges Indeed and slightly had to be switched in IR-FIS so they are redefined as

follows:

Indeed a = a
1/3

and Slightly a = a
3
 [3.7]

The indifferent hedge was used in IR-FIS as a place holder for processing purposes with

terms that are neutral and should not have any hedges; see Appendix A section A.5. After

repeating the experiments, this helped in having performance that is more than three times better

than that achieved by the old function 3.6 as will be discussed in chapter 4; see Table 4.15.

31 | P a g e

3.1.5 Defuzzification:

After running the inference engine the system comes out with three values of relevance

high, medium and low per document. Now the task is to defuzzify these values and come up with

only one value that represents the relevance of the document to the query. For simplicity, the

weighted average defuzzification method was chosen to reach one relevance value per document

as follows: Relevance

 [3.8]

(where hrlv, mrlv, and lrlv are the high, medium and low relevance values respectively

and 1, 0.72 and 0.1 are their weights in IR-FIS). These weights have been experimentally

decided and proved to achieve high performance as in Table 4.11.

3.2 Proposed processes :

The IR-FIS code was written using separate programs to avoid memory problems that

were inevitable especially when trying to process 100000 text files in memory at the same time.

The following figure shows the main system processes and the data flow between them.

Figure 3.5: Data flow diagram of the system

Queries without stop

words

Queries with hedges

Data flow

Stop words

removal

Stemming

Indexing &

Document length

calculation

Corpus

Documents

and queries

Documents without

 stop words

Stemmed Documents

Indexed Documents &

document lengths
Indexing using

frequency ratio
& title frequency

calculation

Fuzzification &

adding hedges

 Query matching,
defuzzification &

result sorting

Stemmed queries

Relevant documents

sorted by their

relevance

Indexed Documents with

tfr & title frequencies

Fuzzified Documents

32 | P a g e

The processing was divided into four main stages:

1. The first stage was to preprocess the document corpus and queries and to get rid of the stop

words which are frequent words that don’t have any effect on the retrieval process

2. Then the second stage was to apply the Porter stemmer on these preprocessed files in order to

return the words that have the same origin but are available in different formats to their stem.

3. The third stage was indexing and fuzzifying and this is by creating two files. The first file is

the index file that has the list of stemmed terms along with the document ids they appeared in

and the frequency of their occurrence in these documents. The second file is the document

length file that has the document ids and their lengths. The two files are used to create an

index that includes the stemmed terms, document ids they appeared in and their frequencies as

ratios to these document lengths. This index file is used to produce two other files after

fuzzification of the term frequency ratio and the document frequency according to the triangle

functions shown in Figure 4.3 and 4.4 or the S-shape functions shown in Figure 3.2. The first

file is the fuzzified term frequency ratio file that has the term, the document id it appeared in

and the three fuzzy values representing the degree of the term frequency ratio (tfr); low,

medium and high tfr. The other file is the fuzzified document frequency file that has the term,

and three fuzzy values that represent the degree of the term document frequency (df); low,

medium and high df. Concurrently, hedges are added to the query files in order to prepare for

the query matching process. The title file is also created which has the term, the id of the

document it appeared in as part of the title and the number of times the term appeared in the

document title.

4. The fourth is query matching stage which starts when all the relevant documents to the query

terms are retrieved with their (tf) fuzzified values from the fuzzified tf ratio file and then their

fuzzified (df) values are retrieved from the fuzzified df file. The query terms are then checked

to see if they are in the title file, if yes then the document title frequency is retrieved and

fuzzified according to the function in Figure 3.3. The overlap ratio is also calculated, as in

formula 3.3, for each document by counting the number of query terms that appeared in the

same document and then dividing this number by the number of terms in the query (query

length) and this is considered the overlap ratio which is then fuzzified according to the

function in Figure 3.3.

Now that the fuzzification of all four variables, (term frequency ratio, document frequency

ratio, overlap ratio and title frequency), are done the inference stage can start by applying the

rules that appear in Figure 3.4 to these fuzzy variables to reach fuzzified values to relevance

which gives three membership values (high relevance, medium relevance and low relevance).

These three values are then defuzzified using the weighted average to reach one relevance

value per document. Finally, the query relevant documents are sorted in descending order

according to their relevance values and the best 1000 documents are returned.

33 | P a g e

Stop words removal from the document corpus and the queries

Stemming the document corpus and the queries

Indexing & document length calculation

Indexing using term frequency ratio

 Fuzzification (whether using the triangle or the S-shape function) which has three steps:

1. Create fuztf file that has the term, doc, three fuzzy values (high-tf, medium-tf , low-tf)

2. Create fuzdf file that has the term, doc, three fuzzy values (high-df, medium-df , low-df)

3. Create title file that has the term, doc, number of times the term appeared in document title

Adding hedges to queries

Open fuztf , fuzdf, title

 for each quey (Q) in the corpus

 for each Query_term (qt) in the Q

 { if (qt = index term (t) in the fuzzified index)

 Relevant_doc_list = Get the list of documents associated with t

 for each document(d) in Relevant_doc_list do the following

 { find qt in fuztf , fuzdf, title to get the tf and df fuzzy values the title term frequency

 get low_tf , medium_tf, high_tf from fuztf

 get low_df , medium_df, high_df from fuzdf

 apply the inference rules

 high_rlv = max(min(low_df,high_tf), min(low_df,medium_tf))

 medium_rlv = max(min(high_df, high_tf), min(medium_df, high_tf),

 min(low_ldf, low_tf), min(medium_df, medium_tf))

 low_rlv = max(max(min(high_df,medium_tf), min(medium_df,low_tf),

 min(high_df, low _tf))

 if qt is in the title file then title-f= title frequency

 medium_title = title membership function (title-f) as in [3.2.3]

 medium_rlv = max(medium_rlv,medium_title)

 consider the overlap parameter

 overlap_count = count different query terms in the current document

 overlap_ratio = overlap_count/number of terms in the query

 fuzzify the overlap parameter

 if (overlap_ratio < 0.7) then medium_overlap=overlap_ratio+0.3

 else medium_overlap=1

 combine the medium_rlv with the medium_overlap

 medium_rlv= max(medium_rlv, medium_olp)

 consider the hedges and change the high_rlv accordingly

 if (query term hedge ="slightly") then high_rlv=(high_rlv)
3

 else if (query term hedge ="Indeed") high_rlv=(high_rlv)
1/3

 deffuzify to reach one value representing the relevance of the document

 xh=1,xm=0.72,xl=0.1;

 docwight = (high_rlv*xh + medium_rlv*xm + low_rlv*xl)/(xh+xm+xl)

 if (doc in document-list) then add the new docwight to the old one

 else add the document and docwight to document-list of relevant documents

 } end of the list of relevant documents based on the term

 } end of query

 keep qid and its document-list } end of the queries list

 Sort the queries by their ids as well as documents according to relevance in descending order

 Save the first 1000 relevant documents for each query in the result file.

 Compare the results using TREC eval to Lucene’s

Algorithm 3.1: System processes

34 | P a g e

Chapter 4

Experiments and result analysis

In this chapter an overview is given for the main experiments that were done, the purpose

behind each, results found and the result discussion. The following section describes the

experiment setup which include the document corpus, the queries used for testing and the program

used to compare the IR-FIS with Lucene results.

4.1 Evaluation criteria

Around 160 different experiments were conducted on 100,000 news articles from CLEF 2009

INFILE collection. Fifty queries were used in all the experiments and their retrieved documents

were ranked. These experiments can be grouped under the following areas:

1. Finding the best membership functions for the four fuzzy variables used which are the

df-ratio, tf-ratio, title and overlap

2. Experimenting with FIS rules

3. Finding the best weights for the weighted average defuzzification function

4. Finding effective Hedge function for IR

5. Combining the best found membership functions, FIS rules, weights and hedge function

together and comparing the results to other IR systems.

The ranked lists resulting from the experiments were submitted to an evaluation program

called TREC-Eval. TREC-Eval is a standard program used in many experiments including those of

Text Retrieval Evaluation Conference (TREC) to measure the performance of the systems.

Precision was the main measure used in evaluating the performance. The input to TREC-Eval is the

ranked retrieved documents and the output is three reports showing the effectiveness of the

retrieval process. This evaluation reports have the following statistics:

Number of

topics

 This is the total number of topics(50)

Retrieved The number of documents returned by the IR system

Relevant Total number of relevant documents

Rel-ret Total number of relevant documents returned by the IR system.

R-Precision for

a run

The precision after R documents have been retrieved, where R is the number of relevant

documents for the topic. computed by taking the mean of the R-Precisions of the individual

topics in the run.
 For example,

assume a run consists of three topics:

1)Topic1 20 relevant docs 2)Topic2 40 relevant docs 3)Topic3 10 relevant docs

If the retrieval system returns:

1)Topic1 18 relevant docs 2)Topic2 8 relevant docs 3)Topic3 9 relevant docs

 The run's R-Precision = (18/20+8/40+9/10)/3=0.67

Average

precision

It is the average of the precision value obtained after each relevant document is retrieved.

For example,

 If the query has three relevant docs at ranks 3, 5, and 7.

The actual precision of:

 doc1= 0.9, doc2=0.8, doc3=0.6

 Average precision over all relevant documents (the mean)= 0.77.

Table 4.1: The structure of Report one of the Trec-Eval evaluation Software[21]

35 | P a g e

4.2 Finding best membership functions

Selecting the best membership function is essential for reducing the error rate in the fuzzy IR

system. Using an improper function leads to wrong fuzzy input values, this results in wrong fuzzy

output values that will lead to high error when defuzzified [24]. The objective of the first group of

experiments was to find the best membership function for each fuzzy variable which was not a

straight forward process. Not only different membership functions were tried but also different

boundaries for the fuzzy variables before coming out with the most effective ones. Below the

experiments for finding the membership functions for the system’s fuzzy variables: title, overlap,

tf, and df are discussed.

4.2.1 The title membership function

To decide the most effective membership function for the title variable, many functions had to

be tried and their effect on performance had to be analyzed. Regarding the title, the membership

depends on the frequency of term appearance in the document title which is then fuzzified using the

membership function which decides the degree of membership in the fuzzy sets. In the first

experiment, the old title function in Table 4.1 was used which considered the title high and medium

fuzzy values in fuzzification. Both of these fuzzy values were used to decide the relevance of the

documents. This way didn’t prove to be as effective as using what was referred to as the new title

function in Table 4.1. The new function considered the medium fuzzy value alone with the

membership function shown in Figure 3.3. This improved the overall performance as shown in

Table 4.4.

Document cut off Precision

5 0.4087
Each document
precision average is

computed by
summing the
precisions at the
specified document
cutoff value and
dividing by the
number of topics

10 0.4043

15 0.3812

20 0.3685

30 0.3391

100 0.1896

200 0.1175

500 0.0556

1000 0.0291

Recall Precision

0.0 0.6147 Each recall-precision average is
computed by summing the interpolated
precisions at the specified recall cutoff
and dividing by the number of topics.

0.1 0.5478

0.2 0.4867

0.3 0.431

0.4 0.3905

0.5 0.3577

0.6 0.3265

0.7 0.2728

0.8 0.2435

0.9 0.1989

1.0 0.1103

Table 4.3: Precision at Document cut offs

 (TREC-Eval Report three) [21]
Table 4.2: Precision at different Recall levels

 (TREC-Eval Report two) [21]

36 | P a g e

4.2.2 The overlap membership function

For the overlap, experiments were conducted with four different fuzzy membership functions.

Each function was tried, results were compared and the most effective function was chosen. These

four functions are the triangle function which was tried twice with different interval boundaries of

each of the three fuzzy values. The second function was the S-shape function where the S-shape

was used to map the overlap ratio into a degree of the three fuzzy values low, medium and high

overlap and all the three values were used in deciding the document relevance.

Old title function New title function
if (titletf ==1)
 then high_title(titlef)=0.7 and medium(titlef)=1
if (titletf is 2)
 then high_title(titlef)=0.8 and medium(titlef)=0.9
 if ((titletf is 3)and (titletf is 4))
 then high_title(titlef)=0.9 and medium(titlef)=0.8
 if (titletf >=5)
 then high_title(titlef)=1 and medium(titlef)=0.7

if (titletf is 1) then medium(titlef)=0.7

if (titletf is2) then medium(titlef)=0.8

if ((titletf is 3)and (titletf is 4)) then

medium(titlef)=0.9

if (titletf >=5) then medium1

Experiment results

best one

run Lucene title-old title-new

number of queries 46 47 47

Retrieved: 41393 40692 40692

Relevant: 1547 1597 1597

Rel_ret: 1340 1267 1306

Average precision 0.3498 0.3104 0.3167

R-Precision 0.3471 0.3358 0.3432

Interpolated run Lucene title-old title-new

 0 0.6147 0.6125 0.6125

 0.1 0.5478 0.5554 0.5554

 0.2 0.4867 0.4639 0.4639

 0.3 0.431 0.4265 0.4265

 0.4 0.3905 0.3864 0.3864

 0.5 0.3577 0.3495 0.3495

 0.6 0.3265 0.2573 0.2573

 0.7 0.2728 0.2233 0.2233

 0.8 0.2435 0.1744 0.1744

 0.9 0.1989 0.1021 0.1021

 1 0.1103 0.0425 0.0425

Precision at document cutoff:

run Lucene title-old title-new

docs: 5 0.4087 0.4085 0.4128

docs: 10 0.4043 0.4128 0.4191

docs: 15 0.3812 0.3688 0.3787

docs: 20 0.3685 0.3479 0.3532

docs: 30 0.3391 0.3156 0.3206

docs: 100 0.1896 0.1781 0.1794

docs: 200 0.1175 0.107 0.1078

docs: 500 0.0556 0.0494 0.0509

docs: 1000 0.0291 0.027 0.0278

Table 4.4: Comparison between old and new title fuzzy membership functions

Figure 4.1: Old and new title fuzzy membership functions

37 | P a g e

The last way that was used to estimate the relevance was to concentrate only on one overlap

value that serves as a threshold that decides the term degree of membership in the overlap set

which was the medium value. If the overlap ratio is less than 0.7 then the medium value of the

overlap is the overlap-ratio+0.3 otherwise it is 1. When this proved to be successful, the overlap

ratio medium fuzzy value was considered alone to affect the relevance of the document. The

comparison between the four membership functions are shown in Figure 4.2. After seeing Table

4.5 it would be clear that the last function which considered only the medium fuzzy value was the

most effective one.

Functions tried

Old triangle function for over lap

New triangle function for over lap

S-shape function with over lap

Overlap using the medium membership value

Figure 4.2: Comparison between overlap fuzzy membership functions

38 | P a g e

Experiment results

best one

run Lucene ol-old-tri ol-new-tri
ol-S-
shape ol-medium

number of queries 46 47 47 47 47

Retrieved: 41393 40692 40692 40692 40692

Relevant: 1547 1597 1597 1597 1597

Rel_ret: 1340 1247 1278 1303 1306

Average precision 0.3498 0.2815 0.2841 0.2859 0.3167

R-Precision 0.3471 0.3116 0.3093 0.3146 0.3432

Interpolated

run Lucene ol-old-tri ol-new-tri
ol-S-
shape ol-medium

 0 0.6147 0.5958 0.5927 0.5841 0.6125

 0.1 0.5478 0.5243 0.5146 0.5059 0.5554

 0.2 0.4867 0.447 0.4379 0.4421 0.4639

 0.3 0.431 0.4019 0.4053 0.4185 0.4265

 0.4 0.3905 0.3615 0.3649 0.3782 0.3864

 0.5 0.3577 0.3197 0.3274 0.3351 0.3495

 0.6 0.3265 0.2482 0.2482 0.2466 0.2573

 0.7 0.2728 0.2137 0.2163 0.2138 0.2233

 0.8 0.2435 0.1585 0.1618 0.1623 0.1744

 0.9 0.1989 0.0922 0.0927 0.0952 0.1021

 1 0.1103 0.0332 0.0415 0.0403 0.0425

Precision at
document cutoff:

run Lucene ol-old-tri ol-new-tri
ol-S-
shape ol-medium

docs: 5 0.4087 0.3702 0.3702 0.3745 0.4128

docs: 10 0.4043 0.3489 0.3511 0.3532 0.4191

docs: 15 0.3812 0.3206 0.3234 0.3333 0.3787

docs: 20 0.3685 0.3085 0.3096 0.316 0.3532

docs: 30 0.3391 0.2908 0.2965 0.2993 0.3206

docs: 100 0.1896 0.1683 0.1685 0.1691 0.1794

docs: 200 0.1175 0.1035 0.1043 0.1052 0.1078

docs: 500 0.0556 0.0479 0.0489 0.0494 0.0509

docs: 1000 0.0291 0.0265 0.0272 0.0277 0.0278

Note that fifty queries were tried but Lucene returned no results for 4 queries that was why 46

queries only were considered. With IR-FIS only three queries returned no results that is why 47

queries were considered. This makes IR-FIS stronger than the Lucene search engine since it

succeeded in finding results for 47 instead of 46 queries.

Table 4.5: Comparison between overlap fuzzy membership functions runs

39 | P a g e

It is clear from the above results that using the S-Shape function and the triangle function

with the overlap ratio didn’t help the overall performance as was done by the suggested

membership function shown in the Figure 3.3. When the overlap ratio was considered as the sole

fuzzy variable and the experiments were repeated, the same conclusion was reached. The effect

of using hedges was investigated with these functions and it was also clear that using hedges

with the overlap didn’t enhance the performance as shown in the following table. The reason

behind this is that we only considered the medium overlap value as shown in Figure 3.3. This

affects the medium relevance while the hedges affect the high relevance only.

The title was also considered as the only fuzzy variable and the experiments were repeated using

the title membership function described in Figure 3.3; with hedges and without hedges. Here

using the hedges with the title didn’t have any effect on the performance as illustrated in the

following table. The reason behind this is that we only considered the medium title value as

shown in Figure 3.3, while the hedges affect the high relevance only.

.

run
Overlap
S-shape

Overlap
medium

Overlap
triangle

Overlap
best + hedges

number of queries 47 47 47 47

Retrieved: 40692 40692 40692 40692

Relevant: 1597 1597 1597 1597

Rel_ret: 1099 1100 1099 1100

Average precision 0.1946 0.1946 0.1945 0.1946

R-Precision 0.2173 0.2173 0.2173 0.2173

Precision at document cutoff:

docs: 10 0.4043 0.2638 0.2638 0.2638

docs: 500 0.0437 0.0437 0.0437 0.0437

docs: 1000 0.0234 0.0234 0.0234 0.0234

run title Title+hedges

number of queries 47 47

Retrieved: 40692 40692

Relevant: 1597 1597

Rel_ret: 1098 1098

Average precision 0.1926 0.1926

R-Precision 0.2121 0.2121

Precision at document cutoff:

run title Title+hdges

docs: 10 0.2532 0.2532

Table 4.6: Comparison between the overlap fuzzy membership functions runs when only the overlap

parameter is considerd

Table 4.7: Comparison between the title fuzzy membership function with

and without hedges when only the title parameter is considerd

41 | P a g e

4.2.3 The df-ratio membership function

For fuzzification more than one membership function was tried for the (tf) and (df)

before the best ones were chosen. For the document frequency ratio (df) the triangle function

was tried as shown in Figure 4.3 and the S-shape function shown in Figure 3.2 with and

without hedges. It was found that the S-shape function with hedges had a better performance

than the triangle function with and without hedges as shown in the Table 4.8.

4.2.4 The tf-ratio membership function

The same thing was done with the term frequency ratio (tf), the triangle function and the

S-shape function were tried. The triangle function shown in Figure 4.4 performed better with

regard to the average precision while the S-shape function shown in Figure 3.2 performed

better on the document cutoffs from P5 to P30 and the R-precision with hedges; see table

4.10. Reaching the boundaries of each of the fuzzy values was done after considering the

distribution curve for the document frequency and the term frequency ratio as shown in

appendix A to allow prediction of the intervals for the low frequencies, the medium ones and

the high ranges.

run
df-ratio
triangle

df-ratio
S-shape

df-ratio triangle
with hedge

df-ratio S-shape
with hedges

number of queries 47 47 47 47

Retrieved: 40692 40692 40692 40692

Relevant: 1597 1597 1597 1597

Rel_ret: 1103 1098 1103 1106

Average precision 0.1954 0.1948 0.1954 0.202

R-Precision 0.2238 0.2165 0.2238 0.2299

Precision at document cut off:

run
df-ratio
triangle

df-ratio
S-shape

df-ratio triangle
with hedge

df-ratio S-shape
with hedges

docs: 5 0.2766 0.2766 0.2766 0.2894
docs: 10 0.2638 0.2638 0.2638 0.2745

Table 4.8 : Comparison between df fuzzy membership functions (triangle and S-shape) with and without

hedges when only the df parameter is considerd

Figure 4.3: the triangle, L-shape membership functions for df ratio

41 | P a g e

On the other hand, it was found that using hedges with the S-shape function with the tfr

variable did improve the performance on the document cut offs P30 and P100 in addition to

the average precision and R-Precision compared to the S-shape function performance

without hedges as shown in table 4.9.

tf S-shape P30 P100 average precision R-Precision

without hedges 0.3106 0.1689 0.294 0.308

with hedges +0.00225 +0.00118 +0.00034 +0.00130

run
tf-ratio
S-shape

tf-ratio
triangle

tf-ratio triangle +
hedges

tf-ratio S-shape +
hedges

number of queries 47 47 47 47

Retrieved: 40692 40692 40692 40692

Relevant: 1597 1597 1597 1597

Rel_ret: 1255 1247 1247 1255

Average precision 0.294 0.2962 0.296 0.294

R-Precision 0.308 0.3076 0.3076 0.308

Precision at document cut off:

run
tf-ratio
S-shape

tf-ratio
triangle

tf-ratio triangle +
hedges

tf-ratio S-shape +
hedges

docs: 5 0.4043 0.3915 0.3915 0.4043

docs: 10 0.3915 0.3915 0.3894 0.3915

docs: 15 0.3589 0.356 0.356 0.3589

docs: 20 0.3436 0.3426 0.3404 0.3426

docs: 30 0.3106 0.3099 0.3099 0.3113

Table 4.10: Comparison between tfr fuzzy membership functions (triangle and S-shape) with and without hedges

when only the tfr parameter is considerd

Table 4.9: How using hedges with tf S-shape function outperformed the function without hedges

Figure 4.4: the triangle, L-shape membership functions for tf ratio

42 | P a g e

4.3 Experimenting with FIS rules:

To experiment with different retrieval assumptions, variations of the rules were done

based on intuition or possible scenarios hoping for performance improvement. This was done by

changing some of the rules as shown in the following table where the changed rule is referred to

as the old rule and the new rule is the one tried instead:

After conducting experiments using the new rules, it was found that this didn’t help improve the

performance and that the first set of rules performed better so the old ones were used.

4.4 Finding the best weights for the defuzzification

The weights of the weighted average defuzzification function were changes as an attempt

to improve performance. There are three weights (h for the high relevance, m for medium

relevance and l for low relevance). The following table shows all the tried values, the best three

values were 1 for h, 1.72 for m and 0.1 for l since they contributed to the highest precision.The

relevance was calculated using the following equation:

 Relevance

 [4.1]

4.5 Finding Hedges function for IR

As explained in section 3.5 we experimented with more than one hedge function. The

original hedge function 3.6 outperformed Lucene at P10 by only + 0.0156. Therefore, it was

necessary to remove the hedges and see how the system performs without them. The result of

this experiment is shown in Table 4.13 which shows an improvement over Lucene by +0.0366

which is nearly two and a half times better than the performance with hedges that act according

to the first function 3.6 and four times better than Rubens results. After discovering that the

standard function used for hedges was counterintuitive when applied as is in the field of

information retrieval, the new function 3.7 was tried.

 Old rule New rule

(low df and high tf ratio) -> high relevance (low df and high tf ratio) -> medium relevance

(low df and medium tf ratio) -> high relevance (low df and medium tf ratio) -> medium relevance

Figure 4.5: Old and new rules

h=0.9
m=0.9
l=0.1

h=1
m=0.9
l=0.1

h=1
m=0.8
l=0.1

h=1
m=0.7
l=0.1

h=1
m=0.71
l=0.1

h=1
m=0.72
l=0.1

h=1
m=0.73
l=0.1

h=1
m=0.74
l=0.1

h=1
m=0.6
l=0.1

run best

number of queries 47 47 47 47 47 47 47 47 47
Retrieved: 40692 40692 40692 40692 40692 40692 40692 40692 40692

Relevant: 1597 1597 1597 1597 1597 1597 1597 1597 1597

Rel_ret: 1267 1267 1279 1306 1306 1307 1307 1307 1266

Average precision 0.3066 0.31 0.311 0.3163 0.3166 0.3289 0.3165 0.3166 0.3095

R-Precision 0.3323 0.3358 0.3358 0.3422 0.3432 0.3501 0.3432 0.3432 0.337

Table 4.11 : Using different weights for defuzzification.

43 | P a g e

After experimenting, it was discovered that this new approach did help the performance

as shown in Table 4.12, where performance at p10 was two times better than 3.6 function results,

29% better than performance without hedges and instead of having my IR-FIS outperform

Rubens FIS by four times when hedges were not used, now it is five times better due to

introducing hedges in a more intuitive way in the IR field; see Table 4.14 and 4.15. Figure 4.6

compares the improvement achieved over Lucene search engine performance at P10 by Rubens

R-FIS, my IR-FIS’s two different hedge functions and without hedges. It is evident that using the

3.7 function led to results that are five times better than Rubens R-FIS. On the other hand, Figure

4.7 shows how my IR-FIS precision at P10 outperformed that of Lucene by 4.7% when the 3.7

hedge function was used and how the precision has improved steadily after removing the old 3.6

function and applying the 3.7 one instead; see Table 4.12.

Run

Lucene hedges function 3.6 Hedges function 3.7

number of queries

46 47 47

Retrieved: 41393 40692 40692

Relevant:

1547 1597 1597

Rel_ret:

1340 1252 1307

Average precision

0.3498 0.2952 0.3289

R-Precision 0.3471 0.3145 0.3501

Precision at document cutoff:

run Lucene hedges function 3.6 Hedges function 3.7

docs: 5 0.4087 0.4128 0.4255

docs: 10 0.4043 0.4106 0.4234

docs: 15 0.3812 0.3787 0.3801

Run

Lucene No hedges hedges function 3.7

number of queries

46 47 47

Retrieved: 41393 40692 40692

Relevant:

1547 1597 1597

Rel_ret:

1340 1306 1307

Average precision

0.3498 0.3167 0.3289

R-Precision 0.3471 0.3432 0.3501

Precision at document cutoff:

run Lucene No hedges hedges function 3.7

docs: 5 0.4087 0.4128 0.4255

docs: 10 0.4043 0.4191 0.4234

docs: 15 0.3812 0.3787 0.3801

Tag Topic variable P10

Lucene Combined 0.3984

R-FIS Combined +0.0092

Tag P10

 Lucene 0.4043

IR-FIS- hedges 3.6 function +0.0156

IR-FIS- no hedges +0.0366

IR-FIS-hedges 3.7 function +0.04724

Table 4.12 : Comparing the new hedge function 3.7 with performance without hedges

Table 4.14: Rubens R-FIS improvement over Lucene’s

Table 4.15 : My IR-FIS improvement over Lucene’s with the different hedge functions

Table 4.13 : Comparing the new hedges function 3.7 with the old one 3.6.

44 | P a g e

4.6 Combining the best of all trials

To get the best overall performance, the best found configurations so far were combined

together. After experimenting with different weights, as shown in Table 4.11, the weights h = 1,

m = 0.72, l = 0.1 were chosen as the weights of the defuzzification weighted average function.

The best functions found so far for the four parameters tfr, df, overlap and title were combined.

The triangle and S-shape membership functions were tried and the S-shape was chosen as it

proved to have the highest precision especially at P10 with or without hedges. Using the hedges

did improve performance when the 3.7 function was used so it was decided to use it. The results

of the experiments can be summarized in the following table.

 best one

run Lucene

tf-S-shape

df-S-
shape+no
hedges

tf-S-shape

df-S-shape
+ hedges

tf-triangle

df-triangle
tf-triangle

df-S-shape

number of queries 46 47 47 47 47

Retrieved: 41393 40692 40692 40692 40692

Relevant: 1547 1597 1597 1597 1597

Rel_ret: 1340 1306 1307 1307 1305

Average precision 0.3498 0.3167 0.3289 0.318 0.318

R-Precision 0.3471 0.3432 0.3501 0.3448 0.3448

Precision at document
cutoff:

run Lucene
tf-S-shape

df-S-shape
tf-S-shape

df-S-shape
tf-triangle

df-triangle
tf-triangle

df-S-shape

docs: 5 0.4087 0.4128 0.4255 0.417 0.417

docs: 10 0.4043 0.4191 0.4234 0.4043 0.4043

docs: 15 0.3812 0.3787 0.3801 0.3702 0.3702
Legend item meaning

tf-S-shape df-S-shape Using the S-shape function for both the term frequency and document frequency

tf-triangle df-triangle Using the triangle function for both the term frequency and document frequency

tf-triangle df-S-shape Using the triangle function for the term frequency while using frequency S-shape for the doc

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Improvement to Lucene at P10

p
o

si
ti

ve
 im

p
ro

ve
m

e
n

t Rubens R-FIS

IR-FIS- hedges function
3.6

IR-FIS- no hedges

IR-FIS-hedges function
3.7

0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

Performance at P10

P
re

ci
si

o
n

 a
t

P
10

Lucene

IR-FIS+hedges function
3.6

IR-FIS +no hedges

IR-FIS+ hedges function
3.7

Table 4.16: Comparison between system performance using different function combinations

Figure 4.7: The improvement contributed by Rubens R-FIS

and my IR-FIS different hedge functions to

Lucene at P10

Figure 4.6 : Precision at P10 contributed by Lucene and

my IR-FIS different hedge functions at P10

45 | P a g e

The df and tf S-shape membership functions were used together and two experiments

were conducted one that had the four fuzzy variables and another one where the title was

excluded. It was discovered that the results didn’t change and that whether the title is considered

or ignored the performance is not affected. After analyzing the results, it was found that may be

it is not enough to consider the title but we should try to investigate more aspects of the

document structure like having the word in the first sentence of the paragraph or the position

within the body of the document

run
tf-S-shape

df-S-shape + title
tf-S-shape

df-S-shape + no title

docs: 5 0.4128 0.4128

docs: 10 0.4191 0.4191

As can be seen in Figure 4.8, using the S-shape function for the term frequency as well as

the document frequency helped in improving precision at different interpolated recall levels over

the Lucene runs.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 0.2 0.4 0.6 0.8 1

av
er

a
ge

 p
re

ci
si

o
n

Interpolated Recall

Lucene

tf-S-shape df-S-
shape

tf-triangle df-
triangle

tf-triangle df-S-
shape

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 30

10
0

20
0

50
0

10
00

P
re

ci
si

o
n

 a
t

d
o

cu
m

en
t c

u
to

ff

Retrieved Documents

Lucene

tf-S-shape df-S-shape

tf-triangle df-triangle

tf-triangle df-S-shape

Figure 4.8: Performance based on precision at interpolated recall. The
best is the S-shape membership function

Figure 4.9: Performance based on precision at documents cut offs. The best is the S-

shape membership function

Table 4.17: Comparison between system performances with and without title fuzzy variable

46 | P a g e

Figure 4.9 also shows that using the S-shape function for the term frequency as well as

the document frequency helped in improving the precision at document cutoff over the Lucene

runs. One can conclude that using the S-shape leads to higher precision when compared to other

membership functions and to Lucene’s search engine. Therefore, it was chosen as the

membership function for the tfr and df fuzzy variables. In all cases the best overlap and title

functions as shown in Figure 3.3 were used with hedges.

4.7 Discussion

The main contribution of my study is that my IR-FIS system succeeded in enhancing the

results achieved by previous IR systems like Lucene which did not use fuzzy logic and even the

R-FIS system by Rubens in [19] which used fuzzy logic. Table 4.18 compares the performances

of my IR-FIS and Rubens R-FIS approaches against Lucene’s performance.

 As one can see, my ranking has outperform Lucene at documents cutoff p10 by 4.7%

which is 5 times better improvement than the one reached by Rubens with his R-FIS which

improved the performance by only +0.0092. If we compare my system to Rubens R-FIS, we will

see that Rubens didn’t use hedges. Moreover, his rule concentrated only on high fuzzy values

and the negation of high by using not high while my rules considered the low and medium values

as well which contributed to the higher performance.

My second contribution is the discovery that the standard use of hedges as it is used in

other fields slightly improved the performance in the information retrieval field by 1.6% only.

When only the term frequency ratio was considered it was found that using hedges with the S-

shape fuzzy membership function did improve the performance as shown in table 4.9. When the

way hedges were used was changed the improvement was evident and instead of outperforming

Lucene by only 1.6% it became 4.7% which is nearly three times better as shown in the

following table.

Tag P10 Tag P10

 Lucene 0.3984 Lucene 0.4043

R-FIS +0.0092 IR-FIS +0.04724

Tag P10 performance improvement over Lucene’s

IR-FIS-Standard hedges function 3.6 1.6%

IR-FIS-New hedges function 3.7 4.7%

Table 4.18: how my IR-FIS outperformed Lucene & R-FIS

Table 4.19: Comparing the percentages of improvement over Lucene’s by the two tried hedge functions

47 | P a g e

Chapter 5

Conclusion and future work

5.1 Conclusion:

The main scope of this dissertation is to enhance the IR precision by using the fuzzy logic

model. The Rubens R-FIS was studies and considered for improvement. To improve this system

the three stages of fuzzy logic had to be improved: 1) The fuzzification 2) The FIS 3) The

defuzzification. First, to improve the fuzzification, different fuzzy membership functions for

each of the four fuzzy variables tf, df, title and overlap were considered in experiments. It was

discovered that using the S-shape function and the bell function lead to better performance

compared to other functions like the triangle and L-shape functions. Second, to improve the FIS,

two more fuzzy values which are medium and low were used plus the high value that was used in

Rubens R-FIS. Experiments were conducted to study the effect of considering these values in the

rule base. Other experiments concentrated on changing their manipulation by rules. It was

concluded that using these fuzzy values lead to better results than Rubens R-FIS [19] which

ignored them. Also using hedges as linguistic fuzzy operators was studied as at attempt to

improve the results of the FIS. Experiments were conducted after using hedges operators as they

are used in the other fields. It was discovered that this way was counterintuitive when used in the

IR field. After changing the operators’ definition the experiments were repeated. Precision was

improved only when the definition of the hedges operators matched the reason behind using

them in the IR field. Therefore, it was deduced that the hedges function should be adjusted to

match the goal behind using it in IR. This change in the hedges function from 3.6 to the 3.7

function improves the performance by nearly three times. Third, experiments were conducted to

find the best weights for the defuzzification function and the values 1 for high, 0.72 for medium,

and 0.1 for low value were used as the best weights. However, using document structure, namely

title, didn’t contribute to performance. It was realized that it is important to investigate more

contextual factors like the term position in relation to the paragraph it appears in, to the

document in general or to other query terms that appear in the same document.

Through experimentation, IR-FIS system proved to outperform industry standard search

engines, such as Lucene, and other similar academic systems, such as Rubens R-FIS. This was

accomplished by introducing more fuzzy variables and values, implementing more fuzzy rules

and using the S-shape membership function for the term frequency ratio and document

frequency. It was also proven that the common definition of hedges doesn’t apply to the IR

situation so new interpretations of hedges that are suitable for IR were introduced.

In conclusion, the IR-FIS system proved to be a successful enhancement of Ruben’s R-FIS

system. It outperformed Lucene at document cut off P10 by 4.7% which is five times better

improvement than the one reached by Rubens R-FIS [19].

48 | P a g e

5.2 Future scope:

More experiments were needed but due to time limitation it was decided to leave them as

future enhancements for the current model. These are experiments to explore the effect of

more contextual parameters like the position of the query term in the document and whether

it is in the first line of the paragraph or in the introductory paragraph. Also the distance

between query terms in the document was not investigated; so the idea of having more than

one query term occurring in the same sentence in the document should have increased the

relevance of the document to the query compared to the relevance of another document that

has the query terms but far apart. The synonyms of the query terms can also be considered so

that relevant documents are retrieved even if they don’t have the exact query terms but they

have their synonyms. More inference rules and variables need to be added to reflect the

context of the terms. Machine learning can also be utilized to automate two areas in IR-FIS:

1) Finding the best parameters for the membership functions for each of the fuzzy values.

For example, predicting the frequency intervals for each fuzzy value based on the term

frequency distribution in the corpus; the interval for the low frequencies, the medium and the

high ones. 2) Finding the best rules instead of explicitly specifying them in the rule base.

Finally, the whole system should also be tested using other languages as Arabic so we can

see how the performance is affected.

49 | P a g e

References
[1] Alexander Dekhtyar. Probabilistic Information Retrieval Part II: In Depth. Department of Computer

Science. University of Maryland

[2] Anselm Spoerri. InfoCrystal : A Visual Tool For Information Retrieval .Submitted to the Department of
Civil and Environmental Engineering on January 20, 1995

[3] Art B. Owen. Information Retrieval and the Vector Space Model. Stanford University
owen@stat.stanford.edu

[4] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze. An Introduction to Information
Retrieval, Cambridge University Press. 2008.

[5] Donna Harman. RANKING ALGORITHMS. National Institute of Standards & Technology

[6] E. Garcia. The Classic Vector Space Model Description, Advantages and Limitations of the Classic
Vector Space Model. MiIslita.com. Last Update: 10/27/06

[7] E. M. Voorhees and D. ―Overview of the Seventh Text Retrieval Conference (TREC-7)” .Harman, in NIST
Special Publication 500-242: The Seventh Text Retrieval Conference, 98.

[8] Eibe Frank, Ashraf M. Kibriya.Stop words code. Machine Learning Group at University of Waikato.

[9] “Fuzzy_logic”, Wikipedia, the Free Encyclopedia. Retrieved 17 June 2011 from

<http://en.wikipedia.org/wiki/Fuzzy_logic>

[10] “Fuzzy retrieval”, Wikipedia, the Free Encyclopedia. Retrieved 17 June 2011 from

<http://en.wikipedia.org/wiki/Fuzzy_retrieval>

[11] Information Retrieval Lecture 5 - The vector space model. Seminar f¨ur Sprachwissenschaft. International
Studies in Computational Linguistics. semester 2007 1

[12] James F.Brule. Fuzzy systems –A tutorial. 1985, < http://www.austinlinks.com/Fuzzy/tutorial.html>

[13] Jan Jantzen. Tutorial on fuzzy logic. Technical university of Denmark, Department of Automation,
DENMARK. Aug 1998.

[14] K.Nowacka, S.Zadrozny, J.Kacprzyk. A new fuzzy logic based information retrieval model. Proceedings

of IPMU’08, pp.1749-1756.June 22-27, 2008

[15] Khalaf Khatatneh, Iman Hussain. Information Retrievals tries tree V.s Inverted File Word Method for

Arabic language. Prince Abdu Allah Bin Ghazi for IT, Al-Balqa Applied University Salt, Jordan

[16] “Lucene”. Wikipedia, the Free Encyclopedia. Retrieved 29 April 2011 from
<http://en.wikipedia.org/wiki/Apache_Lucene Citation>

[17] Martin Porter. The Porter Stemming Algorithm. Last revised January 2006.
<http://tartarus.org/~martin/PorterStemmer/>

[18] MathWorks.S-shape function. 3 Apple Hill Drive Natick, United States
http://www.mathworks.com/help/toolbox/fuzzy/smf.html.

[19] N.O.Rubens. The Application of fuzzy logic to the construction of the ranking function of information
retrieval systems. Computer Modeling and New Technologies, 2006.

[20] Norbert Fuhr. Probabilistic Models in Information Retrieval. The computer journal 1992.

[21] Reasoning with uncertainty-Fuzzy Reasoning , Lesson 32 :Version 2 CSE IIT, Kharagpur,
http://classle.s3.amazonaws.com/sites/default/files/25053/Lesson_32.pdf

[22] Romaric Besançon, Stéphane Chaudiron, Djamel Mostefa, Ismaïl Timimi, Khalid Choukri, Meriama
Laïb. Overview of CLEF 2009 INFILE track. Université de Lille 3 – GERiiCO

[23] Salha Mohammed Alzahrani, and Naomie Salim. On the Use of Fuzzy Information Retrieval for Gauging
similarity of Arabic Documents

[24] Satyendra Nath Mandal, J.Pal Choudhury, Dilip De, and S. R. Bhadra Chaudhuri. Role of membership

functions in fuzzy logic for prediction of shoot length of mustard plant based on residual analysis. World
academy of science, engineering and technology 2008.

[25] Snowball. Porter stemmer algorithm. http://snowball.tartarus.org/algorithms/porter/stemmer.html

[26] “Standard Boolean model”. Wikipedia, the Free Encyclopedia. Retrieved 29 April 2011 from
<http://en.wikipedia.org/wiki/Standard_Boolean_model>

[27] Stefan Pohl, Justin Zobel, Alistair Moffat. Extended Boolean Retrieval for Systematic Biomedical
Reviews. NICTA Victoria Research Laboratory, Department of Computer Science and Software

Engineering. The University of Melbourne, Victoria 3010, Australia

[28] Todd A. Letsche and Michael W. Berry. Large-Scale Information Retrieval with Latent Semantic
Indexing. University of Tennessee. Preprint, 1996.

[29] V.Balamurugan1 and K.Senthamarai Kannan. A Framework for Computing Linguistic Hedges in Fuzzy
Queries. Department of Computer Science & Engineering, SCAD College of Engineering &Technology,

Cheranmahadevi, Tirunelveli, India

[30] V.N.Huynh, T.B.Ho,Y. A parametric representation of linguistic hedges in Zadeh’s fuzzy logic.
Nakamori. International journal of Approximate Reasoning 30 (2002) 203-223

[31] “Vector space model”. Wikipedia, the Free Encyclopedia. Retrieved 29 April 2011 from

<http://en.wikipedia.org/wiki/Vector_space_model>

mailto:Art%20B.%20Owen.%20Information%20Retrieval%20and%20the%20Vector%20Space%20Model.%20Stanford%20University%20owen@stat.stanford.edu
mailto:Art%20B.%20Owen.%20Information%20Retrieval%20and%20the%20Vector%20Space%20Model.%20Stanford%20University%20owen@stat.stanford.edu
http://tartarus.org/~martin/index.html
http://www.mathworks.com/help/toolbox/fuzzy/smf.html
http://www.mathworks.com/help/toolbox/fuzzy/smf.html
http://classle.s3.amazonaws.com/sites/default/files/25053/Lesson_32.pdf
http://www.cs.utk.edu/~letsche
http://www.cs.utk.edu/~berry
http://www.utk.edu/

51 | P a g e

APPENDIX A:

STATISTICAL DISTRIBUTIONS AND EXPREMENTS RESULTS

A.1 TERM FREQUENCY DISTRIBUTION:PROVIDE SOME TEXT TO EXPLAIN

THETABLES AND FIGURES

0

500000

1000000

1500000

2000000

2500000

0 2.00
E

-03

4.00
E

-03

6.00
E

-03

8.00
E

-03

0.01

0.03

0.05

0.07

0.09

frequency ratio to doc length

tf distribution

count

tfratio count

 0 4409

1.00E-03 265722

2.00E-03 406452

3.00E-03 1998669

4.00E-03 1512649

5.00E-03 1173642

6.00E-03 1002578

7.00E-03 795967

8.00E-03 632978

9.00E-03 486384

0.01 1925156

0.02 524905

0.03 237574

0.04 111000

0.05 49428

0.06 29469

0.07 18338

0.08 11418

0.09 5834

0.1 4400

51 | P a g e

5260

44926

207364

360

128800

57

44612

1410 32

16169
0

50000

100000

150000

200000

250000

0.2

0.25

0.3333
33333

0.4

0.5

0.6

0.6666
66667

0.75

0.8

1

count

ol

over lap distribution

count

A.2 OVER LAP DISTRIBUTION:

frequency count

0.2 5260

0.25 44926

0.333333333 207364

0.4 360

0.5 128800

0.6 57

0.666666667 44612

0.75 1410

0.8 32

1 16169

52 | P a g e

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

c

o

u

n

t

doc frequency

df distribution

count

A.3 DOCUMENT FREQUENCY DISTRIBUTION:

df count

1 171739

2 36397

3 15738

4 9041

5 6134

6 4508

7 3477

8 2701

9 2170

10 1935

11 1589

12 1429

13 1235

14 1098

15 984

16 930

17 813

18 714

19 712

20 672

21 608

22 541

23 478

24 502

25 446

26 422

27 409

28 367

29 330

30 338

31 331

32 315

33 263

34 275

35 278

36 247

. .

. .

. .

99299 1

53 | P a g e

A.4 TITLE FREQUENCY DISTRIBUTION:

titlef count

1 742090

2 9104

3 268

4 100

5 11

6 2

7 6

8 3

9 1

12 1

0

100000

200000

300000

400000

500000

600000

700000

800000

1 2 3 4 5 6 7 8 9 12

title frequeny

title frequency distribution

count

54 | P a g e

A.5 QUERIES WITH HEDGES: Slightly means the term is not that important for relevance

 Indifferent means the term has neutral and the hedge is only a place holder &

 Indeed means the term is very important for the relevance.

query
number

Query with hedges

101 slightly fight indifferent dope slightly sport
102 indifferent sport Indeed economi
103 indifferent organ slightly intern indifferent sport indifferent competit
104 slightly stake slightly popular indifferent sport
105 indifferent sport Indeed violenc Indeed racism
106 Indeed disabl slightly adapt indifferent sport
107 indifferent electron indifferent vote
108 Indeed quinquennat slightly polit slightly institut
109 indifferent politician indifferent media
111 indifferent poll indifferent polici
112 indifferent slam indifferent poetri slightly democrat
113 indifferent digit indifferent divid
114 indifferent arthous indifferent cinema
115 slightly free indifferent museum
116 slightly free indifferent newspap indifferent franc
117 Indeed cartoon
118 indifferent rise Indeed oil indifferent price
119 Indeed subprim indifferent crisi
120 indifferent sale indifferent franc
121 Indeed supermarket
122 slightly fate indifferent local indifferent shop
123 slightly challeng indifferent ecommerc
124 slightly fight Indeed aid indifferent commun
125 slightly issu Indeed tibet
126 indifferent european indifferent immigr slightly polici
127 slightly crisi indifferent darfur
128 indifferent israelipalestinian slightly conflict
129 Indeed farc indifferent rebelion
130 indifferent olympic indifferent game Indeed organ
131 indifferent egovern slightly stake
132 slightly wireless indifferent network indifferent health
133 slightly competit indifferent soccer indifferent broadcat slightly right
135 slightly issu Indeed kyoto indifferent protocol
136 slightly air indifferent pollut slightly air indifferent qual
137 slightly fight indifferent climat slightly chang
138 indifferent drug indifferent biotechnologi
139 Indeed biofuel
140 indifferent fruit indifferent veget slightly intak Indeed cancer slightly prevent
141 indifferent dope slightly athletess indifferent health
142 Indeed biodivers indifferent preserv
143 Indeed avian indifferent influenza
144 indifferent nanotechnologi indifferent nanosci
145 indifferent genet slightly modifi indifferent plant
146 indifferent prostat indifferent cancer
148 indifferent renew indifferent energi
149 slightly scientif indifferent research Indeed arctic
150 indifferent woman slightly world indifferent work

55 | P a g e

A.6 RESULTS OF USING THE TITLE PARAMETER ALONE WITH & WITHOUT

HEDGES

run

Lucene title
Title with
hedges

number of
queries

46 47 47

Retrieved: 41393 40692 40692

Relevant:

1547 1597 1597

Rel_ret:

1340 1098 1098

Average
precision

0.3498 0.1926 0.1926

R-Precision 0.3471 0.2121 0.2121

Interpolated Recall

run

Lucene title
Title with
hedges

0 0.6147 0.4724 0.4724

0.1 0.5478 0.3835 0.3835

0.2 0.4867 0.3065 0.3065

0.3 0.431 0.2675 0.2675

0.4 0.3905 0.2516 0.2516

0.5 0.3577 0.2038 0.2038

0.6 0.3265 0.1533 0.1533

0.7 0.2728 0.1173 0.1173

0.8 0.2435 0.1062 0.1062

0.9 0.1989 0.0619 0.0619

1 0.1103 0.0241 0.0241

Precision at document
cutoff:

run

Lucene title
Title with
hedges

docs: 5 0.4087 0.2723 0.2723

docs: 10 0.4043 0.2532 0.2532

docs: 15 0.3812 0.2426 0.2426

docs: 20 0.3685 0.2362 0.2362

docs: 30 0.3391 0.2206 0.2206

docs: 100 0.1896 0.1398 0.1398

docs: 200 0.1175 0.0887 0.0887

docs: 500 0.0556 0.0437 0.0437

docs: 1000 0.0291 0.0234 0.0234

56 | P a g e

A.7 RESULTS OF USING THE OVERLAP FUNCTIONS WITH & WITHOUT

HEDGES

run

Lucene
Overlap S-
shape

Overlap
best

Overlap
triangle

Overlap
high + hedges

number of
queries

46 47 47 47 47

Retrieved: 41393 40692 40692 40692 40692

Relevant:

1547 1597 1597 1597 1597

Rel_ret:

1340 1099 1100 1099 1100

Average precision

0.3498 0.1946 0.1946 0.1945 0.1946

R-Precision 0.3471 0.2173 0.2173 0.2173 0.2173

Interpolated Recall

run

Lucene
Overlap S-
shape

Overlap
best

Overlap
triangle

Overlap
high + hedges

0 0.6147 0.4777 0.4777 0.4777 0.4777

0.1 0.5478 0.392 0.392 0.392 0.392

0.2 0.4867 0.31 0.31 0.31 0.31

0.3 0.431 0.268 0.268 0.268 0.268

0.4 0.3905 0.2523 0.2523 0.2523 0.2523

0.5 0.3577 0.2045 0.2045 0.2045 0.2045

0.6 0.3265 0.1522 0.1522 0.1522 0.1522

0.7 0.2728 0.1163 0.1163 0.1163 0.1163

0.8 0.2435 0.1048 0.1048 0.1048 0.1048

0.9 0.1989 0.0608 0.0608 0.0605 0.0608

1 0.1103 0.0226 0.0226 0.0226 0.0226

Precision at document
cutoff:

run

Lucene
Overlap S-
shape

Overlap
best

Overlap
triangle

Overlap
high + hedges

docs: 5 0.4087 0.2766 0.2766 0.2766 0.2766

docs: 10 0.4043 0.2638 0.2638 0.2638 0.2638

docs: 15 0.3812 0.2468 0.2468 0.2468 0.2468

docs: 20 0.3685 0.2394 0.2394 0.2394 0.2394

docs: 30 0.3391 0.2227 0.2227 0.2227 0.2227

docs: 100 0.1896 0.1396 0.1396 0.1396 0.1396

docs: 200 0.1175 0.0893 0.0893 0.0891 0.0893

docs: 500 0.0556 0.0437 0.0437 0.0437 0.0437

docs: 1000 0.0291 0.0234 0.0234 0.0234 0.0234

57 | P a g e

A.8 RESULTS OF USING DF-RATIO FUNCTIONS WITH & WITHOUT HEDGES

run

Lucene
df-ratio
triangle

df-ratio S-
shape

df-ratio
triangle with
hedge

df-ratio S-
shape with
hedges

number of
queries

46 47 47 47 47

Retrieved: 41393 40692 40692 40692 40692

Relevant:

1547 1597 1597 1597 1597

Rel_ret:

1340 1103 1106 1103 1106

Average
precision

0.3498 0.1954 0.202 0.1954 0.202

R-Precision 0.3471 0.2238 0.2299 0.2238 0.2299

Interpolated Recall

run

Lucene
df-ratio
triangle

df-ratio S-
shape

df-ratio
triangle with
hedge

df-ratio S-
shape with
hedges

0 0.6147 0.4687 0.4899 0.4687 0.4899

0.1 0.5478 0.3972 0.4227 0.3972 0.4227

0.2 0.4867 0.318 0.3478 0.318 0.3478

0.3 0.431 0.2758 0.2758 0.2758 0.2758

0.4 0.3905 0.2519 0.2519 0.2519 0.2519

0.5 0.3577 0.2044 0.2044 0.2044 0.2044

0.6 0.3265 0.1521 0.1521 0.1521 0.1521

0.7 0.2728 0.1162 0.1162 0.1162 0.1162

0.8 0.2435 0.1047 0.1047 0.1047 0.1047

0.9 0.1989 0.0604 0.0604 0.0604 0.0604

1 0.1103 0.0226 0.0226 0.0226 0.0226

Precision at
document cutoff:

run

Lucene
df-ratio
triangle

df-ratio S-
shape

df-ratio
triangle with
hedge

df-ratio S-
shape with
hedges

docs: 5 0.4087 0.2766 0.2894 0.2766 0.2894

docs: 10 0.4043 0.2638 0.2745 0.2638 0.2745

docs: 15 0.3812 0.2496 0.2567 0.2496 0.2567

docs: 20 0.3685 0.2415 0.2457 0.2415 0.2457

docs: 30 0.3391 0.2255 0.2277 0.2255 0.2277

docs: 100 0.1896 0.1404 0.1411 0.1404 0.1411

docs: 200 0.1175 0.0896 0.0899 0.0896 0.0899

docs: 500 0.0556 0.0439 0.044 0.0439 0.044

docs: 1000 0.0291 0.0235 0.0235 0.0235 0.0235

58 | P a g e

A.9 RESULTS OF USING TF-RATIO FUNCTIONS WITH & WITHOUT HEDGES

run

Lucene
tf-ratio
S-shape

tf-ratio
triangle

tf-ratio
triangle +
hedges

tf-ratio S-
shape +
hedges

number of
queries

46 47 47 47 47

Retrieved: 41393 40692 40692 40692 40692

Relevant:

1547 1597 1597 1597 1597

Rel_ret:

1340 1255 1247 1247 1255

Average
precision

0.3498 0.294 0.2962 0.296 0.2941

R-Precision 0.3471 0.308 0.3076 0.3076 0.3084

Interpolated Recall

run

Lucene
tf-ratio
S-shape

tf-ratio
triangle

tf-ratio
triangle +
hedges

tf-ratio S-
shape +
hedges

0 0.6147 0.5719 0.5773 0.5774 0.5717

0.1 0.5478 0.5089 0.4801 0.4797 0.5089

0.2 0.4867 0.439 0.4296 0.4273 0.439

0.3 0.431 0.4048 0.4073 0.4081 0.4044

0.4 0.3905 0.3756 0.3819 0.3821 0.3759

0.5 0.3577 0.3263 0.3297 0.3299 0.326

0.6 0.3265 0.2414 0.2506 0.2508 0.2416

0.7 0.2728 0.2208 0.2316 0.232 0.2211

0.8 0.2435 0.1817 0.1885 0.1883 0.1823

0.9 0.1989 0.1024 0.1063 0.1065 0.1026

1 0.1103 0.0397 0.0411 0.0411 0.0399

Precision at document
cutoff:

run

Lucene
tf-ratio
S-shape

tf-ratio
triangle

tf-ratio
triangle +
hedges

tf-ratio S-
shape +
hedges

docs: 5 0.4087 0.4043 0.3915 0.3915 0.4043

docs: 10 0.4043 0.3915 0.3915 0.3894 0.3915

docs: 15 0.3812 0.3589 0.356 0.356 0.3589

docs: 20 0.3685 0.3436 0.3426 0.3404 0.3426

docs: 30 0.3391 0.3106 0.3099 0.3099 0.3113

docs: 100 0.1896 0.1689 0.1709 0.1709 0.1691

docs: 200 0.1175 0.1032 0.1016 0.1017 0.1032

docs: 500 0.0556 0.0498 0.0497 0.0497 0.0498

docs: 1000 0.0291 0.0267 0.0265 0.0265 0.0267

59 | P a g e

A.10 RESULTS OF USING COMBINATIONS OF FOUR VARIABLES WITH HEDGES

best one

run

Lucene

tf-S-shape

df-S-shape
+hedges
function 3.6

tf-S-shape

df-S-shape
+hedges[4.1]

tf-triangle

df-triangle
tf-triangle

df-S-shape

tf-S-shape

df-S-shape
+ hedges
function 3.7

number of
queries

46 47 47 47 47 47

Retrieved: 41393 40692 40692 40692 40692 40692

Relevant:

1547 1597 1597 1597 1597 1597

Rel_ret:

1340 1252 1306 1307 1305 1307

Average
precision

0.3498 0.2952 0.3167 0.318 0.318 0.3289

R-Precision 0.3471 0.3145 0.3432 0.3448 0.3448 0.3501

Interpolated Recall

run

Lucene

tf-S-shape

df-S-shape
+hedge[3.6]

tf-S-shape

df-S-shape
+hedges[4.1]

tf-triangle

df-triangle
tf-triangle

df-S-shape

tf-S-shape

df-S-shape
+ hedges[3.7]

0 0.6147 0.5857 0.6125 0.5975 0.5973 0.6177

0.1 0.5478 0.5323 0.5604 0.5377 0.5375 0.5681

0.2 0.4867 0.4422 0.4674 0.4674 0.4672 0.4752

0.3 0.431 0.4061 0.4308 0.4283 0.4281 0.4399

0.4 0.3905 0.3615 0.3894 0.3894 0.3894 0.3972

0.5 0.3577 0.315 0.3558 0.3553 0.3553 0.3705

0.6 0.3265 0.254 0.2674 0.2794 0.2798 0.283

0.7 0.2728 0.2115 0.2341 0.2398 0.2398 0.252

0.8 0.2435 0.1643 0.1825 0.1892 0.1892 0.1986

0.9 0.1989 0.1002 0.1055 0.1134 0.1134 0.1217

1 0.1103 0.0383 0.0411 0.0418 0.0418 0.0463

Precision at
document
cutoff:

run Lucene

tf-S-shape

df-S-shape
+hedge[3.6]

tf-S-shape

df-S-shape
+hedges[4.1]

tf-triangle

df-triangle
tf-triangle

df-S-shape

tf-S-shape

df-S-shape
+ hedges[3.7]

docs: 5 0.4087 0.4128 0.4128 0.417 0.417 0.4255

docs: 10 0.4043 0.4106 0.4191 0.4043 0.4043 0.4234

docs: 15 0.3812 0.3787 0.3787 0.3702 0.3702 0.3801

docs: 20 0.3685 0.3479 0.3532 0.3574 0.3574 0.3564

docs: 30 0.3391 0.3177 0.3206 0.3227 0.3227 0.3248

docs: 100 0.1896 0.17 0.1794 0.18 0.1802 0.1838

docs: 200 0.1175 0.1033 0.1078 0.1082 0.1082 0.1112

docs: 500 0.0556 0.0486 0.0509 0.0514 0.0512 0.0512

docs: 1000 0.0291 0.0266 0.0278 0.0278 0.0278 0.0278

61 | P a g e

APPENDIX B:

SOURCE CODE OF SYSTEM MODULES

B.1 STOP WORDS BASED ON [8]:

package javaApplication15;

import java.io.*;

import java.util.*;

/**

 * Class that can test whether a given string is a stop word.
 * Lowercases all words before the test. <p/>

 * The format for reading and writing is one word per line, lines starting

 * with '#' are interpreted as comments and therefore skipped. <p/>

 * The default stop words are based on <a href="http://www.cs.cmu.edu/~mccallum/bow/rainbow/"

target="_blank">Rainbow. <p/>

*/

public class Stopwords {

 /** The hash variable containing the list of stopwords */

 protected HashSet m_Words = null;

 /** The default stop words object (stoplist based on Rainbow) */
 protected static Stopwords m_Stopwords;

 static {

 if (m_Stopwords == null) {

 m_Stopwords = new Stopwords();

 }

 }

 /**

 * initializes the stopwords (based on <a href="http://www.cs.cmu.edu/~mccallum/bow/rainbow/"

target="_blank">Rainbow). */

 public Stopwords() {

 m_Words = new HashSet();

 //Stopwords list from Rainbow

<use more than one columin>

 add("a");

 add("able");

 add("about");

 add("above");

 add("according");
 add("accordingly");

 add("across");

 add("actually");

 add("after");

 add("afterwards");

 add("again");

 add("against");

 add("all");

 add("allow");

 add("allows");

 add("almost");

 add("alone");
 add("along");

 add("already");

 add("also");

 add("although");

 add("always");

 add("am");

 add("among");

 add("amongst");

 add("an");

61 | P a g e

 add("and");

 add("another");

 add("any");

 add("anybody");

 add("anyhow");

 add("anyone");

 add("anything");

 add("anyway");
 add("anyways");

 add("anywhere");

 add("apart");

 add("appear");

 add("appreciate");

 add("appropriate");

 add("are");

 add("around");

 add("as");

 add("aside");

 add("ask");
 add("asking");

 add("associated");

 add("at");

 add("available");

 add("away");

 add("awfully");

 add("b");

 add("be");

 add("became");

 add("because");

 add("become");

 add("becomes");
 add("becoming");

 add("been");

 add("before");

 add("beforehand");

 add("behind");

 add("being");

 add("believe");

 add("below");

 add("beside");

 add("besides");

 add("best");
 add("better");

 add("between");

 add("beyond");

 add("both");

 add("brief");

 add("but");

 add("by");

 add("c");

 add("came");

 add("can");

 add("cannot");
 add("cant");

 add("cause");

 add("causes");

 add("certain");

 add("certainly");

 add("changes");

 add("clearly");

 add("co");

 add("com");

 add("come");

 add("comes");

 add("concerning");
 add("consequently");

 add("consider");

62 | P a g e

 add("considering");

 add("contain");

 add("containing");

 add("contains");

 add("corresponding");

 add("could");

 add("course");

 add("currently");
 add("d");

 add("definitely");

 add("described");

 add("despite");

 add("did");

 add("different");

 add("do");

 add("does");

 add("doing");

 add("done");

 add("down");
 add("downwards");

 add("during");

 add("e");

 add("each");

 add("edu");

 add("eg");

 add("eight");

 add("either");

 add("else");

 add("elsewhere");

 add("enough");

 add("entirely");
 add("especially");

 add("et");

 add("etc");

 add("even");

 add("ever");

 add("every");

 add("everybody");

 add("everyone");

 add("everything");

 add("everywhere");

 add("ex");
 add("exactly");

 add("example");

 add("except");

 add("f");

 add("far");

 add("few");

 add("fifth");

 add("first");

 add("five");

 add("followed");

 add("following");
 add("follows");

 add("for");

 add("former");

 add("formerly");

 add("forth");

 add("four");

 add("from");

 add("further");

 add("furthermore");

 add("g");

 add("get");

 add("gets");
 add("getting");

 add("given");

63 | P a g e

 add("gives");

 add("go");

 add("goes");

 add("going");

 add("gone");

 add("got");

 add("gotten");

 add("greetings");
 add("h");

 add("had");

 add("happens");

 add("hardly");

 add("has");

 add("have");

 add("having");

 add("he");

 add("hello");

 add("help");

 add("hence");
 add("her");

 add("here");

 add("hereafter");

 add("hereby");

 add("herein");

 add("hereupon");

 add("hers");

 add("herself");

 add("hi");

 add("him");

 add("himself");

 add("his");
 add("hither");

 add("hopefully");

 add("how");

 add("howbeit");

 add("however");

 add("i");

 add("ie");

 add("if");

 add("ignored");

 add("immediate");

 add("in");
 add("inasmuch");

 add("inc");

 add("indeed");

 add("indicate");

 add("indicated");

 add("indicates");

 add("inner");

 add("insofar");

 add("instead");

 add("into");

 add("inward");
 add("is");

 add("it");

 add("its");

 add("itself");

 add("j");

 add("just");

 add("k");

 add("keep");

 add("keeps");

 add("kept");

 add("know");

 add("knows");
 add("known");

 add("l");

64 | P a g e

 add("last");

 add("lately");

 add("later");

 add("latter");

 add("latterly");

 add("least");

 add("less");

 add("lest");
 add("let");

 add("like");

 add("liked");

 add("likely");

 add("little");

 add("ll"); //added to avoid words like you'll,I'll etc.

 add("look");

 add("looking");

 add("looks");

 add("ltd");

 add("m");
 add("mainly");

 add("many");

 add("may");

 add("maybe");

 add("me");

 add("mean");

 add("meanwhile");

 add("merely");

 add("might");

 add("more");

 add("moreover");

 add("most");
 add("mostly");

 add("much");

 add("must");

 add("my");

 add("myself");

 add("n");

 add("name");

 add("namely");

 add("nd");

 add("near");

 add("nearly");
 add("necessary");

 add("need");

 add("needs");

 add("neither");

 add("never");

 add("nevertheless");

 add("new");

 add("next");

 add("nine");

 add("no");

 add("nobody");
 add("non");

 add("none");

 add("noone");

 add("nor");

 add("normally");

 add("not");

 add("nothing");

 add("novel");

 add("now");

 add("nowhere");

 add("o");

 add("obviously");
 add("of");

 add("off");

65 | P a g e

 add("often");

 add("oh");

 add("ok");

 add("okay");

 add("old");

 add("on");

 add("once");

 add("one");
 add("ones");

 add("only");

 add("onto");

 add("or");

 add("other");

 add("others");

 add("otherwise");

 add("ought");

 add("our");

 add("ours");

 add("ourselves");
 add("out");

 add("outside");

 add("over");

 add("overall");

 add("own");

 add("p");

 add("particular");

 add("particularly");

 add("per");

 add("perhaps");

 add("placed");

 add("please");
 add("plus");

 add("possible");

 add("presumably");

 add("probably");

 add("provides");

 add("q");

 add("que");

 add("quite");

 add("qv");

 add("r");

 add("rather");
 add("rd");

 add("re");

 add("really");

 add("reasonably");

 add("regarding");

 add("regardless");

 add("regards");

 add("relatively");

 add("respectively");

 add("right");

 add("s");
 add("said");

 add("same");

 add("saw");

 add("say");

 add("saying");

 add("says");

 add("second");

 add("secondly");

 add("see");

 add("seeing");

 add("seem");

 add("seemed");
 add("seeming");

 add("seems");

66 | P a g e

 add("seen");

 add("self");

 add("selves");

 add("sensible");

 add("sent");

 add("serious");

 add("seriously");

 add("seven");
 add("several");

 add("shall");

 add("she");

 add("should");

 add("since");

 add("six");

 add("so");

 add("some");

 add("somebody");

 add("somehow");

 add("someone");
 add("something");

 add("sometime");

 add("sometimes");

 add("somewhat");

 add("somewhere");

 add("soon");

 add("sorry");

 add("specified");

 add("specify");

 add("specifying");

 add("still");

 add("sub");
 add("such");

 add("sup");

 add("sure");

 add("t");

 add("take");

 add("taken");

 add("tell");

 add("tends");

 add("th");

 add("than");

 add("thank");
 add("thanks");

 add("thanx");

 add("that");

 add("thats");

 add("the");

 add("their");

 add("theirs");

 add("them");

 add("themselves");

 add("then");

 add("thence");
 add("there");

 add("thereafter");

 add("thereby");

 add("therefore");

 add("therein");

 add("theres");

 add("thereupon");

 add("these");

 add("they");

 add("think");

 add("third");

 add("this");
 add("thorough");

 add("thoroughly");

67 | P a g e

 add("those");

 add("though");

 add("three");

 add("through");

 add("throughout");

 add("thru");

 add("thus");

 add("to");
 add("together");

 add("too");

 add("took");

 add("toward");

 add("towards");

 add("tried");

 add("tries");

 add("truly");

 add("try");

 add("trying");

 add("twice");
 add("two");

 add("u");

 add("un");

 add("under");

 add("unfortunately");

 add("unless");

 add("unlikely");

 add("until");

 add("unto");

 add("up");

 add("upon");

 add("us");
 add("use");

 add("used");

 add("useful");

 add("uses");

 add("using");

 add("usually");

 add("uucp");

 add("v");

 add("value");

 add("various");

 add("ve"); //added to avoid words like I've,you've etc.
 add("very");

 add("via");

 add("viz");

 add("vs");

 add("w");

 add("want");

 add("wants");

 add("was");

 add("way");

 add("we");

 add("welcome");
 add("well");

 add("went");

 add("were");

 add("what");

 add("whatever");

 add("when");

 add("whence");

 add("whenever");

 add("where");

 add("whereafter");

 add("whereas");

 add("whereby");
 add("wherein");

 add("whereupon");

68 | P a g e

 add("wherever");

 add("whether");

 add("which");

 add("while");

 add("whither");

 add("who");

 add("whoever");

 add("whole");
 add("whom");

 add("whose");

 add("why");

 add("will");

 add("willing");

 add("wish");

 add("with");

 add("within");

 add("without");

 add("wonder");

 add("would");
 add("would");

 add("x");

 add("y");

 add("yes");

 add("yet");

 add("you");

 add("your");

 add("yours");

 add("yourself");

 add("yourselves");

 add("z");

 add("zero");
 }

 /**

 * removes all stopwords

 */

 public void clear() {

 m_Words.clear();

 }

 /**

 * adds the given word to the stopword list (is automatically converted to
 * lower case and trimmed)

 *

 * @param word the word to add

 */

 public void add(String word) {

 if (word.trim().length() > 0)

 m_Words.add(word.trim().toLowerCase());

 }

 /**

 * removes the word from the stopword list
 *

 * @param word the word to remove

 * @return true if the word was found in the list and then removed

 */

 public boolean remove(String word) {

 return m_Words.remove(word);

 }

 /**

 * Returns true if the given string is a stop word.

 *

 * @param word the word to test
 * @return true if the word is a stopword

 */

69 | P a g e

 public boolean is(String word) {

 return m_Words.contains(word.toLowerCase());

 }

 /**

 * Returns a sorted enumeration over all stored stopwords

 *

 * @return the enumeration over all stopwords
 */

 public Enumeration elements() {

 Iterator iter;

 Vector list;

 iter = m_Words.iterator();

 list = new Vector();

 while (iter.hasNext())

 list.add(iter.next());

 // sort list

 Collections.sort(list);

 return list.elements();

 }

 /**

 * Generates a new Stopwords object from the given file

 *

 * @param filename the file to read the stopwords from

 * @throws Exception if reading fails

 */
 public void read(String filename) throws Exception {

 read(new File(filename));

 }

 /**

 * Generates a new Stopwords object from the given file

 *

 * @param file the file to read the stopwords from

 * @throws Exception if reading fails

 */

 public void read(File file) throws Exception {
 read(new BufferedReader(new FileReader(file)));

 }

 /**

 * Generates a new Stopwords object from the reader. The reader is

 * closed automatically.

 *

 * @param reader the reader to get the stopwords from

 * @throws Exception if reading fails

 */

 public void read(BufferedReader reader) throws Exception {
 String line;

 clear();

 while ((line = reader.readLine()) != null) {

 line = line.trim();

 // comment?

 if (line.startsWith("#"))

 continue;

 add(line);

 }

 reader.close();

 }

71 | P a g e

 /**

 * Writes the current stopwords to the given file

 *

 * @param filename the file to write the stopwords to

 * @throws Exception if writing fails

 */

 public void write(String filename) throws Exception {
 write(new File(filename));

 }

 /**

 * Writes the current stopwords to the given file

 *

 * @param file the file to write the stopwords to

 * @throws Exception if writing fails

 */

 public void write(File file) throws Exception {

 write(new BufferedWriter(new FileWriter(file)));
 }

 /**

 * Writes the current stopwords to the given writer. The writer is closed

 * automatically.

 *

 * @param writer the writer to get the stopwords from

 * @throws Exception if writing fails

 */

 public void write(BufferedWriter writer) throws Exception {

 Enumeration enm;

 // header

 writer.write("# generated " + new Date());

 writer.newLine();

 enm = elements();

 while (enm.hasMoreElements()) {

 writer.write(enm.nextElement().toString());

 writer.newLine();

 }

 writer.flush();

 writer.close();

 }

 /**

 * returns the current stopwords in a string

 *

 * @return the current stopwords

 */

 public String toString() {

 Enumeration enm;
 StringBuffer result;

 result = new StringBuffer();

 enm = elements();

 while (enm.hasMoreElements()) {

 result.append(enm.nextElement().toString());

 if (enm.hasMoreElements())

 result.append(",");

 }

 return result.toString();

 }

 /**

71 | P a g e

 * Returns true if the given string is a stop word.

 *

 * @param str the word to test

 * @return true if the word is a stopword

 */

 public static boolean isStopword(String str) {

 return m_Stopwords.is(str.toLowerCase());

 }

 /**

 * Accepts the following parameter: <p/>

 *

 * -i file

 * loads the stopwords from the given file <p/>

 *

 * -o file

 * saves the stopwords to the given file <p/>

 *

 * -p

 * outputs the current stopwords on stdout <p/>

 *

 * Any additional parameters are interpreted as words to test as stopwords.

 *

 * @param args commandline parameters

 * @throws Exception if something goes wrong

 */

 public static void main(String[] args) {

 File directory = new File("C:/parsed");

 //File directory = new File("C:/docs/DOCS/parsed");

 // File directory = new File("C:/querydoc");

 File files[] = directory.listFiles();
 String filename[] = directory.list();

 int count = 0;

 String titlestr;

 boolean title;

 for (File f : files)

 {

String nf=f.getName();

 BufferedReader reader = null;

 String titleline="";

 Vector words = new Vector();

 // titlestr = "";
 try

{

reader = new BufferedReader(new FileReader(f));

String text = null;

// repeat until all lines is read

title=true;

while ((text = reader.readLine()) != null)

{

 String str = text;

 String strAr[] = str.split(" ");
String wrd="";

 for(int i=0;i<strAr.length;i++)

 {

 String word = strAr[i];

 for(int j=0;j<word.length();j++)

 {

 char c = (char) word.charAt(j);

 int num = (int)c;

 if (((num >= (int)'A') && (num <= (int)'Z')) ||

 ((num >= (int)'a') && (num <= (int)'z'))) {

 wrd = wrd+c;

 } }

72 | P a g e

if (wrd.length()>0){

 if (title) {titleline=titleline+wrd+" ";

}

 else words.add(wrd);wrd = "";}}

 title=false;

 }

 count++; } catch (FileNotFoundException e)

{

e.printStackTrace();

} catch (IOException e)

{

e.printStackTrace();

} finally

{

try
{ if (reader != null)

{ reader.close();}

} catch (IOException e){

e.printStackTrace();}

 }

 Stopwords stopwords = new Stopwords();

 if ((words.size() > 0) ||(titleline.length()>0)) {

 try {

 FileWriter outFile = new FileWriter("c:\\nsfiles\\ns"+nf);

 PrintWriter out = new PrintWriter(outFile);
 String titleAr[] = titleline.split(" ");

 String st="";

for (int j = 0; j < titleAr.length; j++) {

 if (!(stopwords.is(titleAr[j].toString()))){

 st = st+ titleAr[j].toString()+" ";

 }

 }
 if (titleline.length()>0){out.println(st);}

 for (int i = 0; i < words.size(); i++) {

 if (!(stopwords.is(words.get(i).toString()))){

 String s = words.get(i).toString();

 out.print(s+" ");}

 }

 out.close();

 } catch (IOException e){
 e.printStackTrace();

 }

 }

 }

 }}

73 | P a g e

B.2 Porter stemmer:

/*according to [25]

Step 1 removes the i-suffixes, and

Step 1a

cats -> cat
 'sses' (<-'ss')

 'ies' (<-'i')

 'ss' ()

 's' (delete) or <- ''

step 1b,

 Step 1b:

 EED -> EE

 ED ->

 ING ->

 If the second or third of the rules in Step 1b is successful, the following is done:

 AT -> ATE

 BL -> BLE

 IZ -> IZE

 (*d and not (*L or *S or *Z)) -> single letter

 (m = 1 and *o) -> E

The first part of the rule means that eed maps to ee if eed is in R1 (which is equivalent to m > 0), or ed and ing are

removed if they are preceded by a vowel.

 define Step_1b as (

 [substring] among (
 'eed' (R1 <-'ee')

 'ed'

 'ing' (test gopast v delete)

)

)

steps 2 to 4 the d-suffixes. Composite d-suffixes are reduced to single d-suffixes one at a time. So for example if a

word ends icational, step 2 reduces it to icate and step 3 to ic. Three steps are sufficient for this process in English.

Step 5 does some tidying up.

But this must be modified by the second part of the rule. *d indicates a test for double letter consonant — bb, dd etc.

*L, *S, *Z are tests for l, s, z. *o is a short vowel test — it is matched by consonant-vowel-consonant, where the

consonant on the right is not w, x or y. If the short vowel test is satisfied, m = 1 is equivalent to the cursor being at p1.
So the second part of the rule means, map at, bl, iz to ate, ble, ize; map certain double letters to single letters; and add

e after a short vowel in words of one syllable.

We first need two extra groupings,

 define v 'aeiouy'

 define v_WXY v + 'wxY' // v with 'w', 'x' and 'y'-consonant

 define v_LSZ v + 'lsz' // v with 'l', 's', 'z'

and a test for a short vowel,

 define shortv as (non-v_WXY v non-v)

(The v_WXY test comes first because we are scanning backwards, from right to left.)

The double to single letter map can be done as follows: first define the slice as the next non-v_LSZ and copy it to a

string, ch, as a single character,

 strings (ch)

 [non-v_LSZ] ->ch

A further test, ch, tests that the next letter of the string is the same as the one in ch, and if this gives signal t, delete

deletes the slice,

 [non-v_LSZ] ->ch ch delete

Step_1b can then be written like this,

 define Step_1b as (
 [substring] among (

 'eed' (R1 <-'ee')

74 | P a g e

 'ed'

 'ing' (

 test gopast v delete

 (test among('at' 'bl' 'iz') <+ 'e')

 or

 ([non-v_LSZ]->ch ch delete)

 or

 (atmark p1 test shortv <+ 'e')
)

)

)

letters that need undoubling are b, d, f, g, m, n, p, r and t,

 define Step_1b as (

 [substring] among (

)

)*/

75 | P a g e

public class PorterStemmer {

 /*

* The input is a file that has the stop words removed

* The output a file with stemmed terms

*[25]

*/

 public String stem(String str) {
 // check for zero length

 if (str.length() > 0) {

 // all characters must be letters

 char[] c = str.toCharArray();

 for (int i = 0; i < c.length; i++) {

 if (!Character.isLetter(c[i]))

 return "Invalid term";

 }

 } else {

 return "No term entered";

 }

 str = step1a(str);

 str = step1b(str);

 str = step1c(str);

 str = step2(str);

 str = step3(str);

 str = step4(str);

 str = step5a(str);

 str = step5b(str);

 return str;

 } // end stem

 protected String step1a (String str) {
 // SSES -> SS

 if (str.endsWith("sses")) {

 return str.substring(0, str.length() - 2);

 // IES -> I

 } else if (str.endsWith("ies")) {

 return str.substring(0, str.length() - 2);

 // SS -> S

 } else if (str.endsWith("ss")) {

 return str;

 // S ->

 } else if (str.endsWith("s")) {
 return str.substring(0, str.length() - 1);

 } else {

 return str;

 }

 } // end step1a

 protected String step1b (String str) {

 // (m > 0) EED -> EE

 if (str.endsWith("eed")) {

 if (stringMeasure(str.substring(0, str.length() - 3)) > 0)

 return str.substring(0, str.length() - 1);
 else

 return str;

 // (*v*) ED ->

 } else if ((str.endsWith("ed")) &&

 (containsVowel(str.substring(0, str.length() - 2)))) {if (str.length()>3) {

 return step1b2(str.substring(0, str.length() - 2));}

 // (*v*) ING ->

 } else if ((str.endsWith("ing")) &&

 (containsVowel(str.substring(0, str.length() - 3)))) {if (str.length()>4) {

 return step1b2(str.substring(0, str.length() - 3));}

 } // end if

 return str;
 } // end step1b

76 | P a g e

 protected String step1b2 (String str) {

 // AT -> ATE

 if (str.endsWith("at") ||

 str.endsWith("bl") ||

 str.endsWith("iz")) {

 return str + "e";

 } else if ((endsWithDoubleConsonent(str)) &&

 (!(str.endsWith("l") || str.endsWith("s") || str.endsWith("z")))) {
 return str.substring(0, str.length() - 1);

 } else if ((stringMeasure(str) == 1) &&

 (endsWithCVC(str))) {

 return str + "e";

 } else {

 return str;

 }

 } // end step1b2

 protected String step1c(String str) {

 // (*v*) Y -> I
 if (str.endsWith("y")) {

 if (containsVowel(str.substring(0, str.length() - 1)))

 return str.substring(0, str.length() - 1) + "i";

 } // end if

 return str;

 } // end step1c

 protected String step2 (String str) {

 // (m > 0) ATIONAL -> ATE

 if ((str.endsWith("ational")) &&

 (stringMeasure(str.substring(0, str.length() - 5)) > 0)) {

 return str.substring(0, str.length() - 5) + "e";
 // (m > 0) TIONAL -> TION

 } else if ((str.endsWith("tional")) &&

 (stringMeasure(str.substring(0, str.length() - 2)) > 0)) {

 return str.substring(0, str.length() - 2);

 // (m > 0) ENCI -> ENCE

 } else if ((str.endsWith("enci")) &&

 (stringMeasure(str.substring(0, str.length() - 2)) > 0)) {

 return str.substring(0, str.length() - 2);

 // (m > 0) ANCI -> ANCE

 } else if ((str.endsWith("anci")) &&

 (stringMeasure(str.substring(0, str.length() - 1)) > 0)) {
 return str.substring(0, str.length() - 1) + "e";

 // (m > 0) IZER -> IZE

 } else if ((str.endsWith("izer")) &&

 (stringMeasure(str.substring(0, str.length() - 1)) > 0)) {

 return str.substring(0, str.length() - 1);

 // (m > 0) ABLI -> ABLE

 } else if ((str.endsWith("abli")) &&

 (stringMeasure(str.substring(0, str.length() - 1)) > 0)) {

 return str.substring(0, str.length() - 1) + "e";

 // (m > 0) ENTLI -> ENT

 } else if ((str.endsWith("alli")) &&
 (stringMeasure(str.substring(0, str.length() - 2)) > 0)) {

 return str.substring(0, str.length() - 2);

 // (m > 0) ELI -> E

 } else if ((str.endsWith("entli")) &&

 (stringMeasure(str.substring(0, str.length() - 2)) > 0)) {

 return str.substring(0, str.length() - 2);

 // (m > 0) OUSLI -> OUS

 } else if ((str.endsWith("eli")) &&

 (stringMeasure(str.substring(0, str.length() - 2)) > 0)) {

 return str.substring(0, str.length() - 2);

 // (m > 0) IZATION -> IZE

 } else if ((str.endsWith("ousli")) &&
 (stringMeasure(str.substring(0, str.length() - 2)) > 0)) {

 return str.substring(0, str.length() - 2);

77 | P a g e

 // (m > 0) IZATION -> IZE

 } else if ((str.endsWith("ization")) &&

 (stringMeasure(str.substring(0, str.length() - 5)) > 0)) {

 return str.substring(0, str.length() - 5) + "e";

 // (m > 0) ATION -> ATE

 } else if ((str.endsWith("ation")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 0)) {

 return str.substring(0, str.length() - 3) + "e";
 // (m > 0) ATOR -> ATE

 } else if ((str.endsWith("ator")) &&

 (stringMeasure(str.substring(0, str.length() - 2)) > 0)) {

 return str.substring(0, str.length() - 2) + "e";

 // (m > 0) ALISM -> AL

 } else if ((str.endsWith("alism")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 0)) {

 return str.substring(0, str.length() - 3);

 // (m > 0) IVENESS -> IVE

 } else if ((str.endsWith("iveness")) &&

 (stringMeasure(str.substring(0, str.length() - 4)) > 0)) {
 return str.substring(0, str.length() - 4);

 // (m > 0) FULNESS -> FUL

 } else if ((str.endsWith("fulness")) &&

 (stringMeasure(str.substring(0, str.length() - 4)) > 0)) {

 return str.substring(0, str.length() - 4);

 // (m > 0) OUSNESS -> OUS

 } else if ((str.endsWith("ousness")) &&

 (stringMeasure(str.substring(0, str.length() - 4)) > 0)) {

 return str.substring(0, str.length() - 4);

 // (m > 0) ALITII -> AL

 } else if ((str.endsWith("aliti")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 0)) {
 return str.substring(0, str.length() - 3);

 // (m > 0) IVITI -> IVE

 } else if ((str.endsWith("iviti")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 0)) {

 return str.substring(0, str.length() - 3) + "e";

 // (m > 0) BILITI -> BLE

 } else if ((str.endsWith("biliti")) &&

 (stringMeasure(str.substring(0, str.length() - 5)) > 0)) {

 return str.substring(0, str.length() - 5) + "le";

 } // end if

 return str;
 } // end step2

 protected String step3 (String str) {

 // (m > 0) ICATE -> IC

 if ((str.endsWith("icate")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 0)) {

 return str.substring(0, str.length() - 3);

 // (m > 0) ATIVE ->

 } else if ((str.endsWith("ative")) &&

 (stringMeasure(str.substring(0, str.length() - 5)) > 0)) {
 return str.substring(0, str.length() - 5);

 // (m > 0) ALIZE -> AL

 } else if ((str.endsWith("alize")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 0)) {

 return str.substring(0, str.length() - 3);

 // (m > 0) ICITI -> IC

 } else if ((str.endsWith("iciti")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 0)) {

 return str.substring(0, str.length() - 3);

 // (m > 0) ICAL -> IC

 } else if ((str.endsWith("ical")) &&

 (stringMeasure(str.substring(0, str.length() - 2)) > 0)) {
 return str.substring(0, str.length() - 2);

 // (m > 0) FUL ->

78 | P a g e

 } else if ((str.endsWith("ful")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 0)) {

 return str.substring(0, str.length() - 3);

 // (m > 0) NESS ->

 } else if ((str.endsWith("ness")) &&

 (stringMeasure(str.substring(0, str.length() - 4)) > 0)) {

 return str.substring(0, str.length() - 4);

 } // end if
 return str;

 } // end step3

 protected String step4 (String str) {

 if ((str.endsWith("al")) &&

 (stringMeasure(str.substring(0, str.length() - 2)) > 1)) {

 return str.substring(0, str.length() - 2);

 // (m > 1) ANCE ->

 } else if ((str.endsWith("ance")) &&

 (stringMeasure(str.substring(0, str.length() - 4)) > 1)) {
 return str.substring(0, str.length() - 4);

 // (m > 1) ENCE ->

 } else if ((str.endsWith("ence")) &&

 (stringMeasure(str.substring(0, str.length() - 4)) > 1)) {

 return str.substring(0, str.length() - 4);

 // (m > 1) ER ->

 } else if ((str.endsWith("er")) &&

 (stringMeasure(str.substring(0, str.length() - 2)) > 1)) {

 return str.substring(0, str.length() - 2);

 // (m > 1) IC ->

 } else if ((str.endsWith("ic")) &&

 (stringMeasure(str.substring(0, str.length() - 2)) > 1)) {
 return str.substring(0, str.length() - 2);

 // (m > 1) ABLE ->

 } else if ((str.endsWith("able")) &&

 (stringMeasure(str.substring(0, str.length() - 4)) > 1)) {

 return str.substring(0, str.length() - 4);

 // (m > 1) IBLE ->

 } else if ((str.endsWith("ible")) &&

 (stringMeasure(str.substring(0, str.length() - 4)) > 1)) {

 return str.substring(0, str.length() - 4);

 // (m > 1) ANT ->

 } else if ((str.endsWith("ant")) &&
 (stringMeasure(str.substring(0, str.length() - 3)) > 1)) {

 return str.substring(0, str.length() - 3);

 // (m > 1) EMENT ->

 } else if ((str.endsWith("ement")) &&

 (stringMeasure(str.substring(0, str.length() - 5)) > 1)) {

 return str.substring(0, str.length() - 5);

 // (m > 1) MENT ->

 } else if ((str.endsWith("ment")) &&

 (stringMeasure(str.substring(0, str.length() - 4)) > 1)) {

 return str.substring(0, str.length() - 4);

 // (m > 1) ENT ->
 } else if ((str.endsWith("ent")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 1)) {

 return str.substring(0, str.length() - 3);

 // (m > 1) and (*S or *T) ION ->

 } else if ((str.endsWith("sion") || str.endsWith("tion")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 1)) {

 return str.substring(0, str.length() - 3);

 // (m > 1) OU ->

 } else if ((str.endsWith("ou")) &&

 (stringMeasure(str.substring(0, str.length() - 2)) > 1)) {

 return str.substring(0, str.length() - 2);

 // (m > 1) ISM ->
 } else if ((str.endsWith("ism")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 1)) {

79 | P a g e

 return str.substring(0, str.length() - 3);

 // (m > 1) ATE ->

 } else if ((str.endsWith("ate")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 1)) {

 return str.substring(0, str.length() - 3);

 // (m > 1) ITI ->

 } else if ((str.endsWith("iti")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 1)) {
 return str.substring(0, str.length() - 3);

 // (m > 1) OUS ->

 } else if ((str.endsWith("ous")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 1)) {

 return str.substring(0, str.length() - 3);

 // (m > 1) IVE ->

 } else if ((str.endsWith("ive")) &&

 (stringMeasure(str.substring(0, str.length() - 3)) > 1)) {

 return str.substring(0, str.length() - 3);

 // (m > 1) IZE ->

 } else if ((str.endsWith("ize")) &&
 (stringMeasure(str.substring(0, str.length() - 3)) > 1)) {

 return str.substring(0, str.length() - 3);

 } // end if

 return str;

 } // end step4

 protected String step5a (String str) {

 // (m > 1) E ->

 if ((stringMeasure(str.substring(0, str.length() - 1)) > 1) &&

 str.endsWith("e"))

 return str.substring(0, str.length() -1);
 // (m = 1 and not *0) E ->

 else if ((stringMeasure(str.substring(0, str.length() - 1)) == 1) &&

 (!endsWithCVC(str.substring(0, str.length() - 1))) &&

 (str.endsWith("e")))

 return str.substring(0, str.length() - 1);

 else

 return str;

 } // end step5a

 protected String step5b (String str) {
 // (m > 1 and *d and *L) ->

 if (str.endsWith("l") &&

 endsWithDoubleConsonent(str) &&

 (stringMeasure(str.substring(0, str.length() - 1)) > 1)) {

 return str.substring(0, str.length() - 1);

 } else {

 return str;

 }

 } // end step5b

 /* ---
 The following are functions to help compute steps 1 - 5

 --- */

 // does string end with 's'?

 protected boolean endsWithS(String str) {

 return str.endsWith("s");

 } // end function

 // does string contain a vowel?

 protected boolean containsVowel(String str) {

 char[] strchars = str.toCharArray();

 for (int i = 0; i < strchars.length; i++) {
 if (isVowel(strchars[i]))

 return true;

81 | P a g e

 }

 // no aeiou but there is y

 if (str.indexOf('y') > -1)

 return true;

 else

 return false;

 } // end function

 // is char a vowel?

 public boolean isVowel(char c) {

 if ((c == 'a') ||

 (c == 'e') ||

 (c == 'i') ||

 (c == 'o') ||

 (c == 'u'))

 return true;

 else

 return false;

 } // end function

 // does string end with a double consonent?

 protected boolean endsWithDoubleConsonent(String str) {

 if (str.length()>0){char c = str.charAt(str.length() - 1);

 if (str.length()>2)

 {

 if (c == str.charAt(str.length() - 2))

 if (!containsVowel(str.substring(str.length() - 2))) {

 return true;

 }}}

 return false;
 } // end function

 // returns a CVC measure for the string

 protected int stringMeasure(String str) {

 int count = 0;

 boolean vowelSeen = false;

 char[] strchars = str.toCharArray();

 for (int i = 0; i < strchars.length; i++) {

 if (isVowel(strchars[i])) {

 vowelSeen = true;
 } else if (vowelSeen) {

 count++;

 vowelSeen = false;

 }

 } // end for

 return count;

 } // end function

 // does stem end with CVC?

 protected boolean endsWithCVC (String str) {

 char c, v, c2 = ' ';
 if (str.length() >= 3) {

 c = str.charAt(str.length() - 1);

 v = str.charAt(str.length() - 2);

 c2 = str.charAt(str.length() - 3);

 } else {

 return false;

 }

 if ((c == 'w') || (c == 'x') || (c == 'y')) {

 return false;

 } else if (isVowel(c)) {

 return false;
 } else if (!isVowel(v)) {

 return false;

81 | P a g e

 } else if (isVowel(c2)) {

 return false;

 } else {

 return true;

 }

 } // end function

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args){

 PorterStemmer ps= new PorterStemmer();

 File directory = new File("c:/nsfiles");

 //File directory = new File("C:/nsqueries");

 File files[] = directory.listFiles();

 String filename[] = directory.list();

 int count = 0;
 for (File f : files)

 {

 String nf=f.getName();

 BufferedReader reader = null;

try

{

 FileInputStream fin=null;

 fin = new FileInputStream(f);

 reader = new BufferedReader(new InputStreamReader(fin));

 String text = null;

// repeat until all lines is read

 try {

 FileWriter outFile = new FileWriter("c:\\stemfiles\\stm"+nf);

 // FileWriter outFile = new FileWriter("C:\\stemqueries\\stm"+nf);

 PrintWriter out = new PrintWriter(outFile);

count++;

boolean title=true;

while(reader.ready())

{

 text=reader.readLine();
 String str = text;

 StringBuffer wordBuffer = new StringBuffer();

 for(int i=0;i<str.length();i++)

 {

 char c = (char) str.charAt(i);

 int num = (int)c;

 if (((num >= (int)'A') && (num <= (int)'Z')) ||

 ((num >= (int)'a') && (num <= (int)'z'))) {

 wordBuffer.append(c);

 } else {
 if (wordBuffer.length() > 0) {

 String wb= wordBuffer.toString().toLowerCase();

 out.print(ps.stem(wb));

 wordBuffer = new StringBuffer(); }

 out.print(c);

 }

 }

 if (title){out.println();

 title= false;

 }

 }

 out.close();
 } catch (IOException e){

 e.printStackTrace();

82 | P a g e

 }

} catch (FileNotFoundException e)

{

e.printStackTrace();

} catch (IOException e)

{

e.printStackTrace();

} finally
{

try

{

if (reader != null)

{

reader.close();

}

} catch (IOException e)

{

e.printStackTrace();

}
 }

 }

 }}

83 | P a g e

B.3 Finding term frequencies and document lengths:

/*

* The input is a stemmed file

* The output is two files one has the term and the document id of the document it appeared in and the frequency of

 * appearance in that document and the otherone has the document id and the document length

*/
/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package termfreqdoclength;

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

import java.io.BufferedReader;

import java.io.*;
import java.io.FileReader;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import java.util.Variable;

import java.util.*;

/**

 *

 * @author TOSHIBA

 */
public class Main {

public static LinkedHashMap sortHashMapByValuesD(HashMap <String,Double> passedMap) {

 List mapKeys = new ArrayList(passedMap.keySet());

 List mapValues = new ArrayList(passedMap.values());

 //Collections.sort(mapValues);

 Collections.sort(mapKeys);

 Comparator descending = Collections.reverseOrder();

 Collections.sort(mapValues, descending);

 LinkedHashMap sortedMap =

 new LinkedHashMap();

 Iterator valueIt = mapValues.iterator();

 while (valueIt.hasNext()) {

 Object val = valueIt.next();

 Iterator keyIt = mapKeys.iterator();

 while (keyIt.hasNext()) {

 Object key = keyIt.next();

 String comp1 = passedMap.get(key).toString();

 String comp2 = val.toString();

 if (comp1.equals(comp2)){
 passedMap.remove(key);

 mapKeys.remove(key);

 sortedMap.put((String)key, (Double)val);

 break;

 } }

 }

 return sortedMap;

}

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {
 File directory = new File("F:/stemfiles");

 //String filename[] = directory.list();

84 | P a g e

 File files[] = directory.listFiles();

 Map<String,String> fmp=new HashMap<String,String >();

 Map<String, Map<String,Object>> dirmp = new HashMap<String, Map<String,Object>>();

 String filename[] = directory.list();

 Map<String, Map<String,Integer>> word_index = new HashMap<String, Map<String,Integer>>();

 int count = 0;

 Map<String,Map<String,Integer>> titletmp = new HashMap<String,Map<String,Integer>>();

 try { FileWriter outFile = new FileWriter("F:\\tabletf.txt");
 PrintWriter out = new PrintWriter(outFile);

 try { FileWriter outFile2 = new FileWriter("F:\\doclength.txt");

 PrintWriter outdlength = new PrintWriter(outFile);

 for (File f : files)

 {

 boolean title=true;

 String nf = f.getName();

 fmp.put(count+"", nf);

 //System.out.println(count+" "+nf);

 BufferedReader reader = null;

 Map<String,Object> mp=new HashMap<String,Object >();
 try

{

reader = new BufferedReader(new FileReader(f));

String text = null;

// repeat until all lines is read

while ((text = reader.readLine()) != null)

{

 String str = text;

 String strAr[] = str.split(" ");

 for(int i=0;i<strAr.length;i++)
 {

 String word = strAr[i];

 if (mp.containsKey(word)) //mp is the term and its frequency in the file

 {

 Integer I = (Integer) mp.get(word);

 mp.put(word, new Integer(I.intValue()+1));

 }

 else

 {

 mp.put(word, new Integer(1));

 }
 if (title){

 Map<String,Integer> value=new HashMap<String,Integer >();

 String fle=count+"";

 if (titletmp.containsKey(word)) //titletmp is the term and the documents where it appears in title

 {

 value = (HashMap <String,Integer>) titletmp.get(word);

 if (value.containsKey(fle)) //mp is the term and its frequency in the file

 {

 Integer I = (Integer) value.get(fle);

 value.put(fle, new Integer(I.intValue()+1));

 }
 else

 {

 value.put(fle, new Integer(1));

 }

 }

 else

 {

 value.put(fle, new Integer(1));

 }

 titletmp.put(word, value);}

 }

title=false;
}

} catch (FileNotFoundException e)

85 | P a g e

{

e.printStackTrace();

} catch (IOException e)

{

e.printStackTrace();

} finally

{

try
{

if (reader != null)

{

reader.close();

}

} catch (IOException e)

{

e.printStackTrace();

}

}

 //Get Map in Variable interface to get key and value
 Variable s=mp.entrySet();

 //Move next key and value of Map by iterator

 Iterator it=s.iterator();

 while(it.hasNext())

 {

 // key=value separator this by Map.Entry to get key and value

 Map.Entry m =(Map.Entry)it.next();

 // getKey is used to get key of Map

 int value=(Integer)m.getValue();

 // getValue is used to get value of key in Map

 String key=(String)m.getKey();

 int c=count;

 if (word_index.containsKey(key)) //fills the word index with the term and freq in docs

{

Map<String,Integer> mp2=new HashMap<String,Integer >();

 mp2 = (HashMap <String,Integer>)word_index.get(key);

 int value3;

 //for each file
 Variable s4=mp2.entrySet();

 //Move next key and value of Map by iterator

 Iterator it4= s4.iterator();

 int filelength = 0;

 while(it4.hasNext())

 { // key=value separator this by Map.Entry to get key and value

 Map.Entry m3 =(Map.Entry)it4.next();

 String key3=(String)m3.getKey();

 // getValue is used to get value of key in Map

 value3=(Integer)m3.getValue();
 mp2.put(key3, value3);

 }

 mp2.put(c+"",new Integer(value));

 word_index.put(key, mp2);

 }

 else

 {

 Map<String,Integer> mp2=new HashMap<String,Integer >();

 mp2.put(c+"",new Integer(value));

 word_index.put(key, mp2);

 }
 }

 dirmp.put(count+"", mp); //fills the file num and the terms frequencies

86 | P a g e

 count++;

 }

 Map <String,Integer> doclength= new HashMap <String,Integer>(); //each doc and its length

 Variable s2=dirmp.entrySet();

 String key3;

 //Move next key and value of Map by iterator

 Iterator it=s2.iterator();

 while(it.hasNext())
 {Map <String,Object> mvalue = new HashMap <String,Object> ();

 Map.Entry m =(Map.Entry)it.next();

 String key=(String)m.getKey();

 mvalue =(HashMap <String,Object>) m.getValue();

 int value3;

 //for each file

 Variable s3=mvalue.entrySet();

 //Move next key and value of Map by iterator

 Iterator it3= s3.iterator();

 int filelength = 0;

 while(it3.hasNext())
 { Map.Entry m3 =(Map.Entry)it3.next();

 key3=(String)m3.getKey();

 // getValue is used to get value of key in Map

 value3=(Integer)m3.getValue();

 filelength = filelength+ value3;

 }

 doclength.put(key, filelength); //adds the file and its length

 }

 Variable wrd_dx=word_index.entrySet();

 //Move next key and value of Map by iterator

 Iterator it_x=wrd_dx.iterator();

 while(it_x.hasNext()) //will iterate over the word index to get the term and doc frequencies
 {

 Map.Entry xm =(Map.Entry)it_x.next();

 String key=(String)xm.getKey();

 Map<String,Integer> mp3=new HashMap<String,Integer >();

 mp3 = (HashMap <String,Integer>)xm.getValue();

 Variable mp3_dx=mp3.entrySet();

 Iterator it_x2=mp3_dx.iterator();

 while(it_x2.hasNext()) //will iterate over the word index to get the term and doc frequencies

 {

 Map.Entry mp =(Map.Entry)it_x2.next();

 String doc=(String) mp.getKey();
 int freq=(Integer) mp.getValue();

 out.println(key+" "+doc+" "+freq);

 }

 }

 Variable dl=doclength.entrySet();

 //Move next key and value of Map by iterator

 Iterator it_x3=dl.iterator();

 while(it_x.hasNext()) //will iterate over the word index to get the term and doc frequencies

 {

 Map.Entry dlm =(Map.Entry)it_x3.next();

 String key=(String)dlm.getKey();
 int dlen=(Integer) dlm.getValue();

 outdlength.println(key+" "+dlen);

 }

 outdlength.close();

 }

 catch (IOException e){

 e.printStackTrace();

 }

out.close();

}

catch (IOException e){

 e.printStackTrace();
 }

 }}

87 | P a g e

B.4 Finding title terms and their frequencies :

/*

* The input is the stemmed files

* The output is a file that has the term and the document id of the document it appeared in its title and the frequency

* of appearance in that document’s title

*/
/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package titlefreq;

/*

 * title

 * and open the template in the editor.

 */

import java.io.BufferedReader;

import java.io.*;
import java.io.FileReader;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import java.util.Variable;

import java.util.*;

public class Main {

 public static void main(String[] args) {

 File directory = new File("F:/stemfiles");
 File files[] = directory.listFiles();

 Map<String,String> fmp=new HashMap<String,String >();

 String filename[] = directory.list();

 BufferedReader reader = null;

 int count,flength=0;

try { FileWriter outFile = new FileWriter("F:\\titlet.txt");

 PrintWriter out = new PrintWriter(outFile);

 count=0;

 for (File f : files)

 {Map<String,Integer> titletmp = new HashMap<String,Integer>();

try
{

 reader = new BufferedReader(new FileReader(f));

 String text = null;

 flength=0;

 boolean title=true;

 while (((text = reader.readLine()) != null)&& title)

 {

 String str = text;

 String strAr[] = str.split(" ");

 for(int i=0;i<strAr.length;i++)

 {
 if (title){

 if (titletmp.containsKey(strAr[i])) {

 int value = titletmp.get(strAr[i]);

 Integer I = (Integer) value;

 titletmp.put(strAr[i], new Integer(I.intValue()+1));

 }

 else

 {titletmp.put(strAr[i], new Integer(1));

 }

 }

 }

 title=false;
 }

} catch (FileNotFoundException e)

88 | P a g e

{

e.printStackTrace();

} catch (IOException e)

{

e.printStackTrace();

} finally

{

try
{

if (reader != null)

{

reader.close();

}

} catch (IOException e)

{

e.printStackTrace();

}

}

Variable s=titletmp.entrySet();
Iterator it=s.iterator();

while(it.hasNext())

{

 Map.Entry m =(Map.Entry)it.next();

 String key =(String)m.getKey();

 int value =(Integer) m.getValue();

 out.println(key+" "+count+" "+value);

}

 count++; }

out.close();

}

catch (IOException e){
 e.printStackTrace();

 }

}

}

89 | P a g e

B.5 Fuzzification of term frequency and document frequencies ratios
using the triangle membership functions:

package termfudocfuzmod;

/*

* The input is a file that has the term and the document it appeared in and the frequency of appearance in that

 * document. This file does the fuzzification of the term frequencies as well as the document frequency according to

* the triangle function

* The output is two files one is the tf fuzzified and the df fuzzified...the first has each term and the document it
* appeared in and three fuzzification values for the degree of membership in each variable of low and medium and

high

*/

import java.io.*;

import java.util.*;

public class Main {

 public static void main(String[] args) {

 BufferedReader readertf = null;

 try { FileWriter outFiletf = new FileWriter("F:\\fuztfmodtri.txt");

 PrintWriter outf = new PrintWriter(outFiletf);

 try { FileWriter outFiledf = new FileWriter("F:\\fuzdfmodtri.txt");
 PrintWriter outdf = new PrintWriter(outFiledf);

try

{ int nofdoc=0;

 readertf = new BufferedReader(new FileReader("f:\\tabletf.txt"));

 String text = null;

 String prevTrem="aa";

 while (((text = readertf.readLine()) != null)) //the loop reads the index line by line each line has the term, the

 //document it appeared in and its frequency.

 {

 String str = text;

 String strAr[] = str.split(" ");
 String term=strAr[0];

 //check the doc frequency

 if (term.compareTo(prevTrem)==0){nofdoc++;}

 else //here the fuzzification according to df which is translated to three fuzzification

 // values representing the membership in the three fuzzy values (low df, medium df, high

df)

 {

 double l, m, h;

 String sd="";

 if (nofdoc <= 1) {l=1;}

 else if((nofdoc > 1) && (nofdoc <= 3))
 { double lx = 1-((nofdoc-1)/2.0);

 int il = (int)(lx * 1000.0); // scale it

 l = ((double)il)/1000.0;

 }else l=0;

 if (nofdoc <= 3) {m=0;}

 else if((nofdoc > 3) && (nofdoc <= 9))

 {

 double mx = ((nofdoc - 3) / 6.0);

 int im = (int)(mx * 1000.0); // scale it

 m = ((double)im)/1000.0;

 }else if((nofdoc > 9) && (nofdoc <= 15))
 {double mx = 1-((nofdoc - 9) / 6.0);

 int im = (int)(mx * 1000.0); // scale it

 m = ((double)im)/1000.0;}

 else m=0;

 if (nofdoc <= 12) {h=0;}

 else if((nofdoc > 12) && (nofdoc <= 24))

 { double hx = ((nofdoc-12)/12.0);

 int ih = (int)(hx * 1000.0); // scale it

 h = ((double)ih)/1000.0;

 }else h=1;

 sd=sd+l+" "+m+" "+h; // values representing the membership in the three fuzzy values (low df, medium df,

high df)

91 | P a g e

 outdf.println(prevTrem+" "+sd);

 nofdoc=1;

 }

 String doc=strAr[1];

 double freqratio= Double.parseDouble(strAr[2]);

 double lt=0, mt=0, ht=0;

 String s="";

 if (freqratio <= 0.003) {lt=1;}
 else if((freqratio > 0.003) && (freqratio <= 0.005))

 { lt = 1-((freqratio-0.003)/0.002);

 int il = (int)(lt * 1000.0); // scale it

 lt = ((double)il)/1000.0;

 }

 else lt=0;

 if((freqratio > 0.003) && (freqratio <= 0.006))

 {

 mt = ((freqratio-0.003)/0.003);

 int im = (int)(mt * 1000.0); // scale it

 mt = ((double)im)/1000.0;}
 else if((freqratio > 0.006) && (freqratio <= 0.01))

 { mt = 1-((freqratio-0.006)/0.004);

 int im = (int)(mt * 1000.0); // scale it

 mt = ((double)im)/1000.0;

 }

 else mt=0;

 if (freqratio <=0.008) ht=0;

 else

 if((freqratio > 0.008) && (freqratio <= 0.02))

 {

 ht = ((freqratio-0.008)/0.003);

 int ih = (int)(ht * 1000.0); // scale it
 ht = ((double)ih)/1000.0;}

 else ht = 1;

 s=lt+" "+mt+" "+ht; // values representing the membership in the three fuzzy values (low tf, medium tf,

high tf)

 outf.println(term+" "+doc+" "+s);

 prevTrem=term;

 }

} catch (FileNotFoundException e)

{

e.printStackTrace();

} catch (IOException e)
e.printStackTrace();

} finally{

try{

if (readertf != null)

readertf.close();}

} catch (IOException e){

e.printStackTrace();}

}

outdf.close();}

catch (IOException e){ e.printStackTrace();
 }

outf.close();

}

catch (IOException e){

 e.printStackTrace();

 }

}

}

91 | P a g e

B.6 Fuzzification of term frequency and document frequencies ratios
using the S-shape membership functions:

/*

* The input is a file that has the term and the document it appeared in and the frequency of appearance in that

 * document. This file does the fuzzification of the term frequencies as well as the document frequency according to

* the S-shape function

* The output is two files one is the tf fuzzified and the df fuzzified...the first has each term and the document it

* appeared in and three fuzzification values for the degree of membership in each variable of low and medium and
high

*/

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package modmembershipfunc;

import java.io.BufferedReader;

import java.io.*;
import java.io.FileReader;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import java.util.Variable;

import java.util.*;

/**

 *

 * @author TOSHIBA

 */
public class Main {

 public static void main(String[] args) {

 BufferedReader readertf = null;

try { FileWriter outFiletf = new FileWriter("F:\\fuztfmodS.txt");

 PrintWriter outf = new PrintWriter(outFiletf);

try { FileWriter outFiledf = new FileWriter("F:\\fuzdfmodS.txt");
 PrintWriter outdf = new PrintWriter(outFiledf);

try

{ int nofdoc=0;

 readertf = new BufferedReader(new FileReader("f:\\tabletf.txt"));

 String text = null;

 String prevTrem="aa";

 while (((text = readertf.readLine()) != null))

 {

 String str = text;

 String strAr[] = str.split(" ");
 String term=strAr[0];

 //check the doc frequency

 if (term.compareTo(prevTrem)==0){nofdoc++;}

 else

 {

 String sd="";

 if (nofdoc <= 1) {l=1;}

 else if((nofdoc > 1) && (nofdoc <= 3))

 { double lx = 1-((nofdoc-1)/2.0);

 int il = (int)(lx * 1000.0); // scale it

 l = ((double)il)/1000.0;

 }else l=0;

92 | P a g e

 if (nofdoc <= 3) {m=0;}

 else if((nofdoc > 3) && (nofdoc <= 9))

 {

 double mx = ((nofdoc - 3) / 6.0);

 int im = (int)(mx * 1000.0); // scale it

 m = ((double)im)/1000.0;

 }else if((nofdoc > 9) && (nofdoc <= 15))

 {double mx = 1-((nofdoc - 9) / 6.0);
 int im = (int)(mx * 1000.0); // scale it

 m = ((double)im)/1000.0;}

 else m=0;

 if (nofdoc <= 12) {h=0;}

 else if((nofdoc > 12) && (nofdoc <= 24))

 { double hx = ((nofdoc-12)/12.0);

 int ih = (int)(hx * 1000.0); // scale it

 h = ((double)ih)/1000.0;

 }else h=1;

 sd=sd+l+" "+m+" "+h;

 // outdf.print(prevTrem+" "+nofdoc+" ");
 outdf.println(prevTrem+" "+sd);

 //System.out.println(prevTrem+" "+sd);

 nofdoc=1;*/

 ///////////////////////Sdf

 double l=0, m=0, h=0;

 String sd="";

 ////lowdf

 if (nofdoc <= 1) {l=1;}

 else if((nofdoc > 1) && (nofdoc <= 3))

 { double lx = 1-2*Math.pow(((nofdoc-1)/4.0),2);

 int il = (int)(lx * 1000.0); // scale it

 l = ((double)il)/1000.0;
 }

 else if((nofdoc > 3) && (nofdoc <= 5))

 { double lx = 2*Math.pow(((nofdoc-5)/4.0),2);

 int il = (int)(lx * 1000.0); // scale it

 l = ((double)il)/1000.0;

 }

 else l=0;

 ////mediumdf

 if (nofdoc <= 1) {m=0;}

 else if((nofdoc > 1) && (nofdoc <= 3))

 {
 double mx = 2*Math.pow(((nofdoc-1)/4.0),2);

 int im = (int)(mx * 1000.0); // scale it

 m = ((double)im)/1000.0;

 }else if((nofdoc > 3) && (nofdoc <= 5))

 {double mx = 1-2*Math.pow(((nofdoc-5)/4.0),2);

 int im = (int)(mx * 1000.0); // scale it

 m = ((double)im)/1000.0;}

 else if((nofdoc > 5) && (nofdoc <= 13))m=1;

 else if((nofdoc > 13) && (nofdoc <= 15))

 { m = 1-2*Math.pow(((nofdoc-13)/4.0),2);

 int im = (int)(m * 1000.0); // scale it
 m = ((double)im)/1000.0;

 }

 else if((nofdoc > 15) && (nofdoc <= 17))

 {

 m = 2*Math.pow(((nofdoc-17)/4.0),2);

 int im = (int)(m * 1000.0); // scale it

 m = ((double)im)/1000.0;}

 else m=0;

 ////highdf

 if (nofdoc <= 13) {h=0;}

 else if((nofdoc > 13) && (nofdoc <= 19))

 { double hx = 2*Math.pow(((nofdoc-13)/12.0),2);
 int ih = (int)(hx * 1000.0); // scale it

 h = ((double)ih)/1000.0;

93 | P a g e

 }

 else

 if((nofdoc > 19) && (nofdoc <= 25))

 {

 h = 1-2*Math.pow(((nofdoc-25)/12.0),2);

 int ih = (int)(h * 1000.0); // scale it

 h = ((double)ih)/1000.0;}

 else h=1;

 sd=sd+l+" "+m+" "+h;

 // outdf.print(prevTrem+" "+nofdoc+" ");

 outdf.println(prevTrem+" "+sd);

 //System.out.println(prevTrem+" "+sd);

 nofdoc=1;

 }

 String doc=strAr[1];

 double freqratio= Double.parseDouble(strAr[2]);

 double lt=0, mt=0, ht=0;

 String s="";
 if (freqratio <= 0.002) {lt=1;}

 else if((freqratio > 0.002) && (freqratio <= 0.003))

 { lt = 1-2*Math.pow(((freqratio-0.002)/0.002),2);

 int il = (int)(lt * 1000.0); // scale it

 lt = ((double)il)/1000.0;

 }

 else if((freqratio > 0.003) && (freqratio <= 0.004))

 { lt = 2*Math.pow(((freqratio-0.004)/0.002),2);

 int il = (int)(lt * 1000.0); // scale it

 lt = ((double)il)/1000.0;

 }else lt=0;

 if((freqratio > 0.003) && (freqratio <= 0.004))
 {

 mt = 2*Math.pow(((freqratio-0.003)/0.002),2);

 int im = (int)(mt * 1000.0); // scale it

 mt = ((double)im)/1000.0;}

 else if((freqratio > 0.004) && (freqratio <= 0.005))

 { mt = 1-2*Math.pow(((freqratio-0.005)/0.002),2);

 int im = (int)(mt * 1000.0); // scale it

 mt = ((double)im)/1000.0;

 }

 else if((freqratio > 0.005) && (freqratio <= 0.008))mt=1;

 else if((freqratio > 0.008) && (freqratio <= 0.009))
 { mt = 1-2*Math.pow(((freqratio-0.008)/0.002),2);

 int im = (int)(mt * 1000.0); // scale it

 mt = ((double)im)/1000.0;

 }

 else if((freqratio > 0.009) && (freqratio <= 0.01))

 {

 mt = 2*Math.pow(((freqratio-0.01)/0.002),2);

 int im = (int)(mt * 1000.0); // scale it

 mt = ((double)im)/1000.0;}

 else mt=0;

 if (freqratio <=0.008) ht=0;
 else

 if((freqratio > 0.008) && (freqratio <= 0.014))

 {

 ht = (2*Math.pow(((freqratio-0.008)/0.012),2));

 int ih = (int)(ht * 1000.0); // scale it

 ht = ((double)ih)/1000.0;}

 else

 if((freqratio > 0.014) && (freqratio <= 0.02))

 {

 ht = 1-2*Math.pow(((freqratio-0.02)/0.012),2);

 int ih = (int)(ht * 1000.0); // scale it

 ht = ((double)ih)/1000.0;}
 else ht = 1;

 s=lt+" "+mt+" "+ht;

94 | P a g e

 outf.println(term+" "+doc+" "+s);

 prevTrem=term;

 }

} catch (FileNotFoundException e)

{

e.printStackTrace();

} catch (IOException e)

{
e.printStackTrace();

} finally

{

try

{

if (readertf != null)

{

readertf.close();}

} catch (IOException e)

{

e.printStackTrace();}
}

outdf.close();

}

catch (IOException e){

 e.printStackTrace();

 }

outf.close();}

catch (IOException e){

 e.printStackTrace(); }}

95 | P a g e

B.7 Query matching, fuzzification of title frequency and over lap ratio,
inference then deffuzificatioin and result ranking:

package termratiomod;

/*

* The input is two fuzzified files for tf and df plus the title file

*The fuzzy inference rules are applied and then defuzzification and sorting

* The output is a file with the first 1000 relevant document for each query sorted in descending order according to

* relevance

*/

/*

 * To match queries

 */

import java.io.*;

import java.util.*;

/**

 *

 * */

public class Main {

//--Sorting method--
public static LinkedHashMap sortHashMapByValuesD(HashMap <String,Double> passedMap) {

 List mapKeys = new ArrayList(passedMap.keySet());

 List mapValues = new ArrayList(passedMap.values());

 Collections.sort(mapKeys);

 Comparator descending = Collections.reverseOrder();

 Collections.sort(mapValues, descending);

 LinkedHashMap sortedMap =

 new LinkedHashMap();

 Iterator valueIt = mapValues.iterator();

 while (valueIt.hasNext()) {
 Object val = valueIt.next();

 Iterator keyIt = mapKeys.iterator();

 while (keyIt.hasNext()) {

 Object key = keyIt.next();

 String comp1 = passedMap.get(key).toString();

 String comp2 = val.toString();

 if (comp1.equals(comp2)){

 passedMap.remove(key);

 mapKeys.remove(key);

 sortedMap.put((String)key, (Double)val);
 break;

 }

 }

 }

 return sortedMap;

}

//--

 public static void main(String[] args) {

 BufferedReader readerfn = null;

 BufferedReader readertf = null;

 BufferedReader readerdf = null;

 BufferedReader readertl= null;

 Map <String,Integer> lrlvd= new HashMap <String,Integer>();

 Map <String,Integer> mrlvd= new HashMap <String,Integer>();

//these files are used to see the distribution of high rlv , medium rlv, and low relevance

96 | P a g e

try { FileWriter outFilehrlvdstrb = new FileWriter("F:\\hrlvdstrb.txt");

 PrintWriter outhrlvdstrb = new PrintWriter(outFilehrlvdstrb);

try { FileWriter outFilemrlvdstrb = new FileWriter("F:\\mrlvdstrb.txt");

 PrintWriter outmrlvdstrb = new PrintWriter(outFilemrlvdstrb);

 try { FileWriter outFilelrlvdstrb = new FileWriter("F:\\lrlvdstrb.txt");

 PrintWriter outlrlvdstrb = new PrintWriter(outFilelrlvdstrb);

 File qdirectory = new File("c:/47stemqueries with hedges");

 File qfiles[] = qdirectory.listFiles();
 Map<String,String> qfmp=new HashMap<String,String >();

 Map<String,Map<String,Double>> qryrelvdoc=new HashMap<String,Map<String,Double>>(); //the query and

list of

 //relevant docs and their

relevance value

 int qcount = 0;

 boolean t;

 for (File qf : qfiles) //for each query do the following

 { //String qdw="";

 double docwight;
 t=true;

 String qn="";

 Map <String,String> qfuz_df= new HashMap <String,String>();

 Map<String, Map<String,String>> qfuz_tf = new HashMap<String, Map<String,String>>();

 Map<String,Variable> qoverlapmp = new HashMap<String,Variable>();

 Map <String,Double> qfuz_tlh= new HashMap <String,Double>();

 Map <String,Double> qfuz_tlm= new HashMap <String,Double>();

 Map <String,Map<String,Double>> qtrelvdoc = new HashMap <String,Map<String,Double>> ();

 String nqf = qf.getName();

 BufferedReader qreader = null;

 Variable qtitledocset = new HashSet();

 try

 {

 qreader = new BufferedReader(new FileReader(qf));

 String qtext = null;

 while ((qtext = qreader.readLine()) != null)

 {

 if (t) {qn=qtext;

 qfmp.put(qn+"", nqf);

 }

 else
 { //separate the query terms and their hedges to consider them one by one

and
 String querystr = qtext;

 String qstrAr1[] = querystr.split(" ");

 String qstr="";

 String Hstr="";

 for(int i=1;i<qstrAr1.length;i=i+2)

 {qstr=qstr+qstrAr1[i]+" ";}

 for(int i=0;i<qstrAr1.length;i=i+2)

 {Hstr=Hstr+qstrAr1[i]+" ";}

 qstr=qstr.trim();
 Hstr=Hstr.trim();

 String qstrAr[] = qstr.split(" ");

 String HstrAr[]=Hstr.split(" ");

 for(int i=0;i<qstrAr.length;i++) //for each term in the query

 {

 String Hedge=HstrAr[i];

 try { readertf = new BufferedReader(new FileReader("f:\\fuztfmodtri.txt"));

 try { readerdf = new BufferedReader(new FileReader("f:\\fuzdfmodS.txt"));

 try { readertl = new BufferedReader(new FileReader("f:\\titletrm.txt"));

 String qword = qstrAr[i];

 //calculating overlap fuz values

 //////////////////filling the overlap map and tf

 String text1 = null;

97 | P a g e

 Variable docset=new HashSet();

 Map<String,String> qtfvalue=new HashMap<String,String >();

 boolean in=false;

 while (((text1 = readertf.readLine()) != null)) //will iterate over the fuzzified term frequency to get the

term,

 //doc and fuzzified frequencies and fill the tf map only

when the

 //query term matches the index term

 {

 String str = text1;

 String strAr[] = str.split(" ");

 String fl =strAr[1];

 if (qword.compareTo(strAr[0])==0){

 qtfvalue.put(fl,strAr[2]+" "+strAr[3]+" "+strAr[4]);

 docset.add(fl);

 in=true;

 }
 }

 qoverlapmp.put(qword,docset);

 if (in){qfuz_tf.put(qword,qtfvalue);}

 ///ol&tf

 //\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\filling df

 String qdfvalue="";

 String text2=null;

 while (((text2 = readerdf.readLine()) != null)) //will iterate over the fuzzified document frequency to get

the

 //term and fuzzified doc frequencies and fill the df map

only

 //when the query term matches the index term
 {

 String str = text2;

 String strAr[] = str.split(" ");

 if (qword.compareTo(strAr[0])==0){

 qdfvalue=strAr[1]+" "+strAr[2]+" "+strAr[3];

 }

 }

 if (qdfvalue.compareTo("")!=0){qfuz_df.put(qword,qdfvalue);}

 //\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\filling titlemp with terms relevant to the query term

 String text3 = null;

 double mtitle=0;

 //double htitle=0;

 while (((text3 = readertl.readLine()) != null)) //will iterate over the term title frequencies to get the

 //term, document and title frequencies and fuzzify the

 //frequencies and fill the title map only when the query

term

 //matches the index term

 {
 String str = text3;

 String strAr[] = str.split(" ");

 String file=strAr[1];

 String freq=strAr[2];

 int titletf =Integer.parseInt(freq);

 if (qword.compareTo(strAr[0])==0){

 //this function was tried but didn’t give good results

 /* if (titletf ==1){htitle=0.7;mtitle=1;}

 else if (titletf ==2){htitle=0.8;mtitle=0.9;}

 else if ((titletf ==3)||(titletf ==4)){htitle=0.9;mtitle=0.8;}

 else if (titletf >=5){htitle=1;mtitle=0.7;}*/

 //this function was tried and improved the results
 if (titletf ==1){mtitle=0.7;}

 else if (titletf ==2){mtitle=0.8;}

98 | P a g e

 else if ((titletf ==3)||(titletf ==4)){mtitle=0.9;}

 else if (titletf >=5){mtitle=1;}

 }

 }

 if (mtitle!=0){qfuz_tlm.put(qword, mtitle);}

 // if (htitle!=0){qfuz_tlh.put(qword, htitle);}

 //\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\end filling titlemp

//tl catch

} catch (FileNotFoundException e)

{

e.printStackTrace();

} catch (IOException e)

{

e.printStackTrace();

} finally

{

try

{
if (readertl != null)

{

readertl.close();

}

} catch (IOException e)

{

e.printStackTrace();

}

 }

//df catch

} catch (FileNotFoundException e)

{
e.printStackTrace();

} catch (IOException e)

{

e.printStackTrace();

} finally

{

try

{

if (readerdf != null)

{

readerdf.close();
}

} catch (IOException e)

{

e.printStackTrace();

}

 }

//tf catch

} catch (FileNotFoundException e)

{

e.printStackTrace();
} catch (IOException e)

{

e.printStackTrace();

} finally

{

try

{

if (readertf != null)

{

readertf.close();

}

} catch (IOException e)
{

e.printStackTrace();

99 | P a g e

}

 }

 }//foreach query term

//\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\start calculations

 String qr="";

 String Hr="";

 String qAr1[] = qtext.split(" ");

 for(int i=1;i<qAr1.length;i=i+2)
 {qr=qr+qAr1[i]+" ";}

 for(int i=0;i<qAr1.length;i=i+2)

 {Hr=Hr+qAr1[i]+" ";}

 qr=qr.trim();

 Hr=Hr.trim();

 String qAr[] = qr.split(" ");

 String HAr[]=Hr.split(" ");

 //System.out.println(qr+" "+Hr);

 for(int j=0;j<qAr.length;j++) // for each query term

 {

 Map<String,Double> tdw=new HashMap<String,Double >();
 String qw=qAr[j];

 double ldf = 0;

 double mdf=0;

 double hdf=0;

 if (qfuz_df.containsKey(qw)) //locating the query term in in the df map to get the ldf,mdf and hdf

 //membership values

{

 String qdfvalue=qfuz_df.get(qw);

 int jdf=0;

 String qdoc_fzdfAr[] = qdfvalue.split(" ");

 ldf=Double.parseDouble(qdoc_fzdfAr[jdf]);
 mdf=Double.parseDouble(qdoc_fzdfAr[jdf+1]);

 hdf=Double.parseDouble(qdoc_fzdfAr[jdf+2]);

 Map<String,String> qfztf=new HashMap<String,String >();

 //will get the tf of the current term//locating the current query term in the tf map to get the ltf,mtf and htf

 //membership values and

 qfztf = (HashMap <String,String>) qfuz_tf.get(qw);

 int jtf=0;

 //will iterate over the documents and the frequencies and jump to the next doc and frequency

 Variable s5=qfztf.entrySet();

 String key5;
 //Move next key and value of Map by iterator

 Iterator it5=s5.iterator();

 while(it5.hasNext())

 {//Map <String,Object> mvalue = new HashMap <String,Object> ();

 // key=value separator this by Map.Entry to get key and value

 Map.Entry m5 =(Map.Entry)it5.next();

 String doc=(String)m5.getKey();

 //System.out.println("file :"+doc+" file index :");

 String fuzfreq =(String)m5.getValue();

 docwight=0;

 String fuzfreqAr[] = fuzfreq.split(" ");
 /* get each doc and its fuzzified tf*/

 //String doc = qdoc_fztfAr[jtf];

 double ltf=Double.parseDouble(fuzfreqAr[0]);

 double mtf=Double.parseDouble(fuzfreqAr[1]);

 double htf=Double.parseDouble(fuzfreqAr[2]);

 /*experiment area for tf and df*/

 /* tf*/

 // double hrlv = 0;

 // double hrlv = 0;

 //double mrlv = 0;

 //double lrlv = 0;

 /*end of experiment area*/
 //System.out.println("hrlv="+hrlv+"mrlv"+mrlv+"lrlv"+lrlv);

111 | P a g e

 /* combine with df for the current term*/

 // double hrlv = Math.max(Math.min(ldf,htf),Math.min(ldf,mtf));

 double hrlv = Math.max(Math.min(ldf,htf),Math.min(ldf,mtf));

 double mrlv = Math.max(Math.max(Math.min(hdf,htf),Math.min(mdf,htf)),Math.max(Math.min(ldf,

ltf),Math.min(mdf, mtf)));

 double lrlv = Math.max(Math.max(Math.min(hdf,mtf),Math.min(mdf,ltf)),Math.min(hdf,ltf));

 /* double hrlv = ldf*htf+ldf*mtf;
 double mrlv = hdf*htf + mdf*htf + ldf*ltf + mdf* mtf;

 double lrlv = hdf*mtf+mdf*ltf+hdf*ltf;*/

 //System.out.println("hrlv="+hrlv+"mrlv"+mrlv+"lrlv"+lrlv);

 double mtitle=0;

 if (qfuz_tlm.containsKey(qw)) //for each termtitletmp is the term and the documents where it appears

in title

 {

 mtitle=qfuz_tlm.get(qw);

 }

 mrlv = Math.max(mrlv,mtitle);

 /* double htitle=0;

 if (qfuz_tlh.containsKey(qw)) //for each termtitletmp is the term and the documents where it appears in

title

 {

 htitle=qfuz_tlh.get(qw);

 }

 hrlv = Math.max(hrlv,htitle);*/

//experiment area for title*/

 //if (HAr[j].compareTo("slightly")==0) {hrlv=Math.pow(hrlv,1.7);}
 // else if (HAr[j].compareTo("Indeed")==0) {hrlv=Math.pow(hrlv,3);}

 //docwight=hrlv; //only for title

 // calculate fuz values of overlap

 double lolp=0;

 double molp=0;

 double holp=0;

 double ovlpcount=0;

 for(int o=0;o<qAr.length;o++)

 { //for each term in the query

 if (qoverlapmp.containsKey(qAr[o]))

 {
 Variable docs = (Variable) qoverlapmp.get(qAr[o]);

 if (docs.contains(doc)){ ovlpcount = ovlpcount+1; }

 }

 }

 double ovlpratio=ovlpcount/qAr.length;

 /* if (ovlpratio <= 0.2) {lolp=1;}

 else if((ovlpratio <= 0.3))

 { lolp = 1-((ovlpratio-0.2)/0.1);

 int sl = (int)(lolp * 1000.0); // scale it

 lolp = ((double)sl)/1000.0;

 molp = ((ovlpratio-0.2)/0.1);
 int sm = (int)(molp * 1000.0); // scale it

 molp = ((double)sm)/1000.0;

 holp = 0;

 }

 else if((ovlpratio <= 0.5))

 { lolp = 0;

 molp = 1-((ovlpratio-0.3)/0.2);

 int sm = (int)(molp * 1000.0); // scale it

 molp = ((double)sm)/1000.0;

 holp = ((ovlpratio-0.3)/0.2);

 int sh = (int)(holp * 1000.0); // scale it

 holp = ((double)sh)/1000.0;
 }

 else {holp=1;}*/

111 | P a g e

 /*combine overlap fuz values with other fuz values

 hrlv=Math.max(hrlv,holp);

 mrlv=Math.max(mrlv,molp);

 lrlv=Math.max(lrlv,lolp);*/

///new overlap

 /* if (ovlpratio < 0.7) {molp=ovlpratio+0.3;}

 else {molp=1;}

 mrlv=Math.max(mrlv,molp);*/

 /*if (ovlpratio > 0.8) {holp=1;}

 else if (ovlpratio <=0.8) {holp= ovlpratio+ 0.2;}*/

//m2

 /* if (ovlpratio > 0.9) {molp=0.2;}

 else if (ovlpratio >= 0.3) {molp= ovlpratio+ 0.2;}
 else molp = 0.2;*/

//m3

 /* if (ovlpratio > 0.6) {molp=1;}

 else {molp= ovlpratio+ 0.2;}*/

 // hrlv=Math.max(hrlv,holp);

 // mrlv=Math.max(mrlv,molp);

 /////////////this is the best

 if (ovlpratio < 0.7) {molp=ovlpratio+0.3;}

 else {molp=1;}

 mrlv=Math.max(mrlv,molp);
 //mrlv=Math.max(mrlv, molp);

 //only for ol*/

 ///new overlap'

 /* if (ovlpratio <= 0.3) {lolp=1;}

 else if(ovlpratio <= 0.4)

 { lolp = 1-((ovlpratio-0.3)/0.1);

 int sl = (int)(lolp * 1000.0); // scale it

 lolp = ((double)sl)/1000.0;

 }

 else lolp=0;

 if (ovlpratio <= 0.3){molp=0;}

 else if (ovlpratio <=0.5)

 {

 molp = ((ovlpratio - 0.3) / 0.2);

 int sm = (int)(molp * 1000.0); // scale it

 molp = ((double)sm)/1000.0;

 } else if (ovlpratio <=0.7){

 molp = 1-((ovlpratio - 0.5) / 0.2);

 int sm = (int)(molp * 1000.0); // scale it
 molp = ((double)sm)/1000.0;

 }else molp=0;

 if (ovlpratio <= 0.5) { holp = 0;}

 else if (ovlpratio <= 0.6)

 {

 holp = ((ovlpratio-0.5)/0.1);

 int sh = (int)(holp * 1000.0); // scale it

 holp = ((double)sh)/1000.0;

 }
 else {holp=1;}*/

112 | P a g e

 /*combine overlap fuz values with other fuz values

 hrlv=Math.max(hrlv,holp);

 mrlv=Math.max(mrlv,molp);

 lrlv=Math.max(lrlv,lolp);*/

 ////////////////////////////Sfunction ol///////////////////////

/*if (ovlpratio <= 0.2) {lolp=1;}
 else if(ovlpratio <= 0.3)

 { lolp = 1-2*Math.pow(((ovlpratio-0.2)/0.2),2);

 int sl = (int)(lolp * 1000.0); // scale it

 lolp = ((double)sl)/1000.0;

 }

 else if(ovlpratio <= 0.4)

 { lolp = 2*Math.pow(((ovlpratio-0.4)/0.2),2);

 int sl = (int)(lolp * 1000.0); // scale it

 lolp = ((double)sl)/1000.0;

 }

else
 lolp=0;

 if (ovlpratio <= 0.3){molp=0;}

 else if (ovlpratio <=0.4)

 {

 molp = 2*Math.pow(((ovlpratio-0.3)/0.2),2);

 int sm = (int)(molp * 1000.0); // scale it

 molp = ((double)sm)/1000.0;

 } else if (ovlpratio <=0.5){

 molp = 1-2*Math.pow(((ovlpratio-0.5)/0.2),2);

 int sm = (int)(molp * 1000.0); // scale it

 molp = ((double)sm)/1000.0;
 } else if (ovlpratio <=0.6)

 {

 molp = 1-2*Math.pow(((ovlpratio-0.5)/0.2),2);

 int sm = (int)(molp * 1000.0); // scale it

 molp = ((double)sm)/1000.0;

 } else if (ovlpratio <=0.7){

 molp = 2*Math.pow(((ovlpratio-0.7)/0.2),2);

 int sm = (int)(molp * 1000.0); // scale it

 molp = ((double)sm)/1000.0;}

 else molp=0;

 if (ovlpratio <= 0.4) { holp = 0;}

 else if (ovlpratio <= 0.55)

 {

 holp = 2*Math.pow(((ovlpratio-0.4)/0.3),2);

 int sh = (int)(holp * 1000.0); // scale it

 holp = ((double)sh)/1000.0;

 }

 else if (ovlpratio <= 0.7)

 {

 holp = 1-2*Math.pow(((ovlpratio-0.7)/0.3),2);

 int sh = (int)(holp * 1000.0); // scale it
 holp = ((double)sh)/1000.0;

 }

 else {holp=1;} */

/*combine overlap fuz values with other fuz values

 hrlv=Math.max(hrlv,holp);

 mrlv=Math.max(mrlv,molp);

 lrlv=Math.max(lrlv,lolp);*/

 /* if (HAr[j].compareTo("slightly")==0) {hrlv=Math.pow(hrlv,1.3);}

 else if (HAr[j].compareTo("indifferent")==0) {hrlv=Math.pow(hrlv,2);}
 else {if ((hrlv >=0) && (hrlv<=0.5)) {hrlv=2*Math.pow(hrlv,2);}else {hrlv=1-2*Math.pow(1-hrlv,2);}}*/

113 | P a g e

 //using hedeges as operators to improve the retrieval results

 if (HAr[j].compareTo("slightly")==0) {hrlv=Math.pow(mrlv,3);}

 else if (HAr[j].compareTo("Indeed")==0) {hrlv=Math.pow(mrlv,1/3);}

 ///////////////////for relvance distribution

/*

String h=hrlv+"";

String m=mrlv+"";
String l=lrlv+"";

 if (hrlvd.containsKey(h)) //titletmp is the term and the documents where it appears in title

 {

 Integer I = (Integer) hrlvd.get(h);

 hrlvd.put(h, new Integer(I.intValue()+1));

 }

 else

 {

 hrlvd.put(h, new Integer(1));

 }

 if (mrlvd.containsKey(m)) //titletmp is the term and the documents where it appears in title

 {

 Integer I = (Integer) mrlvd.get(m);

 mrlvd.put(m, new Integer(I.intValue()+1));

 }

 else

 {

 mrlvd.put(m, new Integer(1));

 }

 if (lrlvd.containsKey(l)) //titletmp is the term and the documents where it appears in title

 {
 Integer I = (Integer) lrlvd.get(l);

 lrlvd.put(l, new Integer(I.intValue()+1));

 }

 else

 {

 lrlvd.put(l, new Integer(1));

 }

*/

double xh=1,xm=0.72,xl=0.1;

 /* defuzzify relevance */
 docwight=(hrlv*xh + mrlv*xm + lrlv*xl)/(hrlv+mrlv+lrlv);

 int sdw = (int)(docwight * 1000000.0); // scale it

 docwight = ((double)sdw)/1000000.0;

 tdw.put(doc, docwight);//write to file qt,doc,w

 }

 qtrelvdoc.put(qw, tdw);

 } }
 }

 t = false;

 }

 Map<String,Double> rlvmp=new HashMap<String,Double >();

 Variable qtrlv=qtrelvdoc.entrySet();

 //Move next key and value of Map by iterator

 Iterator it_qtrlv=qtrlv.iterator();

 while(it_qtrlv.hasNext())

 {

 Map.Entry qt =(Map.Entry)it_qtrlv.next();

 String qterm=(String)qt.getKey();
 Map<String,Double> qtrlvdcs=new HashMap<String,Double >();

 qtrlvdcs = (HashMap <String,Double>)qt.getValue();

114 | P a g e

 Variable h=qtrlvdcs.entrySet();

 Iterator it_qtrlvdocs=h.iterator();

 while(it_qtrlvdocs.hasNext())

 {

 Map.Entry qrd =(Map.Entry)it_qtrlvdocs.next();

 String qtrlvdoc = (String) qrd.getKey();

 double ct = (Double) qrd.getValue();

 if (rlvmp.containsKey(qtrlvdoc)) //rlvmp is the term and its frequency in the file
 {

 Double w = (Double) rlvmp.get(qtrlvdoc);

 rlvmp.put(qtrlvdoc, new Double(w.doubleValue()+ct));

 }

 else

 {

 rlvmp.put(qtrlvdoc, new Double(ct));

 }

 }
 }

rlvmp=sortHashMapByValuesD((HashMap <String,Double>)rlvmp);

 qryrelvdoc.put(qn,rlvmp);

qcount++;

 //end of line of query

//q catch

} catch (FileNotFoundException e)

{

e.printStackTrace();

} catch (IOException e)

{
e.printStackTrace();

} finally

{

try

{

if (qreader != null)

{

qreader.close();

}

} catch (IOException e)

{
e.printStackTrace();

}

}

System.out.println(qcount);

 }

///output the results

 try {

 FileWriter outF = new FileWriter("c:\\qrel5\\ttrids-h.txt");

 PrintWriter out = new PrintWriter(outF);

 Variable qrvd=qryrelvdoc.entrySet();
 //Move next key and value of Map by iterator

 Iterator it_qvd=qrvd.iterator();

 while(it_qvd.hasNext()) //will iterate over the query fuzzified term frequency to get the term and doc

 //fuzzified frequencies

 { HashMap<String,Double> rvmp=new HashMap<String,Double >();

 Map.Entry q =(Map.Entry)it_qvd.next();

 String query=(String)q.getKey();

 rvmp= (HashMap <String,Double>) q.getValue();

 Variable vd=rvmp.entrySet();

 //Move next key and value of Map by iterator

 Iterator it_vd=vd.iterator();

 String document="";
 int documentcount=1;

 while(it_vd.hasNext()&& documentcount<=1000) //will iterate over the query fuzzified term frequency to

115 | P a g e

 // get the term and doc fuzzified frequencies

 {

 Map.Entry d =(Map.Entry)it_vd.next();

 String dc=(String)d.getKey();

 double rvw= (Double) d.getValue();

 try { readerfn = new BufferedReader(new FileReader("f:\\filnams.txt"));

 String text4=null;

 int ln=Integer.parseInt(dc);
 for(int i = 0; i < ln; i++) readerfn.readLine();

 text4=readerfn.readLine();

 String str = text4;

 String strAr[] = str.split(" ");

 if (dc.compareTo(strAr[0])==0){

 document=strAr[1].substring(5);

 }

 } catch (FileNotFoundException e)

 {

 e.printStackTrace();
 } catch (IOException e)

 {

 e.printStackTrace();

 } finally

 {

 try

 {

 if (readerfn != null)

 {

 readerfn.close();

 }

 } catch (IOException e)
 {

 e.printStackTrace();

 }

 }

 String docnm=document.substring(0,38)+"xml";

 out.println(query+" "+0+" "+docnm+" "+documentcount+" "+rvw+" run1");

 documentcount++;

 }

 }

 out.close(); } catch (IOException e){

 e.printStackTrace();
 }

}}

