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Abstract

This research studies the design of a multivariable control system for aircraft landing. To
improve the safety of aircraft landing, handling quality is improved whilst decreasing the number
of critical tasks the pilot has to perform simultaneously with improved responsiveness of the
aircraft to the pilot’s input commands. By adding another control surface on aircraft’s horizontal
tail the dynamics of the aircraft motion are improved, and the pilot has the minimum number of
inputs to effectively control the aircraft. Simulation of the results demonstrate the effectiveness of
the dynamic reaction and steady state system response showing the aircraft response to tailplane
or aileron input change. Least effort controller design method provides superior results motivating

further application studies.
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ai’j, bi,j' ey )/l',j Coefficients of ai’j (S)

A State Space Matrix
A(s) Numerator of G(s)
b(s) Polynomial
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C State Space Matrix

D State Space Matrix

E Energy

e(t) Error signal

d(s),V Denominator of G(s)
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F Outer feedback loop array

G(s) Transfer Function Array (Input/Output)
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H(s) Feedback path compensator

H™1(s) Inverted Closed Loop Transfer Function matrix
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k><h
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K(s)
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M

Diagonal terms of inverted closed loop transfer function matrix
Identity Array
Performance Index
Forward path gain
Forward path function
Outer Product of k and h
Inner product of k and h
Forward path controller model (pre-compensator)
Left (row) factors

Mass (kg)

n,ng, Ny, ..., N, _1; Gain Ratios

Pre-compensator array

Coefficient Array

Inversion of open loop transfer function matrix
Diagonal terms in inverted open-loop transfer function matrix
Off diagonal terms in inverted open-loop transfer function matrix
Transformed reference input
Transformed inner loop reference input
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LQE
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Least Effort Control
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National Advisory Committee for Aeronautics
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