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ABSTRACT 

 
To improve the utilisation of power plants and enhance production, this study is devoted to 

predicting the baseload electrical power production of a combined cycle power plant in the UAE. 

The data for this study was taken from plant sensors over a period of one month (September 2021) 

from specific sensors installed in the power plant, and provided the data for input features that 

correspond to affect and change the electrical power production. In the UAE, the hot summer 

climate and ambient weather conditions adversely affect the performance of gas turbines (GT) and 

have an influence on steam turbines too. Accordingly, this paper studies four input variables: 

ambient temperature (ranges from 25.29°C to 36.5°C), relative humidity (ranges from 35.47% to 

90.28%), atmospheric pressure (ranges from 0.99 bar to 1.01 bar) and exhaust steam vacuum 

(ranges from 0.057 bar to 0.126 bar). All influence the target variable (power production), which 

ranges from 506.32MW to 864.44MW. The change in the exhaust vacuum pressure in the steam 

turbine is affected by the change in ambient temperature, relative humidity, and atmospheric 

pressure in the gas turbine. 

The analysis includes applying machine learning methods such as linear regression and 

artificial neural networks (ANNs) to develop a predictive power production model using different 

interactive computer programs such as Minitab, RStudio and Microsoft Excel. The linear 

regression model R-sq value was found to be 53.49%. Consequently, Minitab software is found to 

be a slightly more accurate statistical package compared to RStudio. In addition, the best data 

subset is found to be for week 1, with R-sq value of 82.16%. Moreover, the power linear regression 

model is ascertained to be more accurate than the ANN power predictive model, with a mean 



 

absolute deviation of 46.385, symmetric mean absolute per cent error of 6.719 and residual 

standard error of 57.392 (Minitab outputs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ملخص

تم تخصيص هذه الدراسة للتنبؤ بإنتاج الطاقة الكهربائية بالحمل  الإنتاج،لتحسين استخدام محطات الطاقة ولتعزيز 

الأساسي لمحطة توليد طاقة ذات دورة مركبة في دولة الإمارات العربية المتحدة. تم أخذ بيانات هذه الدراسة من أجهزة تسجيل 

محطة الطاقة وقد قدمت هذه ( بواسطة مستشعرات محددة ومثبتة في 2021على مدى شهر كامل )سبتمبر  المحطةبيانات في 

  ة.إنتاج الطاقة الكهربائي ىتؤثر علالبيانات قيم متغيرات 

في الإمارات العربية المتحدة، يؤدي مناخ الصيف الحار والظروف الجوية المحيطة إلى تدهور أداء التوربينات 

إدخال وهي درجة الحرارة المحيطة )تتراوح  متغيرات أربعيدرس هذا البحث  لذلك،الغازية والتوربينات البخارية أيضًا. وفقًا 

والضغط الجوي  (،٪90.28٪ إلى 35.47والرطوبة النسبية )تتراوح من  (،درجة سيليزية 36.5درجة سيليزية إلى  25.29من 

بار( والتي تؤثر جميعها على  0.126بار إلى  0.057بار(، وضغط العادم )يتراوح من  1.01بار إلى  0.99)يتراوح من 

يتأثر ضغط تفريغ العادم في كما و .ميغاواط 864.44ميغاواط إلى  506.32غير المستهدف )إنتاج الطاقة( والذي يتراوح من المت

 التوربينات البخارية بالتغير في درجة الحرارة المحيطة والرطوبة النسبية والضغط الجوي في التوربينات الغازية.

باستخدام التكنولوجيا مثل طريقة الانحدار الخطي وطريقة الشبكات ب الأساليبعض  تطبيقيتضمن تحليل هذه الدراسة 

 RStudioو Minitab تفاعلية مختلفة مثل حاسوببرامج  عن طريقالعصبية الاصطناعية لتطوير نموذج إنتاج الطاقة التنبؤي 

 .Microsoft Excelو

عبارة هو حزمة  Minitab وجد أن برنامج وبالتالي،٪. 53.49لنموذج الانحدار الخطي وهي  R-sq تم إيجاد قيمة

تم العثور على أفضل مجموعة فرعية للبيانات وهي  ذلك،بالإضافة إلى  RStudio وإحصائية أكثر دقة قليلاً مقارنةً ببرنامج

هو  تم التأكد من أن نموذج الانحدار الخطي للطاقة المنتجة ذلك،علاوة على . ٪82.16 مقدارها R-sq للأسبوع الأول بقيمة

نسبة الخطأ المطلق ومتوسط  ،46.385انحراف مطلق قدره العصبية الاصطناعية بمتوسط  نموذج الشبكاتأكثر دقة من 

 .57.392 بمقدار والخطأ المعياري المتبقي 6.719بمقدار المتماثل 
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CHAPTER I 

 INTRODUCTION 

1.1 Background 

Developing prediction models is a technique used to solve real-life problems. It shows a 

clear relationship between variables, and hence supports decision-making regarding the 

interactions between these variables, and comes up with conclusions (Tüfekci 2014). From an 

engineering perspective variables interact together and affect the final output of a system; what 

happens in power plants is an example (Kunming & Zhou 2012). A power plant consists of a group 

of systems and subsystems that work together to produce electrical power sent subsequently to be 

used in facilities (Raja, Srivastava & Dwivedi 2006). Pertaining to this engineering facility, it is 

essential to predict the net energy yield or the electrical power production (P) of the plant to 

maximise the profit, support development of the performance, help managers in the decision-

making process and for general economic purposes (Tüfekci 2014). 

1.3.1 Electrical Energy Production and Consumption 

As per Aranda et al. (2012), the consumption of power based on a worldwide range was 22 

trillion KW/hr in 2011, which is more than double consumption in 1975. In addition, some 

predictions state that the growth rate of power consumption will be 2.2% in 2040. According to 

Aranda et al. (2012), this growing power consumption will require the infrastructure of the whole 

world to increase its budget by over $12 trillion over 30 years, starting from 2011. Moreover,  Omer 

(2012) states that the worldwide manufacture of hydrocarbons is harming the environment in a 

continuous manner. As a result, environmental regulations are requested to reduce greenhouse 

gases emissions. This is done by lowering the cost of emissions mitigation and by effective 
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planning by power producers. In addition, effective planning is a crucial management tool that 

shows its importance in dealing with worldwide transmission expansion (Eccleston & March 

2014). 

As per Granit & Löfgren (2010), the United Arab Emirates (UAE) is an arid country where 

economic growth means a high demand for electricity and water, especially with the primary 

considerations of climate change and climate instability. In the UAE, Banhidarah et al. (2020) 

showed that electrical power consumption has increased gradually from 2007 to 2016, which drives 

the concentration on better planning and more efficient power production. Figure 1 shows the 

domestic consumption of electricity in units of TWh in the UAE during the same period and the 

quantity of consumed water in a million cubic meters as illustrated by Banhidarah et al. (2020). 

Raja, Srivastva and Dwivedi (2006) stated that electricity has a significant impact on the 

development sectors, and it is the most multipurpose type of energy. Consequently, its growth rate 

is running faster than any other type of energy. In fact, the power industry has shown a remarkable 

growth rate in its usage in technological and economic development over the last few decades. 

Moreover, electricity consumption in any country indicates its high productivity and growth. 
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Figure 1: Domestic consumption of electricity and the amount of used water in the UAE from 2007 to 

2016 (Banhidarah et al. 2020) 

A combined cycle power plant (CCPP) consists of gas and steam turbines along with heat 

recovery steam generators (HRSG), all grouped to produce electrical power (Tüfekci 2014). Few 

studies have discussed the effect of ambient parameter conditions on the target power production 

in the UAE and Arab countries. This paper will give recommendations to power plants based on 

relative weather conditions. Thatcher (2007) mentions that planning strategies for electricity 

generation are essential to provide feedback on economics and costs, to reduce losses and give 

recommendations for efficiency considerations. In this research, the power generation and some 

factors that affect its production will be revealed. Moreover, the deviations and uncertainties in the 

prediction model will be shown, to develop a plan that will reduce the load, balance it and reduce 

costs. In general, robust planning and the usage of strong models mitigate the uncertainties in the 

production charts. This research will focus mainly on the effect of ambient parameters on power 

production using linear regression analysis, artificial neural networks (ANNs), graphs and trends 

to help in decision-making, give recommendations, optimise the utilisation of power production in 

the UAE and highlight the efficiency concerns over baseload power plant production with respect 

to ambient variables. 

1.2 Research Problem Statement 

A CCPP in the UAE intended to optimise the utilisation of power production and increase 

its efficiency was affected by many factors. These factors may reduce the performance of GTs, 

steam turbines and HRSGs and lead to lower power production. Some factors such as ambient 

weather parameters were neglected when focusing on optimising the performance of the power 
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plant. There have been few studies of the effect of ambient weather parameters, which leads to 

their effects being ignored and left uncontrolled. 

In addition, power prediction models certainly facilitate forecasting future production. 

Accordingly, some statistical packages are used to predict power with lower accuracy compared to 

others and, hence, less accurate prediction models are presented. This study will compare some 

statistical software and suggest the advantages of using each piece of software to achieve better 

calculations. 

1.3 Research Conceptual Framework 

Input variables were chosen based on studies that showed how these ambient variables 

might affect steam and gas turbine functionality. For instance, the load of the gas turbine is 

impacted by some ambient weather conditions, such as ambient temperature (AT), atmospheric 

pressure (AP) and relative humidity (RH). On the other hand, a steam turbine’s performance is 

influenced by the exhaust steam pressure (Tüfekci 2014). All the input and output variables 

correspond to measured data that is collected from specific sensors. The ranges are illustrated 

below: 

 ambient temperature: input to the system measured in Celsius and ranges between 25.29°C 

and 36.5°C. 

 atmospheric pressure: input to the system measured in units of hectopascal and ranges from 

998.75 hPa to 1009.82 hPa. 

 relative humidity: input to the system that is measured as a percentage and ranges from 

35.46% to 90.27%. 



 

5 

 

 exhaust steam pressure (V): input to the system measured in bars and ranges from 0.057 to 

0.126 bars. 

 electrical power production: this is the production variable measured in megawatts and 

ranges from 506.32MW to 864.44MW. 

The P is affected by all these inputs, as Figure 2 shows: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Interactions between inputs, system and outputs 

Figure 3 shows the CCPP overview and the sensors where the input and output measurements were 

recorded. 
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Figure 3: Plant overview with inputs and output sensor positions 

(Verdict 2020) 

1.4 Dissertation Research Questions 

 What are the main ambient parameters that might affect the performance of gas and steam 

turbines in a CCPP? Are there any suggestions to improve the efficiency of CCPP production based 

on UAE weather conditions? How does linear regression differ from ANNs when performing 

statistical analysis and checking the model’s accuracy? Is there any preferred statistical package 

when performing such analysis? 

1.5 Dissertation Aims and Objectives 

This section illustrates the aims and objectives of the research. Generally, research aims 

demonstrate the main objectives of the research while the research objectives define the specific 

aims of the research. 

1.5.1 Research Aims 

The main aim of this research is to improve the CCPP utilisation in the UAE by performing 

two methods of analysis. This involves using different software on real data to find the P based on 

ambient weather parameters, to enable better managerial decision-making. 

1.5.2 Research Objectives 

 To predict electrical power as a product of a CCPP in the UAE based on the influence of 

input variables such as AT, AP, RH and V pressure using linear regression. 
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 To find the correlation between the input variables of the system. 

 To use a machine learning method such as ANNs to analyse the data and compare the results 

with the linear regression model. 

 To compare the accuracy of two statistical packages. 

1.6 Research Limitations 

This section illustrates some research limitations and alternatives that could be used, such as: 

 Lack of previous research on the topic in the UAE: there is a lack of research discussing 

the aims and objectives of this study in the UAE and the Arab region, so an intense search 

was done to find the pertinent facts and compare them with other regions, to help with the 

interpretation of the model and support the calculations. 

 Data collection process: data was collected over a one-month period – September 2021. 

The weather conditions during the month were studied to show their effect on power 

production. The limitation was generalising the conclusions of this one-month data to the 

12 months of the year. 

 Method of analysis: this research focuses on two analysis methods, the linear regression 

method, as studied in the Engineering Statistics Module (ENGM501), and ANNs. However, 

there are many methods of analysis that are considered to be a measure for determining the 

relationship between input and output variables or variable interaction. This study uses 

three software packages: Minitab, RStudio and Microsoft Excel. There are many other 

software programs developed for statistical analysis. 

1.7 The Organisation of the Dissertation 

This section explains the organisation of the dissertation, which is illustrated as follows. 
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Chapter I is the introduction of the research, starting with a background section about the 

techniques used to develop prediction models and the concept of CCPPs and P. Following that, the 

electrical energy production and consumption section demonstrates the development of P in the 

UAE, growth rates and the domestic consumption of electricity. The second part of the introduction 

is the research problem statement, which explains the problems of the research that need to be 

solved. The research conceptual framework section in the introduction shows the list of variables 

that will be studied in the research and how these variables interact with each other. The dissertation 

research question section presents some questions that will be answered after performing the 

analysis and finalising the research discussions. Accordingly, the objective of the dissertation 

section is divided into the main and specific objectives described specifically in this chapter. 

Finally, the dissertation limitation section illustrates the limitations of the research, which are the 

characteristics of implementing the analysis that can influence the interpretation of the research 

findings. 

Chapter II is the literature review chapter, which represents the techniques used in 

developing power models and in predicting quality. Furthermore, it shows the advantages and 

disadvantages of using some statistical techniques used in the research to answer the dissertation 

question, such as regression analysis and ANNs. It discusses the accuracy and deficiencies of some 

types of prediction analysis and the concept of transformation of data. This section also presents a 

detailed description of different types of power plants, electrical energy production processes and 

why the power production is shifted towards nuclear power production. Additionally, it describes 

P in the UAE, presents previous studies in the field of predicting power production, and compares 

the outcomes of each study. 
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Chapter III describes the research methodology. In this chapter, the methods of analysis 

used to analyse the dataset are described in detail. They include linear regression and ANNs. Linear 

regression is a method by which prediction models are developed to predict a phenomenon that 

happens for a variable based on some input parameters. ANN is a method based on artificial 

intelligence (AI) whereby specific statistical packages are used to generate network connections 

between variables. The steps involved in both methods are illustrated in this chapter. Additionally, 

checking the accuracy of a model by using equations is also specified. Generally, this section is 

related to identifying the processes of data collection, data analysis and finding alternatives to the 

problems specified. 

Chapter IV contains the most important aspects of this study and is about presenting the 

results obtained and discussions after performing statistical analysis for the dataset. In this section 

all tables and figures are presented for each method of analysis. Moreover, this chapter contains 

data summary tables, correlation and covariance tables for the dataset, and prediction model 

equations developed after performing linear regression and ANN. Following that, a comparison 

between the prediction models is presented based on accuracy and the most accurate statistical 

package is illustrated. 

Chapter V presents the summary of this research, the conclusions and recommendations. 

The main topic discussed in the literature review chapter is presented here, which is the statistical 

methods of analysis used to develop prediction models for power plants, especially CCPPs. For 

instance, linear regression and ANNs are presented in this section as a summary of the methodology 

used in this research. Additionally, the main findings of this study are illustrated, and the most 

accurate statistical model presented here along with the preferred statistical package for statistical 

analysis. Finally, recommendations for future research are presented. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Machine Learning Methods and Predicting Quality 

According to Sankhye and Hu (2020), machine learning methods (MLMs) are ways of 

prediction that analyse the values of a product and its quality by analysing data of variables that 

may affect its quality. MLMs are valuable tools for assessing the significance of the supply chain 

parameters. In addition, Najah Ahmed et al. (2019) state that MLMs are part of AI, which can be 

used to analyse data and come up with conclusions regarding the interactions between data 

variables by using computer science and specific algorithms. In fact, as per Sankhye and Hu (2020), 

industry 4.0 and the concept of smart factories made the process of extensive data collection during 

production stages easier by using computer systems and specific sensors. While there has been 

substantial research into forecasting the quality of some production processes, there has been little 

research into the use of classification algorithms to predict the overall quality of production. 

MLMs, according to De et al. (2010), are a major element of the fast-expanding field of 

statistics. In data mining fields, algorithms are employed to make categorisations or forecasts using 

statistical methodologies and to provide crucial insights. Accordingly, these insights are used to 

improve decision-making within corporations and organisations, influencing the critical 

development of key growth metrics. The demand for data scientists will increase as the database 

for study expands and evolves, with their help needed to identify business problems and, as a result, 

detect the data required to answer the questions. 
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2.2 Statistical Modelling and Prediction Equations 

Walter (2013) explained statistical modelling and linear regression, and it is summarised as 

follows. 

Models are considered a mathematical explanation of an observation of a processed dataset. 

The statistical models include equations illustrating the relationship or the impact of variables on 

each other. These models explain the probability distribution of these variables, and, usually, the 

assumptions of these models are mainly the random distribution or random variation. Moreover, 

statistical models show two parts in one equation: the systematic part and the random part. 

Accordingly, Nick (2007) stated that descriptive statistics is the science that gathers, 

summarises and analyses data based on random variation. Similarly, Holcomb (2016) mentioned 

more specific terminology descriptions for descriptive statistics, which are the measures in graphs, 

averages, percentages and equations used to analyse whether this data comes from samples or 

populations. Likewise, another science called inferential statistics is based on the process of 

generalisation from sample outcomes to populations. As per Pérez-Vicente and Expósito Ruiz 

(2009), the importance of using such analysis is to describe the trends and most important features 

found in a dataset that refers to amounts and information related to an area or a topic of interest. 

Furthermore, Nick (2007) explained that graphics and descriptive statistics such as mean, 

mode, median, standard deviation, maximum value, minimum values and skewness describe 

quantitative and qualitative data variables. Similarly, Holcomb (2016) defined using the term 

parameter when the analysed variable comes from the population. On the other hand, it is called a 

statistic if it comes from a sample. 
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2.3 Regression Methods Used for Modelling Dynamic Processes and Systems 

Regression methods of analysis are management tools and a prediction technique enabling 

processes and systems to predict a target variable based on various inputs (Tüfekci 2014). For 

thermodynamic systems such as a CCPP, the P can be predicted by constructing a linear regression 

(Aranda et al. 2012). These power plants consist of a system of one steam turbine, two gas turbines 

and one HRSG. For the gas turbine to become more reliable and sustainable, it is essential to predict 

its power generation, especially when working for a high-profit load and high liability (Tüfekci 

2014). 

There are various types of regression methods, as discussed by Tso and Yau (2007), such 

as modelling stationary gas turbines using ANNs technique to estimate its behaviour while 

operating for wide ranges of input data starting from full speed and zero load to full-load conditions. 

In research by Amozegar and Khorasani (2016), other methods such as radial basis function and 

multi-layer perceptron (MLP) are used to identify stationary gas turbines in the startup stage. 

Moreover, according to Han and Kamber (2011), feed-forward neural networks techniques and 

dynamic linear models were analysed and assessed for their capacity to predict gas turbine 

behaviour. It was found that neural network methods of analysis are used to identify the behaviour 

of gas turbines better than dynamic linear models. As per Chabot and D’Arras (2010), the neural 

network technique has been used to classify models or factors based on real data by giving a set of 

variables, inputs or some features assuming they interact to study phenomena where other features 

are discarded if found to be irrelevant to the phenomena’s classification. 

Several studies have shown that using MLM to predict electrical energy consumption 

(Azadeh, Saberi & Seraj 2010; Ekonomou 2010; Che, Wang & Wang 2012; Kavaklioglu 2011; 
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Leung & Lee 2013). Similar studies related to this paper are found, such as Tüfekci (2014), in 

which machine learning regression methods were used to predict the P of a CCPP, consisting of 

one unit of steam turbine and three units of gas turbines and one system of HRSG. 

 Tüfekci (2014) showed the definition of regression analysis and its types, such as: 

1- Simple Linear Regression: this method is performed to obtain a model with the smallest value 

of squared error. It is used to fit each input variable (a1) with the output (𝑥) in an equation as stated 

below, where 𝑤0 is the intercept and 𝑤1 is the slope of the linear regression equation estimated by 

the method of least squares, which is known as the difference between the predicted values and the 

actual values. 

𝑥 =  𝑤0  +  𝑤1 𝑎1   (1) 

2- Multiple Linear Regression: the link between one or more independent variables and a 

dependent variable is represented by this method, which is based on mathematical modelling. 

Linear regression is used to predict the output (𝑥) for its relationship with the independent input 

variables such as a1, a2, etc. The least-squares method is also performed here to illustrate the linear 

relations in the observed data. The equation below specifies the linear dependency of the inputs 

and the target output variable where 𝑤0 is the intercept of the equation and 𝑤1 is the weight of the 

first input variable (Tüfekci 2014). 

𝑥 =  𝑤0 + 𝑤1 𝑎1 + ⋯ . +𝑤𝑘  𝑎𝑘  (2) 

Here, 𝑤𝑘 is the weight of input in k order and 𝑎𝑘 is the input variable in k order. 

Multiple linear regression analysis involves the ANOVA table. In the ANOVA table, the 

degree of freedom (DF) is the summation of the individual degrees of freedom for the samples. 
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Moreover, it implies the number of rows in the data used to fit the regression model (Kruggel, 

Pélégrini-Issac & Benali 2002). 

Previous research was done to examine the effect of ambient parameters on power 

generation. One study was performed using power plant data in Turkey. The analysis was done to 

show the best machine learning regression method used, with the most accuracy, to predict the full-

load electric power yield, which was the bagging algorithm using REPTree analysis. The study 

showed general trends and effects of some ambient parameters on power and mainly focused on 

the multilinear regression methods as a method of analysis. The data was collected over six years 

using a computer system to record the ambient parameters of gas and steam turbines each second, 

along with power production (Tüfekci 2014). 

Aranda et al. (2012) applied multilinear regression analysis to predict energy consumption 

annually in the Spanish banking sector. This paper mainly focused on data taken from 55 banks in 

Spain, where the data was validated, analysed and generated models to predict energy consumption. 

Three models were produced: the first was to estimate electricity consumption in bank branches. 

The second was intended for areas with low winter climate intensity, and the third was for branches 

with high winter climate severity. The main results were that the first model had the lowest 

determination coefficient, which means it is suitable for forecasting the energy utilisation of banks 

and detecting inefficiency in banks with poor energy consumption performance. In addition, the 

first model had the lowest uncertainty. 

Searle and Gruber (2016) stated that there might be some difficulties and problems with the 

definition, the occupation and the status of the variable (a) as there are different types and meanings 

of the representations that can be misunderstood from the model. For example, the correspondent 

number of the variable as a multiplication (1,2,3, etc.) may not correspond directly and accurately 
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to the dependent variable x. It is not accurate to say that a professional worker has a four times 

higher status than a regular labourer. So, whatever the representation is, it is essential to describe 

it as arbitrary because it might cause a problem for the proposed model. 

Another study described the demand for electricity based on 30-minute intervals in a power 

plant in Australia. The intervals were consistent with changes in the climate and predicted the 

power based on demand using duration curves and multilinear regression. Power plants in some 

Australian states were selected in that study to reach the highest accuracy in the calculations. These 

datasets were very valuable in predicting the demand for electricity and were essential for economic 

purposes (Thatcher 2007). 

Li (2015) has presented some advantages of using linear regression analysis while showing 

a relationship between variables, as summarised as follows: 

 It is a widely used method whereby the model’s calculations allow direct interpretation of 

relationships. 

 If the assumptions of the linear regression method are satisfied, such as the normal 

distribution of the residuals, the resulting parameters will be efficient and neutral. 

On the other hand, there are some disadvantages, as stated by Li (2015), such as: 

 In typical situations and in most management researches, the data distribution is 

heterogeneous and tails are not exponentially bounded (heavy-tailed). As a result, the 

normality and its assumption will be questioned. 

 Moreover, the outliers, which are the values that are substantially different from other 

variable data, affect the distribution of the data and might intensely affect the result of the 

calculations and the relationships that would be revealed. In addition, many journals related 
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to management decisions using the linear regression method do not reveal how the outliers 

were addressed in the study. 

3- Least Median Square (LMS): Tüfekci (2014) states that it is a linear regression analysis 

completed by reducing the squared error of the median. Using the regression equation, where i is 

the data variable, k is the total number of data points, and j is the corresponding data point, the 

slope of each input variable is reallocated to reduce the median of the squares of the difference 

between observed and predicted value as follows: 

𝐿𝑀𝑆 = 𝑀𝑒𝑑𝑖𝑎𝑛𝑖  (𝑥(𝑖) − ∑ 𝑤𝑗𝑎𝑗
(𝑖)

𝑘

𝑗=0

)  (3) 

Here, LMS is the least median square, 𝑀𝑒𝑑𝑖𝑎𝑛𝑖 is the median in order i for the iteration 

equation, 𝑥(𝑖) is the output variable in order i, 𝑤𝑗 is the slope of the linear equation, 𝑎𝑗
(𝑖)

 is the input 

variable. All the iteration steps starts from order j=0 to k for the dataset. 

 This method has been used by Morano and Tajani (2014) to identify and remove the outliers 

to develop a predictive regression model for real estate analysis. Based on that, the data were 

classified into normal observations, perpendicular outliers, significant and insignificant leverage 

points, points to remove and points to keep. 

4- Artificial neural networks: ANNs and the human brain are the widely known comparison and 

expressions used to explain the concepts behind its terminology. When it comes to learning, the 

human brain quickly recognises a picture or some process due to interactions that happen inside 

the human brain networks between one nerve cell and another. The same happens in computers 

that require specific coding and continuous improvement to operate some networks that analyse 

data and understand its phenomena (Krogh 2008). 
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An ANN is a computer system composed of many neurons that interact with each other and 

present a supportive model for making decisions and conclusions regarding these interactions. The 

usage of these models, which came from the analysis of a vast amount of data, will expand and 

develop as the technology and software are used to build these interactions and show the 

complexity of the relationships between data variables (Whittle 2010). According to Reese and 

Bhatia (2018), the model presents the relationship between an input layer with nodes, a hidden 

layer in the middle, an output layer node and an output target variable. Figure 4 shows the graphical 

representation of the MLM, which is the neural network technique (Najah Ahmed et al. 2019). In 

fact, Krose and Smagt (2011) stated that an ANN involves a pool of units that represents a simple 

configuration in which the units connect by signals sent from one unit to another over a wide range 

of weighted networks. 

 Adding to that, Tü (1996) mentioned some advantages of using the neural network method, 

which include less formal statistical training, discovering complex nonlinear interactions between 

dependent and independent variables, detecting all possible interactions between response 

variables, and the fact that there are several training algorithms to perform it. On the other hand, 

there are some disadvantages of using this method which can be: its black box nature, which is 

related to the way of interpreting the model as an input-output system while ignoring the internal 

interactions, a higher software cost, a proclivity for generalisation and the practical implementation 

of the model. Nevertheless, Krogh (2008) generally mentioned the applications of this method, 

which can be used to predict the protein’s structure, classify cancers and predict genes. For 

instance, Maier and Dandy (1996) used ANNs to forecast the parameters of the quality and salinity 

of river water in South Australia. The main results were that high levels of salinity can cause great 

loses to users in Australia and cost about $US22 million per year. 
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Figure 4: Graphical representation of Neural Network Method (Cao, Sai, Fu, and Duan 2020) 

Here, 𝑅𝑛 is the input variable in order n, 𝑁0 is the first input layer, 𝑁1 is the first hidden 

layer, 𝑁𝑛−1 is the following hidden layer of order n-1, 𝑁𝑛 is the output layer and 𝑤𝑛is the 

weight of the equation in order n. 

Hocking and Hocking (2013) further explained the methodology of implementing neural 

networks. Once the data is split and trained, the ANN provides the target values in relation to any 

input pattern observed. Hocking and Hocking (2013) insisted that ANN data validation be 

considered before questioning the results obtained. In addition, the learning process is described as 

the process that identifies the weight values of the neurons. The learning process is called 

‘supervised’ if the input and output data exist. However, it is called ‘unsupervised’ if only the input 

data is available. Further, the back-propagation algorithm is used for multi-layer neural networks. 

This process consists of a forward pass, which means computing the output of each neuron on the 

training set, and a backward pass, which are the weights assigned to each neuron depending on the 
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error value obtained by subtracting the actual and predicted output values. This process is stopped 

when the value of the error is lower than the threshold value. 

5- Structural equation modelling: Pugesek, Tomer and Eye (2003) mentioned that this technique 

is used to analyse and evaluate models that exhibit relationships between variables. It is a statistical 

methodology that represents several cause-effect relationships that have been set as a hypothesis 

between variables. These relationships are proposed based on some phenomenon to pre-describe 

the direct effect and the indirect effect of the (observed or not) independent variables have on the 

(observed or not) dependent variables. In addition, Byrne (2011) showed that the structural 

equation modelling method is based on two steps representing the causal process by structural 

equations using regression and later modelling these equations pictorially to relate to the concept 

of the theory under study. On the other hand, Jitesh (2021) showed that the structural equation 

modelling approach helps analytics test the theoretical models and validates them. It is used to 

understand the nature of the relationship between observed values and ensures a stepwise 

understanding of applications with software programs such as SPSS and R software. Motawa and 

Oladokun (2015) used this approach to analyse different variable interactions to demonstrate the 

trends in energy consumption and to study carbon emissions. It was concluded that, using structural 

eqation modelling, there are many factors that affect how much energy a home uses and how much 

carbon it emits, which includes the floor area, energy efficiency, the number of people in the house, 

the income of the household, the age of the house, consumption patterns and the age of the 

homeowners. 

6- Nonlinear regression modelling: as per Rhinehart (2016), valuable models are usually 

nonlinear in their influence on the inputs. Moreover, variables must be transformed before 

performing the analysis. As per Hadi and Chatterjee (2012), transformation is done to ensure the 
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linearity, ensure the normality in the dataset and stabilise the variance. If linear regression analysis 

is performed, it is often performed on the transformed variables to get a better regression fit. 

However, Hocking and Hocking (2013) stated that, for multiple regression, some input variables 

may require transformation. In contrast, it is not necessary to be performed for all variables. In 

addition, this step needs careful effort and clear application. In fact, Hadi and Chatterjee (2012) 

mentioned that it is essential to carry on with this step if there is a clear indication that the regression 

model violates the regression assumptions. An example of these assumptions is the normality plot 

and the residuals variance plot. For instance, an application of this method was performed and 

explained by Mohseni, Stefan and Erickson (1998) to develop nonlinear regression models that 

aim to measure the weekly stream temperatures required for fish habitat assessment in the USA 

throughout an annual cycle. Accordingly, the regression models accurately predicted the weekly 

stream temperatures for 573 stream gauging stations. Two models were developed, one for the 

warming season and the other one for the cooling season. As a result, the models were considered 

to be effectively suitable (99% confidence) for approximately 89% of the stream gauging stations. 

The following models are considered linear models as the parameters were presented 

linearly, such as 𝛽0 and 𝛽1 (even if the input variables are nonlinear). 

𝑌 =  𝛽0 + 𝛽1𝑋 +  𝜀 (4) 

𝑌 =  𝛽0 + 𝛽1𝑋2 +  𝜀 (5) 

𝑌 =  𝛽0 + 𝛽1𝑙𝑜𝑔 𝑋 +  𝜀 (6) 

𝑌 =  𝛽0 + 𝛽1√𝑋 +  𝜀 (7) 

However, the model 

𝑌 =  𝛽0 + 𝑒𝛽1𝑋 +  𝜀 (8) 
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is considered a nonlinear model because 𝛽1 is not entered linearly in the model. 

Note that 𝑌 is the output variable, 𝛽0 is the intercept of the equation, 𝛽1is the slope of the equation, 

𝑋 is the input variable and 𝜀 is the random error value. 

As a result, the data of this model must be transformed to satisfy the assumptions and get a 

better fit from the results. Another reason mentioned by Hadi and Chatterjee (2012) for the 

transformation of variables is the probability distribution of the mean. If the value of the input X 

changes with Y and the mean of X is related, the variance of Y concerning X will be affected. 

Usually, the distribution of Y is not normal in such cases and violates the significance of the model. 

Sometimes some large samples can be assumed to be normal as they show a normal bell-shaped 

distribution. Finally, there is no more apparent reason to perform transformation than to perform a 

linear regression on the data as a first step and test the normality and residuals of the model. Table 

1 shows the linear regression functions and their transformations. 

Table 1: Linear regression functions and their transformations (Hadi & Chatterjee 2012) 

Function Transformation Linear Form Graph 

𝑌 =  𝛼𝑋𝛽  (9) 
�́� = log 𝑌   (10) 

  �́� = log 𝑋  (11) 
�́� = log 𝛼 + 𝛽𝑋 ́   (12) Figure 5 

𝑌 =  𝛼𝑒𝛽𝑋  (13) �́� = ln 𝑌  (14) �́� = ln 𝛼 + 𝛽𝑋 (15) Figure 6 

𝑌 =  𝛼 + 𝛽 log 𝑋 (16) �́� = log 𝑋  (17) 𝑌 = 𝛼 + 𝛽𝑋 ́   (18) Figure 7 
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𝑌 =  
𝑋

∝ 𝑋 − 𝛽
  (19) 

�́� =
1

𝑌
  (20) 

 �́� =
1

𝑋
  (21) 

�́� = 𝛼 − 𝛽�́�  (22) Figure 8 (a) 

𝑌 =  
𝑒𝛼+𝛽𝑋

1 + 𝑒𝛼+𝛽𝑋
  (23) �́� = ln

𝑌

1 − 𝑌
  (24) �́� = 𝛼 + 𝛽𝑋 (25)  Figure 8 (b) 

 

The following figures 5 to 8 show the graph of the linear functions, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Graphs of the linear regression function Y= 𝛼𝑋𝛽 

(Hadi & Chatterjee 2012) 
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Figure 6: Graphs of the linear regression function Y= αeβX 

(Hadi & Chatterjee 2012) 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Graphs of the linear regression function Y =  α + β log X 

(Hadi & Chatterjee 2012) 
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Figure 8: Graphs of the linear regression function (a) 𝑌 =  
𝑋

∝𝑋−𝛽
 and (b) 𝑌 =  

𝑒𝛼+𝛽𝑋

1+𝑒𝛼+𝛽𝑋 

(Hadi & Chatterjee 2012) 

Rönkkö et al. (2022) stated, after viewing 20 articles that used regression as a method of 

analysis, that around 66% of these studies have applied transformation at least once. The most 

common approaches used were Poisson and negative binomial models (see Figure 9 for the 

comparison of a linear regression model and a Poisson model). In fact, these analyses were 

followed by probit and logit transformations, which are usually used in logistic regression and 

some categorical data models. In addition, for U shape variable effects, the power transformations 

were used. The most common way to apply a transformation of data is to use GLM, which stands 

for a generalised linear model and which is based on a function that connects a curve by the output 

variable’s mean as a function of the independent input variable. It’s important to note that the 

distribution is considered a conditional distribution for a group of independent variables and an 

unconditional distribution for the dependent variables. 

The GLM technique can be used to generalise the variance analysis using log-likelihoods 

(Pugesek, Tomer & Eye 2003). As per McCullagh and Nelder (2019), GLM is related to four types 

of distribution, which are: the normal distribution of data, binomial distribution such as probit 

analysis, Poisson distribution (contingency tables) and gamma distribution (variance components). 
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As shown in Figure 8 (Rönkkö et al. 2022), the first plot shows how the data points around 

the regression line are in a normal distribution. This is called conditional distribution for all the 

points that have the same value of X. On the other hand, the distribution of Y is unconditional and 

might not be considered normally distributed. The second part of Figure 9 is the Poisson model, 

which shows a conditional distribution of Y for any value of X. However, the total distribution of 

Y doesn’t need to be Poisson. This example illustrates that choosing a specific GLM distribution 

cannot be specified by looking at unconditional distributions. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Linear model and Poisson model comparison 

(Rönkkö et al. 2022) 

Pugesek, Tomer and Eye (2003) studied the GLM, especially the generalisation of the 

correlation coefficients of a general linear regression model. This study showed the comparison of 

four types of measurements, which are bias, mean squared error and the presence of 
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overparameterisation. One of the main results was that the cross-validation estimator had a high 

negative bias and significant mean squared error. 

2.4 Checking the Prediction Model’s Accuracy 

This section demonstrates the various tests and terms that will be used in this study to check 

the accuracy of the prediction models. The following are the terminologies and specifications: 

1- Mean square error (MSE): according to Campora, Cravero and Zaccone (2018), the ANN 

performance is often calculated through the MSE, which is the difference between the actual and 

predicted values. Moreover, Thompson (1990) insisted that MSE is a valuable statistical tool used 

for comparing and forecasting accuracy. However, Thompson (1990) proposed a ratio called log 

mean squared error ratio, which is mainly designed to cover the shortages of MSE in evaluating 

the overall accuracy of a model through many series. Marmolin (1986) discussed MSE as a 

criterion for checking quality and illustrated that MSE is not a perfect measure for checking the 

accuracy of visual systems. For human observation, the picture quality of an optical system can be 

checked by reviewing the error concerning the assumed parameters. Moreover, none of the tests or 

measures (other than MSE) was a valuable tool for checking the accuracy of all pictures of the 

visual systems. Thus, the properties of pictures were subjected to error measures instead. 

2- The root mean square error (RMSE): this is the residual’s standard deviation or what is called 

prediction error. Accordingly, the residuals are defined as the extent to which the data points are 

far from the regression line. In addition, it shows how the data are concentrated around the line for 

better fitting (Chai & Draxler 2014). RMSE is considered a standard test used to assess models, 

especially models of meteorology, quality of air and in climate research and studies. In view of 

this, Chai and Draxler (2014) discussed the advantages of using RMSE, compared it with the MSE 
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test and emphasised that both tests are usually used in model accuracy tests. It was concluded that 

RMSE is not a decent accuracy tool for checking the overall performance of a model. Therefore, 

MSE is a better measure for such a purpose. 

Conversely, Willmott and Matsuura (2005) confirmed that RMSE is a widely used measure 

for climate and environmental predictions. However, Willmott and Matsuura (2005) insisted that 

RMSE can’t be used for testing the accuracy of an average performance error as it might be 

misinterpreted. Nevertheless, Chai and Draxler (2014) suggested that avoiding RMSE and 

favouring MSE is not a key solution. Additionally, many research papers favour MAD (mean 

absolute deviation) over RMSE when evaluating the statistics of a model. However, Chai and 

Draxler (2014) mentioned that there are some cases that must be well classified to know when to 

use each test. For instance, RMSE is more applicable to be used when the data distribution is 

expected to follow Gaussian distribution. 

Nonetheless, a group of tests is required to evaluate the validity of model performance. 

Additionally, the Chai and Draxler (2014) study doesn’t show that RMSE is a better measurement 

compared to MAD. On the other hand, Willmott and Matsuura (2005) explained that RMSE is a 

function of three types of error sets instead of one only (as an average error function). Moreover, 

RMSE depends on the variation distribution of error magnitudes and the square root of errors, 

which is like MAD test. 

3- Mean absolute deviation (MAD): According to Konno and Koshizuka (2005), the accuracy 

test (MAD) was firstly introduced in 1990 to solve problems related to large-scale data 

optimisation. In addition, Konno and Koshizuka (2005) concluded that using MAD calculations 

provides many advantages to the calculations as it is very compatible with the rules of real decision-

making. Similarly, Khair et al. (2017) discussed optimisation and prediction models in relation to 
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the low percentage error. It was shown that using MAD and MAPE for error and accuracy 

calculations in the least square method resulted in a lower percentage error of 9.77% as the 

technique was applied for time series data. Further, Willmott and Matsuura (2005) concluded that 

MAD is a more accurate average error test, which is in contrast to with RMSE. Generally, 

comparisons of the average performance of a model’s error must be using MAD. Berend and 

Kontorovich (2013) mentioned that MAD generally behaves as the standard deviation; its 

weaknesses are confined to the endpoints as the test sometimes fails to converge. As a solution, 

Berend and Kontorovich (2013) provided an optimal estimation for the tail points regarding the 

total variation or the distance between the actual and predicted values over a realistic range. 

4- Symmetric mean absolute percent error (MAPE): as per Tayman and Swanson (1999), 

MAPE is a statistical measure that is widely used to calculate the accuracy of a prediction model. 

It is extensively used for evaluations of population forecasts. In contrast, Goodwin and Lawton 

(1999) explained that MAPE shouldn’t be used to forecast the accuracy of a model, as it considers 

the errors above the actual values different from the values below. In addition, a suggestion for this 

problem was to use the symmetric MAPE. This test usually expresses the forecast error as a ratio 

of actual and predicted values. 

Tayman and Swanson (1999) illustrated that MAPE sometimes overstates the forecast error 

of a population, which affects the validity of the test. The alternative tests used in the last-

mentioned study are the symmetrical MAPE and the M-estimators measure. Some experimental 

evaluations imply that M-estimators are more accurate measures, as these simply do not 

overemphasise the forecast error as the MAPE test does. Another suggestion was to focus on the 

nonlinear transformations before studying the distribution, to minimise the error. 
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5- Residual standard error (RSE): this test was illustrated by Chinn (2000) and confirmed that 

RSE is used in the regression models as a measure for the residuals’ standard deviation. It is also 

used to see how well the expected and actual data points match up. As per Zhang and Chow (2010), 

this test can provide entrepreneurs with information and facts about the difference between the 

projected costs and enable them to compare them with the actual costs. In addition, it can give 

insights into the extent of variation between the projected costs and the historical costs. 

2.5 Prediction of the Power Production Using Regression Analysis 

 Tüfekci (2014) stated that there are many other regression methods used to build models 

that vary with accuracy and error, such as radial basis function neural network, MLP, pace 

regression, support vector poly kernel regression and additive regression. In addition, Thatcher 

(2007) discussed the effect of climate change in Australia on electricity consumption. It was 

demonstrated that energy consumption differs among regions and states in Australia due to the 

change in the climate and other essential factors, such as social and economic patterns. These 

patterns vary in a seasonal manner, which highlights how important ambient weather conditions 

are in the electricity industry (either after or before production). In addition, it was found that, 

during summer, electricity production units increase their production by 0.14% and, hence, models 

of change in electricity demand were considered valuable tools for planning in Australia. 

The Spanish banking sector’s energy consumption was discussed by Tso and Yau (2007). 

It was shown that climate change plays a special role in electricity demand where a regression 

model was developed for the data from 55 banks. Two models were tested, one for high winter 

climate severity and the other for low winter climate severity. Those models were efficient for 

predicting energy consumption for the bank branches. 
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As per Tü and Gürgen (2014), the increasing demand for electricity is cohesively related to 

environmental and economic concerns. In addition, power plant systems are established 

worldwide, consisting of gas turbines that are tested for their reliability and sustainability, 

especially when they are subjected to full loads and liabilities. Tü and Gürgen (2014) studied the 

effect of ambient parameters such as AT, ambient pressure, RH and V. Their study showed a clear 

effect of AT on the performance of gas turbines, and of V on the performance of the steam turbine. 

Another study, by Kesgin and Heperkan (2005) was a relative study that utilised the ambient 

parameters, used MLMs such as ANNs to predict the behaviour of gas turbines and studied the 

target power production variable. This study differs from Tüfekci (2014) by the nature of the 

dataset, the type of MLMs used and the collection of datasets over a longer period for middle-load 

gas and steam turbines. Moreover, the scale of power production was different. Therefore, this 

paper aims to not only analyse the individual parameters but also to find the most appropriate 

method for utilising the ambient parameters and predicting power production in the UAE. This 

research is different in the way it focuses on the linear regression method to analyse the dataset 

based on UAE weather and the ambient variables dataset recorded from a CCPP. In addition, an 

ANN analysis will be carried out to study the dataset and the results compared to previous research. 

Further, Dutta and Ghosh (2021) analysed the P of a CCPP based on ambient parameters. 

The main findings were the factors such as AT, RH, V and ambient pressure could clearly affect 

the performance of power plants, and the recognition of this helps to improve the yield per hour. 

In addition, it can help optimise the utilisation of fuel used for production. Thus, better cost 

management for better efficiency. Moreover, the prediction model was based on a dataset gathered 

over six years, from 2006 to 2011, while the plant was working based on a full-load performance. 

The correlation of each variable with the power production was studied and the main findings were 
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that the AT is inversely proportional to power production, with a strong correlation of -0.948. In 

addition, RH is directly proportional to power production with a medium correlation of 0.39; 

ambient pressure is directly proportional to power with a correlation of 0.518; and there is an 

inversely proportional relationship between V and power production, with a correlation of -0.87. 

Finally, a Dutta and Ghosh (2021) study proposed further research to predict the power production 

of different types of plants. 

2.6 Power Plants’ Production Concepts 

 Raja, Srivastava and Dwivedi (2006) explained the concepts of power plants and illustrated 

that these plants consist of systems or subsystems that produce the electricity or power required for 

public or economic demands. The author emphasised that these power plants must be 

environmentally friendly and anticipated a shift in the direction of energy production from 

conventional to non-conventional power production by the year 2050. The non-conventional power 

production is more efficient, environmentally friendly and favourable to society. Figure 10 shows 

the classification of power plants as conventional and non-conventional. 
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Figure 10: Conventional and non-conventional power plants 

(Raja, Srivastava & Dwivedi 2006) 

A study by Kotowicz and Brzęczek (2018) represents a comprehensive analysis of attempts 

to increase the electrical efficiency and performance of gas turbines installed in a CCPP and enable 

them to produce almost 200MW per day. The main parameters were analysed, based on open and 

closed air-cooling conditions, consequent combustion and steam cooling. It was concluded that, in 

gas turbines, the high metal blade temperatures influence the electrical efficiency. Another study 

(Ibrahim et al. 2017) mentioned a key parameter for increased efficiency and optimum electrical 

production: the gas turbine inlet temperature. Moreover, as per Kotowicz and Brzęczek (2018), 

using consequent combustion and steam cooling can increase the efficiency of the production cycle 

to between 0.63 and 0.65. 

A power plant concept is based on delivering a flow of energies such as mechanical and 

electrical energy. The main machine in the power plant group of systems is the generator, which is 

coupled to a primary mover to run it and generate the electricity (Raja, Srivastava & Dwivedi 

2006). 

2.7 Types of Power Plants 

This section shows some other types of power plants used to produce power and divided 

based on economic demand. As per Kaplan (2009), the demand for electricity and load determines 

which type of power plant to build. These types include: 
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 nuclear power plants, coal power plants and geothermal baseload units, which can run 

throughout the year, except if there is forced maintenance, with low fuel costs and, hence, 

fewer variable costs. However, they are expensive to build. In fact, Petridis and Nicolau 

(2011) stated that nuclear power production systems are directed towards not only 

producing electricity but also applications such as producing hydrogen and coal 

gasification. Moreover, in the last few decades the efforts of nuclear production have 

mainly focused on obtaining high-system efficiency, usage of nuclear process heat for some 

applications such as hydrogen production, adherence to safety, reaching better burn-up rates 

of fuel, length of lifetime and non-proliferation resistance. 

 CCPPs, which are very efficient in power production. However, they require expensive fuel 

such as natural gas and need maintenance many times a year. The power production of these 

plants meets an intermediary load. 

 peaking plants, which use combustion turbines to operate, are inefficient and use highly 

expensive natural gas. These plants are utilised only to fulfil high loads if needed. 

 other types of power plants, such as renewable power plants, which are based on wind 

energy and solar power. These power plants fall outside of this economic category. They 

are used to shift production from high-variable-cost gas systems and peaking units to lower-

variable-cost wind and solar units. However, this renewable power production can displace 

the coal generation only if the demand is low, such as during evenings, strong winds and 

during weekends. In fact, a disadvantage of these systems is the difficulty of meeting loads 

regularly; they are mainly dependent on weather conditions. In addition, if wind and solar 
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plants are generating electricity that needs to be stored, the options of storage, from the 

current technological perspective, are few and expensive (Kaplan 2009). 

Figure 11 shows the total power generation classified by energy source in the US in 2007. 

As shown, the highest percentage of electrical energy production came from coal combustion – 

49%. 

 

 

 

 

 

 

 

Figure 11: Total power generation classified by energy source in US in 2007 

(Kaplan 2009) 

There are various types of energies that contribute to producing mechanical energy. As 

stated by Raja, Srivastava and Dwivedi (2006), there are different types of energy including 

nuclear, thermal, electrical, radiant and chemical energy. Nuclear energy is based on nuclear 

fission, where heat is produced to evaporate steam that moves the generator to produce electricity. 

It is the world’s best emission-free source of energy. In addition, this type of energy can be 

performed using fusion. However, all existing power plants use fission as fusion can’t be 

controlled. Other types of energy such as thermal energy are considered to be a combination of 

kinetic and potential energy, where the atoms are moving randomly due to heat. Each day, a 
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significant amount of heat is stored in the oceans, equivalent to 250 billion barrels of oil; this system 

is called the ocean thermal energy conversion system. 

The power unit is the joule, which is work per second or energy per time. This means that 

energy is required to generate power, and, hence, energy is used to operate power plants and 

produce electricity. The units of power are watts, horsepower and joules per second. The 

conversion of these units is as follows: 

1 𝑤𝑎𝑡𝑡 =  1 𝑗𝑜𝑢𝑙𝑒 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 (26) 

1000 𝑘𝑖𝑙𝑜𝑤𝑎𝑡𝑡𝑠 =  1 ℎ𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 (27) 

2.8 An Overview of a Combined Cycle Power Plant 

According to Kehlhofer et al. (2009), a CCPP, as a definition, is a plant composed of two 

combined thermal cycles that produces higher efficiency. The so-called ‘topping cycle’ is the 

higher-temperature cycle. The heat produced as waste from that cycle is used for the second 

bottoming cycle of lower temperature, where those two cycles are coupled in a heat exchanger. 

According to Eckardt (2014), a CCPP consists of a group of high-temperature engines that convert 

heat to mechanical energy. The term ‘combined cycle’ refers to collecting and utilising the gas 

turbine’s waste heat to produce steam, which increases the efficiency of production and produces 

more electricity. The compressed air is injected into the gas turbine and burns with a high-

temperature fuel. This mixture of hot air and fuel flows in the blades of the gas turbine, making it 

spin to run the electrical generator and produce electricity. The heat is transformed into mechanical 

work, which is used to generate electricity. The waste heat from the gas turbine exhaust enters the 

HRSG. It is then used to generate steam, which is used to operate the steam turbine and move the 

output shaft, resulting in mechanical work that is later converted to electricity. Figure 12 shows a 
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simplified flow diagram of a combined cycle. In addition, as per Franco and Casarosa (2002), the 

overall efficiency of the CCPP range is 50% to 60%. 

 

 

 

 

 

 

 

 

 

 

Figure 12: A simple flow diagram of a combined cycle 

(Kehlhofer et al. 2009) 

There are several strategies for monitoring and increasing the efficiency of the CCPP, other 

than studying the ambient weather conditions, such as the following: 

  Kaviri et al. (2013) explained the advantages of using CCPP for power production for its 

high efficiency and low emissions. In addition, this study focused on CCPP with 

supplementary firing. It concluded that the temperature of the the HRSG inlet gas influences 

the efficiency of the steam cycle. The research showed that increasing this temperature to 

650°C; increases the cycle’s thermal efficiency and energy efficiency (which is the 

efficiency of the amount of energy produced by the system when it is in thermodynamic 
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equilibrium). However, after some time, the two types of efficiencies start decreasing due 

to other factors. 

 Franco and Casarosa (2002) showed that the efficiency of a CCPP might increase to more 

than 60% without the attainment of new technology for the gas turbine. This can be done 

by optimising the HRSG, by using parallel sections and limiting the conditions to up to 220 

bars. In addition, optimisation of HRSG by reheating gas turbines (the process of post-

combustion) and recovering gas might lead to an efficiency of up to 65%. 

 another efficiency optimisation method of HRSG was proposed by Kehlhofer et al. (2009), 

which explores the applications of the influence coefficients utilising the Newton-Raphson 

approach. It concentrated on the cycle design factors to achieve improved efficiency. The 

major aim of this study was to demonstrate the importance of design factors and their 

impact on cycle performance. An optimisation of the allocation of the boiler’s area and its 

various components was presented as an example. 

 Kotowicz, Job and Brzęczek (2015) mentioned methods used to increase the efficiency of 

the CCPPs and concluded that the efficiency for the gas turbine, as an example, would be 

higher when focusing on the aspects of the gas turbine and improving it by efficient heat 

utilisation of the turbine’s cooling air. The methodology and calculations presented an 

extreme range of temperatures and compression ratios, assuming a constant value of the 

turbine’s outlet gas temperature. Moreover, it was possible to improve the gas turbine’s 

efficiency while keeping the heat value constant, by focusing on the aspects of the gas 

turbine and improving it. In addition, this study proposed an additional steam cycle that 

allowed for an increase in efficiency by 2 to 3%. However, this higher efficiency led to an 
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increase in the compression ratio. In addition, an economic study was proposed, which 

showed that the gas turbine’s utilisation development could be made easier by keeping a 

constant and reasonable low cost of the gas turbine’s financial investments. 

To finalise, Ibrahim et al. (2017) illustrated that to identify the characteristics of a CCPP 

and locate all the optimum conditions for optimum operation, the simulation model unique tool 

was irreplaceable. The importance of using such models lies in the difficulty of implementing ideas, 

due to the size of the system and the difficulty of experimental examinations. 

2.9 Power Generation in UAE 

An independent country such as the UAE focuses on its development plan mainly on the 

power sector and production efficiency. Sushil Jha and Tandon (2019) mentioned that the country’s 

wealth depends primarily on income from petrol, and ever since its formation, the country has 

focused on developing the infrastructure of power generation. As per Ho et al. (2019), the UAE is 

one of a few countries focusing on nuclear energy as a source of energy. Ibrahim et al. (2017) stated 

that valuable improvements for plant efficiency and lower pollutants are crucial concerns for any 

design or any type of power generation. Accordingly, Sushil Jha and Tandon (2019) explained the 

reason for using nuclear power plants for power generation: the country’s economic performance 

varies according to the volatility of oil prices, which is the primary input to the systems of CCPPs. 

Thus, the dependence on oil must be reduced by the robust development of UAE infrastructure. 

Additionally, another view was presented by Saghafifar and Gadalla (2016), which mainly focused 

on the replacement of natural gas and fossil fuel in power plants. Solar energy was promoted as a 

potential solution that takes advantage of the sunny climate in the UAE to activate solar-based 

power plants. The study explained the benefits of using this kind of power production in the UAE 
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as it is environmentally friendly and a technology-based solution. In particular, a case study of a 

new hybrid solar energy-based CCPP with a capacity of 50MW was presented by Saghafifar and 

Gadalla (2016), who concluded that hybridisation of an existing power plant enhances the 

utilisation and cost of electrical power in the UAE, and increases the savings, the net present value 

and the payback period for the plant. The study showed that a hybrid CCPP in the UAE could 

present a net present value of $34.918 per MWh and a cost of electricity of $77.7 per MWh. 

Moreover, the solar share is 8.87% and the specific CO2 emissions are 371.9 kg per MWh. 

Many countries rely on the CCPP system to generate electricity, such as those in the UAE. 

However, Talukder and Soori (2015) discussed the disadvantages of having this type of power 

plant in the UAE’s arid climate and hot summer temperatures. The study concluded that the main 

losses could be due to hot weather, as the amount of gas turbine power production might decline 

with increasing ATs. To overcome this, Ho et al. (2019) outlined the advantages of constructing 

nuclear power stations in the UAE, such as the Barakah in Abu Dhabi, which involves 

supplementing baseload clean-power production. Early growth of nuclear power production started 

around the world in the 1950s, and many designs were presented. 

Consequently, the dominant design was the pressurised water reactor, as it was very 

compact and economic. Around the next ten years, other designs might be functioning, such as the 

small modular reactor, which can produce up to 300MW. However, Al Rashdi et al. (2020) 

illustrated that the contamination of rare earth elements is harmful to the environment. Moreover, 

the concentrations of these elements were measured around the area of the nuclear power plant in 

Barakah, Abu Dhabi. Generally, the findings revealed that the area is normally free of any 

hazardous amounts. Figure 13 shows the nuclear power plant’s net capacity under construction (Ho 

et al. 2019). There are 454 nuclear power reactors (four in the UAE – their construction is led by 
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China) around the world, corresponding to 10% of electricity production. As shown by the figure, 

UAE is third ranked compared to other countries, indicating the fast development of nuclear power 

production. 

 

 

 

 

 

 

 

 

 

Figure 13: The nuclear power plant’s net capacity under construction 

(Ho et al. 2019) 

Talukder and Soori (2015) discussed the disadvantages of CCPP with supplementary firing, 

which can increase the overall power generation: it can result in low thermal efficiency. In contrast, 

the low thermal efficiency resulted in an industrial direction towards solar hybridisation in the 

UAE’s CCPP and in other countries. Inefficiency can be reduced by reducing carbon dioxide 

emissions. In addition, this new direction presented by Talukder and Soori (2015) towards a new 

plant production configuration is an integration of solar power and CCPPs. This technology 

optimises the usage of renewable energy. Generally, the study showed that in the UAE, high overall 

efficiency comes from the integrated solar CCPPs. Generally, (Ho et al. 2019) stated that, over the 

next few decades, the advanced nuclear power plants in the form of sodium-cooled and molten salt-
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cooled nuclear plants are expected to provide high-efficiency P along with the high-temperature 

gas-cooled plant reactors. Moreover, these types of plant configurations can be used for heavy 

industry and hydrogen generation for the synthetic variety of fuels. 

 The technical and economic characteristics of the cooling system’s input air in a gas turbine 

inside a CCPP were examined in a study by Barigozzi et al. (2015) comparing three plants in 

different countries: Phoenix in the USA, New Orleans in the USA and a power plant in Abu Dhabi 

(UAE). The system that was analysed used chilled water, which basically cools down the system 

during very hot or sunny days. The study concluded that modelling the power plant and sizing the 

amount of inlet air in the cooling system depends on the weather conditions, such as whether there 

is a hot climate. The plant operation hours and power production were higher in hot weather areas. 

In addition, wet climate conditions require a vast amount of thermal storage, resulting in higher 

investment costs. Further, the best performance recorded was for areas with high ATs and low RH 

(deserts). 
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CHAPTER III 

 RESEARCH METHODOLOGY 

This chapter describes the research data, interactions between variables and how the data is 

quantitatively tested in the CCPP system to produce electrical power. Firstly, the dataset contains 

14,400 data points collected and recorded in the datasheet (each parameter has 2,881 points). This 

dataset would fit into a linear regression model to predict the baseload power production. Another 

method is used to analyse the dataset, which is ANN. The two methods will be compared and 

discussed. 

3.1 Linear Regression Modelling 

The variables were obtained from the power plant after gaining formal consent, so there is 

no need for a walk-through audit. Independent variables are AP, AT, RH and V. These variables 

will be analysed firstly using the linear regression method, which is a technique for depicting the 

relationship between independent variables and the dependent variable (Tso & Yau 2007) as in the 

following equation below (Aranda et al. 2012): 

𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑖𝑋𝑖 + 𝜀 (28) 

Here 𝜀 is the random error, 𝛽0, 𝛽1, 𝛽2 and 𝛽𝑖 are the changes in the response variable 𝑌 in 

terms of a change of one unit in the independent variable 𝑋𝑖, while all other parameters remain 

constant. Regression coefficients will be calculated using the least-squares method, a statistical 

method used to analyse data points and find the best fit by minimising the sum of squares of the 

residual points in the linear regression model (Kong, Li & Zhang 2019). The predicted value �̂� 

linear equation with the predictors is (Aranda et al. 2012): 
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�̂� =  �̂�0 + �̂�1𝑋1 + �̂�2𝑋2 + ⋯ + �̂�𝑖𝑋𝑖 + 𝜀 (29) 

Variables outside the range of this predicted model might show an extrapolation error if 

tested using this regression model to obtain the response variable. It should be noted that Microsoft 

Excel will be used for calculations, along with Minitab and RStudio to show the graphical 

representations of data. 

According to Banhidarah et al. (2020), to find the ambient parameters that affect the power 

production a null hypothesis is set to see if the independent variables, such as AT, ambient pressure, 

RH and V (𝑋𝑖 variables) influence the dependent variable P. So, two types of hypotheses will be 

tested. The first is the null hypothesis (Ho) which states that the independent variables and the P 

have no relationship. The second is the alternative hypothesis (H1), which claims that there is 

evidence of a relationship between the independent variables and P. The two hypotheses are as 

follows (Banhidarah et al. 2020): 

𝐻0: 𝛽1𝑋1, 𝛽2𝑋2, … . , 𝛽𝑖𝑋𝑖 = 0 (30) 

𝐻1: 𝛽1𝑋1, 𝛽2𝑋2, … . , 𝛽𝑖𝑋𝑖 ≠ 0 (31) 

Sample analysis will be carried out to find the trends using scatter plots, show patterns and 

by dividing the data into subsamples to explain the power production. Subsequently, regression 

analysis will be discussed with appropriate calculations to find the best model, perform model 

validation and to discuss the results and trends to provide recommendations and conclusions. 

3.2 Artificial Neural Networks 

As per Dehghani Samani (2018), ANN is a method of simulation that mimics the way the 

human brain thinks and analyses data. It contrasts with mathematical models, which predict models 

based on mathematics and the laws of physics. According to Said et al. (2020), this method is 
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commonly used to accurately anticipate the production of electrical power. Meteorological data 

such as the variables provided by the plant are fluctuating and very unsettled, so this method is 

found to be more suitable for dealing with such data. Dehghani Samani (2018) explained how this 

method works; a simple understanding of the human brain is enough, as the human brain learns 

from the experiences of life and creates interactions between the so-called ‘neurons’. The ANN 

approach replicates this repeating process by analysing the relationship between many inputs and 

outputs, regardless of how they interact in the real world. A type of ANN is the MLP network, 

which is composed of neurons as elements that have transfer functions connected linearly or 

nonlinearly by a weights matrix. As shown in Figure 4, these neurons are organised in three levels: 

one input layer, hidden layers and an output layer. 

Normalisation and scaling of data to the 0–1 range reduce the error for the data analysis. In 

addition, the data analysis might be affected by the measurement units used. For example, the 

change of one unit measurement from inches to metres for height might cause a difference in the 

results. Generally, expressing the variables using a small unit would lead to a more extensive range 

and more significant effect for that variable. The data must be normalised to avoid dependence on 

one choice of units. This includes transforming data to a small or common range such as the (0–1) 

range. The following equation will be used to normalise dataset values: 

𝑧𝑖 =  
(𝑥𝑖−min (𝑥)

(max(𝑥)−min(𝑥))
  (Github 2013)  (32) 

Here, 𝑧𝑖 is the normalised value of power production, 𝑥𝑖 is the power production value, 

min(x) is the minimum value of power production, and max(x) is the maximum value of power 

production. 



 

45 

 

As mentioned before, the electrical power production of a CCPP will be studied based on 

ambient parameters such as: AT, AP, RH and V. So, the equation will show (P) as a function of 

the rest parameters: 

𝑃 = 𝐹(𝐴𝑇, 𝐴𝑃, 𝑅𝐻, 𝑉)  (33) 

As per Said et al. (2020), the function F can be described as a complex function with a 

nonlinearity trend. In addition, it is hard to express it in analytical form, so ANN is a powerful 

method used to do so. Moreover, ANN expresses neurons as a single unit (xi) and uses weights (wi) 

or coefficients to connect neurons with each other; it adds up all of these weights to get a numerical 

value b (bias), which is then, given the pre-activation equation for function A: 

𝐴 = 𝑏 +  ∑ 𝑤𝑖𝑥𝑖

𝑁

𝑖=1

  (34) 

Here, (i) is the unit’s index and (N) is the number of units connected. After that, the pre-

activation function will be converted to a single output (y) of a single neuron by passing through 

the transfer function (g): 

𝑦 = 𝑔(𝐴)  (35) 

There are many types of activation function, including the linear activation function as 

shown above, and the sigmoid activation function, which is: 

𝑔(𝐴) = 𝑠𝑖𝑔𝑚 (𝐴) =
1

(1 + exp(−𝐴))
  (36) 

𝑔(𝐴) = 𝐴 (37) 

During the training process of the ANN method, the weight coefficients (wi) and the bias 

(b) can be modified for specific goals. For example, subsets can be divided randomly into three 

independent categories: 70% of the samples are for the package of learning in which the weights 
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and bias can be adjusted, 15% for the internal validation of the ANN method and the last 15% is 

for testing the ANN. Note that all these processes and equations are performed using AI and, 

specifically, a developed software. 

After that, the ANN functions by taking the inputs (XLearning) and the randomly selected 

values of weights and biases from the learning stage to perform the network and to get the output 

values (YPredicted) and θ, which is the error. Then, these values of (YPredicted) are compared to the 

output of the learning stage (YLearning) by the cost-error equation Eθ as follows: 

𝐸𝜃 =
1

𝑀
∑(𝑌𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝜃(𝑖) − 𝑌𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝑖))2

𝑀

𝑖=1

  (38) 

Here, θ is the number of iterations and M corresponds to the total number of samples chosen 

in the learning stage. The calculations of this equation are repeatable to get a minimum error and, 

hence, allow adjustments on the weights and biases. Following that, the internal validation process 

comes where it can be considered the first test done by ANN on the learning data. This is performed 

automatically by some algorithms in the software that will be used to perform ANN. For the data 

of this research, no data validation is needed because the data are real, have formal consent before 

use and don’t need a walk-through audit. The network generalisation will then be completed, since 

internal validation will be used to test it, and the training process will be terminated when the 

generalisation is not continuously improving. In fact, this internal testing method has no 

consequence for the whole training process; it just serves as a metric of network performance that 

is independent of the whole training process. Finally, the network will be ready to function. Note 

that all the above equations are inherently used in RStudio software. 
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In this research, the sigmoid function will be applied in RStudio software for the nodes of 

the hidden layer. The linear function will be used for the nodes of the output layer. In addition, 

empirical trials will be done to find the number of nodes in the hidden layer. 

Figure 14 illustrates a flowchart of the ANN method’s steps and how to use it, where the 

training process involves the optimisation of the neurons’ weights and biases in the network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: ANN method’s flow chart 
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(Said et al. 2020) 

According to Tü and Gürgen (2014), an essential key to performing this analysis is 

differentiability, which is considered a prerequisite for the method. It is used to update weights in 

the learning process in relation to the error value. In the forward neural network, when the 

connection between the nodes is not forming a cycle, the units start taking inputs from the lower 

layer. Later, processing starts moving to the higher layers. Accordingly, the error function is the 

output of ANN minus the expected value. Back propagation takes place in the error function using 

partial derivatives. Finally, the learning stage stops either when the values of the learning stage 

stabilise or when the error is below the limit. All these processes are performed implicitly using 

RStudio software. 

3.3 Checking the Accuracy of Models 

 In this section, several equations will be illustrated to check the accuracy of linear 

regression and ANN techniques. These equations are often used to compare the precision of 

results from one method to another. The following are the equations that will be used in this 

study: 

1 – Mean square error (MSE): 

𝑀𝑆𝐸 =
∑ (�̂�𝒊−𝒚𝒊)𝟐𝑛

𝑡=1

𝑛
  (Wallach & Goffinet 1989) (39) 

Here n is the number of data points, t is the point number, �̂�𝒊 is the predicted value and 𝒚𝒊 

is the actual value. 

2 – The root mean square error (RMSE): 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝒊−𝒚𝒊)𝟐𝑛

𝑡=1

𝑛
  (Chai & Draxler 2014) (40) 

3 – Mean absolute deviation (MAD): 
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𝑀𝐴𝐷 =
∑ |�̂�𝒊−𝒚𝒊|𝑛

𝑡=1

𝑛
  (Chai & Draxler 2014) (41) 

4 – Symmetric mean absolute percent error (MAPE): 

𝑀𝐴𝑃𝐸 =
∑ |

|�̂�𝒊−𝒚𝒊|

�̂�𝒊
|𝑛

𝑡=1

𝑛
∗ 100 (Goodwin & Lawton 1999) (42) 

5 – Residual standard error (RSE): 

𝑅𝑆𝐸 = √
∑ (�̂�𝒊−𝒚𝒊)𝟐𝑛

𝑡=1

𝑛−2
  (Saadeh, Burqan & El-Ajou 2022) (43) 
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CHAPTER IV 

RESEARCH RESULTS AND DISCUSSION 

4.1 Data Summary 

This research examines the effect of four input parameters, where the dataset was gathered 

from a CCPP in the UAE concerning the baseload power production (P) in MW, by performing 

statistical analysis. The four variables in the dataset are AT in °C, AP in bar, RH in % and exhaust 

steam pressure (V) in bar (some units were adjusted to be compatible with the model). The primary 

target variable is P, and the dataset was recorded using the power plant automation system from 

the installed transmitters every 15 minutes for one month (September 2021). 

The dataset contains 14,400 data points collected and recorded in the datasheet (each 

parameter has 2,881 data points). This dataset fits into a regression model using Minitab and 

RStudio. In addition, the dataset is modelled by applying the ANN technique using RStudio to 

predict the power production and, hence, to predict the input parameters’ best performances and 

study other essential features of these parameters. 

The following tables (2–6) contain simple descriptive statistics completed using Microsoft 

Excel for each parameter in the dataset. 

(a) Variable 1: Electrical power production 

Table 2: Descriptive Statistics for electrical power production 

Descriptive Statistics for Electrical Power Production 

Mean 715.079611 

Standard Error 1.56763639 

Median 717.2125 

Mode 805.0924 

Standard Deviation 84.1428013 

Sample Variance 7080.01102 
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Kurtosis -0.8527438 

Table 3: Descriptive Statistics for electrical power production 

Skewness -0.1174933 

Range 358.1227 

Minimum 506.3229 

Maximum 864.4456 

Sum 2060144.36 

Count 2881 

Confidence Level (95.0%) 3.07380268 

 

As shown in Table 2, the maximum power production during September 2021 was 

864.4456MW, while the minimum power production was 506.3229MW. The power load has 

sufficiently decreased, utilising a significant shift in power production in the UAE from CCPPs 

that operate through natural gas and oil to nuclear power plants mainly characterised by zero 

emissions and high efficiency (Treyer & Bauer 2016). 

(b) Variable 2: Ambient temperature 

Table 4: Descriptive Statistics for ambient temperature 

Descriptive Statistics for Ambient Temperature  

Mean 31.8737214 

Standard Error 0.03804081 

Median 31.91143 

Mode 31.14844 

Standard Deviation 2.04183848 

Sample Variance 4.16910439 

Kurtosis 0.11664114 

Skewness -0.430269 

Range 11.20415 

Minimum 25.29688 

Maximum 36.50103 

Sum 91828.1912 

Count 2881 

Confidence Level (95.0%) 0.07458996 
 

(c) Variable 3: Relative Humidity 
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Table 5: Descriptive Statistics for relative humidity. 

 

Descriptive Statistics for Relative Humidity 

Mean 71.3825006 

Standard Error 0.1619903 

Median 71.57124 

Mode #N/A 

Standard Deviation 8.69482083 

Sample Variance 75.5999093 

Kurtosis 0.34605316 

Skewness -0.4499609 

Range 54.81283 

Minimum 35.4665 

Maximum 90.27933 

Sum 205652.984 

Count 2881 

Confidence Level (95.0%) 0.31762864 

 

(d) Variable 4: Atmospheric pressure 

The values of the AP were converted from (hPa) to (bar) to match the exhaust vacuum 

pressure unit. The conversion is shown below: 

𝐵𝑎𝑟𝑠 =  ℎ𝑒𝑐𝑡𝑜𝑝𝑎𝑠𝑐𝑎𝑙𝑠 ÷  1,000 (Hub 2022) (44) 

Table 6: Descriptive Statistics for atmospheric pressure 

Descriptive Statistics for Atmospheric Pressure  

Mean 1.00349808 

Standard Error 4.7801*10-5 

Median 1.003297 

Mode 0.999625 

Standard Deviation 0.00256573 

Sample Variance 6.583*10-6 

Kurtosis -0.8056635 

Skewness 0.18953718 

Range 0.01107 

Minimum 0.99875 

Maximum 1.00982 

Sum 2891.07797 

Count 2881 
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Confidence Level (95.0%) 9.3728*10-5 
 

(e) Variable 5: Exhaust steam pressure 

Table 7: Descriptive Statistics for exhaust steam pressure 

Descriptive Statistics for Exhaust Steam Pressure 

Mean 0.08614671 

Standard Error 0.00026183 

Median 0.08453701 

Mode 0.10632 

Standard Deviation 0.01405394 

Sample Variance 0.00019751 

Kurtosis -0.4215716 

Skewness 0.50916197 

Range 0.06956392 

Minimum 0.05722638 

Maximum 0.1267903 

Sum 248.188659 

Count 2881 

Confidence Level (95.0%) 0.0005134 

 

 Covariance Table: 

Table 7 shows the covariance matrix for the five variables. 

Table 8: Covariance table for the dataset 

  P AT RH AP V 

P 7077.55353     

AT 48.3937111 4.16765729    

RH -219.9314 -11.893866 75.5736685   

AP -0.0312872 -0.0013171 -0.0024796 6.5807E-06  

V 0.83628986 0.01253844 -0.0370074 -5.124E-06 0.0001974 

 

The covariance table shows how two variables vary positively or negatively and how strong 

the relationship is (Kloeckner et al. 2019). For instance, the power production and the AT have 

medium positive covariance (47.3937111), which means that they also have a directly proportional 

medium relationship. This contradicts the paper published by Tüfekci (2014), which showed an 
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inversely proportional relationship between the two variables. Some reasons might include the low 

scope of data of this research. On the other hand, the power production and RH showed a strong 

inversely proportional relationship (-219.9314). Other variables appeared to have a weak 

relationship with power production. Complementing that, some input variables showed an 

indication of a relationship: RH and AT (-11.893866), which is an inversely proportional 

relationship. 

 Correlation Table: 

Table 8 shows the correlation matrix for the four input variables. 

Table 9: Correlation table for the four input variables 

 

As shown, the highest multicollinearity found between the input variables is for AT and 

RH, which is a negative correlation (-0.67). It approximately conforms to the result obtained by 

Tüfekci (2014). Nevertheless, the highest input variable correlation is presented as 

multicollinearity, and by Tüfekci (2014) was between the AT and the V, which is a positive 

correlation with a value of (0.84) and similar to the results obtained by Dutta and Ghosh (2021). 

Moreover, the highest correlation with power production is found with the V, which is a positive 

correlation (0.707). Other variables such as AP and RH negatively correlate with the power 

production that is (-0.1449736) and (-0.3007187), respectively. Furthermore, AT positively 

  P AT RH AP V 

P 1     

AT 0.28177428 1    

RH -0.3007187 -0.6701805 1   

AP -0.1449736 -0.2514995 -0.1111898 1  

V 0.70744484 0.43709399 -0.3029565 -0.1421456 1 
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correlates with power production (0.28177428). Additionally, Tüfekci (2014) showed that the 

highest correlation with the power production was with the AT variable which is (-0.95). 

4.2 Linear Regression Analysis 

 This section illustrates the analysis of the dataset using regression analysis using Minitab 

software and some other calculations by Microsoft Excel. Each input variable’s impact on the 

power production variable is discussed below using hypothesis testing and assuming equal 

variances, normal distribution of data and a 95% confidence interval for all Minitab analyses. 

The first step in performing this analysis is to check whether there is a trend in the data with time 

and to check the outliers based on minutes, hours, days and week-long periods. 

(1) Plotting power production with time: 

To perform this step, Microsoft Excel was used to plot power in MW with time on weekly 

basis to check the possible trends. Figure 15 shows power versus time where the data is segmented 

into four and a half weeks. Accordingly, the data contains 672 data points for week one, 733 data 

points for week two, 672 data points for week three, 672 data points for week four and 121 data 

points for the last two days of the month. 

 

 

 

 

 

 

Figure 15: Power in MW versus time in weeks 
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As shown in Figure 15, there are no main outliers that might affect the analysis or that must 

be removed before the calculations start, as the data ranges from an interval of 500MW to nearly 

900MW. In addition, this figure shows that there are almost seven cycles every week (for each day 

there is one cycle). Moreover, figures A.1, A.2, A.3, and A.4 in the Appendix show the power data 

versus time plots in seconds, minutes, hours and days, respectively, to enable an analysis of the 

data subsets and check whether there are trends or cycles. The figures show that there are three to 

four cycles in power production every 5,000 minutes (83 hours) and almost one cycle every 2,000 

minutes. Moreover, Figure A.3 shows a trend of approximately one process every 25 hours (just 

over one day), which is illustrated in Figure A.4 and might explain the gradual increase in 

production. In addition, the weekly trend of data is shown in Figure 15. It demonstrates that the 

overall weekly trend of power production was steady during the first week, decreasing during the 

second and third, increasing during the fourth week and almost constant during the final period. 

(2) Regression analysis and checking linearity 

Checking whether the data is linear or nonlinear is the first step in this analysis. To start, 

the whole data was tested for linearity using Minitab. Following that, the dataset was segmented 

using Microsoft Excel into five data subsets representing weeks one, two, three and four and two 

days of week five (total of 2,881 data points), as the overall trend of data shown in Figure 15, and 

to find the best data subset that better predicted the power production. Secondly, hypothesis testing 

was performed for the whole dataset values and for each weekly predictive model to determine 

whether the variables have a linear relationship with the power production. In addition, the 

predictive model equation was found for each week, and plots of residuals, normality and the 

histogram of residuals were obtained using Minitab (see figures A.5 – A.19 and tables A.1 – A.20 

in Appendix A). Regression analysis and ANOVA were used to find the relationship between the 
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dependent variable (power production) and the independent variables (AT, RH, AP, and V), to 

select the best data subset that best fits the model. The best data subset should have the highest 

value of R-sq and mostly related residual graphs to the assumptions of the study. Using Minitab, 

the following values of R-squared (R-sq) and adjusted R-squared (R-sq(adj)) were found for the 

entire dataset’s predictive model and for each week, respectively (see Table 9 and tables A.2, A.6, 

A.10, A.14, A.18 in Appendix A). 

Table 10: R-squared and adjusted R-squared values for the whole dataset model and each week’s 

predictive model 

 

Whole 

dataset 
Week 1 Week 2 Week 3 Week 4 

Week 5 (2 days 

only) 

R-sq 53.49% 82.16% 54.67% 42.97% 62.27% 91.26% 

R-sq (adj) 53.43% 82.05% 54.43% 42.63% 62.05% 90.96% 

 

As shown in Table 9, the highest R-squared and adjusted R-squared values were for the 

week-five prediction model. However, this model data is only for two days. In addition, the 

normality plot (Figure A.17 in Appendix A) of the predictive model is not compatible with the 

assumptions of the study, and the residuals scatter plot (Figure A.18 in Appendix A) is not perfectly 

spread. Moreover, the histogram of residuals (Figure A.19 in Appendix A) is not clearly bell-

shaped. As a result, this model is insufficient and needs more data to be adjusted. In addition, it is 

inaccurate to generalise the results of two days to the whole year of production. 

The other predictive models obtained, such as models of weeks two, three and four (refer 

to Appendix A for figures and tables of each model), have low values of R-squared and adjusted 
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R-squared compared to the week-one prediction model, which has the highest value of R-squared 

(82.16%) and adjusted R-squared (82.05%) (see Table A.2 in the Appendix). This result implies 

that the four input variables cause almost 82% of the variability on the power production variable 

model equation. Accordingly, this prediction model data analysis will be explained along with the 

whole dataset prediction model. However, the data is for one week only and cannot be generalised 

to an entire year. Moreover, other explanations are provided below for testing the assumptions of 

this study, which confirms the choice of this model and its validity. Note that the following variable 

symbols illustrate the symbols for the whole dataset. 

– Hypothesis test: 

𝐻0: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 0 (45) 

there is no relationship between P and AT, RH, AP, V 

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽𝑖 ≠ 0 (𝑓𝑜𝑟 𝑖 = 1,2,3,4)  (46) 

there is at least one relationship between P and AT, RH, AP, V 

t-Test was performed using Minitab for t (1 −
𝛼

2
, 𝑑𝑓) where 𝛼 is the significance level 

which is 0.05 and 𝑑𝑓 is the DF (the number of observations minus the estimate parameters number: 

n - 2) (Dutta & Ghosh 2021). The P-values (Pr) in the ANOVA table (Table 11) are (0.0) for all 

the four input variables, which are all less than 𝛼 = 0.05. Accordingly, this rejects the null 

hypothesis and means that there is 95% confidence that there is a linear relationship between the 

power production and the AT, RH, AP, and V (significant model). 

The following equation was found using Minitab and represents the power production 

predictive model and all the input variables’ coefficients for the whole data: 

P =  5152 −  9.698 AT −  2.485 RH − 4304 AP +  4274.0 V (47) 
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This model contradicts Tüfekci (2014) and Dutta and Ghosh (2021) in the correlation of some 

variables. In Tüfekci (2014), AP and RH are positively correlated to the power production. In Dutta 

and Ghosh (2021), RH is positively correlated to the power production and V is negatively 

correlated to P. Some reasons might include the limited data in this research and a broader data 

collection over a more extended period in the Tüfekci (2014) and Dutta and Ghosh (2021) studies, 

which lasted over six years. In addition, the V has a positive linear relationship with power that 

opposes Tüfekci (2014), who showed a strong negative correlation of (-0.87). 

The regression coefficients were obtained from Table 12 and represent each variable’s slope 

and the intercept. The power changes for each unit change in the input variable (slope value) while 

keeping other variables constant. Moreover, Table 12 shows the variance inflation factor (VIF) 

values which represents the multicollinearity in the set of multiple regression variables. It ranges 

from one to five, demonstrating a strong relationship between power and V, which indicates the 

validity of the model. 

The normal probability plot of the residuals shows almost a straight line (approximately 

normal distribution of data variables) (see Figure 16). Moreover, the residuals plot (Figure 17) 

shows that the residuals are randomly scattered, and no clear pattern is observed. However, the 

model needs more data for future adjustments and there is space for improvements. In addition, the 

histogram plot of the frequency of residuals shows almost a bell shape, which indicates the 

normality of the data (see Figure 18). The following are the tables and figures obtained from 

Minitab for the dataset prediction model: 
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Table 11: Dataset model summary using Minitab 

S R-sq R-sq(adj) R-sq(pred) 

57.4209 53.49% 53.43% 53.35% 

Table 12: Analysis of variance for the whole dataset prediction model 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 4 10907805 2726951 827.06 0.000 

AT 1 460615 460615 139.70 0.000 

RH 1 627516 627516 190.32 0.000 

AP 1 278467 278467 84.46 0.000 

V 1 8385744 8385744 2543.32 0.000 

Error 2876 9482627 3297   

Total 2881 20390432    

Table 13: Coefficients table for the whole dataset prediction model 

Term Coef SE Coef T-Value P-Value VIF 

Constant 5152 487 10.58 0.000  

AT -9.698 0.820 -11.82 0.000 2.45 

RH -2.485 0.180 -13.80 0.000 2.14 

AP -4304 468 -9.19 0.000 1.26 

V 4274.0 84.7 50.43 0.000 1.24 
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Figure 16: Normality plot for the dataset prediction model 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Residuals plot versus fitted values for the dataset prediction model 
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Figure 18: Histogram of residuals for the dataset prediction model 

(1) Ambient temperature effect on power production 

This impact is considered to be significant and affects the performance of gas turbines 

(Tüfekci 2014). Moreover, this is shown in the analysis of AT as the correlation of this independent 

variable with the power production was found to be (0.28177428), which is a weak correlation 

based on the weather conditions of the UAE (see Table 8). 

As stated by Arrieta and Lora (2005), the operation of a CCPP is affected by ambient 

parameters where the plant is installed, such as AT, RH and AP. Among these variables, the most 

substantial effect was the AT effect. However, the AT doesn’t significantly affect the power 

production in this study due to limited data collection. Moreover, the curves of power production, 

thermal efficiency and heat rate generated in a Arrieta and Lora (2005) study showed a clear 

tendency for power to shift and be affected by the AT and the complementary firing. 
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Controlling the AT outside the gas turbine is explained by TMI Staff and Contributors 

(2017). The high temperature of the surrounding air is correspondent to the low density of the inlet 

air that enters the gas turbine. Accordingly, the mass flow rate through the gas turbine is minimal, 

which contributes to low efficiency and power production. Consequently, the AT has an inverse 

relationship to the mass flow of air that is needed for firing, which means that decreasing the AT 

increases the mass flow for inlet air. Moreover, Park et al. (2020) highlighted predicting the 

performance of gas turbines by their inlet parameters, such as AT. If the air temperature at the gas 

turbine’s input was extremely high, the turbine rotor could be destroyed, which affects the power 

generation. 

The analysis of this study showed a directly proportional relationship between AT and P 

considering the AT effect on P only. However, this relationship is weak due to limited data 

collection over a short period. In addition, considering the AT effect on P along with other variables 

has presented an inversely proportional relationship between AT and P, which is compatible with 

the result of Tüfekci (2014) and Dutta and Ghosh (2021). The relationship is explained by the fact 

that every unit increase in AT results in decreasing the power production by 9.698 times, while 

keeping all other variables constant (see equation 47 on page 56). 

Figure 19 shows the scatter plot of the AT versus power production and the linear regression 

line after fitting the data using Minitab (for the purposes of the initial investigation). Note that, 

using Minitab, the R-squared and adjusted R-squared values found for the P and AT prediction 

model were higher for week 1 data (24.05% and 23.94%, respectively) and lower for the whole 

dataset model (7.94% and 7.91%, respectively). 
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Figure 19: Scatter plot of power production versus ambient temperature 

Although it is a weak linear relationship, the model equation (on page 56) represents the 

predictive model for power in the UAE after performing a hypothesis test for the AT and all the 

other variables with the power production. 

(2) Relative humidity effect on power production 

Previous research has shown that, as RH rises, the power production of a steam turbine rises 

due to an increase in the temperature of a gas turbine’s exhaust gas as explained by Tüfekci (2014). 

However, the model was explicated to be insufficient and needed some adjustments. In this study, 

the correlation of RH concerning power production was found to be (-0.3007187), which is a 

moderate negative correlation (see Table 8). The equation illustrates that one unit increase in RH 

decreases the power production by 2.485, while keeping all the other values constant. This 
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indicated a presence of an inversely proportional relationship between power production and RH. 

Additionally, Onoroh, Ogbonnaya and Onochie (2020) disproved the Tüfekci (2014) and Dutta and 

Ghosh (2021) results for RH and power and confirmed the inversely proportional relationship as 

illustrated in this research. Several implications of high RH and outer condensation are explained 

by Dehghani Samani (2018), and include: 

 reduction in air compressor’s efficiency as the surface of the compressor blades becomes 

wet; 

 reduction in the efficiency of the production as the latent heat of the water droplets raises 

the inlet gas turbine temperature, decreasing the mass flow of inlet air; 

 fouling might occur in the compressor blades due to the decomposition of particles of wet 

inlet air; 

 the pressure instrumentations might get blocked by water droplets and therefore affect the 

readings of pressure lines. 

Correspondingly, the Onoroh, Ogbonnaya and Onochie (2020) study also mentioned other 

variables simultaneous with highly moisturised air that might change the performance of the gas 

turbine and, hence, the power production efficiency, which are the dry-bulb temperature, wet bulb 

temperature and the AP (which will be discussed in the following section). 

Dehghani Samani (2018) demonstrated that the RH must not exceed 75%. Nevertheless, 

this research data ranges from 35.47% to 90.28%, which might affect the power production 

efficiency. 

Another study by Amell and Cadavid (2002) confirmed the results of this research and was 

performed in Colombia to study electricity production. The researcher confirmed that increasing 
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the AT of a gas turbine decreases the power production. The inlet air was cooled before entering 

the gas turbine to resolve this issue. This drives the concerns about the effect of RH. One main 

result illustrated in that research was that the high RH ratio increased the load of inlet air cooling 

by 1.5–1.9 times compared to low RH regions of 30% and lower. Owing to that, higher costs 

correspond to this heavy load of cooling for both techniques: the ice storage and vapour 

compression cycles. 

Figure 20 shows the scatter plot of the RH versus power production and the linear 

regression line for the initial investigation’s purposes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Scatter plot of power production (P) versus relative humidity (RH) 
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Although it is a weak linear relationship, the model equation on page 56 represents the 

predictive model after performing a hypothesis test for RH and power production. However, the 

model needs more data to be a more reliable predictive model. 

(3) Atmospheric pressure effect on power production 

As stated by Tüfekci (2014), the second most influential variable in the power prediction 

model is the AP, which was shown to be directly proportional to power. Another view is provided 

by El Hadik (1990) and confirmed by Tüfekci (2014) showing that the combined effect of AP and 

the AT corresponds to the change in the density of inlet gas turbine air. Moreover, an El Hadik 

(1990) study insisted that hot weather conditions and AP in Kuwait and nearby Arab countries 

drastically influenced gas turbine performance. Furthermore, a critical review from Hashmi, Majid 

and Lemma (2020) confirmed the influence of various ambient conditions on the compressor at the 

gas turbine’s inlet, leading to decreased efficiency. Such temperature and pressure conditions make 

the inlet air contaminates form a mass that sticks to the blades of the compressor and causes fouling. 

Consequently, the airflow and compressor pressure ratios decline with time. In addition, 

the previous actions might lead to trigger surging, which causes failure to operate the compressor. 

As per Park et al. (2020), this degradation must be forecasted using a mathematical model, as it is 

hard to indicate in a real industry system. Moreover, it must be predicted mathematically before 

using AI such as ANNs. 

In this study, the AP at the inlet of a gas turbine (compressor inlet) is explicitly chosen to 

be studied, as the external air pressure varies with attitude. As shown in Table 8, the AP has almost 

no substantial relationship with the target variable (-0.1449736). However, the model prediction 

equation (on page 56) represents the relationship found between AP and P using Minitab, which 
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illustrates that every unit change in AP changes power production by -4304 units while keeping all 

the other variables constant. 

Figure 21 shows the scatter plot of the AP versus power production and the linear regression 

line after fitting the data for investigation. 

 

 

 

 

 

 

 

 

Figure 21: Scatter plot of power production (P) versus atmospheric pressure (AP) 

The model equation represents the predictive model after performing a hypothesis testing 

for the AP and the power production. The line shows an inversely proportional relationship 

between the two variables, which contradicts Tüfekci (2014) and Dutta and Ghosh (2021), as they 

showed a directly proportional relationship between the two variables. This means that this study 

needs more than one month of data to show a more accurate result. On the other hand, Park and 

Kim (2006) explained the functionality of the hybrid solid oxide fuel cell (SOFC) – a gas turbine 

system based on ambient pressure conditions (high-temperature conditions) – and compared it with 

pressurised systems. The study showed that the pressurised system performed well with high-inlet 

GT temperature. Therefore, higher GT pressure ratios barely increase the system’s efficiency. 

However, the study found that combining an ambient pressure hybrid system with a GT of high-
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pressure ratio is not reasonable, as the efficiency of this ambient condition-based design is lower 

than the SOFC system efficiency. 

(4) Exhaust vacuum pressure effect on power production 

To enhance the efficiency of the power generation system the power plant employs a steam 

turbine, as seen in Figure 3. Relatively, the V pressure plays a significant role in increasing 

electrical efficiency and affecting the performance of the steam turbine. The data of the V was 

collected from the steam turbine. 

Figure 22 shows the scatter plot of the V versus power production and the linear regression 

line after fitting the data for the investigation’s purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Scatter plot of power production (P) versus exhaust vacuum (V) 
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As the figure shows, the V and power production have a strong, directly proportional, 

relationship. The correlation between these two variables was found to be 0.70744484, which is 

relatively high (see Table 8). As the model equation of power production shows (see page 56), 

every one unit change in V increases the power production by 4,274 units, while keeping all the 

other variables constant. This result disproves the results of Tüfekci (2014) and Dutta and Ghosh 

(2021) for the V, due to a data collection error or the limit of the scope of data in this study. 

Moreover, Tüfekci (2014) showed that the slope of V and power model equation is greater than the 

slope of the AP and RH simple linear equations but lower than the AT simple linear model 

equation. On the other hand, for the multiple linear regression model equation, this study showed 

that the V model equation’s slope magnitude is greater than RH and AT but less than AP. 

Moreover, this study also contradicts Dutta and Ghosh (2021), showing an inversely 

proportional relationship between power and V. In addition, the effect of V is explained by Madu 

and Nwankwo (2018), in which the optimisations of the steam turbine dynamics were discussed. 

Usually, the exhaust temperature of the steam turbine is very high. Accordingly, optimising the 

process is done by improving the water rate and reducing the required energy for operation. This 

is also done by controlling the steam inlet temperature, turbine exhaust vacuum and inlet pressure 

of steam. These parameters will affect the performance of the steam turbine, its efficiency and 

power production. In addition, V or low pressure is required at the end of the steam turbine so that 

the steam can expand and its kinetic energy increase, leading to higher spin of turbine blades and 

more power production. As a result, the condenser’s vacuum serves to reduce the pressure at the 

turbine’s outlet so that it is below AP. Hence, it aids in getting the most energy possible out of the 

steam. 
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4.3 Linear Regression Using Program Coding 

 In this section, linear regression analysis is performed on the dataset using RStudio software 

to find the actual and predicted values of power production and compare them with the results of 

Minitab and ANNs data analysis. This step aims to find the predicted values of the linear regression 

power model using RStudio and compare it with ANN predicted values of power found using the 

same software. This step is necessary as the program uses coding for prediction model analysis. 

Some additional steps were performed to see if the model was valid. The following steps illustrate 

how the method was applied using RStudio and some additional results: 

1- Summary of the data 

 Considering all the attributes where P is power production, AT is ambient temperature, RH is 

relative humidity, AP is atmospheric pressure, and V is the exhaust vacuum, Table 13 shows the 

actual data summary. In addition, Table 14 shows the learning data summary and Table 15 is for 

the testing data summary, where all the data were randomly distributed to 70% of learning data and 

30 % for testing data as a first step in applying ANN. Note that data validation is not required, as 

the data was taken directly from the power plant transmitters, and no data points were missing. 

Table 14: Data summary using RStudio software for the actual value of power production 

No Variable Stats/Values 

Freqs 

(% of 

Valid) 

Graph Valid Missing 

1 P 

[numeric] 

Mean (sd): 715.1 

(84.1) 

min ≤ med ≤ max: 

506.3 ≤ 717.2 ≤ 

864.4 

IQR (CV): 126.7 

(0.1) 

2,834 

distinct 

values 
 

2,881 

(100.0%) 
0 (0.0%) 
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2 AT 

[numeric] 

Mean (sd): 31.9 (2) 

min ≤ med ≤ max: 

25.3 ≤ 31.9 ≤ 36.5 

IQR (CV): 2.8 

(0.1) 

2,693 

distinct 

values 
 

2,881 

(100.0%) 
0 (0.0%) 

3 RH 

[numeric] 

Mean (sd): 71.4 

(8.7) 

min ≤ med ≤ max: 

35.5 ≤ 71.6 ≤ 90.3 

IQR (CV): 12.4 

(0.1) 

2,881 

distinct 

values 
 

2,881 

(100.0%) 
0 (0.0%) 

4 AP 

[numeric] 

Mean (sd): 1 (0) 

min ≤ med ≤ max: 

1 ≤ 1 ≤ 1 

IQR (CV): 0 (0) 

1,235 

distinct 

values 
 

2,881 

(100.0%) 
0 (0.0%) 

5 
V [numeric] 

Mean (sd): 0.1 (0) 

min ≤ med ≤ max: 

0.1 ≤ 0.1 ≤ 0.1 

IQR (CV): 0 (0.2) 

2,516 

distinct 

values 
 

2,881 

(100.0%) 
0 (0.0%) 

Table 15: Data summary using RStudio software for the 70% learning data 

No Variable Stats/Values 

Freqs 

(% of 

Valid) 

Graph Valid Missing 

1 P 

[numeric] 

Mean (sd): 715.3 

(84.8) 

min ≤ med ≤ max: 

506.3 ≤ 718 ≤ 

864.4 

IQR (CV): 131.5 

(0.1) 

1,990 

distinct 

values 
 

2,016 

(100.0%) 
0 (0.0%) 

2 AT 

[numeric] 

Mean (sd): 31.9 

(2.1) 

min ≤ med ≤ max: 

25.3 ≤ 31.9 ≤ 36.5 

IQR (CV): 2.9 (0.1) 

1,900 

distinct 

values 
 

2,016 

(100.0%) 
0 (0.0%) 
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3 RH 

[numeric] 

Mean (sd): 71.3 

(8.7) 

min ≤ med ≤ max: 

37 ≤ 71.4 ≤ 89.9 

IQR (CV): 12.5 

(0.1) 

2,016 

distinct 

values 
 

2,016 

(100.0%) 
0 (0.0%) 

4 AP 

[numeric] 

Mean (sd): 1 (0) 

min ≤ med ≤ max: 

1 ≤ 1 ≤ 1 

IQR (CV): 0 (0) 

919 

distinct 

values  
 

2,016 

(100.0%) 
0 (0.0%) 

5 
V [numeric] 

Mean (sd): 0.1 (0) 

min ≤ med ≤ max: 

0.1 ≤ 0.1 ≤ 0.1 

IQR (CV): 0 (0.2) 

1,810 

distinct 

values 
 

2,016 

(100.0%) 
0 (0.0%) 

 

2- Fitting a linear regression model 

To perform this step, the lm() function in RStudio was used. In addition, the summary of 

the analysis and the model fitting was done using the summary() function. The following figures 

23, 24 and 25 show the residuals, coefficients of the equation and the other values, respectively, 

after performing hypothesis testing for the actual power production model fitting. 

 

 

 

Figure 23: Residuals of the actual power production model using RStudio 

As shown in Figure 23, the residuals’ minimum value, median, 1Q and 3Q are almost 

scattered, which means that the points are randomly placed and, thus, indicate the significance of 

the model. 
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Figure 24: Coefficients of the actual power production model using RStudio 

Figure 24 shows the coefficients of the power production prediction model found using 

RStudio. In addition to the standard error values, t values and P-values (Pr) for the hypothesis 

testing. 

3- Hypothesis test 

The same Minitab hypothesis testing was performed here for RStudio output to determine 

the model’s significance and to check and test later the difference between Minitab output, RStudio 

output and the output of RStudio ANN technique. As shown in Figure 24, the P-values (Pr) for all 

the variables are less than, 𝛼 = 0.05, which represents the model’s significance. Accordingly, the 

following model equation illustrates the prediction model for power using RStudio: 

P =  −9.8082 AT −  2.5157 RH −  4358.2537 AP +  4303.2164 V + 5210.3196 (48) 

RStudio model equation is slightly different from Minitab’s model equation and represents 

almost the same result. Note that, to perform this hypothesis testing in RStudio, the assumptions 

made are the normal distribution of data, equal variances and 95% confidence interval. 

 

 

Figure 25: Other values for the actual power production model’s hypothesis testing 
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Figure 25 shows the RSE, which is the actual power values, minus the predicted power 

values. Generally, the lower the value, the more accurate is the fit of the data. In addition, the R-

squared value (0.5369) and the adjusted R-squared value (0.5359) are moderately high, which 

indicates that the model accounts for approximately 53% of power production variation (same as 

the Minitab result). 

4- Checking linear regression model’s adequacy 

Figure A.20 in Appendix A is RStudio output, which shows a randomly scattered residual 

around the zero axis. This shows that the input variable and the output variable have a linear 

relationship. In addition, Figure A.21 in Appendix A is the normal Q-Q plot (theoretical quantities 

for standard normal versus actual quantities of standardised residuals) for the actual data, which 

shows that the points almost fall in a diagonal line. This results in supporting the assumption of 

normal distribution of data. 

Consequently, Figure A.22 in Appendix A is the scale location plot which displays the 

square root of the standardised residuals on the y-axis and the fitted values of the linear regression 

model on the x-axis. As shown, the spread of the residuals is almost random (not perfectly random). 

In addition, no clear pattern is observed, which supports the significance of the regression model. 

However, it should be in a better alignment. 
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Figure 26: Residuals versus leverage plot for the actual power production 

Figure 26 shows the residuals versus the leverage plot, which is used to check how far the 

data points are from the data line. If one point crosses Cook’s distance, there is a need for further 

investigation, but as shown in the figure, there are no significant outliers. 

The function dfsummary was used to find the predicted values of power production and fit 

a regression model for it. The purpose of using this function for the learning and the testing values 

is to test the similarity between the results. As shown in Table 15, the distribution, mean, median, 

minimum, maximum and standard deviation values of the testing data for all the five variables are 

almost the same as the learning data summary (see Table 14 for learning data summary) and the 

same as the actual data summary (see Table 13 for actual data summary). In addition, the number 

of cell points in the learning phase is 2,016 out of 2,881, and the number of cell points in the testing 

phase is 865 out of 2,881 (see Table 15 below). There are no missing values in each test. 
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Table 16: Data summary using RStudio software for the 30% testing data 

No Variable Stats/Values 

Freqs 

(% of 

Valid) 

Graph Valid Missing 

1 P 

 [numeric] 

Mean (sd): 714.6 

(82.7) 

min ≤ med ≤ max: 

513.1 ≤ 712.7 ≤ 

863.7 

IQR (CV): 120.2 

(0.1) 

859 

distinct 

values 
 

865 

(100.0%) 
0 (0.0%) 

2 AT 

[numeric] 

Mean (sd): 31.9 

(1.9) 

min ≤ med ≤ max: 

25.3 ≤ 32 ≤ 36.5 

IQR (CV): 2.6 

(0.1) 

825 

distinct 

values 
 

865 

(100.0%) 
0 (0.0%) 

3 RH 

[numeric] 

Mean (sd): 71.7 

(8.7) 

min ≤ med ≤ max: 

35.5 ≤ 71.9 ≤ 90.3 

IQR (CV): 12.2 

(0.1) 

865 

distinct 

values 
 

865 

(100.0%) 
0 (0.0%) 

4 AP 

[numeric] 

Mean (sd): 1 (0) 

min ≤ med ≤ max: 

1 ≤ 1 ≤ 1 

IQR (CV): 0 (0) 

447 

distinct 

values 
 

865 

(100.0%) 
0 (0.0%) 

5 
V [numeric] 

Mean (sd): 0.1 (0) 

min ≤ med ≤ max: 

0.1 ≤ 0.1 ≤ 0.1 

IQR (CV): 0 (0.2) 

784 

distinct 

values 
 

865 

(100.0%) 
0 (0.0%) 
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Table 17: Summary table for predicted and actual power production values with the input 

variables 

P (Actual) AT RH AP V P (Predicted) 

741.1172 30.90449 84.41586 1.000172 0.0878400 713.8255 

721.2391 30.58930 85.39021 1.000172 0.0878400 714.4657 

657.0855 31.82385 81.26100 1.001151 0.0735904 647.1592 

653.2428 31.69922 81.58305 1.001469 0.0748611 651.6537 

631.4904 31.69922 79.74304 1.001469 0.0728234 647.5138 

576.8560 31.10394 81.31323 1.001875 0.0631968 606.2076 

 

5- Plot of actual values versus predicted values 

In this step, the plot of the actual power production values versus the predicted ones was 

found using a specific code, and it is shown in Figure 27 below: 

 

 

 

 

 

 

 

 

 

Figure 27: Actual versus predicted values of power production using linear regression by RStudio 
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6- Finding the correlation between actual and predicted power values 

 

 

 

 

Figure 28: The correlation between the actual and predicted power values 

As shown in Figure 27, the actual and predicted values of power production are almost 

aligned with a correlation of 0.7283605 (see Figure 28), which indicates the significance of the 

prediction model. However, there is a need for better data collection over a more comprehensive 

period (more than one month) to get better results, better correlation and to improve the model. 

4.4 Artificial Neural Networks  

 This section illustrates the use of the machine learning method ANN for analysing the 

dataset. The advantage of using a neural network is shown in its tremendous structure where there 

is no need to explain any type of input or output relationships. The AI of neural networks learns 

the followed relationships from the data provided in this study. 

 The software used here is RStudio and the analysis involved coding. The following are the 

steps to get the results: 

1- The data was divided into two categories: learning and testing, where the same data summary 

tables (as in the regression part) were found for each. The next step is to find the ANN model where 

there are many packages used in R to find and fit data to ANN, for example: ‘nnet’, ‘neuralnet’, 

‘MxNet’ and ‘keras’. In this analysis, the neuralnet package is used. 

2- Figure 29 represents the ANN model after fitting the CCPP data 
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Figure 29: ANN model for the CCPP data 

As the figure shows, there is one input layer with four input variables (AT, RH, AP and V), 

two hidden layers and one output layer, with one output variable (P). The arrows in black with the 

numbers represent the weights (𝑤𝑖), which shows the contribution of that variable to the next node. 

In addition, the lines in blue represent the bias weight (b), where all these numbers are used to find 

the pre-activation equation. 

3- Since the error value was found to be high (521532317.933709), normalisation and scaling of 

data to the 0–1 range were done for the actual dataset using the normalise function and the 

following equation (see Table A.21in the Appendix for a sample of data after normalisation): 

 𝑧𝑖 =  
(𝑥𝑖 − min(𝑥))

(max(𝑥) − min(𝑥))
  (32) 
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4- Figure 30 shows the neural network plot of the CCPP data after normalising the data to the 0–1 

range. The error value was reduced to 17.768191. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Neural network plot for the dataset after normalisation 

5- Figure 31 shows the plot of the normalised predicted power production values versus the actual 

values of power production 
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Figure 31: Actual versus normalised predicted values of power production using linear regression 

6- Finding the correlation between actual and normalised predicted values: 

 

 

 

 

Figure 32: The correlation between the actual and predicted power values after normalisation 

As shown in Figure 31, the actual and normalised predicted values of power production are 

almost aligned, with a correlation of 0.8143401 (see Figure 32). This indicates the validity of the 

prediction model, as the normalisation leads to a higher correlation value. However, there is a need 

for better data collection over a more extended period (more than one month) to get better results, 

better correlation and to improve the model. 

4.5 Checking the Model’s Accuracy 

To check the linear regression model’s accuracy and compare it to the neural network 

model’s accuracy, several equations were used, such as MSE, RMSE, MAE, MAPE and RSE. The 

following calculations represent how these formulas were applied; the program used for 

calculations is Microsoft Excel. 

Table 17 shows the first ten cells in the dataset, and the calculation steps performed on 

linear regression actual and predicted values of the Minitab Model prediction equation. Table 18 

shows the first ten cells and the calculation steps performed on actual and predicted values of the 

RStudio linear regression prediction model. Conversely, Table 19 shows the first ten cells in the 

dataset and the calculation steps performed on neural network predicted values. 
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Table 18: The first ten actual and predicted values and the accuracy calculations performed on the 

Minitab linear regression prediction model 

Actual Predicted (�̂�𝒊 − 𝒚𝒊)
𝟐 |�̂�𝒊 − 𝒚𝒊| 

|�̂�𝒊 − 𝒚𝒊|

𝒚𝒊
 

759.414 709.517 2489.753 49.89742667 0.065705 

749.322 711.321 1444.099 38.00130169 0.050714 

741.117 713.2027 779.2184 27.91448412 0.037665 

729.388 711.8151 308.8202 17.57328075 0.024093 

721.239 713.8382 54.77378 7.40093125 0.010261 

727.931 712.8749 226.692 15.0562947 0.020684 

713.177 680.9272 1040.048 32.24977686 0.04522 

699.658 662.8487 1354.931 36.80939257 0.052611 

699.255 672.2112 731.3653 27.0437664 0.038675 

704.387 670.8832 1122.474 33.50335046 0.047564 
 

Table 19: The first ten actual and predicted values and the accuracy calculations performed on 

RStudio linear regression prediction model 

Actual P 

(MW) 

Predicted P 

(MW) 
(�̂�𝒊 − 𝒚𝒊)

𝟐 |�̂�𝒊 − 𝒚𝒊| 
|�̂�𝒊 − 𝒚𝒊|

𝒚𝒊
 

759.414 710.119 2430.033 49.29536 0.064912 

749.322 711.9283 1398.312 37.39401 0.049904 

741.117 713.8284 744.678 27.28879 0.036821 

729.388 712.4239 287.7958 16.96454 0.023259 

721.239 714.4687 45.83851 6.770415 0.009387 

727.931 713.4908 208.5244 14.44037 0.019838 

713.177 681.3098 1015.518 31.86719 0.044683 

699.658 663.0806 1337.914 36.57751 0.052279 

699.255 672.5113 715.2242 26.74368 0.038246 

704.387 671.163 1103.807 33.2236 0.047167 



 

84 

 

Table 20: The first ten actual values and the accuracy calculations performed on neural network 

predicted values 

Actual P 

(MW) 

Predicted P 

(MW) 
(�̂�𝒊 − 𝒚𝒊)

𝟐 |�̂�𝒊 − 𝒚𝒊| 
|�̂�𝒊 − 𝒚𝒊|

𝒚𝒊
 

759.414 713.8255 2078.348 45.5889 0.060032 

749.322 714.4657 1214.983 34.8566 0.046517 

741.117 647.1592 8828.106 93.958 0.126779 

729.388 651.6537 6042.684 77.7347 0.106575 

721.239 647.5138 5435.42 73.7253 0.10222 

727.931 606.2076 14816.63 121.7236 0.167219 

713.177 607.5342 11160.4 105.6428 0.14813 

699.658 605.3715 8889.963 94.2866 0.134761 

699.255 599.5757 9935.963 99.6793 0.142551 

704.387 639.4315 4219.165 64.9551 0.092215 

 

Table 20 shows the equations, descriptions and sample of calculations performed on linear 

regression and neural network predicted values. 

Table 21: Model accuracy checking for linear regression models and neural network predicted 

values 

 MSE RMSE MAD MAPE RSE 

Description 
Mean square 

error 

The Root Mean 

Square Error 

Mean 

Absolute 

Deviation 

Symmetric Mean 

Absolute Percent Error 

Residual 

Standard Error 

Equation ∑ (�̂�𝒊−𝒚𝒊)𝟐𝑛
𝑡=1

𝑛
  (39) √

∑ (�̂�𝒊−𝒚𝒊)𝟐𝑛
𝑡=1

𝑛
  (40) 

∑ |�̂�𝒊−𝒚𝒊|𝑛
𝑡=1

𝑛
  (41) 

∑ |
|�̂�𝒊−𝒚𝒊|

�̂�𝒊
|𝑛

𝑡=1

𝑛
∗ 100 (42) √

∑ (�̂�𝒊−𝒚𝒊)𝟐𝑛
𝑡=1

𝑛−2
  (43) 

Minitab 

model 

accuracy 

checking  

3291.631 

 

57.37273 

 

46.38558 

 

6.71976 

 

57.39266 

 

RStudio 

model 

accuracy 

checking  

3291.706 57.37339 46.31997 6.71649 57.39331 

Neural 

Network 

model 

9774.297 

 

98.86505 

 

81.95122 

 

11.64243 

 

98.89938 

 



 

85 

 

accuracy 

checking  

The following is a sample of Microsoft Excel calculations performed on ANN values, 

where n = 2881, t is the number of the observation, 𝑦𝑖  is the actual value, and �̂�𝑖 is the predicted 

power production value. 

- MSE = 
∑ (�̂�𝒊−𝒚𝒊)𝟐𝑛

𝑡=1

𝑛
 = 

(713.8255− 759.414)2

2881
+

(711.321−749.322)2

2881
+ ⋯ = 3291.631 

As shown in Table 20, the Minitab linear regression prediction model had a lower value of 

MSE (3291.631) than the ANN model (9774.297) and is almost identical to the RStudio model 

(3291.706), which means that the Minitab model is the most accurate model (almost the same results 

obtained for the RStudio model). Accordingly, in the Minitab linear regression model, there is a 

better match between the actual and predicted values. In addition, RMSE was found to be 57.37273 

for the Minitab linear regression prediction model, 57.37339 for the RStudio model and 98.86505 

for the ANN prediction model, which leads to the conclusion that the linear regression model fits 

the data better than the ANN model. In addition, high RMSE values indicate that the model doesn’t 

test the data perfectly, and that if the model was applied to information outside the sample, it would 

give a low accurate prediction result. Moreover, MAD values were also higher for the ANN model 

(81.95122) than for both linear regression models, which illustrates that the ANN prediction model 

has a broader spread of the data points further from the mean value than the linear regression 

models (46.38558 for Minitab and 46.31997 for RStudio). In addition, MAPE calculations resulted 

in lower values for the linear regression prediction models compared to 11.64243 for the ANN 

model. This suggests that the linear regression model is more accurate because the difference 

between the actual and predicted values is smaller (only 6.7%). Finally, the value of RSE was lower 

for the linear regression models (57.39266 for Minitab and 57.39331 for RStudio) compared to 
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98.89938 for the ANN prediction model, indicating that the linear regression models better fit the 

data and are more accurate than the ANN model. Generally, the linear regression model is found 

to be better compared to the ANN model. Moreover, Minitab and RStudio provided results that 

differ only slightly. For MSE, RMSE and RSE calculations, Minitab was slightly lower and more 

accurate than RStudio. However, for MAD and MAPE calculations, RStudio was found to be 

slightly lower and more accurate than Minitab. Generally, the values of MSE and RMSE for all the 

measures are very similar to the Tüfekci (2014) research because the dataset is limited to one month 

only; the model would be more accurate if the data were collected over a more extended period. 
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CHAPTER V 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

A statistical approach is presented to develop a model that estimates the electrical power 

production of a CCPP in the UAE based on ambient parameters. Unlike thermodynamical 

modelling, which takes too much effort and time, this study doesn’t involve a considerable number 

of assumptions, which lead to unsatisfactory and unreliable results, and doesn’t consider nonlinear 

modelling. Instead, it uses statistical modelling and ANNs as MLMs to find electrical power 

production and draw valuable interferences. The thermodynamics system of the study consists of 

a GT, steam turbine and HRSG. In addition, the data of this paper is limited to one month only with 

no missing values. However, the sampling variability is low and the model presented robustness to 

the outliers, which ensures a good prediction. 

The purposes of this study include finding the effect of predictors (AT, RH, AP, V), which 

potentially affect the target variable (P) based on linear regression modelling and ANNs. The main 

results are as follows: 

Firstly, the power data was plotted versus time to check possible trends, and there was an 

almost steady trend in the overall weekly power production. However, it was increasing slightly 

during the last weeks. 

Secondly, the highest variable effect on power production was shown by V, with a 

correlation of 0.707. This effect was found to have a directly proportional relationship with power 

production. The second highest correlation with the power production was found to be with the 

and, which was -0.3007187 and which had a negative relationship with the power. Moreover, AT 
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and AP were found to have a weak relationship with the target variable and correlations of 

0.28177428 and -0.1449736, respectively. In addition, each input parameter’s influence was 

discussed separately, and a final model equation to predict the electrical power production was 

obtained with an R-sq value of 53.49%. The best dataset based on a weekly time frame was found 

to be for week one, which had a value of R-sq (82.16%). 

Using RStudio software, ANNs were generated to anticipate power production using AI, 

and the model prediction equation was found. Accordingly, the correlation between the actual and 

predicted values of power production was found to be 0.814, which indicates the validity of the 

prediction model. In addition, the error value of the model was found to be low after normalisation, 

17.768191. 

Finally, the accuracy of each model (linear regression prediction models and ANN’s 

prediction model) was calculated. Generally, the linear regression models found using Minitab and 

RStudio were more accurate than the ANN model with MSE (3291.631), RMSE (57.37273), MAD 

(46.38558) and MAPE (6.719765). Moreover, MSE, RMSE and RSE calculations showed that 

Minitab is slightly more accurate than RStudio software. 
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5.2 Recommendations 

The predictive model developed by this study needs future adjustments to be made more 

accurate and to increase the precision of its results. This can be done by: 

 Expanding the scope of data of this study to at least more than six months so that the R-

squared values are higher and the correlation of variables with the power is more accurate. 

 This model can be applied to estimate approximately the P of CCPP in the UAE based on 

future anticipated weather conditions. This requires, as an example, a forecasted AT if 

indicated precisely by the UAE meteorology institutes. Thus, this model can be used to 

predict future performance if the ambient parameters are forecasted accurately. 

 Future work is needed to predict power production based on ambient parameters for other 

types of plants, especially nuclear power plant production, as the tendency towards 

considering these power production plants is higher nowadays. 

 More studies can be accompanied to study the effect of the most influential ambient 

parameter (V in this study) on different types of power plants. 

 Another approach that can be conducted in future work is to study the correlation of power 

production with the atmospheric pressure and relative humidity more intensely, as the 

association of these input variables with the target variable was found to be low in this 

study. 
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APPENDICES 

Appendix A: Data Analysis Details 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure A. 1: Power in (MW) versus time in (seconds) 
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Figure A. 2: Power in (MW) versus time in (min) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 3: Power in (MW) versus time in (hours) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure A. 4: Power in (MW) versus time in (days) 
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Table A. 1: Week 1 power prediction model equation 

Week 1 linear regression model equation 

P1 =  5609 −  2.49 AT1 −  1.443 RH1 −  5080 AP1 +  4519 V1  

 

Table A. 2: Week 1 model summary using Minitab 

S R-sq R-sq(adj) R-sq(pred) 

36.4831 82.16% 82.05% 81.92% 

 

Table A. 3: Coefficients table for week 1 prediction model 

Term Coef SE Coef T-Value P-Value VIF 

Constant 5609 1145 4.90 0.000   

AT1 -2.49 1.08 -2.30 0.021 2.12 

RH1 -1.443 0.197 -7.33 0.000 1.78 

AP1 -5080 1155 -4.40 0.000 1.25 

V1 4519 112 40.48 0.000 1.59 

 

Table A. 4: Analysis of variance for the week 1 prediction model 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 4 4088193 1022048 767.87 0.000 

AT1 1 7070 7070 5.31 0.021 

RH1 1 71439 71439 53.67 0.000 

AP1 1 25741 25741 19.34 0.000 

V1 1 2181388 2181388 1638.88 0.000 

Error 667 887790 1331   
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Total 671 4975983    

 

 

 

 

 

 

 

 

 

 

Figure A. 5: Normality plot for the week 1 prediction model 

 

 

 

 

 

 

 

 

 

 

Figure A. 6: Residuals plot versus fitted values for the week 1prediction model 
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Figure A. 7: Histogram of residuals for week 1 prediction model 

 

Table A. 5: Week 2 power prediction model equation 

Week 2 linear regression model equation 

P2 = 12217 + 23.72 AT2 + 1.460 RH2 - 12584 AP2 + 2828 V2 

 

Table A. 6: Week 2 model summary using Minitab 

S R-sq R-sq(adj) R-sq(pred) 

54.6057 54.67% 54.43% 54.14% 

 

 

 

 

 

Table A. 7: Coefficients table for week 2 prediction model 

Term Coef SE Coef T-Value P-Value VIF 
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Constant 12217 1020 11.97 0.000  

AT12 23.72 2.51 9.43 0.000 4.57 

RH2 1.460 0.502 2.91 0.004 4.36 

AP2 -12584 989 -12.72 0.000 1.08 

V2 2828 180 15.73 0.000 1.27 
 

 

Table A. 8: Analysis of variance for week 2 data subset 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 4 2657638 664409 222.82 0.000 

AT12 1 265410 265410 89.01 0.000 

RH2 1 25198 25198 8.45 0.004 

AP2 1 482455 482455 161.80 0.000 

V2 1 737671 737671 247.39 0.000 

Error 739 2203535 2982   

Total 743 4861173    

 

 

 

 

 

 

 

 

 

Figure A. 8: Normality plot for week 2 prediction model 

 



 

109 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 9: Residuals plot versus fitted values for week 2 prediction model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 10: Histogram of residuals for week 2 data subset prediction model 
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Table A. 9: Week 3 power prediction model equation 

Week 3 linear regression model equation 

P3 = 10407 + 11.25 AT3 + 1.870 RH3 - 10467 AP3 + 3336 V3 

 

Table A. 10: Week 3 model summary using Minitab 

S R-sq R-sq(adj) R-sq(pred) 

52.0316 42.97% 42.63% 42.25% 

 

Table A. 11: Coefficients table for week 3 prediction model 

Term Coef SE Coef T-Value P-Value VIF 

Constant 10407 1509 6.90 0.000  

AT3 11.25 3.31 3.40 0.001 8.37 

RH3 1.870 0.710 2.63 0.009 7.58 

AP3 -10467 1510 -6.93 0.000 1.14 

V3 3336 224 14.88 0.000 1.43 

 

Table A. 12: Analysis of variance for week 3 data subset 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 4 1360469 340117 125.63 0.000 

AT3 1 31240 31240 11.54 0.001 

RH3 1 18784 18784 6.94 0.009 

AP3 1 130006 130006 48.02 0.000 

V3 1 599735 599735 221.53 0.000 

Error 667 1805758 2707   

Total 671 3166227    
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Figure A. 11: Normality plot for week 3 prediction model 
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Figure A. 12: Residuals plot versus fitted values for week 3 prediction model 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 13: Histogram of residuals for week 3 data subset prediction model 

 

Table A. 13: Week 4 power prediction model equation 

Week 4 linear regression model equation 

P4 = -11992 - 13.67 AT4 - 0.860 RH4 + 12671 AP4 + 5196 V4 

 

Table A. 14: Week 4 model summary using Minitab 

S R-sq R-sq(adj) R-sq(pred) 

52.6483 62.27% 62.05% 61.61% 
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Table A. 15: Coefficients table for week 4 prediction model 

Term Coef SE Coef T-Value P-Value VIF 

Constant -11992 1348 -8.90 0.000   

AT4 -13.67 1.67 -8.17 0.000 3.26 

RH4 -0.860 0.456 -1.89 0.060 2.84 

AP4 12671 1303 9.72 0.000 1.49 

V4 5196 157 32.99 0.000 1.47 

 

Table A. 16: Analysis of variance for week 4 data subset 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 4 3051960 762990 275.26 0.000 

AT4 1 185224 185224 66.82 0.000 

RH4 1 9858 9858 3.56 0.060 

AP4 1 261943 261943 94.50 0.000 

V4 1 3017523 3017523 1088.63 0.000 

Error 667 1848822 2772   

Total 671 4900781    
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Figure A. 14: Normality plot for week 4 prediction model 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 15: Residuals plot versus fitted values for week 4 prediction model 
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Figure A. 16: Histogram of residuals for week 4 data subset prediction model 
 

Table A. 17: Week 5 power prediction model equation 

Week 5 linear regression model equation 

P5 = 6211 - 1.26 AT5 - 0.408 RH5 - 5586 AP5 + 3012 V5 

 

Table A. 18: Week 5 model summary using Minitab 

S R-sq R-sq(adj) R-sq(pred) 

12.0862 91.26% 90.96% 90.44% 

 

Table A. 19: Coefficients table for week 5 prediction model 

Term Coef SE Coef T-Value P-Value VIF 

Constant 6211 1443 4.30 0.000  

AT5 -1.26 1.37 -0.91 0.362 8.82 

RH5 -0.408 0.240 -1.70 0.092 6.28 

AP5 -5586 1445 -3.87 0.000 1.77 

V5 3012 136 22.10 0.000 2.45 
 

Table A. 20: Analysis of variance for week 5 data subset 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 4 176911 44227.7 302.77 0.000 

AT5 1 122 122.1 0.84 0.362 

RH5 1 422 421.8 2.89 0.092 

AP5 1 2183 2183.2 14.95 0.000 
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V5 1 71376 71376.2 488.62 0.000 

Error 116 16945 146.1   

Total 120 193856    

 

 

 

 

 

 

 

 

 

Figure A. 17: Normality plot for week 5 prediction model 

 

 

 

 

 

 

 

 

 

Figure A. 18: Residuals plot versus fitted values for week 5 prediction model 
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Figure A. 19: Histogram of residuals for week 5 data subset prediction model 

 

Table A. 21: A sample of the actual data after normalisation 

 P AT RH AP V 

1 0.7067173 0.7067173 0.7067173 0.7067173 0.7067173 

2 0.6785367 0.6785367 0.6785367 0.6785367 0.6785367 

3 0.6556253 0.6556253 0.6556253 0.6556253 0.6556253 

4 0.6228745 0.6228745 0.6228745 0.6228745 0.6228745 

5 0.6001189 0.6001189 0.6001189 0.6001189 0.6001189 

6 0.6188055 0.6188055 0.6188055 0.6188055 0.6188055 

7 0.5776068 0.5776068 0.5776068 0.5776068 0.5776068 

8 0.5398574 0.5398574 0.5398574 0.5398574 0.5398574 

9 0.5387318 0.5387318 0.5387318 0.5387318 0.5387318 
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10 0.5530610 0.5530610 0.5530610 0.5530610 0.5530610 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 20: Residuals versus fitted values plot for the actual power production 
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Figure A. 21: Normal probability plot using RStudio for the actual power production 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 22: Scale location plot for the actual power production 
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