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Abstract 

 

 

Multimodal data of text and images on social media posts hold valuable information that can 

be utilized during crisis events. Such information includes requests for help, rescue efforts, 

warnings, infrastructure damage, missing people, injured or dead individuals, volunteers, 

donations, and many more. Many studies focus only on the text modalities, single 

classification tasks and small-scale home-grown datasets when studying how useful social 

media data can be for emergency services. In this study, a multimodal deep learning system 

for automatic classification of disaster tweets was developed. Two classification tasks were 

tackled, which are informativeness and the humanitarian category. An extensive comparison 

between unimodal text-only, unimodal image-only and multimodal deep learning models 

across three different representative disaster datasets (CrisisMMD, CrisisNLP, and 

CrisisLex26) was done. Convolutional neural networks are utilized for defining the deep 

learning architectures. Experiments across the multiple settings and datasets show that 

multimodal models perform better than their unimodal counterparts. It was also found that 

mapping between the diverse humanitarian categories and consolidating smaller datasets 

with larger ones significantly improves the models’ performance when compared to 

individual datasets. The consolidated dataset can serve as a new baseline multimodal dataset 

for further research directions.  

 

 



 
 

 خلاصة

 

 

يمة قتحتوي البيانات المتعددة الوسائط للنصوص والصور على منشورات وسائل التواصل الاجتماعي على معلومات 

يرات، أضرار . وتشمل هذه المعلومات طلبات المساعدة، جهود الإنقاذ، التحذوالكوارث يمكن استخدامها أثناء الأزمات

ن الدراسات فقط على المتطوعين، التبرعات، وغيرها الكثير. تركز العديد مالبنية التحتية، المفقودين، الجرحى أو القتلى، 

ت وسائل عند دراسة مدى فائدة بيانا طرائق النص، ومهام التصنيف الفردية، ومجموعات البيانات المحلية الصغيرة

التلقائي  ط للتصنيفالتواصل الاجتماعي لخدمات الطوارئ. في هذه الدراسة، تم تطوير نظام تعلم عميق متعدد الوسائ

املة بين نماذج التعلم لتغريدات الكوارث. تم تناول مهمتين للتصنيف، هما المعلوماتية والفئة الإنسانية. تم إجراء مقارنة ش

بر ثلاث العميقة للنصوص الأحادية الواسطة فقط، والصورة الأحادية الواسطة فقط، والنماذج المتعددة الوسائط ع

تستخدم الشبكات  (.CrisisMMD, CrisisNLP, CrisisLex26)لية مختلفة عن الكوارث مجموعات بيانات تمثي

لبيانات أن أداء وتبين التجارب عبر الإعدادات المتعددة ومجموعات ا .في تحديد هياكل التعلم العميقالملتفّة العصبية 

لفئات الإنسانية أيضا أن توحيد مختلف ا نماذج النقل المتعدد الوسائط أفضل من أداء نظيراتها الأحادية الواسطة. ووجد

ذا ما قورنت إودمج مجموعات البيانات الأصغر حجما مع مجموعات البيانات الأكبر حجما يحسن بشكل كبير أداء النماذج 

ديدة متعددة بمجموعات البيانات الفردية. ويمكن أن تكون مجموعة البيانات الموحدة بمثابة مجموعة بيانات أساسية ج

 ئط لمزيد من التوجيهات البحثية. الوسا
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Chapter 1 

Introduction 

This chapter presents an overview of the representation of disasters and crisis events in social 

media and how this data can be utilized for effective disaster management. Moreover, it 

presents the motivations for the dissertation, research questions, research methodology 

overview, and contributions to the current body of knowledge. 

 

1.1. Motivation and Problem Statement 

During the past twenty years, disasters resulted in around 1.23 million deaths (with an 

average of 60 thousand deaths annually), and affected approximately four billion 

individuals. Moreover, they resulted in economic losses of almost three trillion USD all over 

the world. These damages are much greater than those in the earlier twenty years from 1980 

to 1999, which shows that the damages caused by disasters are increasing over the years 

(CRED 2020). These figures are shown in Figure 1.  

 

Disasters and crisis events, whether natural or man-made, result in significant damage to 

societies. Whether it is an earthquake, flood, fire, tsunami, bombing, pandemic, or any other 

disaster type, societies must be prepared to face such situations by employing effective 

disaster management strategies to reduce the risks, mitigate the damage inflicted and recover 

from the crisis’s aftermath (Keim & Noji 2011). Proper communication of information is an 

essential factor for efficient emergency response operations. When a disaster strikes, people 
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are frantically looking for information to grasp the gravity of the situation and understand 

what is going on to behave accordingly to avoid risk and stay safe (Williams, Williams & 

Burton 2012).  One of the primary sources for such timely disaster-relevant information is 

social media platforms (Simon, Goldberg & Adini 2015).  

 

Social media is an integral part of our everyday lives, with people checking them all day 

long, especially with the convenient portability of mobile devices. This has led to having 

billions of people around the world sharing, posting, interacting, and consuming content 

online (Kemp 2021). With such a tremendous amount of information available on social 

media platforms, a valuable information source becomes available for emergency services. 

Disaster-related information can be gathered from social media and analyzed to extract 

useful information that would assist with emergency response efforts. The use of social 

media as a medium for populating disaster-related information to facilitate emergency 

response has been gaining momentum in recent years (especially since 2010). There has 

Figure 1: Impacts of Disasters 1980-1999 vs. 2000-2019 (CRED 2020) 
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been an exponential increase in people’s participation during crisis events including posting, 

sharing, gathering, and spreading information to assist the emergency response operations 

(Mills et al. 2009; Fraustino, Brooke & Yan 2012; Imran et al. 2013).  So, when a disaster 

occurs, individuals used social media intensively to post and share information (text, images 

or videos) relevant to the crisis event such as missing people, injured or dead individuals, 

affected people, damages to infrastructure, rescue requests, pleas for help, warnings, 

donation calls, volunteering requests, emotional support and much more. Several studies 

show that such information is beneficial for emergency response services and concerned 

humanitarian organizations to improve the disaster management motion through increased 

situational awareness and more informed planning for rescue operations (Ilyas 2014; 

Landwehr et al. 2016; Panagiotopoulos et al. 2016; Laylavi, Rajabifard & Kalantari 2017). 

 

With such a large volume of unstructured content in disaster social media data, challenges 

arise during analysis. These challenges include information overload, noisy data, and 

filtering irrelevant data. Several AI techniques for processing social media data have been 

presented in recent years to address these challenges. Studies have experimented with classic 

machine learning algorithms and deep-learning based approaches as well when analyzing 

such data to extract useful information. The most popular classification tasks with regards 

to disaster social media data are informativeness and humanitarian category. 

Informativeness detects if the disaster tweet is informative or not to determine if it can 

provide relevant crisis-related information that would help emergency workers or not. The 

humanitarian category task classifies disaster social media data into categories such as 
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injured people, help requests, affected individuals, donations, warnings, damage, etc. Such 

classification helps narrow down the immense amount of disaster data available so that 

emergency services can better manage their resources for timely response to those in need 

corresponding to the severity of the case. So, for instance, when a disaster first hits, content 

in help requests and injured people categories would have the highest priority and can assist 

with efficient rescue operations (Landwehr et al. 2016; Jomaa, Rizk & Awad 2017; Laylavi, 

Rajabifard & Kalantari 2017).  

 

1.2. Aims and  Objectives 

This study aims to build a multimodal deep learning system for automatic classification of 

disaster tweets. The classification tasks will be informativeness (informative vs. not 

informative) and the humanitarian category. It is also a comparative study for unimodal and 

multimodal deep learning models across multiple representative disaster datasets. The study 

also tackles the issue of inconsistency of classes and structure when using multiple datasets 

by mapping. It will also create consolidated datasets to compensate for the lower 

performance of small datasets in deep learning models. The system performance between 

the multiple disaster data sets with different settings is to be compared.  This will provide 

insight into which system setting generates the best performance when classifying disaster 

tweets and can be the most beneficial to emergency service workers for efficient disaster 

management. 
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1.3. Research Questions  

The goal of this dissertation is to utilize social media disaster posts to support more efficient 

disaster management by developing a multimodal deep learning system to automatically 

classify disaster data over informativeness and humanitarian category tasks and do a 

comparative analysis of unimodal/multimodal deep learning models over different 

representative disaster datasets.  

The following are the research questions:  

1. Is it possible to integrate multiple disaster datasets even if the labels are not 

identical in all of them?  If possible, how effective will the integration be? 

2. How does performance of unimodal and multimodal models compare across 

different disaster datasets? 

 

1.4. Research Methodology 

Since social media data is multimodal in nature, containing a mixture of text and images, 

multimodal models were found to produce better results when compared to unimodal models 

dealing with either text-only or image-only data. This dissertation will develop deep learning 

models for the classification of unimodal and multimodal disaster data. A Convolutional 

Neural Network is used for unimodal models with text-only data, and a VGG16 network is 

used for unimodal models with image-only data. The multimodal model implements feature 

fusion, where it obtains two feature vectors from both the text modality and the image 

modality. For both classification tasks informativeness and humanitarian category, three 

models will be built: unimodal with text-only data, unimodal with image-only data, and 
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multimodal with both text and image modalities. This process will be done for three 

representative disaster datasets which are CrisisMMD, CrisisNLP, and CrisisLex26. The 

classification performance will be compared across all three datasets. 

Mapping will also be done between the different humanitarian categories of the datasets for 

uniform classification results.  One challenging point with available labelled disaster datasets 

is that the humanitarian categories are so diverse, with many different variations and 

namings. So, for instance, one dataset could have one category for injured/missing/dead 

people and another dataset could have those as three separate categories. Therefore, mapping 

between the different categories has been done across the three datasets to have uniform 

classes across all of them.  

In addition, the CrisisMMD dataset, being the leading multimodal dataset in the Crisis 

Informatics scene, has the largest amount of multimodal data compared to CrisisNLP and 

CrisisLex26. After the mapping, data from the larger CrisisMMD was consolidated with the 

other two datasets, leading to significant improvement in classification results compared to 

when only the smaller datasets were used in training the models. The three models (two 

unimodal and one multimodal) are evaluated across the three datasets to ensure the accuracy 

and establish their reliability. The work done also emphasizes and further supports previous 

findings that multimodal models perform better than unimodal models.  

Furthermore, most of the studies to be surveyed in the literature review in the next chapter 

show research done on small-scale datasets, most of which are home-grown for only specific 

disaster types. This results in models that will not generalize well when faced with different 

kinds of disasters. This presents the need for having a large dataset that would include a 
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variety of disaster types with multimodal information. Therefore, this dissertation merges 

the three representative baseline disaster datasets into a consolidated multimodal dataset 

with a very diverse representation of disasters of many types including earthquakes, 

typhoons, floods, fires, etc.  

 

1.5. Dissertation Structure 

This dissertation is organized as follows. Chapter 2 presents a comprehensive literature 

review about disasters and crisis events with their various types, disaster management cycle, 

social media and its importance in our everyday lives in general and with respect to disaster 

response specifically, how disaster social media is presented, and machine learning 

approaches for utilizing such data for effective disaster response. Next, chapter 3 

demonstrates the methodology of this study, datasets used, detailed phases of the mapping 

and comparative analysis performed between the three representative datasets, and the 

classification tasks performed using deep learning models. Chapter 4 then presents the 

results and findings from the classification tasks for all datasets, and compares the 

performance metrics for several cases and situations for unimodal and multimodal models. 

Finally, chapter 5 concludes by summarizing this work’s findings and sheds some light on 

possible future work in this research direction.  
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Chapter 2 

Background and Related Work  

The content of this dissertation falls under the general umbrella of Crisis Informatics, which 

can be defined broadly as the integration of informational, technical, and social aspects of 

crisis events and how they are all interconnected (Reuter & Kaufhold 2018) (Tan et al. 2017).  

The term was formulated by (Hagar 2010), and then further developed by (Palen et al. 2009). 

Crisis Informatics “is a multidisciplinary field that combines social science knowledge of 

disasters together with computing; where its central principle is that people use 

communication technology and personal information to respond to disasters/crisis events in 

creative ways to deal with uncertainty” (Reuter, Hughes & Kaufhold 2018) (Palen & 

Anderson 2016).  

 

 

 

 

 

 

                                                

 

 Figure 2: Research Areas for Surveyed Literature 
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This literature review will demonstrate background information and related studies from the 

multiple research domains of social media, disaster management, and AI for data analysis. 

Figure 2 shows these involved research areas.  

2.1. Disasters 

 

A disaster refers to either a natural or man-made event that causes severe damage and loss, 

resulting in temporary paralysis of the response capability of people, communities, 

organizations, and nations (Ray & Bala 2020).  Disasters of different types have a negative 

impact on environments and need to be managed properly by emergency services. Such 

negative impacts and disaster management cycles will be discussed in more detail in the 

following sections.  

2.1.1. Types of Disasters 

 

Natural disasters are crisis events that resulted from natural causes such as floods, hurricanes, 

earthquakes, etc. These are disasters that humans have no control over. On the other hand, 

man-made disasters are the calamitous crisis events that are the direct cause of human 

behavior and actions such as vehicle accidents, building collapses, wars, etc. (Shaluf 2007). 

Table 1 shows the subcategories within each disaster type. 

Disasters of all types result in severe damages and losses. To demonstrate the degree of such 

catastrophic effects, some global statistics were gathered.  
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Disaster Type Disaster Subcategory Disaster Name 

Natural Disasters 

Below Earth's Surface 

Tsunami 

Earthquake 

Volcano Eruption 

On Earth's Surface 
Avalanche 

Landslide 

Hydrological/Metrological 

Typhoon 

Cyclone 

Hurricane 

Tornado 

Snowstorm 

Flood 

Drought 

Heat/cold waves 

Biological 

Epidemic 

Pandemic 

Infestations (pest swarms…) 

Man-made 

Disasters 

Accidents 

Plane crash 

Train crash 

Shipwreck 

Car crash 

Building collapse 

Explosion 

Fire 

Chemical (poisoning, pollution, 

oil spill) 

Warfare 

Nuclear 

Chemical 

Biological 

Siege 

Blockade 

War between armies 

Civil war 

Terrorist attack 

Bomb Threat 

 

Table 1: Disaster Types 
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From 2000 to 2019, over 7000 disasters of various types globally were recorded by EM-

DAT (Emergency Events Database). EM-DAT is a global database recording detailed 

information about natural and man-made disasters including effects, losses, locations, types, 

and many more disasters from 1900 till now. This database is maintained and owned by the 

Center of Research on the Epidemiology of Disasters (CRED) in Belgium and was supported 

by the World Health Organization (WHO) and the Belgian government in inception phases. 

EM-DAT is considered a leading international database for disaster events, so it is a reliable 

source (CRED n.d.). 

Figure 3 shows a bar chart demonstrating the number of disasters per year from 2010 until 

2021. There are almost over 500 disasters annually during the last ten years.  
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Figure 3: Number of Disasters Per Year from 2010 till 2021 (CRED 2020) 
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The statistics also showed that between 2000 and 2019, the largest percentage of deaths and 

affected individuals were because of natural disasters such as floods, storms (including 

hurricanes, cyclones, tornadoes), earthquakes, extreme temperatures (heat and cold waves), 

droughts, and wildfires (CRED 2020). This is represented in Figure 4. 

 

All these statistics demonstrate the greatly severe damages and losses caused by disasters, 

which proves that there is a huge need to strengthen disaster management to reduce possible 

risks and negative impacts. Comprehensive disaster management systems and emergency 

response entities are an essential requirement worldwide that should be developed in 

coordination with related organizations and governments following support guidelines to be 

able to navigate disaster situations with reduced catastrophic outcomes.  

2.1.2. Disaster Management Cycle 

 

Different emergency response organizations tasked with taking action when faced with 

disasters follow multiple phases to manage crisis events. There are many variations of this 

Figure 4: Total Disaster Events by Type: 1980-1999 vs. 2000-2019 (CRED 2020) 
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cycle. The most common cycle includes four stages: Mitigation, Preparation, Response, and 

Recovery) (Nazer et al. 2017). Others follow a more extended version including up to seven 

stages with the addition of prevention and education. However, the four phases model is the 

one that is followed by the majority of disaster management organizations all over the world. 

Sometimes, different names for the stages are made in different countries such as “4 Rs” in 

New Zealand (Reduction, readiness, response and recovery) (Houston et al. 2015). However, 

the stages more or less share the same actions. Figure 5 shows the cycle phases. 

 

 

 

 

 

 

 

 

 

 

Mitigation is concerned with reducing the chances of disastrous events happening. This stage 

is usually before the disaster happens, where the concerned emergency response 

organizations are taking precautions to reduce possible negative impacts of disasters 

(Houston et al. 2015). An example could be checking the quality of a building’s construction 

and enhance any areas that could lead to potential future damage. The second phase is 

Figure 5: Disaster Management Cycle 
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“Preparation”, where the focus is on providing sufficient education, awareness and training 

for crisis situations so that individuals would be prepared to respond when a disaster occurs 

(Todd & Todd 2011).  

“Response” is the third stage happening immediately after a disaster just happens, and is 

concerned with handling the urgent threats to affected individuals or entities. The emergency 

response protocol will be activated, including giving out basic needs such as shelter, medical 

attention to affected individuals covering injuries and deaths, water, food, search operations, 

rescue missions, recovery of damage inflicted on infrastructure, and so on (Zhou, Huang & 

Zhang 2011). The time taken by this stage depends on the nature of the disaster, so that it 

could take as short as few weeks in case of a small earthquake to months or years for heavy 

floods. A major obstacle in this response stage is the speed and effectiveness of initiating 

and managing the emergency response protocol based on the nature of the disaster. Many 

studies (Noreña et al. 2011) (Zade et al. 2018) (Zhou, Huang & Zhang 2011) have stressed 

how important it is to collect disaster-relevant information, prioritize responsibilities, and 

act quickly. The quicker and more efficient the disaster management response is, the less 

damage inflicted on individuals or communities.  

Reports and studies on several disasters (Todd & Todd 2011) also highlighted that the most 

crucial asset in disaster management is quality information that is available immediately 

after the disaster happens. Having this information plays a significant role in allowing 

emergency workers and response organizations to formulate a better-customized emergency 

response plan and protocol for maximum recovery and damage reduction (Zade et al. 2018). 

Lack of relevant disaster information causes issues such as incorrect prioritization of rescue 
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efforts, misleading relief actions or donations out to wrong destinations, thus leading to a 

dissatisfactory disaster response operation leaving more damage (Zhou, Huang & Zhang 

2011). This further emphasizes the importance of gathering relevant actionable information 

for disasters to enhance the disaster management cycle and have better response results. 

Years ago, before technological advancements, it was extremely hard to obtain accurate 

disaster information, especially in major natural disasters with severe damage inflicted. 

However, nowadays with the Internet and social media available, there are many ways and 

sources to be utilized for collecting information (to be discussed in more detail in upcoming 

sections). 

The fourth and last stage happens after the disaster, entailing the recovery, restoration and 

reconstruction of damages resulting from the crisis event. This could include burying the 

dead, rebuilding damaged structures or buildings, providing financial support to affected 

entities and all in all bring back a sense of normalcy and stability (Todd & Todd 2011). 

2.1.3. Disaster Management Success Factors 

 

Even though different disasters require various relief efforts and needs at different paces, the 

“Response” stage being the most essential phase, has some crucial success factors that have 

been established by multiple studies. These factors include proper structuring with wise 

leadership, accurate situation assessment, and organizing resources depending on accurate 

estimations of need (Starbird et al. 2010). The component that is shared amongst all these 

success factors is having actionable accurate disaster-relevant information. Several studies 

stressed the importance of having quality detailed information for disasters, and how 
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essential it is in improving the emergency response operations as it will significantly play a 

huge role in reducing the harm and damage to the affected community (Imran et al. 2013). 

Since the impact of the disaster is greatly determined by the level of damage to the affected 

community, it helps close the information gap if individuals from this affected community 

are gathering such information. 

There are different types of information available and useful after a disaster, such as basic 

needs such as food, water, shelter and medical attention. This information can be obtained 

from social media since people usually report such requests for help (Bodenhamer 2011). 

Other information includes missing person reports, deaths, damage reports, and rescue 

requests. All these types of information give an overview of the entire picture of the 

aftermath of the disaster event, and help emergency response organizations focus their 

efforts on those in need for a more effective disaster management operation.  

Since social media is a great resource to obtain such information, the upcoming section will 

discuss literature about social media and how it can be used to obtain useful information for 

emergency response organizations in disaster management.  

2.2. Social Media and Crisis Situations 

The earlier sections discussed the importance of information needed by disaster response 

management organizations for better emergency response, and how that information can be 

likely gathered from social media. In this section, the focus will be on social media relevant 

to crisis events, which is one of the research domains of crisis informatics filed as previously 

shown in Figure 2.  
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In recent years, social networking websites have strongly influenced the way people interact 

or communicate in society, which is the reason for their increasing interest in social media 

for finding information relevant to a disaster (Houston et al. 2015). People began to talk 

more openly about their life events. Through status updates, they do not have to spend much 

time discussing and debating their interests. This makes it easy to share information every 

day, report about the surrounding environment or just chat on social media (Kwon & Han 

2013).  

Social media is a somewhat general term for various web services and platforms that support 

networking, allowing users to create content publicly, and communicate with other users' 

profiles and content (Deller 2011). Of course, these sites can be accessed through various 

devices such as desktops, laptops, tablets, and smartphones. However, the number of people 

using mobile devices to access social media platforms is increasing because of the high 

accessibility.  

Looking at some recent statistics compiled in January 2021 from Datareportal’s most recent 

Global Overview report (Kemp 2021), a huge global collection of stats about the digital 

world, a large increase in the number of Internet and social media users globally can be seen. 

Within the past year alone, there is an increase of 316 million Internet users, resulting in 

having 4.66 billion global Internet users. There was also an increase of 93 million mobile 

phone users, amounting to having 5.22 billion global mobile phone users, which is almost 

67% of the world’s population. As for social media users, there are currently 4.2 billion 

worldwide users, which is a growth of 490 million users during the last year alone, which is 

an enormous growth of over 13% from January 2020 till January 2021. This leaves the 
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number of total social media users around the globe at over 53% of the world’s total 

population.  

Figure 6 also demonstrates more statistics (Kemp 2021) showing that in January 2021, more 

than half the world’s population is using social media. The report also showed that there was 

an average of around 15 new social media users every second during the past year (January 

2020 till January 2021), where there were over 1.3 million new social media users daily 

around the world.   

 

As seen from these statistics, social media is an incredibly valuable information source with 

the effortless accessibility of the Internet, social media and mobile devices in our day and 

time. The gathering of millions of people has made these social networking sites a source of 

information for news and research as more and more people join and share information on a 

daily basis. Social media data is becoming an increasingly essential tool for understanding 

Figure 6: Global Social Media Usage Statistics (Kemp 2021) 
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human behavior as well. The high value and importance of these social media platforms 

comes from the fact that millions of users around the world are continuously sharing 

information regarding all kinds of topics, which makes it a priceless mine of endless real-

time data that can be used by all sorts of organizations and research entities (Ray & Bala 

2020).  

There are multiple categories for social media sites, such as personal networking sites 

(Facebook, Google+), job-related communities (LinkedIn), discussion forums (Reddit, 

Quora), blogs (Twitter, WordPress, Blogger, Weibo), image-focused sharing (Instagram, 

Pinterest, Tumblr), digital content (YouTube, Snapchat, TikTok), social gaming platforms 

(Discord) and messenger applications (WhatsApp, WeChat, Telegram, Facebook 

Messenger). Since different social media platforms have various purposes, the information 

shared on each will be of different forms and thus suitable for various research opportunities 

(Blank & Reisdorf 2012) (Ray & Bala 2020).  

 

2.2.1. Social Media Usage during Disasters 

Many studies (Keim & Noji 2011; Fraustino, Brooke & Yan 2012; Kavanaugh et al. 2012; 

Williams, Williams & Burton 2012; Martínez-Rojas, Pardo-Ferreira & Rubio-Romero 

2018a, 2018b; Zade et al. 2018; Imran et al. 2020) have been made to analyze how people 

share information on social media during various disasters or crisis events either natural or 

man-made. All of those studies confirmed that many people depend on social media to get 

official information during disasters. In addition, people also rely on social media to request 

for help, share locations or surroundings’ updates, coordinate rescue efforts and organize 



20 

 

donations. Social media plays such a critical role in spreading information, increasing 

awareness, sharing emergency alerts, receiving rescue requests, organizing relief efforts, and 

many more. The role of using social media for more effective emergency response and 

disaster management has been seen in multiple cases of past disasters such as the Haiti 

earthquake in 2010 (Caragea et al. 2011), Japan’s earthquake and tsunami in 2011 (Fujii et 

al. 2011), hurricane sandy in 2012 (Dong, Halem & Zhou 2013), Nepal earthquake in 2015 

(Radianti, Hiltz & Labaka 2016), Haiyan typhoon in 2013 (Takahashi, Tandoc & Carmichael 

2015), hurricanes Harvey/Irma/Maria in 2017 (Alam et al. 2018), global wildfires (Wang, 

Ye & Tsou 2016), multiple floods (Basnyat et al. 2017; Li & Di 2017), the spread of Zika 

virus/Ebola/Covid-19 (Fung et al. 2016; Piedra, Chicaiza & Torres-Guarnizo 2017; Hagen 

et al. 2018; Mirbabaie et al. 2020; Yu et al. 2020), the Arab Spring (Kumar et al. 2013), 

Beirut port explosion in 2020 (El Sayed 2020), several gas leaks/oil spills (Muralidharan, 

Dillistone & Shin 2011; Soares et al. 2020), and many more disasters.  

The use of social media during disasters increases immensely since everyone is always 

looking for the latest updates and needs immediate comprehensive information. For 

example, a study (Formentin, M., Bortree, D. and Fraustino 2012) examined social media 

use during the first month of some organizational crisis at a public university, found that 

students replied almost immediately to the majority of the posts published by the university's 

official Facebook account page. It also showed that almost around 80 percent of the posts' 

comments were posted within a 10-15 minutes range, with an increased number of likes and 

shares than previous posts' engagement in regular times. 
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A study (Mills et al. 2009) found that the first reports to be made about the earthquake in 

China back in 2008 were, in fact, from people's tweets on Twitter and not from the 

government or any other official sources. In another study (Perng et al. 2013), it was found 

that people posted over 2000 tweets in just the first 30 minutes right before a deadly storm 

about to hit some festivities in Belgium. That number of tweets exponentially increased to 

almost eighty thousand tweets throughout the first three to four hours of the crisis alone. 

Some studies show that there is a difference between people’s usage behavior on social 

media during disasters and regular times. Moreover, different social media platforms tend to 

have different engagement patterns for the same disaster. For instance, during the tsunami 

and earthquake happening in Japan in 2011 (Fujii et al. 2011), there were many worries 

regarding radiation from destroyed nuclear reactors, and therefore was a very hot topic that 

was discussed all across the many different social media platforms such as YouTube, Twitter 

and blogs. Even though it was the same disaster, but the content disseminated on each 

platform was different.  People used YouTube to post, view, and share disaster damage 

pictures and videos. They used Twitter to obtain the latest disaster-related news and share 

them, while blogs were used to discuss their feelings and support each other. To manage 

information shared during disasters and utilize it efficiently, it is essential to know how 

people use the different social media platforms at that time.  

As said before, one of the primary uses of social media is seeking information. With the high 

level of uncertainty that comes along with any disaster or crisis event, people are more 

inclined to actively seek new information to stay updated and get real-time updated relevant 

information. Most of the time, social media is the fastest source of disaster information 
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(Kavanaugh et al. 2012). It is also often the primary source for such real-time information 

that is time-sensitive in cases of disasters, because other traditional official media sources 

are much slower to provide such data (Spiro et al. 2012). For instance, when over five 

hundred million tweets related to the 2009 Influenza pandemic were analyzed, the data 

obtained was able to forecast the future rates of influenza spread to high levels of accuracy. 

These rates were later found to be around 95 percent accurate when compared with the 

official national statistics that took weeks to formulate from hospitals’ reports. In another 

case in 2007, during the California wildfires disaster (Fraustino, Brooke & Yan 2012), 

people mostly depended on social media information to know relevant information because 

the government officials, media agencies and journalists were much slower in providing any 

useful information (Sutton, Palen & Shklovski 2008).  

In a similar sense, social media is used to detect disasters through people’s posts. In 2011, 

during the Virginia earthquake in America, many people learned about the event from 

reading some tweets about it before feeling it in their geographical location (Houston et al. 

2015). A study visualized the movement of the earthquake’s waves in comparison to the 

related disaster tweets, and it was seen that the movement of the tweets was much faster than 

the earthquake’s waves themselves (Honan 2011). This is quite helpful because social media 

can detect disasters, signal warnings and issue alerts in cases where the pattern of posts 

somehow indicates the beginnings of a disaster. Early detection of such crisis events will 

lead to faster emergency response and a more efficient disaster management process in 

general.  
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Another important use of social media during disasters is asking for help in urgent situations. 

In the tsunami and earthquake in Japan in 2011, many tweets containing requests for help 

(Acar & Muraki 2011). An example tweet “30 people are stuck at Ozaki shrine. The roads 

are shut down. Anybody, please call the police and fire department”. Other tweets were 

warnings such as “An alarm of BIG tsunami: Coast of Miyagi prefecture. Escape to any high 

place”. Moreover, some tweets reported on the individuals’ safety or their surrounding 

environment such as “The sea level is falling rapidly. I think we’re gonna have tsunami 

soon”, and “A building exploded. It’s south of Kesennuma-Minami station” (Acar & Muraki 

2011). There are also posts on injured, missing and dead people as well. All these 

information categories are of enormous importance when managing disasters because they 

are crucial sources to emergency service workers. Through analyzing disaster social media 

data, emergency workers could be dispatched to help individuals asking for help in certain 

locations (Keim & Noji 2011). Urgent medical assistance can be provided to injured people, 

rescue operations can be done for affected individuals, and so on (Taylor, M. et al. 2012). 

Without such a huge source for such information, emergency services would not know all 

the locations where help is needed and more damage would be inflicted. This will allow for 

reaching more people in need and save more lives. People could also know relevant 

information to take precautions and know updated events as they happen. By sharing such 

information, public awareness is also raised of the current situation, helping all affected 

parties. 

Disaster social media data can also assist with facilitating donations to affected individuals, 

and provide interested entities with information regarding people/organizations in need of 
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such help (Williams et al. 2012). This is also the case for volunteering efforts where sharing 

such information will help interested volunteers to know which places need their assistance 

most. For example, after the Haiti earthquake in 2010, it was reported that a large percentage 

of donations of over 30 million dollars was due to people finding out about the damage and 

donation channels through social media posts (Lobb, Mock & Hutchinson 2012). Research 

studies also confirmed that the amount of social media posts about the earthquake was a 

huge factor in increasing the financial assistance in terms of donation and support, which 

facilitated the disaster response efforts to a great extent (Houston et al. 2015).  

Another use of disaster data in social media is being a source of mental, emotional and social 

support.  Posts related to mental health could be connected with concerned health 

organizations for instance. Social media can also help connect survivors, affected 

individuals, and other concerned people to support each other through conversations or 

support groups (Taylor, M. et al. 2012). It also gives people the chance to express how they 

feel, post their good wishes and memorialize victims.  

 

2.2.2. Twitter during disasters 

Twitter is the most popular social media platform used for data analytics. It is an open and 

extensive platform that allows us to see how people from all over the world from different 

locations are discussing specific topics by searching for certain hashtags or keywords. It is 

also a more general social media platform with a targeted purpose such as LinkedIn for work-

related networking. It has 353 million monthly active users with over 500 million tweets 

daily (Twitter, Inc. 2021; Dean 2021) which shows the high degree of user engagement and 
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information availability. In addition, tweets in specific time ranges or in specific languages 

can also be retrieved with their API. They allow a great level of flexibility in retrieving 

tweets with the required custom search parameters. Since Twitter allows for extremely fast 

propagation and circulation of many several types of information, this makes it a great source 

for data for studies and research (Simon et al. 2015). As discussed in the earlier section, it 

was seen how data retrieved from Twitter was important in handling multiple crisis and 

disaster situations.  

Before a crisis event happens, it is helpful to have the public prepared to the greatest possible 

extent. Twitter is useful in this regard since it provides emergency services with the means 

to communicate with the public and convey essential information, conveys guidelines of 

how to act in a certain disaster event, and keep people updated about locations/progress of 

the undergoing disaster such as a hurricane, flood, etc.… (Martínez et al. 2018; 

Pogrebnyakov et al. 2018) 

Information regarding evacuations or rescue efforts can also be communicated through 

official Twitter accounts for governmental organizations and emergency organizations. 

Information can also be provided to avoid specific areas with high risk, provide situational 

awareness, lessen panic, request for help, better coordinate rescue operations and organize 

donations for relief efforts (Avvenuti et al. 2016; Reuter, Hughes & Kaufhold 2018).  

Tweets in disaster situations can also help organizations at a greater scale. For instance, after 

the 2011 earthquake in Japan, a tweet targeted at the American ambassador involved in the 

rescue efforts at the time, requested immediate assistance to transport critical patients from 

some hospital by air. The tweet was actually followed through and assistance troops were 
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sent for the patient transfer. There are several other similar cases where governmental 

organizations utilized information from tweets for emergency response (Girtelschmid et al. 

2016; Alshareef & Grigoras 2017; Squicciarini, Tapia & Stehle 2017). 

In another case, in Nepal in 2015, an immense amount of damage was inflicted as a result of 

the 7.8 magnitude earthquake. In a little bit over seventy hours after the first wave hit the 

country, over three thousand volunteers were already on the field trying to help the injured 

and survivors. Such a large assembly of volunteers was possible in such a short time because 

they were tagged in various tweets asking for help when the disaster first hit. The tweets 

were identified and categorized, allowing the volunteers to work hand in hand with the 

emergency workers to allow for much more efficient disaster management operations 

(Radianti, Hiltz & Labaka 2016).  

Organizations are also venturing into utilizing tweets for man-made crisis events as well as 

natural disasters. For instance, in the Boston bombings in 2013, photos and information of 

the suspect were posted on Twitter and heavily retweeted, which helped the authorities to 

capture the suspect in a short period of time (Cassa et al. 2013).  

Such portrayed examples show how useful Twitter is when dealing with crisis events and its 

popularity with both people and official entities alike. Users are now expecting authoritative 

entities to have knowledge of their tweets at such urgent times and started relying on that as 

a primary route for help requests. In a sample study, it was found that over 80% of the people 

expected help after they requested it on Twitter when tagging the official accounts for the 

organizations involved (Zoppi et al. 2016).  
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Another advantage of Twitter in disaster situations is contagion and cascade behaviors 

(Fabrega & Paredes 2013). In many situations, when a person keeps seeing multiple tweets 

and hashtags related to the same event, the probability that an individual will retweet or 

engage with those tweets significantly increases. This probability increases even more if the 

event in question is a disaster or a crisis event (Romero, Meeder & Kleinberg 2011; Fabrega 

& Paredes 2013). This behavior is often compared to crowds clapping at concerts, where 

people are more likely to join in the collective clapping even if they did not originally plan 

to (Budak, Agrawal & El Abbadi 2012). This sensation is quite helpful when people keep 

retweeting important or highly time-sensitive urgent tweets in a disaster situation which 

allows earlier discovery and increases the chances of those urgent requests to be seen by 

emergency response organizations that can help.  

Many studies (Imran & Castillo 2015; Lai, She & Tao 2017; Aswani et al. 2018) have shown 

that the increased usage of Twitter during both natural and man-made disasters has greatly 

improved disaster management procedures while allowing for faster emergency response. 

From the examples seen, such data helps decrease injuries/deaths, saves people in need of 

help, reduces damages, finds missing people, shares emergency response guidelines, 

provides essential necessities like shelter/food/medications, circulates progress updates and 

encourages volunteering/donation initiatives as well. 

With such a vast flow of data, not all disaster tweets are helpful to emergency services. Many 

tweets contain sympathy or emotional statements, old information, retweets of irrelevant 

information, and many more noisy tweets. These kinds of tweets are utterly useless to 
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emergency responders and might negatively impact the chances of finding the really 

important tweets with messages to deliver.  

In summary, it can be seen that there is an enormous amount of data available in the tweets 

before, during, and after a disaster that is generated at a rapid pace. In order for twitter 

disaster data to be useful and actually be of assistance to emergency services, relevant 

information needs to be extracted first. Disaster tweets need to be analyzed if they are 

relevant or not, and classified into clear categories for more organized disaster management.  

 

2.3. Machine Learning for Emergency Response 

Understanding social media data to support emergency services faces many challenges, 

including analyzing short unstructured content, managing the overload of information, 

removing noisy data, filtering out irrelevant useless data, and many more. Several 

computational approaches and AI techniques for processing social media data have been 

proposed in the past couple of years to assist with effective disaster management. These 

approaches are designed to address multiple issues such as filtering relevant information, 

classification, handling overloading, categorization, and summarization (Imran & Castillo 

2015; Alam et al. 2018).  

Most of the AI methods employed for analyzing disaster social media data mainly use 

supervised or unsupervised techniques such as classification, clustering, and topic 

modelling.  For tasks such as general text classification of social media textual data such as 

tweets, surveyed literature shows the implementation of both classic machine learning 

algorithms and deep learning-based approaches (Imran et al. 2013; Imran & Castillo 2015; 
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Alam et al. 2018). Classic algorithms used include Random Forest, Naïve Bayes, Logistic 

Regression, and Support Vector Machine (Burel & Alani 2018). The most commonly used 

deep learning-based techniques include Convolutional Neural Networks (CNN) and Long-

Short-Term-Memory networks (LSTM) (Nguyen, Alam, et al. 2017).  

 

2.3.1. Deep Learning 

Deep learning models perform much better than the classic machine learning models when 

it comes to classification tasks, especially when used with pre-trained word embeddings 

(Goldberg 2015). There are several types of neural networks including long short-term 

memory (LSTM), bidirectional long short-term memory (BiLSTM), recurrent neural 

networks (RNN), and convolutional neural networks (CNN) (Wu, Liu & Wang 2020).  

CNNs are one of the most popular deep learning architectures used for classification tasks. 

The architecture of a CNN includes several convolution, pooling and dense fully connected 

layers (Goldberg 2015). In case of text classification, the convolutional model is targeted for 

feature extraction to learn salient features from the text input with the help of the word 

embeddings. So, in convolution layers, filters with various sizes are used to convolve the 

text matrix to detect features or patterns in the text (Zhou 2020). After that, max-pooling 

layers perform down-sampling on the input representation to reduce the dimensionality. 

Then, the fully connected layer interprets the extracted features for the prediction or 

classification result (Goldberg 2015; Zhou 2020).  

When a CNN is dealing with image classification, the input image is convolved with a kernel 

to extract features. An activation function such as ReLU is applied to the convoluted values 
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to improve the non-linearity (Wu, Liu & Wang 2020). The pooling layer decreases the image 

size by retaining the important features and removing other areas from the image. This also 

plays a part in decreasing the cost of computation (Minaee et al. 2021). Max-pooling is the 

most popular pooling approach. The pooling matrix’s size determines the degree of image 

reduction. For instance, a 2x2 pooling matrix will decrease the size of the image by 50% 

(Ribeiro, Singh & Guestrin 2016). The sequence of convolution and pooling layers helps in 

identifying the features. The pooled output from the stacked feature maps is fed to the next 

layer by flattening the maps. The last layers are dense fully connected layers. The last layer 

is responsible for the classification output (Goldberg 2015; Minaee et al. 2021). 

(Nguyen, Al Mannai, et al. 2017) developed a CNN model to classify disaster tweets into 

useful or not useful. Disaster tweets are passed to the model’s input layer and then 

transformed into a feature sequence. That is followed by a look-up layer that generates input 

vectors for the corresponding tokens, then passes them to the following sequence of 

convolution and max-pooling layers for learning the high-level feature representations 

(Nguyen, Al Mannai, et al. 2017). The convolution operation applied filters to generate the 

feature maps. They also implemented wide convolution so that those filters can cover the 

whole sentence with the boundary words as well. Zero padding was performed so that out-

of-range vectors are taken as zeros (Nguyen, Al Mannai, et al. 2017). When the convolution 

operation is done, max-pooling is done for each of the feature maps. Their model also 

included a dense layer consisting of hidden nodes to handle variable lengths of sentences. 

The dense layer generates fixed size output vectors that are passed to the final output layer. 
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They also used the pre-trained Google embeddings (Mikolov et al. 2013) for initializing their 

models.  

 

(Chaudhuri & Bose 2019) implemented a CNN model that would identify human body parts 

from images of wreckage and debris to help identify victims in need of rescue. All the images 

were preprocessed to confirm that they all have the same aspect ratio and size. The CNN 

model had four kinds of layers including a convolutional layer, max-pooling layer, rectified 

linear unit layer (ReLU) and fully connected layer (FC) (Chaudhuri & Bose 2019). The input 

layer holds the pixel values for the images, and the convolutional layers extract high-level 

features from the images. The pooling layer applies down-sampling across the spatial 

dimensions. The last layer responsible for the classification uses the softmax function 

(Chaudhuri & Bose 2019).   

 

2.3.2. Disaster Social Media Text Classification 

Classifying tweets in the context of disaster tweets aims to recognize whether a specific 

tweet is relevant or informative to emergency workers. With the enormous amount of data 

on Twitter, just classifying the relevancy is not enough, and further classification is required 

to assist emergency services properly. Therefore, there is a need to identify the category the 

disaster tweet belongs to such as asking for help, sharing information, medical assistance 

and so on (Vitale et al. 2012).  

Several studies have performed the task of classifying disaster tweets into multiple classes. 

In (Caragea, Silvescu & Tapia 2016), SVM was used to classify disaster tweets regarding 
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the Haiti 2010 earthquake to multiple classes such as shortage of food, medical needs, 

emergencies and reached an F1-score of 0.59. Another study (Panagiotopoulos et al. 2016) 

used Naïve Bayes for two classification tasks achieving F1-scores ranging from 0.56 to 0.81. 

The first task is classifying tweets into informative, not-informative and personal. The 

second task is further classifying the informative tweets into multiple class categories 

including causalities, donations, information source, and caution.  

Multiple machine learning approaches including logistic regression, KNN, SVM, decision 

trees, supervised latent Dirichlet allocation, and Naïve Bayes were used in (Ashktorab et al. 

2014; Thom et al. 2015) to recognize disaster tweets that were specifically related to any 

victims or damages. The model with the best results was the logistic regression, achieving 

an F1-score of 0.65.  

A deep learning model implementing a convolutional neural network (CNN) was proposed 

in (Nguyen, Al Mannai, et al. 2017) to classify disaster tweets to informative vs. non-

informative classes as well. They also demonstrated how some data irrelevant to the disaster 

can be incorporated in the classifier’s training process in the beginning phases of crisis 

events. Another study (Nguyen et al. 2016) also used deep learning models to classify 

disaster tweets to informative and non-informative classes, while also classifying the 

informative tweets further to other classes such as support, infrastructure damage and 

affected people.  

Another study (Tatsubori et al. 2012) extracted disaster tweets related to two disasters: 

Hurricane Sandy in 2012 and the Joplin tornado in 2011 and attempted using a model to 

obtain relevant information from the informative disaster tweets, achieving a detection rate 
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of 49%. A similar study (Thom et al. 2015) also used disaster tweets related to hurricane 

Sandy in 2012 after manually labelling them to different classes first. Logistic regression 

was applied to perform the classification and an F1-score of an average 0.65 was achieved. 

Also dealing with disaster tweets on Hurricane Sandy, (Simon, Goldberg & Adini 2015) 

performed a study to classify tweets using a Naïve Bayes classifier that was also tested on 

another dataset for tweets regarding Boston Bombings in 2013 to experiment with both 

natural and man-made disasters.  

Another known platform in the disaster tweets scene is AIDR, which stands for Artificial 

Intelligence for Disaster Response, a platform built by (Vieweg, Castillo & Imran 2014) to 

classify crisis-related tweets into specified classes as they happen. The creators utilized 

human resources together with machine learning models to label a dataset of disaster tweets 

and then trained models to automatically perform classification tasks on new tweets. In its 

initiation, AIDR was tested with disaster tweets data resulting from the 2013 earthquake in 

Pakistan to classify tweets to informative and not informative classes. 

Another deep learning approach was implemented (Ragini, Anand & Bhaskar 2018) using 

CNN attempting to classify the crisis tweets into multiple labels. The authors also 

experimented with using some features in Twitter including keywords, mentions, retweets, 

and hashtags and tested their effect when incorporated with the tweets data while performing 

the classification task. They classified the tweets over seven classes including volunteering 

efforts, damages, awareness, specific information, not informative, causalities and sympathy 

with F1 scores ranging from 0.74 to 0.97.  
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Multiple models were compared in (Yu et al. 2019), where logistic regression, SVM, and 

CNN were used to perform classification of tweets related to the three hurricanes: Irma, 

Harvey and Sandy. The classification was done to several categories including 

Advice/Caution, Donations, Source of Information, Damage/Casualties and 

Resources/Infrastructures. The classification task was done with two settings using both data 

specific to a disaster and general data irrelevant to the disaster. F1-score achieved was 

between 0.30 to 0.79, with the CNN model having the best performance when compared to 

the other classic machine learning models. 

 

2.3.3. Disaster Social Media Image Classification 

Nowadays, the number of people who take pictures and share them on various social media 

platforms is very high, with almost everyone having a portable mobile phone. This allows 

individuals to share much more information regarding different activities in an easier and 

more expressive manner compared to just text. With the availability of such a huge number 

of images, there lies a lot of potential for analysis and extracting information. This potential 

is even higher when dealing with images related to disasters or crisis events since images 

would provide more details regarding the situation. For instance, a picture can show the 

exact state of infrastructure damage, a clearer look at surrounding environments, efficient 

recognition of victims or lost individuals and more accurate representations for emergency 

services to assist with a smoother disaster management operation (Ilyas 2014; Landwehr et 

al. 2016). Although images hold such a value, the amount of in-depth studies exploring the 

role of images on disaster social media in providing essential information is much less than 
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studies dealing with only text. The amount of studies in this field has been increasing over 

the past few years, given the valuable hidden information within disaster social media image 

data in assisting emergency services (Laylavi, Rajabifard & Kalantari 2017).  

Multiple studies have reported the high importance of social media images produced during 

crisis events of disasters (Nguyen, Alam, et al. 2017; Alam et al. 2018; Burel & Alani 2018; 

Martínez-Rojas, Pardo-Ferreira & Rubio-Romero 2018a; Imran et al. 2020; Ray & Bala 

2020). Some studies analyzed the metadata with the images and utilized the geotagging 

feature to retrieve locations of disaster-affected areas. The analysis of these images is 

experimented on using deep learning approaches. Since the amount of disaster images on 

social media is massive and quite noisy with irrelevant data, benefiting from them manually 

is not an option. Proper techniques that would filter out irrelevant data need to be developed. 

For instance, (Alam et al. 2018) created a pipeline to process disaster images retrieved from 

social media using deep learning approaches. The phases included gathering crisis-related 

pictures, filtering them and removing any irrelevant ones, and then classifying them.  

Another study (Nguyen, Alam, et al. 2017) implemented deep learning techniques to detect 

irrelevant disaster images by incorporating transfer learning methodologies. They created a 

pipeline for recognizing irrelevant or repeated disaster pictures from social media platforms 

such as Twitter. They used CNN to classify the images to three damage degree classes: mild, 

severe and none. Datasets used included disaster images for Ruby typhoon, Ecuador 

earthquake and Nepal earthquake, achieving F1-scores between 0.66 to 0.85. 

In (Boccignone et al. 2016), images related to fires in Australia were used in a locally grown 

dataset and classified into two classes: fire or not to recognize whether the image contained 
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a fire. The model achieved a high accuracy of around 85%. Another study (Chaudhuri & 

Bose 2019) implemented a CNN on a dataset of 514 images related to various earthquakes 

to identify human body parts from the wreckage pictures, achieving a high accuracy of a bit 

over 80%.  

Some studies focus on identifying the degree of damage to damaged infrastructure, for 

instance, to help emergency services with swifter rescue operations. Unfortunately, the 

majority of such models are mostly trained with limited data lacking diversity, and thus are 

hard to generalize to many other kinds of natural or man-made disaster situations (Caragea, 

Silvescu & Tapia 2016; Panagiotopoulos et al. 2016). One of the main reasons for this 

limited performance is the lack of annotations for disaster images datasets. It is ideal to have 

clear annotations of various disasters or crisis events of different types on a large scale so 

that the analysis of images is done better allowing for more accurate assessment for damages. 

This shows the critical need for curating a large-scale disaster images dataset (Purohit et al. 

2018).  

There have also been increased improvements in facial recognition from images, which use 

social media images to identify missing people especially in the context of disasters. This 

would offer great help to emergency workers to better allocate resources to save the largest 

possible number of victims (Kushwaha et al. 2018; Kalliatakis et al. 2019).  

 

2.3.4. Disaster Social Media: Multimodal Data 

Given the various sources and characteristics of data, there is a need for machine learning 

algorithms that can combine these different aspects to make the most of the data and 
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maximize its usefulness (Baltrušaitis, Ahuja & Morency 2018). Multimodal learning 

addresses this point by using machine learning algorithms to build models that would learn 

from the different modalities. In the past few years, there has been gained interest in 

developing multimodal systems so that they can exploit both the text and images in the 

tweets to improve classification performance (Baltrusaitis, Ahuja & Morency 2019). 

A huge percentage of social media posts are multimodal where text and image data are seen 

together. Multimodal data can sometimes contain supplemental information that can be quite 

beneficial to understand the broad view of a crisis event or a disaster with much more details 

when analyzed together. Several studies demonstrated that multimodal data analysis 

performs better with regards to classification, filtering relevant information and decreasing 

overload of information (Chen et al. 2013; Dewan et al. 2017; Martínez-Rojas, Pardo-

Ferreira & Rubio-Romero 2018a). Moreover, there are several studies exploiting multimodal 

disaster tweets to assess damage levels and detection of events (Baltrušaitis, Ahuja & 

Morency 2018; Agarwal et al. 2020).  

In (Jomaa, Rizk & Awad 2017), a multimodal model was developed where visual features 

were extracted from images and semantic features were extracted from text data for the 

feature vectors. The features were then used to train and develop a SVM classifier, resulting 

in improved performance compared to only-text or only-image models by around four 

percent. A similar study (Alqhtani, Luo & Regan 2015) attempting to detect when different 

events happen trained a KNN classifier on multimodal twitter data. They also extracted 

visual and semantic features from the images and text respectively, obtaining an 
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improvement in classification of around eight percent compared to any of the unimodal text-

only or image-only models.  

The affiliation between the text and images of the tweets was studied in (Chen et al. 2013) 

to classify relevant vs. irrelevant tweets. The study used the features extracted from the text 

and images together with other features such as retweets, number of followers, time of 

posting, etc. The model achieved an F1-score of around 71%, which was an improvement of 

about 6% compared to the classification by only textual data.  

In (Rizk et al. 2019), a classifier for classifying multimodal disaster Twitter data was 

developed to classify to types either infrastructure damage (such as bridges or bridges) or 

nature damages (such as trees or forests). They used a home-grown dataset with tweets 

collected over three earthquakes and one flood disaster events. The study used visual features 

and characteristics from the tweet’s picture and concatenated them with the semantic 

features extracted from the text. Their results showed that the multimodal model had better 

performance compared to when the model was only built using text-only or image-only data.  

A study (Mouzannar, Rizk & Awad 2018) used deep learning techniques to develop a 

multimodal system exploring damage detection and classifying disaster tweets to categories 

including floods, fires, infrastructure damage, nature damage, injured or dead individuals 

and no damage. They experimented with unimodal and multimodal models and also found 

that there is an improvement in the classification performance in the case of the multimodal 

model.  A similar study (Gautam et al. 2019) also compared unimodal and multimodal 

models for crisis tweets, and used decision fusion to classify the text and images in those 

tweets to binary classes of informative vs. not informative.  
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A recent study (Ofli, Alam & Imran 2020) implements deep learning techniques with 

disaster tweets from the CrisisMMD dataset to develop classifiers for informativeness and 

humanitarian category. They experiment with unimodal models of only text and only 

images, together with multimodal data as well, also reaching the conclusion that multimodal 

models perform better than unimodal ones. 

 

2.4. Summary 

This chapter presented a comprehensive review of disasters, their presentation in social 

media and the utilization of such data with machine learning models to assist efficient 

disaster management. The work in this dissertation differs from previous work in several 

ways (Mouzannar, Rizk & Awad 2018; Gautam et al. 2019; Imran et al. 2020). For instance, 

(Mouzannar, Rizk & Awad 2018) is only focusing on classifying the environmental and 

human damages for disaster tweets from a home-grown dataset. Therefore, this causes some 

limitations to whether their findings can be generalized over all different disasters. However, 

this study is doing a comparative study between three representative disaster datasets in the 

crisis informatics research scene that are publicly available: CrisisMMD (Alam, Ofli & 

Imran 2018), CrisisNLP (Imran, Mitra & Castillo 2016), and CrisisLex26 (Olteanu, Vieweg 

& Castillo 2015). In addition, two classification tasks are implemented which are 

informativeness and humanitarian category. Although (Gautam et al. 2019) used a subset of 

CrisisMMD, they focused only on one classification task which is the informativeness. They 

also applied a decision fusion methodology for their multimodal deep learning models while 

this work applies feature fusion instead.  
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The recent study by (Imran et al. 2020) was considered a starting point for this study. They 

implemented deep learning models using disaster tweets from the CrisisMMD dataset for 

both classification tasks: informativeness and humanitarian category, and compared 

performance between unimodal and multimodal models. This dissertation starts with 

following their approach and using the CrisisMMD as a first dataset to compare results with 

theirs, then goes on to perform the mapping between the three representative crisis datasets 

used (CrisisMMD, CrisisNLP, and CrisisLex26) to have uniform classes for a more cohesive 

comparative analysis. Both classification tasks are performed for all the three datasets over 

unimodal and multimodal models with the classifications’ performance results compared as 

well. Furthermore, a consolidated multimodal dataset from all three datasets is formed to 

serve as a new multimodal baseline dataset to achieve better results.  
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Chapter 3 

Methodology 

This chapter explains the methodology used in this study. It will present the system 

architecture, the three disaster datasets used in detail, data preprocessing, classification tasks 

for unimodal and multimodal data, and deep learning models used. 

 

 3.1. Overall System Architecture  

The overview of the architecture and design of the multimodal system is presented in Figure 

7. Deep learning approaches are used for all classification tasks over all modalities. A CNN 

network is used for processing the tweets’ text. For text classification, a CNN is used with 

various filters and five hidden layers. For image classification, a VGG16 network is used 

where the fully connected layer of the network extracts high-level features of the disaster 

image. As for the multimodal classification, it is following a feature fusion approach. After 

both text and image classifications are done in parallel, two features will be acquired from 

both the text and image modalities. Then, these features will be input to form a shared 

representation of both modalities and later followed by a dense layer. Finally, softmax 

performs the prediction for the multimodal model.  

Two classification tasks are performed for all three disaster datasets in three different 

settings:  

 Classification tasks are informativeness and humanitarian category. Informativeness 

determines if either the disaster text or image is beneficial for emergency services, 

in which case it is labelled as “informative”, otherwise they are labelled as “not-
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informative). Humanitarian Categories will determine the type or nature of the 

informative disaster tweet and classify it into a specific humanitarian category, as 

shown in the following respective sections of each dataset.   

 Datasets are CrisisMMD, CrisisNLP, and CrisisLex26. 

 Settings are unimodal text-only data, unimodal image-only data, and multimodal 

data) 

 

 Figure 7: Overall Architecture of Multimodal Classification Approach 
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For some sample representations of the disaster tweets available in the datasets at hand, 

Table 2 shows some randomly selected multimodal tweets with their informativeness and 

humanitarian categories.   
 

 

Tweet Text: California wildfires kill 10, 

destroy 1,500 buildings  

Disaster: California Wildfires 

Informativeness: informative 

Humanitarian Category: infrastructure and 

utility damage 

 

 

Tweet Text: My car lost against Hurricane 

Maria when 60ft palm tree fell on top of it! 

Disaster: Hurricane Maria 

Informativeness: informative 

Humanitarian Category: vehicle damage 

 

Tweet Text: 1,500 bodies recovered; an equal 

number said to be injured 

Disaster: Nepal Earthquake 

Informativeness: informative 

Humanitarian Category: injured or dead 

people 

 

 

Tweet Text: Forget biking to work, today in 

Colorado we could have kayaked 
Disaster: Colorado Floods 

Informativeness: informative 

Humanitarian Category: affected individuals 
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Tweet Text: Mexico City earthquake: 6 ways to 

help victims, from Airbnb to GoFundMe 

http://ift.tt/2w7FLW0 via FastCompany 

Disaster: Mexico Earthquakes 

Informativeness: informative 

Humanitarian Category: volunteering or 

donation 

 

 

Tweet Text: Hillary Clinton links climate 

change to recent wildfires, hurricanes in 

California speech 

Disaster: California Wildfires 

Informativeness: not-informative 

 

 

Table 2: Sample Labelled Disaster Tweets 

 

 

3.2. Datasets 

This section presents the details of each of the three representative disaster datasets used, 

including their contents’ description, labelling, data retrieval, and properties breakdown.  

 

3.2.1. First Dataset: CrisisMMD 

CrisisMMD (Alam, Ofli & Imran 2018)  is a multimodal dataset that consists of disaster 

tweets with images that were obtained throughout seven disasters that happened in 2017: 

Hurricanes (Irma, Harvey, Maria), Earthquakes (Mexico, Iraq/Iran), California wildfires, 

and Srilanka floods. The dataset has three annotations for three classification tasks: 

Informativeness (informative vs. not informative), eight classes for the humanitarian 

category, and three classes for damage severity (severe, mild, little to none). However, the 
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third classification task for damage severity is only applicable for images, so it is not taken 

into consideration in this study, where only the first two classification tasks are focused on. 

Table 3 shows the data distribution of the CrisisMMD dataset for the informativeness 

classes. 

Informativeness 

Informative 9374 

Not informative 8708 

Total 18082 

 

Table 3: CrisisMMD Informativeness Distribution 

Table 4 shows the data distribution of the CrisisMMD dataset for the humanitarian category 

classes.  

Humanitarian Category 

Affected individuals 562 

Infrastructure and utility damage 3624 

Injured or dead people 110 

Missing or found people 14 

Not humanitarian 8708 

Other relevant information 2529 

Rescue, volunteering or donation effort 2231 

Vehicle damage 304 

Total 18082 

 

Table 4: CrisisMMD Humanitarian Category Distribution 
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When CrisisMMD was in the creation stages, the text and image aspects of the disaster 

tweets were labelled separately, so there are some tweets where the text and image would 

have different labels (Alam, Ofli & Imran 2018). Therefore, the currently used dataset (Ofli, 

Alam & Imran 2020) is a subset of CrisisMMD where both text and image components of a 

tweet have the same label for either the informativeness or the humanitarian category 

classification tasks. It is also merging minority categories to ensure having a balanced 

distribution across all categories. This filtering resulted in having some inconsistencies with 

the label distribution. Therefore, they merged the similar categories (missing/found people 

and injured/people) into the (affected individuals) category. Moreover, the (vehicle damage) 

was merged with the (infrastructure/utility damage) class.   

The same tweet can have a maximum of four images, so there are multiple records for the 

same text and different images. Therefore, it is essential to ensure that there are no repeated 

text tweets when splitting the dataset into training, development, and test datasets. The ratio 

used for splitting the dataset is 70% for the training dataset, 15% for the development dataset, 

and 15% for the test dataset. This is the same ratio implemented by (Ofli, Alam & Imran 

2020) and will be used across all three datasets (CrisisMMD, CrisisNLP, CrisisLex26) to 

allow for a comparative analysis. The training dataset is for training the model, the 

development dataset is for tuning the parameters to avoid overfitting, and the test dataset is 

for evaluating the model.  

Tables 5 and 6 show the data distribution after filtering and merging categories over the 

training, development and test datasets with corresponding labels for the informativeness 

and humanitarian category classification tasks respectively.  
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 Train 

(70%) 

Development 

(15%) 

Test 

(15%) 

Total 

Informative 6345 1056 1030 8431 

Non-informative 3256 517 504 4277 

Total 9601 1573 1534 12708 

 

Table 5: Informativeness Data Split over CrisisMMD Subset 

 

 Train 

(70%) 

Development 

(15%) 

Test 

(15%) 

Total 

Rescue/volunteering/donation 

effort 
912 149 126 1187 

Affected Individuals 71 9 9 89 

Infrastructure/utility damage 612 80 81 773 

Other relevant information 1279 239 235 1753 

Not humanitarian 3252 521 504 4277 

Total 6126 998 955 8079 

 

Table 6: Humanitarian Category Data Split over CrisisMMD Subset 

 

 

3.2.2. Second Dataset: CrisisNLP 

CrisisNLP is another representative disaster dataset in the Crisis Informatics field. It 

originally consists of around fifty million disaster tweets obtained during nineteen different 

natural and man-made disasters between 2013-2015: five earthquakes, three typhoons, one 

volcano, two floods, two wars, two biological, three landslides, and one airline accident. 

Table 7 shows the data distribution for each of the disasters.  
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Crisis Type Crisis Name Country Language 
Number of 

Tweets 
Year 

Earthquake Nepal Earthquake Nepal English 4,223,937 2015 

Earthquake Terremoto Chile  Chile Spanish 842,209 2014 

Earthquake Chile Earthquake  Chile English 368,630 2014 

Earthquake California Earthquake  USA English 254,525 2014 

Earthquake Pakistan Earthquake  Pakistan English 156,905 2013 

Typhoon Cyclone PAM  Vanuatu English 490,402 2015 

Typhoon Typhoon Hagupit Philippines English 625,976 2014 

Typhoon Hurricane Odile  Mexico English 62,058 2014 

Volcano Iceland Volcano  Iceland English 83,470 2014 

Floods Pakistan Floods  Pakistan English 1,236,610 2014 

Floods India Floods  India English 5,259,681 2014 

War & 

Conflicts 
Palestine Conflict Palestine English 27,770,276 2014 

War & 

Conflicts 

Peshawar School 

Attack  

Pakistan English 1,135,655 2014 

Biological 

Middle East 

Respiratory Syndrome 

(MERS) 

Worldwide English 215,370 2014 

Biological Ebola Virus Outbreak  Worldwide English 5,107,139 2014 

Landslide Landslides worldwide  Worldwide English 382,626 2014 

Landslide Landslides worldwide  Worldwide French 17,329 2015 

Landslide Landslides worldwide  Worldwide Spanish 75,244 2015 

Airline 

Accident 
Flight MH370  Malaysia English 4,507,157 2014 

 

Table 7: CrisisNLP Disaster Collections Distribution 

https://crisisnlp.qcri.org/lrec2016/content/2014_chile_eq_cl.html
https://crisisnlp.qcri.org/lrec2016/content/2014_chile_eq_en.html
https://crisisnlp.qcri.org/lrec2016/content/2014_california_eq.html
https://crisisnlp.qcri.org/lrec2016/content/2013_pakistan_eq_en.html
https://crisisnlp.qcri.org/lrec2016/content/2015_cyclone_pam_en.html
https://crisisnlp.qcri.org/lrec2016/content/2014_hurricane_odile_en.html
https://crisisnlp.qcri.org/lrec2016/content/2014_iceland_volcano_en.html
https://crisisnlp.qcri.org/lrec2016/content/2014_pakistan_floods_en.html
https://crisisnlp.qcri.org/lrec2016/content/2014_india_floods_en.html
https://crisisnlp.qcri.org/lrec2016/content/2014_peshawar_attack_en.html
https://crisisnlp.qcri.org/lrec2016/content/2014_peshawar_attack_en.html
https://crisisnlp.qcri.org/lrec2016/content/2014_mers_en.html
https://crisisnlp.qcri.org/lrec2016/content/2014_mers_en.html
https://crisisnlp.qcri.org/lrec2016/content/2014_mers_en.html
https://crisisnlp.qcri.org/lrec2016/content/2014_ebola_en.html
https://crisisnlp.qcri.org/lrec2016/content/2014_landslides_ww_en.html
https://crisisnlp.qcri.org/lrec2016/content/2015_landslides_ww_fr.html
https://crisisnlp.qcri.org/lrec2016/content/2015_landslides_ww_es.html
https://crisisnlp.qcri.org/lrec2016/content/2014_mh370_crash_en.html
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The data was annotated by volunteers and paid workers. The CSV files provided included 

tweet ids and label for each separate disaster in a separate directory. The original CSV files 

were organized as follows: 

Data labelled by volunteers: 

1. 2014 California Earthquake 

2. 2014 Chile Earthquake (Spanish tweets) 

3. 2014 Chile Earthquake (English tweets) 

4. 2014 Hurricane Odile in Mexico  

5. 2014 Iceland Volcano 

6. 2014 Malaysia Airline MH370 Accident  

7. 2014 Middle East Respiratory Syndrome 

8. 2014 Philippines Typhoon Hagupit 

9. 2015 Cyclone Pam in Vanuatu 

10. 2015 Nepal Earthquake 

11. 2014 Worldwide Landslides (English tweets) 

12. 2015 Worldwide Landslides (French tweets) 

13. 2015 Worldwide Landslides (Spanish tweets) 

14. 2014 Malaysia Airline Accident for Flight MH370 

Data labelled by crowdsourcing: 

1. 2013 Pakistan Earthquake 

2. 2014 California Earthquake 
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3. 2014 Chile Earthquake (Spanish tweets) 

4. 2014 Chile Earthquake (English tweets) 

5. 2014 Ebola Virus 

6. 2014 Hurricane Odile in Mexico  

7. 2014 India Floods 

8. 2014 Middle East Respiratory Syndrome 

9. 2014 Pakistan Floods 

10. 2014 Philippines Typhoon Hagupit 

11. 2015 Cyclone Pam in Vanuatu 

12. 2015 Nepal Earthquake 

Since only English tweets are considered in this study, all tweets in languages other than 

English will be ignored. So, three directories are removed from the data labelled by 

volunteers, and one directory is removed from the data labelled by paid workers. Therefore, 

now the available data directories are:  

Data labelled by volunteers: 

1. 2014 California Earthquake 

2. 2014 Chile Earthquake  

3. 2014 Hurricane Odile in Mexico  

4. 2014 Iceland Volcano 

5. 2014 Malaysia Airline MH370 Accident  

6. 2014 Middle East Respiratory Syndrome 

7. 2014 Philippines Typhoon Hagupit 
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8. 2015 Cyclone Pam in Vanuatu 

9. 2015 Nepal Earthquake 

10. 2014 Worldwide Landslides  

11. 2014 Malaysia Airline Accident for Flight MH370 

Data labelled by crowdsourcing: 

1. 2013 Pakistan Earthquake 

2. 2014 California Earthquake 

3. 2014 Chile Earthquake  

4. 2014 Ebola Virus 

5. 2014 Hurricane Odile in Mexico  

6. 2014 India Floods 

7. 2014 Middle East Respiratory Syndrome 

8. 2014 Pakistan Floods 

9. 2014 Philippines Typhoon Hagupit 

10. 2015 Cyclone Pam in Vanuatu 

11. 2015 Nepal Earthquake 

Not all disaster tweets were labelled following the same labels. Some of the tweets were 

labelled using completely different categories than those followed in this study for the 

informativeness and humanitarian category tasks. The disasters that did not have the required 

labelling approach included: 

1. 2014 Iceland Volcano  
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2. 2014 Malaysia Airline Accident for Flight MH370  

3. 2014 Middle East Respiratory Syndrome 

4. 2014 Worldwide Landslides  

5. 2014 Ebola Virus 

For instance, for the Ebola and Middle East Respiratory Syndrome tweets, the labels were 

neither informative vs. not-informative nor the humanitarian category. They were: Disease 

signs/symptoms, disease transmission, disease prevention, disease treatment, death reports, 

affected people, other useful information, and irrelevant. Therefore, those five disaster 

directories were not included as well. Now, the available disaster directories are:  

Data labelled by volunteers: 

1. 2014 California Earthquake 

2. 2014 Chile Earthquake  

3. 2014 Hurricane Odile in Mexico  

4. 2014 Philippines Typhoon Hagupit 

5. 2015 Cyclone Pam in Vanuatu 

6. 2015 Nepal Earthquake 

Data labelled by crowdsourcing: 

1. 2013 Pakistan Earthquake 

2. 2014 California Earthquake 

3. 2014 Chile Earthquake  

4. 2014 Hurricane Odile in Mexico  
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5. 2014 India Floods 

6. 2014 Pakistan Floods 

7. 2014 Philippines Typhoon Hagupit 

8. 2015 Cyclone Pam in Vanuatu 

9. 2015 Nepal Earthquake 

There are disaster directories present in both the data labelled by volunteers and data labelled 

by paid workers. These disasters are: 

1. 2014 California Earthquake 

2. 2014 Chile Earthquake  

3. 2014 Hurricane Odile in Mexico  

4. 2014 Philippines Typhoon Hagupit 

5. 2015 Cyclone Pam in Vanuatu 

6. 2015 Nepal Earthquake 

Therefore, those will be merged into one directory for each disaster to have a unified 

directory for the corresponding disaster tweets. Now, there are final nine disasters available 

after this filtering, which are:  

1. 2013 Pakistan Earthquake 

2. 2014 California Earthquake 

3. 2014 Chile Earthquake  

4. 2014 Hurricane Odile in Mexico  

5. 2014 India Floods 
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6. 2014 Pakistan Floods 

7. 2014 Philippines Typhoon Hagupit 

8. 2015 Cyclone Pam in Vanuatu 

9. 2015 Nepal Earthquake 

Another issue is that the humanitarian categories used across all the data directories for those 

disasters are not consistent. So, for instance, there were 13 humanitarian categories for the 

California Earthquake tweets labelled by the volunteers: 

1. Injured or dead people 

2. Missing, trapped, or found people 

3. Displaced people 

4. Infrastructure and utilities 

5. Shelter and supplies 

6. Money 

7. Volunteer or professional services 

8. Animal management 

9. Caution and advice 

10. Personal updates 

11. Sympathy and emotional support 

12. Other relevant information 

13. Not related or irrelevant 

On the other hand, there were nine categories for the California Earthquake tweets labelled 

by the paid workers:  
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1- Injured or dead people 

2- Missing, trapped, or found people 

3- Displaced people and evacuations 

4- Infrastructure and utilities damage 

5- Donation needs or offers or volunteering services 

6- Caution and advice 

7- Sympathy and emotional support 

8- Other useful information 

9- Not related or irrelevant 

So, before merging the tweets for both directories into one file for the California Earthquake 

disaster, the label inconsistencies need to be resolved. Semantically similar categories were 

merged to reduce the number of extra categories available. For instance, in the case 

mentioned above, the categories (Shelter and supplies, Money, Volunteer or professional 

services) were all mapped to the (Volunteering/Donation efforts) category. “Animal 

management” is mapped to “other relevant information”.  

Since the study is a comparative analysis across all three datasets (CrisisMMD, CrisisNLP 

and CrisisLex26), consistency is essential when dealing with the data splits and classification 

classes to obtain a clearer uniform view for the comparison of the models’ performance. As 

shown in Table 6, CrisisMMD had five classes for the humanitarian category. Therefore, the 

categories in the CrisisNLP will be mapped to these categories in CrisisMMD as well. The 

mapping is as follows:  

 Injured or dead people → Injured or dead people → Affected individuals 
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 Missing, trapped, or found people → Missing or found people → Affected 

individuals 

 Displaced people and evacuations → Affected individuals 

 Infrastructure and utilities damage → Infrastructure/utility damage 

 Donation needs or offers or volunteering services → Rescue/volunteering/donation 

effort 

 Caution and advice → Other relevant information 

 Sympathy and emotional support → Other relevant information 

 Other useful information → Other relevant information 

 Not related or irrelevant → Not humanitarian 

Table 8 shows the distribution of labelled tweets per disaster type for all nine disasters 

included.  

Disaster Name Labelled by paid 

workers 

Labelled by 

volunteers 

Total 

California Earthquake 1701 183 1884 

Chile Earthquake 1932 440 2372 

Cyclone Pam 2004 600 2604 

Hurricane Odile Mexico 1262 183 1445 

India Floods 1820 - 1820 

Nepal Earthquake 3003 9471 12474 

Pakistan Earthquake 1881 - 1881 

Pakistan Floods 1769 - 1769 

Philippines Typhoon 

Hagupit 2010 9675 11685 

Total 17382 20552 37934 

 

Table 8: CrisisNLP Disaster Distribution for Labelled Tweets 
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The first dataset, CrisisMMD, had disaster tweets that had both text and image components 

during retrieval. However, the CrisisNLP dataset only has the text modality for the disaster 

tweets. In order to utilize it in a multimodal setting, tweets containing both text and images 

need to be identified, and the images need to be obtained as well.   

So, first of all, a CSV file containing all the tweet ids for the 17382 disaster tweets labelled 

by paid workers was fed to a Python script to retrieve the tweet text and image URL for each. 

Twitter Developer API was used to make the connection, and secret keys were created to 

gain approval to retrieve the tweets. Unfortunately, since the tweets in this dataset are rather 

old (2013-2015), many of the users’ accounts that posted the tweets were suspended, so those 

tweets could not be retrieved.  So out of the 17382 tweets, only 10746 were still available. 

Then, since we are only interested in the tweets with both text and image modalities, further 

filtering was done to check which tweets returned a non-null value for the image_url field 

in the json response retrieved from the Twitter API.  As a result, we were left with only 1020 

tweets with both text and image modalities available.  

Similarly, the 20552 disaster tweets labelled by volunteers were fed to the retrieval script. 

Only 13395 tweets were still available, while only 1511 tweets had both the text and image 

modalities. Therefore, after merging the tweets from the ones labelled by the volunteers and 

paid workers, we are left with a total of 2531 tweets.  

Table 9 shows the distribution of tweets per disaster type for all nine disasters after this 

filtering has been done.  
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Disaster No. of Tweets 

California Earthquake 125 

Chile Earthquake 82 

Cyclone Pam 194 

Hurricane Odile Mexico 121 

India Floods 60 

Nepal Earthquake 864 

Pakistan Earthquake 52 

Pakistan Floods 102 

Philippines Typhoon Hagupit 931 

Total 2531 

 

Table 9: CrisisNLP Disaster Distribution after Filtering 

 

Tables 10 and 11 show the data distribution of the CrisisNLP dataset for the informativeness 

and humanitarian category classes respectively. 

 

Informativeness 

Informative 1643 

Not informative 888 

Total 2531 

 

Table 10: CrisisNLP Informativeness Distribution 
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Humanitarian Category 

Affected individuals 44 

Infrastructure and utility damage 226 

Injured or dead people 81 

Missing or found people 32 

Not humanitarian 888 

Other relevant information 925 

Rescue/volunteering/donation effort 335 

Total 2531 

 

Table 11: CrisisNLP Humanitarian Category Distribution 

 

Tables 12 and 13 show the data distribution after filtering and merging categories over the 

training, development and test datasets with corresponding labels for the informativeness 

and humanitarian category classification tasks respectively.  

 

 Train 

(70%) 

Development 

(15%) 

Test 

(15%) 
Total 

Informative 1155 237 251 1643 

Non-informative 616 143 129 888 

Total 1771 380 380 2531 

 

Table 12: Informativeness Data Split over CrisisNLP Dataset 
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 Train 

(70%) 

Development 

(15%) 

Test 

(15%) 
Total 

Rescue/volunteering/donation 

effort 
232 58 45 335 

Affected Individuals 99 25 33 157 

Infrastructure/utility damage 151 43 32 226 

Other relevant information 651 134 140 925 

Not humanitarian 638 120 130 888 

Total 1771 380 380 2531 

 

Table 13: Humanitarian Category Data Split over CrisisNLP Dataset 

 

3.2.3. Third Dataset: CrisisLex26 

CrisisLex26 (Olteanu, Vieweg & Castillo 2015) is a dataset collection that consists of 

disaster tweets collected during twenty-six large disasters in 2012 and 2013.  There are about 

1000 tweets labelled by informativeness, source, and information type (CisisLex: Crisis 

Collections n.d.). 

The original unlabeled dataset had around 250 thousand tweets posted throughout the 26 

crisis events, where most disasters had around two to four thousand tweets. Crowdsource 

workers were employed for the labelling task. Around 1000 tweets from each disaster 

collection were selected. The tweets were labelled by informativeness (informative vs. non-

informative), source (government, etc.), and information type (advice, infrastructure 

damage, etc.) (CisisLex: Crisis Collections n.d.; Olteanu, Vieweg & Castillo 2015).  The 

dataset is provided as CSV files that contain the tweet ids and the labels given to the 

corresponding tweets. The dataset is available on the GitHub page (CrisisLex GitHub 

Repository n.d.). 
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The following are the disasters available in the dataset:  

1. 2012 Colorado wildfires 

2. 2012 Costa Rica earthquake 

3. 2012 Guatemala earthquake 

4. 2012 Italy earthquakes 

5. 2012 Philippines floods 

6. 2012 Typhoon Pablo 

7. 2012 Venezuela refinery 

8. 2013 Alberta floods 

9. 2013 Australia bushfire 

10. 2013 Bohol earthquake 

11. 2013 Boston bombings 

12. 2013 Brazil nightclub fire 

13. 2013 Colorado floods 

14. 2013 Glasgow helicopter crash 

15. 2013 LA airport shootings 

16. 2013 Lac Megantic train crash 

17. 2013 Manila floods 

18. 2013 NY train crash 

19. 2013 Queensland floods 

20. 2013 Russia meteor 

21. 2013 Sardinia floods 
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22. 2013 Savar building collapse 

23. 2013 Singapore haze 

24. 2013 Spain train crash 

25. 2013 Typhoon Yolanda 

26. 2013 West Texas explosion 

 

As mentioned in the previous section, consistency for the humanitarian categories is 

essential for a clearer comparison of models’ performance at the end. So, mapping for the 

categories is done to have uniform classes throughout all datasets. As shown in Table 11, 

CrisisLex26 has seven classes for the humanitarian category. Therefore, the categories in the 

CrisisLex26 will be mapped to the categories in CrisisMMD as well as CrisisNLP. The 

mapping is as follows:  

 Affected individuals →  Affected individuals 

 Infrastructure and utilities → Infrastructure and utility damage 

 Donations and volunteering → Rescue, volunteering or donation effort 

 Caution and advice → Other relevant information 

 Sympathy and support  → Other relevant information 

 Other Useful information        → Other relevant information 

 Not applicable  → Not humanitarian 
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CrisisLex26 dataset only has the text modality for the disaster tweets like CrisisNLP, unlike 

the CrisisMMD dataset that has both text and image modalities. Therefore, as done in the 

previous section for CrisisNLP, only tweets containing both text and images will be 

identified, and their corresponding images will be retrieved.  

The dataset has separate CSV files for all 26 disasters. All these CSV files will be merged 

in a single CSV file representing all the labelled disaster tweets available. The tweets 

retrieval procedure is the same one followed in the previous section for the CrisisNLP 

dataset. The merged CSV file is fed to a Python script that retrieves the tweet text and image 

URL for each tweet. Then, the Twitter Developer API is used to make the connection with 

the creation of secret keys for approval to retrieve the tweets.  

Once again, we face the issue of the tweets being rather old since they are obtained during 

2012 and 2013, so even older than the tweets in CrisisNLP. Therefore, several user accounts 

who posted the tweets were suspended, so their tweets could not be retrieved.  The original 

CSV file had 22271 tweets. After running the retrieval script, and further filtering to ignore 

non-available tweets of suspended accounts or text-only tweets without images, we are left 

with only 975 tweets with both text and image modalities available. Another thing to note is 

that among those 975 tweets, 133 tweets were only labelled for the informativeness task and 

were not labelled for the humanitarian task. Therefore, a total of 975 tweets are used for the 

informativeness classification task, and a total of 842 tweets are used for the humanitarian 

classification task. 

Table 14 shows the distribution of tweets per disaster type for all 26 disasters included.  
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Disaster Name No. of Tweets 

2012 Colorado wildfires 20 

2012 Costa Rica earthquake 13 

2012 Guatemala earthquake 19 

2012 Italy earthquakes 16 

2012 Philippines floods 13 

2012 Typhoon Pablo 33 

2012 Venezuela refinery 20 

2013 Alberta floods 87 

2013 Australia bushfire 72 

2013 Bohol earthquake 28 

2013 Boston bombings 24 

2013 Brazil nightclub fire 7 

2013 Colorado floods 44 

2013 Glasgow helicopter crash 69 

2013 LA airport shootings 29 

2013 Lac Megantic train crash 33 

2013 Manila floods 48 

2013 NY train crash 58 

2013 Queensland floods 77 

2013 Russia meteor 21 

2013 Sardinia floods 75 

2013 Savar building collapse 16 

2013 Singapore haze 45 

2013 Spain train crash 21 

2013 Typhoon Yolanda 63 

2013 West Texas explosion 24 

Total 975 

 

Table 14: CrisisLex26 Disaster Distribution for Labelled Tweets 
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Tables 15 and 16 show the data distribution of the CrisisLex26 dataset for the 

informativeness and humanitarian category classes respectively. 

 

Informativeness 

Informative 617 

Not informative 358 

Total 975 

 

Table 15: CrisisLex26 Informativeness Distribution 

 

Humanitarian Category 

Affected individuals 106 

Infrastructure and utility damage 113 

Not humanitarian 46 

Other relevant information 478 

Rescue/volunteering/donation effort 96 

Total 842 

 

Table 16: CrisisLex26 Humanitarian Category Distribution 

 

Tables 17 and 18 show the data distribution after filtering and merging categories over the 

training, development and test datasets with corresponding labels for the informativeness 

and humanitarian category classification tasks respectively.  
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 Train 

(70%) 

Development 

(15%) 

Test 

(15%) 
Total 

Informative 426 97 94 617 

Non-informative 256 49 53 358 

Total 682 146 147 975 
 

Table 17:  Informativeness Data Split over CrisisLex26 Dataset 

 

 Train 

(70%) 

Development 

(15%) 

Test 

(15%) 
Total 

Rescue/volunteering/donation 

effort 
68 15 13 96 

Affected Individuals 74 17 15 106 

Infrastructure/utility damage 70 20 23 113 

Other relevant information 338 69 71 478 

Not humanitarian 38 6 5 49 

Total 588 127 127 842 
 

Table 18: Humanitarian Category Data Split over CrisisLex26 Dataset 

 

3.3. Data Preprocessing 

The tweet texts in all the datasets are quite noisy. They have several emoticons, symbols, 

and invisible characters as well. Therefore, when preprocessing them, any stop words will 

be removed. Also, numbers, hashtags, non-ASCII characters, and URLs will be removed. 

Punctuation marks will also be replaced with white spaces instead. So, symbols including 

“%”, “&”, “@”, “#”, “!”, and others are removed from the tweets. Also, all text in the tweets 

is converted to lower case. Redundant tweets will be filtered out as well. The preprocessing 

steps are following the approach followed in (Ofli, Alam & Imran 2020).  
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As for the images obtained from the disaster tweets, typical preprocessing steps are followed. 

The pixels of each image between zero and one are scaled, followed by normalization of 

each channel with respect to the ImageNet dataset (Ofli, Alam & Imran 2020) when scaling 

the images. Then, when normalizing, the matrix of pixels of each image would be divided 

by the maximum value, which is 225 in this case. Then, the normalized matrix is used by the 

system developed for training and testing the machine learning model (Deng et al. 2010; 

Kumar et al. 2020) 

 

3.4. Classification Approach 

The approach for classification tasks for text, image, and multimodal modalities 

implemented in this work is following the one proposed in (Ofli, Alam & Imran 2020). Since 

this is a comparative study, the same values and approach implemented by the authors in 

(Ofli, Alam & Imran 2020) are used when handling all the models for all the datasets used 

in this work to achieve consistent comparable results.  

 

3.4.1. Text Modality  

Convolutional Neural Networks (CNN) are used in text classification because they are 

proven to have better performance when applied to disaster tweets’ classification tasks 

(Nguyen, Al Mannai, et al. 2017). Therefore, a CNN that has five hidden layers is created. 

In the beginning, to handle the network’s input, the disaster tweets are zero-padded to obtain 

an equal length. Considering that each row would represent a word in the extracted disaster 

tweet from a pre-trained word2vec model, the tweets are converted to a word-level matrix. 
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The pre-training of the word2vec model is discussed in detail in (Alam, Joty & Imran 2018). 

(Imran, Mitra & Castillo 2016) developed the first largest word2vec word embeddings 

specifically for Crisis informatics research, trained with fifty-two million disaster tweets. 

The Continuous Bag of Words (CBOW) approach from (Mikolov et al. 2013) is used to train 

this word2vec model. The CBOW is implemented on a very large dataset of 364 million 

disaster tweets and around three billion words, vector dimensions of 300, k = 5 negative 

samples, and a context window size of five (Alam, Joty & Imran 2018; Ofli, Alam & Imran 

2020) 

Now that the input to the network is prepared, it goes through several layers that include the 

convolutional layer and the max pooling layer. Then, we get a high-level feature 

representation that is fixed in size for each disaster tweet. Then, the feature vectors obtained 

are passed through the fully connected hidden layers then the output layer at the end. 

Rectified linear units (ReLU) (Krizhevsky, Sutskever & Hinton 2012)  are used as the 

activation function in the convolutional and fully connected layers. The softmax activation 

function is used for the output layer.  

The Adam optimizer (Zeiler 2012) is used for training the CNN models. As for the 

optimization of the classification loss with respect to the development subset, a learning rate 

of 0.01 was used. A maximum of 50 was set to the number of epochs. Also, a 0.02 dropout 

rate is used to combat overfitting (Srivastava et al. 2014). 

Early stopping was also implemented with a patience of 10. In addition, the following filters 

are used: 100 filters with a window size of 2, 150 filters with a window size of 3, and 200 

filters with a window size of 4. The pooling length used is the same as the size of the filter 
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window. Moreover, since batch normalization is proved to be successful (Ioffe & Szegedy 

2015), it is applied here as well.  

 

3.4.2. Image Modality  

VGG-16 is a deep convolutional neural network trained on a subset of the ImageNet dataset 

(Deng et al. 2010). ImageNet is a collection of over 14 million high-resolution images 

labelled belonging to around 22 thousand categories. VGG-16 was proposed by (Simonyan 

& Zisserman 2015) and was trained on millions of images to classify 1000 various categories 

(Deng et al. 2010). It has previously achieved a high classification accuracy of 92.7% in the 

ImageNet Classification Challenge in 2014 (Ioffe & Szegedy 2015). As shown in Figure 8, 

the VGG-16 model has thirteen convolutional layers, three fully connected layers, and 

finally an output layer of one thousand nodes.  

 

 

The input to the VGG-16 network is an image of a fixed size “224 x 224 x 3”, then the 

convolution operation will be applied using a “3x3” filter. The five max pooling layers will 

Figure 8: VGG-16 Model Architecture  
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perform spatial pooling (Simonyan & Zisserman 2015). The third fully connected layer 

outputs one thousand channels for the thousand classes, then its output is passed to the final 

softmax layer for normalization of the classification vector (Krizhevsky, Sutskever & Hinton 

2012). Further details with thorough descriptions of the mechanism of the VGG-16 network 

are shown (Deng et al. 2010; Simonyan & Zisserman 2015). 

The architecture of VGG-16 is considered the optimal choice when extracting features from 

images. That has been proved in several studies employing image classification (Simonyan 

& Zisserman 2015; Nguyen, Al Mannai, et al. 2017; Nguyen, Alam, et al. 2017; Nguyen, 

Ofli, et al. 2017). Therefore, it is used in this study as well for the image modality 

classification of the disaster tweets’ images.  

When it comes to image classification, the deep learning model needs to learn how to 

recognize generic features like the edges for instance, then go on to detect more complicated 

features (Hussain, Bird & Faria 2019). To perform such an operation in a real-life setting, it 

would require many millions of pictures and very long training periods to get a decent 

performance. That is why using a pre-trained model and retraining it on the dataset of interest 

would be a much easier and efficient approach (Krishna & Kumar Kalluri 2019). This 

process is called transfer learning. So, transfer learning is mainly about using a machine 

learning model that was previously trained on some ML task, then reuse it as an initial point 

to start a different task. The transfer learning approach is based on the idea of using existing 

weights from a pre-trained model. So, the weights from a VGG16 model pre-trained on 

ImageNet are used for the model’s initialization. (Yosinski et al. 2014; Kaur & Gandhi 2020) 



71 

 

show that transfer learning approaches are effective when used for recognizing visuals; 

therefore, they are employed in this study when handling the image modality classification.  

 

The fully connected layer in the VGG-16 network generates one thousand output labels. 

However, the softmax layer at the end of the VGG-16 network is adapted depending on the 

specific classification type (informativeness and humanitarian category classification tasks). 

So, the images are passed through the convolutional layers of the VGG16 network, 

generating a feature stack containing the visual features that were recognized (Hussain, Bird 

& Faria 2019). This three-dimensional stack of features needs to be flattened so that it can 

be used by other ML classifiers for prediction tasks (Kaur & Gandhi 2020), so the stack is 

flattened to a NumPy array of pixel data. The pixel values would then be scaled for the 

VGG16 model, and the feature map can be generated.  

 

Rectified linear units (ReLU) (Krizhevsky, Sutskever & Hinton 2012)  are used as the 

activation function in the convolutional and fully connected layers. As mentioned before, 

the softmax activation function is used for the output layer. The Adam optimizer (Zeiler 

2012) is used for training the image models with a starting learning rate of 10-6 . When the 

accuracy on the development subset does not seem to improve after 100 epochs, this learning 

late would be then reduced by a factor of 0.1. Early stopping is also applied here with 1000 

as the maximum number of epochs.  
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3.4.3. Multimodal Classification 

The architecture of the multimodal deep neural network used is shown in figure 8. A VGG-

16 network is used for the image modality, and a CNN network is used for the text modality. 

Shared representations are formed from both the text and image modalities. Right before the 

formation of these shared representations, a hidden layer of size 1000 from each side is 

employed. The same size is used from both modalities to ensure having an equal share. The 

size of 1000 can be modified, but it will be used as 1000 here as followed in (Ofli, Alam & 

Imran 2020) for the comparative study.  

Then, a hidden layer is added before the softmax output layer after concatenating both the 

text and image modalities. The Adam optimizer is used when training the multimodal model, 

employing a batch size of 32. Early stopping is also used here to combat overfitting. In 

addition, ReLU is used as an activation function. (Ofli, Alam & Imran 2020) did not perform 

any tuning for the hyper-parameters such as the filter size or the hidden layers’ size, so no 

tuning was done in this experiment as well to allow for proper comparison of models’ 

performance later on.   
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Chapter 4 

Results and Discussion 

As mentioned in the previous sections, six classification tasks were performed over all three 

representative datasets. For each disaster dataset from CrisisMMD, CrisisNLP, and 

CrisisLex26, two classification tasks (informativeness and humanitarian category) were 

performed for three models (unimodal text-only data, unimodal image-only data, and 

multimodal with both text and image data).  

When performing these classification tasks, the performance of all systems is evaluated 

using the accuracy, precision, recall, and F1-score. The description of these performance 

evaluation metrics is detailed in the next section.  

 

4.1. Performance Evaluation Metrics 

All evaluation metrics are calculated using four parameters: TP (true positive), TN (true 

negative), FP (false positive), and FN (false negative).  

 

 True positives (TP): These are the positive values predicted correctly. So, the actual 

positive value of the class matches the predicted value (Abdelhade, Soliman & Ibrahim 

2018). For instance, if the disaster tweet was labelled by humans as informative, and the 

predicted label by the model is also informative.   
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 True Negatives (TN): These are the negative values predicted correctly. So, the actual 

negative value of the class matches the predicted value (Abdelhade, Soliman & Ibrahim 

2018). For instance, if the disaster tweet was labelled by humans as not informative, and 

the predicted label by the model is also not informative. 

 

 False Negatives (FN): When the true value is positive but the model predicts a negative 

value (Goutte & Gaussier 2005). For example, if the disaster tweet was labelled by 

humans as informative, and the model predicts its label as not informative.  

 

 False  Positives (FP): When the true value is negative but the model predicts a positive 

value (Goutte & Gaussier 2005). For example, if the disaster tweet was labelled by 

humans as not informative, and the model predicts its label as informative. 

 

Accuracy is the ratio of correctly predicted classification labels, including TP and TN, to the 

total number of available data instances (Goutte & Gaussier 2005). Higher accuracy does 

not necessarily mean better performance. It is a better performance measure when the 

datasets at hand are symmetric with the number of false negatives and false positives are 

close (Jeni, Cohn & De La Torre 2013). In the case of the informativeness classification task, 

accuracy would be answering the question: How many disaster tweets did the model 

correctly classify (both TP and TN) out of all the tweets?   

Accuracy is calculated using the following formula (Goutte & Gaussier 2005):  
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Precision is the ratio of the predicted positive values compared to the total predicted positive 

values (Sokolova, Japkowicz & Szpakowicz 2006). So, precision would be answering the 

question: How many of the disaster tweets labelled by the model as informative are actually 

informative?  

Precision is calculated using the following formula (Goutte & Gaussier 2005):  

 

 

Recall is the ratio of positives correctly predicted by the model to all the available actual 

positives (Sokolova, Japkowicz & Szpakowicz 2006). So, recall is answering the question: 

Of all the disaster tweets that are informative, how many of those did the model correctly 

predict as informative?  

Recall is calculated using the following formula (Goutte & Gaussier 2005):  

 

 

F1 score is the weighted average of both recall and precision. It takes both FP and FN into 

consideration to have a balance between recall and precision (Jeni, Cohn & De La Torre 

2013). F1 score is seen as a better measure than accuracy in some cases where there is an 

uneven class distribution (Abdelhade, Soliman & Ibrahim 2018).  
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4.2. Models’ Performance for CrisisMMD  

 

This study uses Python 3.7.10. Table 19 shows the Python machine learning libraries used 

with their corresponding versions. 

Python Library Version 

Keras (Keras n.d.) 2.5.0 

pandas (Pandas n.d.) 1.1.5 

nltk (Natural Language ToolKit (nltk) n.d.) 3.5 

gensim (gensim n.d.) 3.8.3 

numpy (NumPy n.d.) 1.19.5 

scikit-learn (scikit-learn n.d.) 0.22.2 

 

Table 19: Machine Learning Python Libraries used 

 

Tables 20 and 21 show the results for the informativeness and humanitarian category 

classification tasks respectively for the CrisisMMD with the different modalities when the 

deep learning models were run in this study. The results are consistent with the previously 

published results in (Ofli, Alam & Imran 2020). Further details for the comparison between 

both works can be found in Appendix A. 

Training mode Modality Accuracy Precision Recall F1-score 

Unimodal Text 81.4 81.0 81.4 81.0 

Unimodal Image 83.6 83.4 83.6 83.5 

Multimodal Text + Image 84.5 84.3 84.0 84.3 

 

Table 20: Results for informativeness classification task for CrisisMMD 
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Training mode Modality Accuracy Precision Recall F1-score 

Unimodal Text 69.0 69.0 69.0 66.0 

Unimodal Image 77.4 77.0 77.4 76.8 

Multimodal Text + Image 77.5 76.8 77.5 76.9 

 

Table 21: Results for humanitarian category classification task for CrisisMMD 

 

It can be seen that for the unimodal image-only models have a better performance when 

compared to the unimodal text-only models in both the informativeness and humanitarian 

category classification tasks. For the informativeness task, the unimodal image-only image 

is around 2% higher on the average of the metrics’ values when compared to the unimodal 

text-only model. For the humanitarian category classification task, the unimodal image-only 

model is a little bit over 6% on the metrics’ values average compared to the only text 

unimodal model.  

The image-only unimodal model is performing better than the text-only unimodal model. 

That could be due to the fact that the text in each tweet is limited to 140 characters, whereas 

the image has all its characteristics with no restrictions. Images performing better than text 

in such classification models is also reported in other studies that were using tweets as their 

source of data (Gupta et al. 2013; Imran et al. 2015; Kumar et al. 2020). 

The results also show that the multimodal model has the best performance in both 

informativeness and humanitarian categories. So, disaster data using both text and images 

together performs better than text alone or images alone. These findings further confirm that 
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multimodal learning leads to an in improvement in performance when compared to unimodal 

learning.  

For the humanitarian category classification task, all models are found to have a lower 

performance compared to the informativeness classification task. This is because the 

informativeness classification task is simpler with only two class labels (informative vs not 

informative). On the other side, the humanitarian category classification is more complex 

with more classes as shown in Table 4.  

Another aspect that could be improved is a more balanced distribution of tweets in each 

humanitarian category. As seen in tables 4, 11, and 16 for the number of tweets per each 

humanitarian category for CrisisMMD, CrisisNLP and CrisisLex26 respectively, the 

categories “not humanitarian” and “other relevant information” usually have higher 

corresponding tweets compared to the other categories.  

 

4.3. Models’ Performance for CrisisNLP 

Tables 22 and 23 show the results for the informativeness and humanitarian category 

respectively for the CrisisNLP with the different modalities in this study. 

Training mode Modality Accuracy Precision Recall F1-score 

Unimodal Text 71.8 71.7 72.0 71.8 

Unimodal Image 70.0 69.0 70.0 69.2 

Multimodal Text + Image 70.0 70.0 70.0 64.0 

 

Table 22: Results for informativeness classification task for CrisisNLP 
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Training mode Modality Accuracy Precision Recall F1-score 

Unimodal Text 49.2 48.0 49.2 46.4 

Unimodal Image 46.3 44.0 46.3 44.2 

Multimodal Text + Image 48.4 51.0 48.0 45.2 

 

Table 23: Results for humanitarian category classification task for CrisisNLP 

 

The results for the CrisisNLP dataset are lower than CrisisMMD for both the informativeness 

and humanitarian category classification tasks. For the informativeness task, the unimodal 

text-only model here is around 9% less than CrisisMMD. The unimodal image-only model 

is around 13.5% less than CrisisMMD. The multimodal model here is around 14% lower as 

an average of most metrics, while the F1 score is around 20% less than CrisisMMD.  

The performance for the humanitarian category for all modalities is significantly less than 

the results of CrisisMMD. The unimodal text-only model here is about 20% less than 

CrisisMMD. The unimodal image-only model is around 30% less than CrisisMMD. The 

multimodal model is around 29% less than CrisisMMD.  

The decrease in the performance for all modalities in CrisisNLP is due to the much smaller 

dataset size.  12708 records were available in CrisisMMD for the informativeness task, while 

only 2531 records were available here in CrisisNLP. Similarly, 8079 records were available 

in CrisisMMD for the humanitarian category, while only 2531 records were available here 

in CrisisNLP. With deep learning models being hungry for data, the larger the size of the 

dataset, the higher chance it gets to properly learn and train the model (Aggarwal 2018). The 

performance in the humanitarian category classification task was lower when compared to 

the informativeness task because of the difference in complexity between them. As 
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mentioned in the previous section, the informativeness task classifies disaster tweets into 

only two labels (informative vs not informative), while the humanitarian category has more 

classes to predict as shown in Table 4.  

The same finding reached in the previous section with CrisisMMD is reflected here with 

CrisisNLP as well: Multimodal models perform better than their unimodal counterparts. This 

has been found to be true for both classification tasks in both the datasets so far.  

To accommodate for the lower performance results for CrisisNLP, a consolidation approach 

is attempted. Since all datasets were restructured to have the same structure including the 

number of columns in their corresponding CSV files for consistency, this allows us to 

consider consolidation. Therefore, the data from CrisisMMD is added to the data for 

CrisisNLP to generate a consolidated dataset of a larger size so that the models have much 

more data to learn from. Then, the experiment is repeated where all the models are rerun 

again for both classification tasks. Tables 24 and 25 show the results for the informativeness 

and humanitarian category respectively for the CrisisNLP consolidated with CrisisMMD in 

with the different modalities. 

 

Training mode Modality Accuracy Precision Recall F1-score 

Unimodal Text 81.9 81.5 81.9 81.5 

Unimodal Image 83.7 83.5 83.7 83.6 

Multimodal Text + Image 84.7 84.5 84.2 84.5 

 

Table 24: Results for informativeness classification task for CrisisNLP+CrisiMMD 
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Training mode Modality Accuracy Precision Recall F1-score 

Unimodal Text 70.1 70.1 70.1 67.1 

Unimodal Image 77.5 77.1 77.5 77.0 

Multimodal Text + Image 77.8 77.2 77.7 77.2 

 

Table 25: Results for humanitarian category task for CrisisNLP+CrisisMMD 

 

The results after the consolidation of CrisisMMD and CrisisNLP are better than results for 

any of the datasets on their own. There is a specially a significant improvement in the 

performance of all modalities for both classification tasks when compared to how CrisisNLP 

performed on its own before consolidation. For the informativeness task, the unimodal text-

only model now is around 10% higher than the first run. The unimodal image-only model is 

now around 14% higher than the first run. The multimodal model sees the most 

improvement, being around 15% higher in most metrics while its F1 score is about 20% 

higher than the first run.  

The humanitarian task sees higher improvement when compared to the informativeness task.  

The unimodal text-only model now is around 21% higher than the first run. The unimodal 

image-only model is now around 32% higher than the first run. The multimodal model is 

now around 29% higher than the first run.  

 

4.4. Models’ Performance for CrisisLex26 

Tables 26 and 27 show the results for the informativeness and humanitarian category 

respectively for the CrisisLex26 with the different modalities in this study.  
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Training mode Modality Accuracy Precision Recall F1-score 

Unimodal Text 76.2 75.9 76.0 76.0 

Unimodal Image 71.4 71.0 71.4 71.0 

Multimodal Text + Image 74.2 73.9 74.0 72.4 

 

Table 26: Results for informativeness classification task for CrisisLex26 

 

Training mode Modality Accuracy Precision Recall F1-score 

Unimodal Text 55.2 48.1 55.0 48.2 

Unimodal Image 61.1 60.0 61.1 57.0 

Multimodal Text + Image 61.2 59.5 61.2 59.2 

 

Table 27: Results for humanitarian category classification task for CrisisLex26 

 

Similar to what was seen in the previous section with CrsisNLP, the results for the 

CrisisLex26 dataset are lower than CrisisMMD for both the informativeness and 

humanitarian category classification tasks. For the informativeness task, the unimodal text-

only model here is around 5% less than CrisisMMD. The unimodal image-only model is 

around 12% less than CrisisMMD. The multimodal model here is around 10% lower as an 

average of most metrics, while the F1 score is around 12% less than CrisisMMD.  

The performance of the model for the humanitarian category for all modalities is less than 

the results of CrisisMMD. The unimodal text-only model here is about 14% less than 

CrisisMMD for the accuracy and recall measures, while it is around 21% less for precision, 

and 18% less for F1 score. The unimodal image-only model is around 16% less than 
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CrisisMMD in most metrics, while the F1 score is around 20% less. The multimodal model 

is around 17% less than CrisisMMD.  

The decrease in the performance for all modalities in CrisisLex26 is due to the much smaller 

dataset size as similarly seen in the previous section with CrisisNLP.  12708 records were 

available in CrisisMMD for the informativeness task, while only 975 records were available 

here in CrisisLex26. Similarly, 8079 records were available in CrisisMMD for the 

humanitarian category, while only 842 records were available here in CrisisLex26. A 

consistent finding here is that multimodal models perform better than the unimodal ones. 

This has been found to be true for all the three datasets for both classification tasks.  

Further consolidation is applied to compensate the lower performance of CrisisLex26. The 

data from both CrisisMMD and CrisisNLP will be added to the data for CrisisLex26 to 

generate a much larger dataset. The models are trained using the consolidated dataset and 

tested using CrisisLex26. Then, the experiment is repeated and the models are rerun for both 

classification tasks. Tables 28 and 29 show the results for the informativeness and 

humanitarian category respectively for the CrisisLex26 consolidated with both CrisisMMD 

and CrisisNLP in with the different modalities. 

 

Training mode Modality Accuracy Precision Recall F1-score 

Unimodal Text 82.0 81.6 82.0 81.6 

Unimodal Image 83.7 83.5 83.7 83.6 

Multimodal Text + Image 84.7 84.5 84.2 84.5 

 

Table 28: Results for informativeness classification task for Consolidated Dataset 

(CrisisMMD+CrisisNLP+CrisisLex26) 
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Training mode Modality Accuracy Precision Recall F1-score 

Unimodal Text 70.2 70.2 70.2 67.2 

Unimodal Image 77.5 77.1 77.5 77.0 

Multimodal Text + Image 77.9 77.3 77.8 77.3 

 

Table 29: Results for humanitarian category task for Consolidated Dataset 

(CrisisMMD+CrisisNLP+CrisisLex26) 

 

The results after the consolidation of all three datasets are better than results for the 

individual datasets on their own. There is a significant improvement in the performance of 

all modalities for both classification tasks when compared to how CrisisLex26 performed 

on its own before consolidation. For the informativeness task, the unimodal text-only model 

now is around 6% higher than the first run. The unimodal image-only model is now around 

12% higher than the first run. The multimodal model is 10% higher in most metrics while 

its F1 score is about 12% higher than the first run.  

The humanitarian task sees higher improvement when compared to the informativeness task.  

The unimodal text-only model now is around 15% higher than the first run for accuracy and 

recall measure, around 22% higher for precision, and around 19% higher for the F1 score. 

The unimodal image-only model is now around 16.5% higher than the first run in most 

metrics, while it is around 20% higher for the F1 score. The multimodal model is now around 

17% higher than the first run.  

The consolidation results in this section as well the previous one show that smaller datasets 

can be added to larger datasets of the same structures to improve the deep learning models’ 

performance during classification. This is quite helpful since there is usually a lack of larger 
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datasets for disaster collections. This means that smaller disaster datasets including home-

grown datasets in individual research papers can all be consolidated together after mapping 

their categories for consistency to lead to much improved performance results.  
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Chapter 5 

Conclusions and Future Work 

This chapter concludes this dissertation by providing an overview of the research 

undertaken, results and findings obtained, and future work in this research domain.  

 

5.1. Conclusion 

Social media is such an integral part of our everyday lives. People are using different social 

media platforms daily to constantly share and consume information. This plays a huge part 

during disaster situations, whether they are natural or man-made. In such times of crisis 

events, people need timely information to understand what is happening to stay safe. Social 

media platforms are the optimal channel for people to communicate during crisis events for 

their ease of access and rapid communications. The use of social media platforms during 

disasters help in quick broadcasting of crisis-related information to a much wider audience 

without having to wait for news agencies, facilitate tracking of affected individuals, simplify 

the process of asking for volunteers or donations, allow people to quickly ask for help, 

improve the effectiveness of rescue operations, and support information dissemination. 

Through analysis of disaster social media posts, this huge amount of disaster data available 

can be narrowed down to relevant categories to allow emergency services to manage their 

resources better for a more efficient disaster management response.  

In this study, a multimodal deep learning system for automatic classification of disaster 

tweets was built. Two classification tasks were tackled which are informativeness (whether 
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the disaster tweet is informative or not informative) and the humanitarian category. A 

comparison between unimodal and multimodal deep learning models across three different 

representative disaster datasets (CrisisMMD, CrisisNLP, and CrisisLex26) was done. For 

text-only unimodal models, a CNN was used together with the word2vec word embeddings 

developed for Crisis informatics over 52 million disaster tweets (Imran, Mitra & Castillo 

2016). For the image-only unimodal models, a VGG16 network is used with the last layer 

adapted to the classification tasks performed. Feature fusion is implemented for the 

multimodal model where two feature vectors from both the text and image modalities are 

obtained.  

The first research question is whether it is possible to integrate multiple disaster datasets 

even if the labels are not identical in all of them, and how effective will the integration be if 

possible. The experiments done in this study show that such integration is possible and 

effective, leading to improved results compared to individual datasets. The humanitarian 

categories labelled in all three datasets are diverse with many variations and labels. In order 

to allow for uniform and comparable classification results, mapping between the different 

categories was done to have a consistent set of humanitarian categories that are used across 

all datasets.  

Out of the three disaster datasets used, CrisisMMD has the largest size compared to 

CrisisNLP and CrisisLex26. Since deep learning models are data hungry, the performance 

of all models when applied to CrisisMMD were significantly better than with CrisisNLP or 

CrisisLex26. To compensate the lower performance of the smaller datasets, consolidation of 

datasets was done. First, CrisisNLP was merged with CrisisMMD, then all three datasets 
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were consolidated together. For the informativeness classification task, the unimodal text 

model in the consolidated dataset of CrisisMMD and CrisisNLP was better with an average 

of 10% than CrisisNLP on its own. Similarly, the unimodal image model improved by about 

14%, and the multimodal model improved by around 15% in precision/accuracy/recall and 

around 20% in F1 score. A higher improvement was seen in the humanitarian category where 

the unimodal text model improved by around 21%, unimodal image model improved by 

around 32%, and the multimodal model improved by about 29%.  

In the consolidated dataset for all three datasets (CrisisMMD + CrisisNLP + CrisisLex26), 

the performance of all models improved as well when compared to individual datasets. For 

the informativeness task, the best model got an F1 score of 84.5. The unimodal text model 

improved by 6% compared to how CrisisLex26 performed on its own before consolidation. 

The unimodal image model improved by around 12% and the multimodal improved by about 

10% in all metrics except F1 score where it improved by 12%. For the humanitarian category 

task, the best model got an F1 score of 77.3. The unimodal text model in the consolidated 

dataset was 15% higher for recall and accuracy, 22% higher for precision and 19% higher 

for the F1 score. The unimodal image model improved by about 16.5% in all metrics except 

F1 score which improved by 20%. Furthermore, the multimodal model improved by around 

17%.  

These results further support the answer to the first research question, showing that mapping 

categories over multiple datasets for consistency and consolidating smaller datasets with 

larger ones significantly improves the deep learning models’ performance during 

classification.  
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Since there is usually a lack of large labelled datasets in general and in the crisis informatics 

domain specifically, this mapping and consolidation approach can be utilized to make use 

of all the available smaller datasets for the deep learning models to achieve higher 

performance results. This consolidated dataset can now serve as a new baseline multimodal 

dataset after CrisisMMD.  

Most of the studies demonstrated in the literature review were performed on small datasets 

that were mostly home-grown for specific disaster types. That has resulted in models that do 

not generalize well when they encounter new kinds of disasters. This issue was tackled here 

in this study with a larger consolidated dataset including a wide variety of natural and man-

made disasters including typhoons, fires, earthquakes, tsunamis, etc.  

All these findings support the answer to the second research question: How does 

performance of unimodal and multimodal models compare across different disaster datasets? 

As the earlier results demonstrate, multimodal models perform better than unimodal models 

for all settings over informativeness and humanitarian category classification tasks across 

the three datasets, which is a finding supported by previous similar studies demonstrated in 

the literature review in chapter 2.  

 

5.2. Limitations and Future Work 

Social media data does not necessarily have a strong coupling between text and image 

content posted together. Sometimes, each of the modalities can be conveying a different 

information type that could contract the other one. So, it is essential to avoid the assumption 

that there is some strong relation between text and image content posted together on social 
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media. This aspect is not really explored much in the research community since all 

approaches for multimodal classification are built on the assumption that both the text and 

image modalities have a common label. Therefore, a possible future research challenge 

would be developing multimodal models that are based on text and image modalities with 

different labels.  

This study tested mapping between categories and consolidation for three disaster datasets. 

A future research direction would be applying this mapping and consolidation approach to 

many more disaster datasets available in the crisis informatics research community. The 

target of developing the largest multimodal disaster dataset can then serve as a new baseline 

for further research directions in the field.  

In addition, the mapping technique between humanitarian categories over different datasets 

could be further improved by a wider analysis of the most commonly represented labels over 

the numerous smaller datasets available, with a much more detailed semantic analysis of 

their representations, so that that the distribution between categories is more balanced and 

all classes are equally represented.  

Another possible future research direction is developing a disaster dashboard that analyzes 

social media data in real-time, categorizing the humanitarian categories and prioritizing them 

to allow emergency services to perform more efficient disaster management operations.  

Variations of neural networks, embeddings and deep learning architectures could also be 

experimented with to examine possible roads to improvement. Examples could include 

variants of RNN models such as LSTM and BiLSTM for text classification, and different 

embeddings such as GloVe and ELMo contextual language embeddings to improve the 
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quality of dealing with informal text in social media data. Experiments with such model 

variants would allow investigations of which deep learning architectures perform best in the 

context of multimodal disaster data classification, and whether a generalized model can be 

developed to perform well on several disaster types.  
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Appendix A  

 

For the informativeness classification task over CrisisMMD, the performance of all models 

for all the three modalities done in this study is consistent with the results found by (Ofli, 

Alam & Imran 2020). The highest difference of 0.6% is between the accuracy for the 

unimodal text model in this study and (Ofli, Alam & Imran 2020). The unimodal image 

model in this study is 0.3% better, while the multimodal model in the study is only 0.1% 

higher.  

For the humanitarian category classification task, the performance of all models for all the 

three modalities done in this study is also consistent with the results found by (Ofli, Alam & 

Imran 2020). The unimodal text model in the authors’ experiment had better results of about 

1%. The unimodal image in this study is 0.6% higher than the ones in (Ofli, Alam & Imran 

2020). For the multimodal model, the accuracy in their experiment is 0.9% higher, precision 

is 1.7% higher, recall is 0.5 higher, and the F1 score is 1.4% higher than in this study. The 

multimodal model has higher differences between the two experiments compared to the 

other two unimodal models, but the differences are minimal and they are still consistent with 

each other.  

The minimal differences between the two experiments can be due to the difference in some 

of the data instances. When this study was performed and the tweets were retrieved, some 

tweets were not available because of suspended user accounts or broken image links. Those 

could have still been available when the experiment in (Ofli, Alam & Imran 2020) was done. 

Another reason is the differences caused by the environment the models are run on in both 
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studies. In (Ofli, Alam & Imran 2020), they were using Python 2.7 but this study uses the 

much newer version Python 3.7.10. Many of the Python machine learning libraries used in 

this study are also the updated newer versions when compared to the other experiment as 

shown in Table 30.  

Python Library (Ofli, Alam & Imran 

2020) 

This Study 

Keras (Keras n.d.) 2.2.4 2.5.0 

pandas (Pandas n.d.) 0.24.2 1.1.5 

nltk (Natural Language ToolKit (nltk) n.d.) 3.4 3.5 

gensim (gensim n.d.) 3.7.3 3.8.3 

numpy (NumPy n.d.) 1.14.2 1.19.5 

scikit-learn (scikit-learn n.d.) 0.22.1 0.22.2 

 

Table 30: Machine Learning Python Libraries in both studies 

 

Differences in libraries’ versions can sometimes change the functionality, therefore that 

could play a factor in different results for the same model (Brownlee 2020).  

 


