ABSTRACT

In the past years, there has been a growing interest among building designers and owners to include intelligence and dynamic systems, as a way for achieving energy-efficient buildings that comply with stringent energy codes and national goals of reducing dangerous emissions, together with improving corporate image. Dynamic façade features have not been sufficiently studied in the Arab Gulf Region. Therefore, this research aimed at exploring the influence of incorporating external dynamic louvers in office buildings under climatic conditions of Abu Dhabi city, through the perspective of energy consumption.

By means of computer energy modeling, a proposed office module was used to evaluate overall energy performance of external dynamic louvers for the south, east and west oriented façade. An economic analysis was carried out also to explore the viability of adapting such dynamic systems in the local market of Abu Dhabi.

The results of this research showed that the installation of dimming methodology for lighting was always advantageous. It was found that the potential energy saving for south, east and west oriented façade was 24.4%, 24.45% and 25.19%, respectively. The proposed dynamic fenestration system with dimming light achieved maximum energy reductions among other scenarios, although by small margin in many cases. The dynamic system achieved a reduction of energy consumption of approximately 34.02%, 28.57% and 30.31% for south, east and west orientations, respectively. The optimal angle fell between -20° and 0° for the south oriented façade and between 0° and 20° for east and west oriented façade. The results of the economic analysis showed that high construction costs and low prices of electricity in Abu Dhabi were direct reasons for the unfeasible investment of the proposed static or dynamic fenestration systems.

i

In conclusion, the dynamic ability of external louvers can improve the energy performance of fixed louvers especially when lighting control methodology is applied. However, a careful integration of any proposed dynamic system and glass properties is highly recommended to help acting as a true energy saver as well as environmental controller.

ACKNOWLEDGEMENT

The writing of this dissertation has been one of the most significant challenges in my career. Without the power grated from Allah and the support, patience and assistance of the following people, this research would not have been to exist. It is to them that I owe my deepest gratitude.

My warm thanks go to my parents, brother and sisters whose presence inspired me to improve myself in every aspect. I'm always in debt to their loving support.

And, of course, this dissertation would never have become a reality without my wife, Tasnim. Her devotion, understanding and encouragement helped me to be stronger. I thank her beyond words. Despite many places I used to go away from my child's disturbance, his existence in my life was another source of energy to carry on.

I would like to gratefully thank my supervisor Prof. Bassam Abu Hijleh for steering me towards insightful references and for the patience and effort spent to read myriad versions of the dissertation. My gratitude goes to him for his comments, suggestions and discussions, but above all for always being prepared to discuss research issues regardless of the time schedule.

My appreciation is due to my tutors; Dr. Ahmad Okeil and Dr. Gisella Loehlin for the sincerity in teaching me the first modules of this course. My thanks extend to Lynn Randall for dedicating chunk of her time to review the language of my dissertation.

My employer (W.S. Atkins and Partners Overseas) has been very encouraging in my academic endeavor by providing a full sponsorship and myriad support until the completion of this study. Their support will always be highly appreciated.

iii

Finally, I would like to acknowledge my friends and everyone who takes the time to respond to my questions have nothing to benefit from doing so; it's just their support for my research and objectives that make them take out the time to help me resolving all problems that were raised during the research.

TABLE OF CONTENTS

Abstr	act	i
Ackno	owledgement	iii
Table	of contents	V
List o	f Figures	viii
List o	f Tables	xiii
Chapt	er 1: Introduction	
1.1	Global context	2
1.2	Building envelopes	3
1.3	UAE Scenario	6
1.4	Motivation	7
1.5	Dissertation organization	8
Chapt	er 2: Literature Review	
2.1	Introduction	11
2.2	Intelligent buildings and dynamic facades	11
2.3	Features of Intelligent dynamic Facades	20
2.4	Automation and occupant response	22
2.5	Solar Control and Dynamic Window Shading Devices	23
2.6	Findings of previous studies of Dynamic Systems	25
2.7	Challenges of Dynamic Systems	39
2.8	Abu Dhabi - UAE climate	40
2.9	Dynamic Facades in UAE	46
2.10	Problem statement	48
2.11	Aim and Objectives	50

Chapter 3: Methodology

3.1	Defining research parameters	52
3.2	Review of Methodologies of previous work	53

3.3	Research	n Design and Methodology	55
3.4	Selection	of Simulation Tool process	57
3.5	Integrate (IES-VE)	d Environmental Solutions- Virtual Environment	59
3.6	Validity a	nd Reliability	60
Char	tor 4: Buil	ding the Simulation Model	
Chap	Dier 4: Duii	ang the Simulation Model	
4.1	Model De	escription	63
	4.1.1	Office Module	63
	4.1.2	Module Finishes	66
	4.1.3	HVAC and Lighting assumptions	67
	4.1.4	Louver Control Strategy	68
	4.1.5	Weather Data	69
	4.1.6	Orientation and time	69
	4.1.7	Operation Profiles	72
4.2	Simulatio	n cases configuration	74
	4.2.1	Base case	75
	4.2.2	Base case with lighting control and no external louvers	76
	4.2.3	Fixed and dynamic Louvers with lighting control	77
4.3	Key study	y considerations	77
4.4	Modeling	Process	78
4.5	Model Va	alidation	79

Chapter 5: Results and Discussion

5.1	South Fa	çade Simulations	82
	5.1.1	Glass Shading Coefficient 0.41 and lighting sensor @ 2 meters	82
	5.1.2	Glass Shading Coefficient 0.41 and lighting sensor @ 4 meters	95
	5.1.3	Glass Shading Coefficient 0.746 and lighting sensor @ 2 meters	96
5.2	East Faça	ade Simulations	98
	5.2.1	Glass Shading Coefficient 0.41 and lighting sensor @ 2 meters	98
5.3	West Faç	ade Simulations	101
	5.3.1	Glass Shading Coefficient 0.41 and lighting sensor @ 2 meters	101
5.4	General [Discussion	102

Chapter 6: Economic Analysis

6.1	Inputs for the	he Study	111
6.2	Annual Ene	ergy Consumption of all configurations	112
6.3	Capital cos	t estimation of all configurations	114
6.4	Results		114
Chap	oter 7: Concl	lusions and Recommendations	
7.1	Conclusion	S	117
7.2	Recommer	ndations for future research	119
Refe	rences		121
Арре	endices		
A	ppendix A	South Façade Simulations (S.C = 0.41, Sensor position @ 2 meters	131
A	ppendix B	South Façade Simulations (S.C = 0.41, Sensor position @ 4 meters	141
A	ppendix C	South Façade Simulations (S.C = 0.746, Sensor position @ 2 meters	151
A	ppendix D	East Façade Simulations (S.C = 0.41, Sensor position @ 2 meters	161
A	ppendix E	West Façade Simulations (S.C = 0.41, Sensor position @ 2 meters	171
A	ppendix F	Economic Analysis	181

List of Figures

Figure 1.1	A dome shaped hut in Ethiopia combines wall and roof in one material; (b) Timber frame and thatched roof (Arnold, 2009)	3
Figure 1.2	Sectoral (a) energy consumption and (b) carbon emission in 1998 (Kazim, 2005:435)	7
Figure 2.1	Skidmore Owings and Merrill's office building of 1983 in Hartford, Connecticut, USA (Wigging and Harris, 2002)	15
Figure 2.2	Adaptability of Human body. Wigging and Harris (2002)	17
Figure 2.3	Dynamic Façade Technology concept. (LBNL, 2009)	19
Figure 2.4	Characteristics of the modeled office (Newsham, 1994).	26
Figure 2.5	Nighttime and daytime cooling loads for 7 days (Cho et al., 1995)	28
Figure 2.6	Floor plan and section view of full-scale test room (Lee et al., 1998).	29
Figure 2.7	Floor plan and section of the office module (Carbonari et al., 2002)	32
Figure 2.8	Section through the office module (Tzemplikos and Athenitis, 2002)	33
Figure 2.9	Angle of blind slat (Kim and Park, 2009)	36
Figure 2.10	Simulation model (Kim and Park, 2009)	36
Figure 2.11	UAE map (Google Earth, 2009)	41
Figure 2.12	Abu Dhabi Annual temperature (IES-VE Database)	42
Figure 2.13	Abu Dhabi Annual Humidity (IES-VE Database)	42
Figure 2.14	Abu Dhabi Annual direct solar radiation(IES-VE Database)	43

Figure 2.15	Abu Dhabi Annual diffused solar radiation (IES- VE Database)	44
Figure 2.16	Abu Dhabi Annual cloud cover (IES-VE Database)	44
Figure 2.17	Abu Dhabi Annual wind direction (IES-VE Database)	45
Figure 2.18	Abu Dhabi Annual wind speed (IES-VE Database)	45
Figure 3.1	Ranking the ten tools, Attia et al. (2009)	58
Figure 4.1	Floor Plan , Elevation and wall section of simulation Office Module(South Orientation)	64
Figure 4.2	IES Simulation Model (South Orientation)	64
Figure 4.3	Floor Plan , Elevation and wall section of simulation Office Module(East & West Orientation)	65
Figure 4.4	IES Simulation Model (East & West Orientation)	65
Figure 4.5	Plan and side elevation of lighting sensor @ 2.0m from window (extracted from IES-VE)	67
Figure 4.6	Plan and side elevation of lighting sensor @ 4.0m from window (extracted from IES-VE)	68
Figure 4.7	Sun Path Diagram of Abu Dhabi (IES Database)	69
Figure 4.8	June 20 Weather Data of Abu Dhabi (from IES-VE Weather Database)	70
Figure 4.9	September 20 Weather Data of Abu Dhabi (from IES-VE Weather Database)	71
Figure 4.10	December 20 Weather Data of Abu Dhabi (from IES-VE Weather Database)	71
Figure 4.11	March 21 Weather Data of Abu Dhabi (from IES- VE Weather Database)	72
Figure 4.12	Daily Operation Profile	73
Figure 4.13	Weekly Dimming Profile	73

Figure 4.14	Weekly Operation Profile	74
Figure 4.15	(a) Angles of vertical louver slats (b) Angles of horizontal louver slats	77
Figure 4.16	IES and HAP cooling loads in June	80
Figure 4.17	IES and HAP cooling loads in December	80
Figure 5.1	Total Energy Consumption of all scenarios for south oriented facade in 20 December	83
Figure 5.2	Lighting loads of all scenarios for south oriented facade in 20 December	84
Figure 5.3	Cooling loads of all scenarios for south oriented facade in 20 December	85
Figure 5.4	Optimal Louver Slat angle of south oriented facade in December from 7:30 to 20:30	86
Figure 5.5	Hourly energy consumption of all scenarios south oriented facade in 20 December from 5:30 to 20:30	87
Figure 5.6	Optimal Louver Slat angle of south oriented facade in March from 5:30 to 20:30	89
Figure 5.7	Hourly energy consumption of all scenarios of south oriented facade in 21 March from 5:30 to 20:30	90
Figure 5.8	Optimal Louver Slat angle of south oriented facade in 20 June from 5:30 to 20:30	91
Figure 5.9	Hourly energy consumption of all scenarios of south oriented facade in 20 June from 5:30 to 20:30	91
Figure 5.10	Annual solar gain of the base case of south oriented facade	92
Figure 5.11	Full day cooling loads in 21 June	92
Figure 5.12	Optimal Louver Slat angle of south oriented facade in 20 September from 5:30 to 20:30	93

Figure 5.13	Hourly energy consumption of all scenarios of south oriented facade in 20 September from 5:30 to 20:30	94
Figure 5.14	Total hourly energy saving of South oriented façade compared to the base case for the four selected days in December, March, June and September	95
Figure 5.15	Total hourly energy saving of South oriented façade compared to the base case in December, March, June and September	96
Figure 5.16	Total hourly energy saving of South oriented façade compared to the base case for the four selected days in December, March, June and September	97
Figure 5.17	Hourly energy consumption of all scenarios of east oriented facade in 20 December from 5:30 to 20:30	99
Figure 5.18	Solar gain and cooling loads of the base case for the east oriented facade in 20 December	99
Figure 5.19	Total hourly energy saving of East oriented façade compared to the base case for the four selected days in December, March, June and September	100
Figure 5.20	Hourly energy consumption of all scenarios of west oriented facade in 20 December from 5:30 to 20:30	101
Figure 5.21	Total hourly energy saving of East oriented façade compared to the base case for the four selected days in December, March, June and September	102
Figure 5.22	Total hourly energy saving of east oriented façade compared to the base case for the four selected days in December, March, June and September	104
Figure 5.23	Illuminance levels at work plane in 20 December at 12:00	106
Figure 5.24	Glare levels at work plane in 20 December at 12:00	107

Figure 5.25	South oriented façade glare levels in 20 June at 12:00 for the optimal louver slat angle (-40°)	108
Figure 5.26	South oriented façade glare levels in 21 March at 12:00 for the optimal louver slat angle (-20°)	108

List of Tables

Table 2.1	Definitions and Synonyms of Intelligent Building Envelope adapted from Aschehoug et al. (2005)	16
Table 2.2	Features of Intelligent Skins adapted from Wigging and Harris (2002)	20
Table 2.3	Characteristics of selected simulation cases	35
Table 2.4	Results of Simulation <i>adapted from Kim and Park</i> (2009)	36
Table 2.5	Statistical data of precipitation in Abu Dhabi (World Metrological Organization, 2009)	43
Table 3.1	Advantages and disadvantages of simulation and field study methodologies	55
Table 3.2	Part of simulation tools comparison table no.2, Crawley et al. (2005)	58
Table 4.1	Simulation Model Construction Materials	66
Table 4.2	Matrix of Simulation Cases	75
Table 5.1	Hourly energy consumption of South oriented façade in 20 December from 5:30 to 20:30 (Shading coefficient 0.41, lighting sensor @ 2 meters	88
Table 6.1	Annual energy consumption	113
Table 6.2	Capital cost estimation	114
Table 6.3	Pay-back period of all configurations	115