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ABSTRACT

In the past years, there has been a growing interest among building

designers and owners to include intelligence and dynamic systems, as a

way for achieving energy-efficient buildings that comply with stringent

energy codes and national goals of reducing dangerous emissions,

together with improving corporate image. Dynamic façade features have

not been sufficiently studied in the Arab Gulf Region. Therefore, this

research aimed at exploring the influence of incorporating external

dynamic louvers in office buildings under climatic conditions of Abu Dhabi

city, through the perspective of energy consumption.

By means of computer energy modeling, a proposed office module was

used to evaluate overall energy performance of external dynamic louvers

for the south, east and west oriented façade. An economic analysis was

carried out also to explore the viability of adapting such dynamic systems

in the local market of Abu Dhabi.

The results of this research showed that the installation of dimming

methodology for lighting was always advantageous. It was found that the

potential energy saving for south, east and west oriented façade was

24.4%, 24.45% and 25.19%, respectively. The proposed dynamic

fenestration system with dimming light achieved maximum energy

reductions among other scenarios, although by small margin in many

cases. The dynamic system achieved a reduction of energy consumption

of approximately 34.02%, 28.57% and 30.31% for south, east and west

orientations, respectively. The optimal angle fell between -20° and 0° for

the south oriented façade and between 0° and 20° for east and west

oriented façade. The results of the economic analysis showed that high

construction costs and low prices of electricity in Abu Dhabi were direct

reasons for the unfeasible investment of the proposed static or dynamic

fenestration systems.
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In conclusion, the dynamic ability of external louvers can improve the

energy performance of fixed louvers especially when lighting control

methodology is applied. However, a careful integration of any proposed

dynamic system and glass properties is highly recommended to help

acting as a true energy saver as well as environmental controller.
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