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Abstract 

In this research, mixing system regulation was investigated. Two control methodologies were 

studied. Least effort method from the Modern British School, and H-infinity controller from 

Modern American School. The closed-loop system transients and steady-state response were 

validated. Controller disturbance rejection and energy consumption were verified, and the 

results were compared between the two design methodologies.  

This research is started with a brief history of control systems, major effective millstones of 

this science and examples of main implementations. After which the main idea about 

multivariable systems is presented.  

The system under study is a pneumatic feed mixing system used to simulate an industrial 

mixing process. It consists of two inputs and two outputs. Research objectives are to evaluate 

the two controllers under study and compare their performance and energy consumption used 

to achieve this performance. 

This system was raised as a control problem used by Dutton (1997) to compare several 

controllers, and re-used by Whalley and Ebrahimi (2006). Revalidation work is done for least 

effort controller, MATLAB® code and Simulink® model were designed, and the result is 

compared with another controller designed based on optimal H-infinity method. 

After a comparison between the two control techniques, this research concludes that the least 

effort control method is capable of giving superb solution to the control problem, all the 

objectives achieved with simple model and perfect energy consumption. H-infinity controller 

offered perfect response in terms of speed, disturbance rejection, and steady state de-coupling, 

but it has shown high energy cost with complicated model. This shall promote the use of least 

effort controller for general industrial multivariable mixing process and similar processes. 



 خلاصة البحث

تسةةةةةلتا تمت  ت دراسةةةةةي  ملتي الفح ن في الخل الولا تغ الفاذهي الة.ا تي تم البحث،في هذا 

 الحدهثي،من المدرسةةةةةي البره خاتي الفح ن بخلجةد الأدا ، ن للفح ن  طرهقي تمنةجتف الضةةةةة.   ل 

أدا  النلخل النختج من حتث تن الفحقق من من المدرسي الأمره تي الحدهثي   غطرهقي اتش اللااةخ تي

في دراسةةةي مقخراي بتن غاسةةةفةلال ال خ ي  الاضةةة رابخل ال خر ي من الوخر رفض سةةة  ي الأدا  غ

 منةجتفي الفصمتن 

غالمرغر بشةةةة ي سةةةة ها  ل  اقخ  الفح.   الفح ن،تخرهخ م.جز لأالمي  بسةةةة دغ د بدأ هذا البحث 

 بس د امثلي ر تستي لف بتقخل حف  ال. ت الحخض  مرغرا العلن  الر تستي في تخرهخ هذا

لدراسةةةةةةي النلخل  ته ا لذي طبقت  ل غه. ام.ت  موبري فاذهي مفعدد ال ه.ا ي ه. الخل خلاا

  ملتي خلا صنخ تي  اسفودل لمحخكخة 

 ة خدر  بخلجةد الأدا تقنتخل الفح ن، هولص هذا البحث إل  أن طرهقي الفح ن كلا بعد المقخراي بتن 

جمتا الأهداف تن تحقتقةخ ما ام.ت  بسةةةتا غاسةةةفةلال  الفح ن، ل  إ  خ  حي ممفخز لمشةةة لي 

اسةةةةفجخبي مثخلتي من حتث  الفح ن المصةةةةممي ب رهقي اتش اللااةخ تي خ ي   دمت غحدة مثخلي لل

اسةةةةةبتخ مقخراي  ، غل نةخ أظةرل ت لفي طخ ي  خلتيالفاترال ال خر ي من الوخر السةةةةة  ي، غرفض 

 هفضةةةةيهذا البحث   كخات معقدة الفصةةةةمتنالفح ن بخلجةد الأدا  كمخن ان غحده الفح ن ب رهقي 

المصةةممي بنلخل الفح ن بخلجةد الأدا  في  ملتي الولا الصةةنخ تي غاترهخ  اسةةفودال غحدة تح ن

 من العملتخل الممخثلي 
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Chapter I: Introduction 

1.1 Research Background 

Industrial automation growth in current manufacturing plants system calls for well-defined 

rules between equipment manufacturers and their customers. Production methods with 

automatic machines integrated on them or used in their operation are required to fulfill the 

growth of the market and the high demand for supply. Automated machines are demanded not 

only because they speed the production lines, but also, they make manufacturing processes 

easier, and more efficient. Moreover, well-regulated machines reduce the human intervention 

to the minimum which results in accurate processes gained by rolling-off the human error 

factor.  One of the most commonly used machines in the modern industrial plants are mixers 

(figure 1.1.1). 

 

Figure 1.1.1: Industrial mixers (EKATO Holdings GmbH) 

Mixers are used since modern industrial processes mostly involve some form of mixing. 

Mixing is defined in industrial process systems engineering as a process that involves changing 



 

2 

 

a heterogeneous material targeting to make it less heterogeneous or more homogeneous. If 

suitable machine is sellected, mixing of liquid, solid, or gas into another liquid, solid, or gas is 

possible. 

Mixing process is not simple to achieve especially in a larg (industrial) scale, efficient mixing 

can be difficult to achieve. Considerable engineering effort is spent on designing and enhancing 

industrial mixing processes.  

As a matter of fact, , static mixers are not the only type of mixers that’s used in industrial scale. 

Dynamic mixing, in which the mixing is performed in batches, is also used. In this type of 

mixing, the mixers use motors which move in very high speeds (thousands of RPM). Motor 

speeds are reduced by gearboxes which increases the torque. Sometimes, multi-shaft mixers 

are used, where both mixer types are being used for complete blending of the mixture. (figure 

1.1.2). Additional to batch mixing processes, mixing at industrial scale can be performed using 

a continuous processor in a continues manner. Using a Continuous Processor, one or more dry 

or liquid ingredients can be fed to the machine in an accurate continues way, and in the same 

continuous pattern, a homogeneous mixture will come out of the machine. Due to many 

advantages, like lower energy consumption, ease of maintenance and cleaning, and ability to 

control, many industries shifted to continues mixing using continues mixers like the twin screw 

continues processor. 



 

3 

 

 
 

Figure 1.1.2: Continues mixing system (GEA Group, 2018) 

 

The system to be studied is described by Dutton (1997), it is an industrial process in which two 

streams of liquid feedstock, one is hot, and the other is cold, are poured and mixed into a vessel. 

The mixture is continuously drawn off from the vessel in a variable flow rate into the next part 

of the process.  The aim is to control both the temperature of the mixture and its head in the 

mixing vessel. This is required so that the next part of the process will be fed under constant 

(regulated) temperature and head conditions. The control is done using flow control valves on 

two feeding lines. To obtain the system model a pneumatic prototype was created from which 

the system transfer function is interpolated. 

 

1.2 Problem Statement 

Pneumatic feed mixing system regulation will be studied in this research. The system is a 2-

input 2-output multivariable system with a transfer function extracted by exiting the system by 

applying an input and then the output is measured, Dutton (1997). The inputs to the system are 

referred to by u1, u2  which simulate hot and cold feed lines. And outputs are y1, y2  which 

simulates fluids mix head and temperature. 
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Since multivariable systems had the difficulty of output interaction, they are difficult to control 

because of cross couplings in the process. If every input or set point biased several process 

output variables instead of one, and if the multivariable controller did not counteract such issue, 

then the system performance will be affected in two ways. Any change in one setpoint will 

cause a response in every output variable of the process corresponding to the set point. Also, 

the system which is complicated dynamic system and consisting of many control loops will be 

“observed” by the controller, resulting in a narrow system stability margin, and the robustness 

of the system will be affected. 

Considering the above, the main requirement of the regulation problem is to regulate both the 

outputs confirming faster system response assuring near zero or low interaction at the output 

variables. The system disturbance recovery capability to be confirmed. Finally, all of the above 

is achieved with low energy, that’s why the system energy expenditure will be evaluated. 

 

1.3 Aims and Objectives 

A pneumatic feed mixing system will be controlled with two multivariable controllers, A least 

effort controller, which is introduced by Whalley R. and Ebrahimi M. (2004), and an H-infinity 

controller which was introduced at the late 1980’ and widely used as it is applicable to control 

design problems involving multivariate systems with coupling between channels. Least effort 

controller is promoted by offering a good solution to multivariable control problems with least 

energy cost. In this research, a comparative study between H-infinity controller and least effort 

controller will be established to evaluate each controller strengths and weaknesses. The main 

fields of comparison are based on the ability of controllers to maintain the system stability for 

the closed-loop systems and to enhance the performance of the system in both the steady state 

and the transient periods. Also, to improve input-output interaction by limiting it to 10%, and 

to study the controller capability of performing disturbance rejection. Controller energy 



 

5 

 

consumption will be studied and monitored. Also, the simplicity of the controller model and 

ease of implementation will be on point to aim. 

 

1.4 Research Organization 

This research is organized in seven chapters as the following. The first chapter is an 

introduction that highlights the research background, were a summary about mixing systems 

is given, after which research problem is stated and then aims and objectives are presented. 

Chapter two is basically a literature review, general historical background about the 

development of control theory, and main types of controllers; the light will be focused on the 

history of the implemented controllers and their main applications. Chapter three is presenting 

the open-loop system model and its response to step a change in both the inputs for later 

comparison with the controlled system. Then the mathematical derivation and analysis theory 

will be reviewed for least effort controller as per Whalley R. and Ebrahimi M. (2004). The 

same task is done for H-infinity controller in what is considered as a theoretical review before 

the implementation of the design in chapter four. In chapter four, the concepts presented in 

chapter three is applied to the mixing system model. Least effort controller design work done 

by Whalley R. and Ebrahimi M. (2004) was validated. And with the assistance of MATLAB® 

control toolbox, H-infinity controller was designed. Chapter five mainly represent the 

simulation results for the control models from chapter four, system response for two inputs was 

simulated and plotted. In chapter six, a comparison study was conducted between the two 

controller models regarding closed-loop response, disturbance rejection, output interaction, 

control energy consumption and ease of implementation. In chapter seven the research is 

concluded, the positives and the drawbacks for every method is highlighted. Also, some 

recommendations for future work development were mentioned. 
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Chapter II: A Literature review 

2.1  Introduction 

Control theory dated from the nineteenth century, when the operation of centrifugal 

governor of James Watt’s steam engine was first mathematically described by differential 

equations by Maxwell (J Maxwell, 1868).  

Centrifugal governors are governors with a feedback system which regulate 

an engine speed by managing the amout of flow of the fuel fed to that engine. These governors 

were meant to maintain a constant speed, regardless of any change in load or fuel-supply 

conditions. The controller used was a proportional controller. 

 

 

Figure 2.1.1: Centrifugal governor in Watt engine  

(Science Museum Group Collection, 1788) 
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Maxwell concept was to linearize the motion differential equation to find the characteristic 

equation of the system.  And then he proved the system stability when the characteristic 

equation roots have negative real parts. 

 

Routh–Hurwitz theory  

In 1874, Edward Routh, an English mathematician who was a classmate of Maxwell and 

working at the University of Cambridge, invinted a numerical methode for checking if a 

polynomial has negative poles, and contributed to the development of control theory, by 

establishing the concept of control stability (Routh E., 1877). At the same time and 

independently, a German mathematician called Adolf Hurwitz was specialized in algebra, 

and number theory. Adolf Hurwitz studied system stability and analyzed it using differential 

equations. In 1895, Routh–Hurwitz theory, named after Routh, and Hurwitz, was proved. This 

theory was and still used to determine the stability of polynomials by checking if all roots of 

the polynomial are located in the LHS plane.  

 

Lyapunov stability 

Independently of Maxwell, using differential equations, Alexander Lyapunov worked on the 

nonlinear differential equations stability, he used a generalized notion of energy (Lyapunov, 

1893). Alexander Lyapunov invented methods for stability in the time domain that helped in 

the development of control theory and are still in use till date. 

In 1913, Henry Ford introduced a mechanized assembly line used in automobile production, 

this assembly line is considered a significant step forward in the application of control theory, 

in 1922, ford said about the completion of his 1913 assembly line: “I believe that this was the 

first moving line ever installed. The idea came in a general way from the overhead trolley that 
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the Chicago packers use in dressing beef”. (Ford & Crowther 1922, p. 81). Later at 1922 and 

the years after, PID control theory came into the picture, Minorsky was the first to introduce it 

(Minorsky, Nicolas,1922).  

 
 

Figure 2.1.2: Ford’s 1913 assembly line (Swan, Tony, April 2013) 

 

 

Frequency domain method 

In 1927, the frequency domain method was introduced while engineers where trying to solve 

the problem of distorsion that took place on long distance telecommunication systems. After 

six years of intensive research on amplifiers, the American engineer Harold S. Black 

revolutionized telecom systems when he proposed the negative feedback in 1927 (Black, 

1934). This invention had a high impact in many control applications and opened the door for 

frequency method to be used in control systems. 
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In 1932, at Bell Laboratories H. Nyquist came into the picture by developing a frequency 

domain based method of analyzing the stability of systems (amplifiers). He worked 

reacearch department of AT&T from 1917 to 1934. Additional to his significant contribution 

to the telecom field that developed information theory afterwords, he contributed significantly 

in the area of control theory. His published classic paper on the stability of feedback amplifiers 

is a milestone in control theory (H. Nyquist, 1932).  The Nyquist criterion of stability was 

oriented about plotting a polar plot of a system’s transfer function, it is found in all textbooks 

on feedback control theory. 

Later, also at Bell Laboratories, H.W. Bode came into the picture by analyzing feedback 

amplifiers. He is considered as a pioneer of control theory by revolutionizing the control 

reaserch with new meethods. Later in the second world war, Bode introduced essential 

improvement to the control and design of anti-aircraft wepons, and his work was continued 

after the war, to the design of missile flight control systems.  H.W. Bode also contributed to 

control theory and introduced his own way of analyzing the closed-loop stability of linear 

systems mathematically and graphically by introducing the transfer function frequency 

response magnitude and phase plots, which was named after him (Bode plots). Bode also 

introduced the concept of phase margin and gain margin (Bode, 1940).  

 

The hysteresis controller 

Control theory became an important area of research by the second world war. The method of 

discontinuous automatic control systems was developed in the time of second world war by 

German -American control theorist Irmgard Flugge-Lotz, the bang-bang principle (hysteresis 

controller) was applied to enhance an aircraft flight control device (Flugge-Lotz, Irmgard, 

Titus, Harold A., 1962). Mechanical approaches were implemented to enhance the stability of 

some systems like in ship fin stabilizers which used a gyroscopic control system. 
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Figure 2.1.3: Two gyroscopes being installed in the first large ship to use gyroscopic  

stabilization (Gleaves, Albert 1921) 

 

Nichols chart 

In 1947, at USA, Massachusetts Institute of Technology, Nathaniel B. Nichols invinted what 

is called “Nichols chart”. He used it as method of design of feedback control systems based on 

the frequency domain. By the same time, he established the “theory of servomechanism” and 

his research was of a great value (James, Nichols and Phillips, 1947).   

 

First industrial robot 

In the year of 1954, George Devol developed the “programmed article transfer”, which is 

typically the first industrial robot design, and in 1960 this design saw the light by introducing 

the first Unimate robot.  And by 1961 this robot was installed in a die-casting machine. (Dorf 

and Bishop, 2008). 
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Figure 2.1.4: Unimate, The First Industrial Robot 

(Robotic Industries Association, 2018) 

 

Root locus method 

Then, in 1965, a major step in control systems design was introduced by Walter R. Evans, that 

is the root locus method. This method was a frequency domain method based on the use of 

open-loop system information (poles and zeros) to analyze the the closed-loop when changing 

one of the system parameters - mainly the gain within a feedback system-. (Evans, Walter 

R. 1965). 

 

Modern control & Kalman optimal controller 

In 1960, a significant achievement came to light, and the modern era of control theory started 

by Rudolf Kalman writings. Kalman presented the main problems of nonlinear system theory, 

and he was able to solve them smartly. Kalman considered the Lyapunov nonlinear systems 

stability in (Kalman and Bertram, 1960). Then in (Kalman, 1960a) he introduced his optimal 

control theory and a new design of what is know now as the linear quadratic requlator (lqr). 

Kalman also wrote about “optimal filtering and estimation theory”, and in his book (Kalman, 
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1960b), he presented  the design for the discrete Kalman filter. A year later, in (Kalman and 

Bucy, 1961), Kalman introduced his continues time filter. 

One of the major achievements of Kalman is introducing the “state” which is a “a mathematical 

entity that mediates between inputs and outputs” (Gopal M., 1993). Kalman used this concept 

to solve the difficulties faced with time domain higher order differential equations solution, 

without being obligated to solve the control probblems in the frequency domain avoiding its 

limitations. 

Later in 1980, Robust control system design was widely studied. And in the 1990’s, feedback 

control systems started to be commonly used in mega industries like car manufacturing. 

 

2.2  Control Fundamentals Review 

Control theory is basically about dealing with any type of system miss behavior like a delay or 

unwonted dynamics. A mathematical model of the physical system is formulated, a control 

method is applied to the open-loop system model, and then, the complet closed-loop system 

model is tested on a software or hardware prototype before applyied to the physical system. 

Although the mathematical formulation of control problems is sometimes complex, the basic 

concept upon which control theory is formulated in not as complicated as mathematical 

formulation. Control theory is based on three basic fundamental concepts. 

The first concept is “feedback”. Although the feedback concept is older in the history of 

science, but the term “feedback” that means feeding back an output to regulate an input came 

in use by engineers from AT&T Bell Lab. And it was first used in stabilization of op-amps 

(Mayr, 1970). In a feedback process, one or more of the system states or outputs determines 

the control action by the controller . 

Another main concept in control theory is the concept of obligatory transients. Any system 

need to be in transient state before settling. It is important to mention that there is no 
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requirement to force the system with high energy to drive it to steady state in no time. It is more 

practical and physically realizable while controlling a system to allow the system fluctuation 

in the transient period and in the same time to sellect “well behaived” transients which will 

allow the system to settle down to its steady state without driving it unstable. 

Another major control theory concept in that of “optimization”. In brief words, optimization in 

control theory sets a target in control problems  that is giving the required control action with 

acceptable transients and steady state performance with maximized profit or minimized costs.  

 

 

Open-loop systems 

Control loops can be categorized into two categories, open-loop control or (feed-forward), and 

closed-loop control or (feedback). In open-loop, the output of the system is not sensed or 

measured and this leads to a system actuating device with no information about the system 

output.  

 
 

Figure 2.2.1: Typical open-loop system representation (Dorf and Bishop, 2008) 

 

Closed-loop control 

In closed-loop systems, the controller “control action” depends on the reference input and also 

on the process output. A feedback signal is introduced to ensure that the controller maintains 

the pre-set (reference) input.  In closed-loop, the control system monitors the feedback, and 

then the difference between the reference and the feedback is set to be the new input at which 

the control action will react to trying to reduce this deviation to zero.  
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Figure 2.2.2: Typical closed-loop system representation (Dorf and Bishop, 2008) 

 

While open-loop control is simple, and easy to construct and maintain, closed-loop controllers 

supersede open-loop control because it offers the following  

o Disturbance rejection.  

o Improved reference tracking performance 

o Possibility to stabilize unstable processes. 

Some application used both open-loop and closed-loop. The open-loop controller is used in 

such applications to set the reference tracking performance to a higher level. A well-known 

closed-loop controller architecture is the proportional, integral, derivative (PID) controller. 

 

PID controller 

PID notation is taken of proportional, integral, derivative. It is a closed-loop controller widely 

used in nowadays industry due to its simplicity and variety of many applications. PID controller 

continuously observe the output and measure it, by minusing the measured feedback output 

from the reference input (the required set point). The controller afterwhich tries to enhance the 

output by setting a proportional, integral, and derivative correction terms. 
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Figure 2.2.3: Typical representation of a PID controller (Dorf and Bishop, 2008) 

 

From figure 2.2.3, the PID controller equation in time domain is: 

𝑓(𝑡) = 𝐾𝑝. 𝑒(𝑡) + 𝐾𝑖  ∫ 𝑒(𝑡). 𝑑𝑡 +
𝑡

0

𝐾𝑑  
𝑑(𝑒(𝑡))

𝑑𝑡
 

and in frequency domain: 

 

𝐹(𝑠) = 𝐾𝑝. 𝐸(𝑠) +
𝐾𝑖

𝑠
. 𝐸(𝑠) + 𝐾𝑑. 𝑆. 𝐸(𝑠) 

Proportional component 

The proportional gain determines the ratio of output response to the error signal. It can be 

mentioned that if the proportional gain increased, the speed of the control system response will 

increase. But, if the proportional gain is larger than some limit, the system response will start 

oscillating, and for larger gains, it may go out of control. 

 

Integral component 

The integral part of the PID controller calculates the summation of the error over time, which 

means that small error measurements will keep adding up with time till they become higher 

and the integral part effect will keep increasing in slow manner targeting the steady-state error 

that feeds if until the error goes to zero. Integral windup may come to picture if integral action 

saturated the controller without driving the error to zero. 
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Derivative component 

The derivative component of the PID controller is directly proportional to how fast the system 

changes its response. The higher the rate of change of the system response, the higher the effect 

of the derivative component. The derivative component role is to force the output to decrease 

if it is increasing fast. Giving more weight to the derivative component will have a proportional 

effect on the system speed of response. However, sellecting a high derivative component is not 

a practice in real practical systems, because of the higher this component, the more sensitive 

the system to external noise or unwanted disturbances. 

 

System transient response 

System transient response is the system response to changing from a steady state or 

equilibrium. Step response can be considered as a transient response to a step input. 

From figure 2.2.4 below, the following can be defined: 

Rise Time: The time required by the system output 𝑦(𝑡) to rise from 10 percent to 90 percent 

of the system steady-state response 𝑦𝑓𝑖𝑛𝑎𝑙. 

Settling Time: The time required by the error between the current 𝑦(𝑡) and the final steady-

state 𝑦𝑓𝑖𝑛𝑎𝑙 to be bounded within 2 percent of 𝑦𝑓𝑖𝑛𝑎𝑙. 

Overshoot: The maximum value of 𝑦(𝑡) minus  𝑦𝑓𝑖𝑛𝑎𝑙 , relative to (devided by) 𝑦𝑓𝑖𝑛𝑎𝑙. 

Peak: Absolute value of max 𝑦(𝑡). Peak Time: Time when peak value take place. 
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Figure 2.2.4: Block diagram of PID controller (The MathWorks, Inc, 2018) 

 

2.3  Frequency domain approach 

Frequency domain method of control is oriented on transforming the differential equations 

used to represent the system from the time domain to the frequency domain, Laplace Transform 

is used to achieve this requirement: 

𝐹(𝑆) =  ∫ 𝑒−𝑠𝑡 𝑓(𝑡) 𝑑𝑡
∞

0

 

Many control design methods from classic control used the Laplace transform, the most famous 

among them are those who were developed by Bode, Nyquist, Nichols, and Evans. In these 

methods, after the system is transferred to the frequency domain, its response is analyzed 

depending on the “magnitude” and “phase plots of the frequency response, or in some methods, 

the open-loop system transfer function poles and zeros give an indication of the closed-loop 

system behavior. These methods mentioned above are applicable and effective for “single 
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input-single output” (SISO) systems since the system frequency-response, and the system 

transfer function poles and zeros can be easily determined. Moreover, robust control can be 

implemented using gain and phase margin concept. For time-domain approach, if the system 

is complex, the block diagram algebra is commonly used, internal description of the system 

dynamics is not important if the overall input/output relationship is obtained.  

On the other hand, for “multi input-multi output” (MIMO) systems, graphical methods are not 

practical for employment. That is because the interaction introduced between the control loops 

in multi-variable systems. The “quantitative-feedback-theory” (QFT) proposed by Horowitz 

solved many issues like the highlighted above and provided a powerful method to control 

multi-variable systems (Horowitz, 1982). 

QFT is a method that used “Nichols chart” to obtain an acceptable controller performance in 

terms of robustness over a pre-defined region of system uncertainty. The transfer function is 

bounded by translating the required time domain response into frequency domain tolerances. 

Also, for non-linear systems, classic control theory can apply the control method on a linearized 

version in a region where the system behavior is considered liner. Even though Horowitz 

overcame many frequency domain limitations by the (QFT), his method didn’t look after 

important factors which are the internal dynamic changing inside the system that produces the 

output from a given. 

 

2.4  Time-domain design method 

This design method is oriented on differential equations. Since frequency domain techniques 

have difficulties in solving non-linear problems as they are limited to linear systems, the time 

domain is widely used to analyze real-world nonlinear systems. Even time domain differential 

equations are not easy to solve, modern computer simulation techniques have made their 

analysis much easier. 
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System stability was one of the most important issues studied in time-domain methods. As 

previously highlighted, Maxwell studied the Watt’s governor stability in time-domain, and 

Routh provided a numerical technique used till the moment to determine when a system’s 

mathematical representation is not stable with (negative-roots) polynomial. As a basic concept 

and vital requirement, stability issue in time domain was studied repeatedly, and many 

solutions were introduced, but the most effective and general solution was introduced by 

Alexander Lyapunov who introduced methods to study the stability of nonlinear differential 

equations. Additional to stability, optimal control was a persisting requirement in time-domain 

control methods. In 1950’s two principles for optimality were introduced, they used means of 

a feedback law to characterize the optimal control.  

The first principle was introduced in 1957 by Richard Bellman who pioneered in dynamic 

programming and used it to solve the optimality problem. Bellman was able to introduce his 

principle that solves the optimization problem using a nonlinear first order partial differential 

equation. By introducing a value function (the Bellman function) which solves the Hamilton-

Jacobi equation. Majority of the control theory problems that can be solved using optimal 

control theory can also be optimized using  Bellman's equation. 

The work of Rudolf Kalman on state space models of the system came at 1960’s to open the 

door for the modern control by revolutionizing the control theory in general and time domain 

techniques in particular. Kalman's state space realization of the system consists of a set of first-

order differential equations the relate the input and output as follow: 

𝑥̇ =  𝐴𝑥 + 𝐵𝑢           … (2.4.1) 

𝑦 =  𝐶𝑥 + 𝐷𝑢           … (2.4.2) 

where: 𝐴, 𝐵, 𝐶, 𝐷 are the state, input, output, feedforward matrices, respectively.  
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And x, y, u are the state, output, and input vectors respectively. 

Taking Laplace for equations (2.4.1), (2.4.1) consequently yields in: 

𝑆𝑥(𝑠) − 𝑥(0) =  𝐴𝑥(𝑠) + 𝐵𝑢(𝑠)         … (2.4.3) 

𝑦(𝑠) =  𝐶𝑥(𝑠) + 𝐷𝑢(𝑠)         … (2.4.4) 

Assuming zero initial conditions, and strictly proper system equations (2.4.3) and (2.4.4) will 

become: 

Sx(s) =  Ax(s) + Bu(s)         … (2.4.5) 

y(s) =  Cx(s)           … (2.4.6) 

Rearranging (2.4.5): 

(SI − A)x(s) =  Bu(s)          

And:  

x(s) =  (SI − A)−1Bu(s)          

y(s) =  C(SI − A)−1Bu(s)         

y(s)

u(s)
= G(s) =  C(SI − A)−1Bu(s)        … (2.4.7) 

Where the equation in (2.4.7) is the syatem transfer function. 

 
 

Figure 2.4.1: Block diagram of state space realization (The MathWorks, Inc, 2018) 
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While frequency domain approach managed to convert the difficult to solve differential 

equations to simple algebraic equations in the frequency domain, Kalman was able to convert 

complicated higher order differential equations to simple first-order differential equations. 

According to Kalman, system states, inputs, and outputs can be represented in a form of 

vectors, so that the equations will be written in a matrix form. That will make it possible for 

the state space representation of a system to be compact and easier for analyzing, which will 

ease the job of analyzing multiple inputs-multiple outputs systems. 

 

2.5 Robust Control 

A controller is considered robust if its properties do not change in a considerable manner when 

applied to a system which is not identical to the mathematical system used for its analysis. 

Taking into consideration that most of the real-life physical systems don’t behave exactly like 

the set of differential equations that are used for the mathematical representation of a system. 

In other words, robust control is a design method for controllers which concentrate on the issue 

of systems un-certainty. Controllers with high robustness capabilities are meant to work in an 

acceptable stable way provided that the system has uncertain parameters and subjected to 

external disturbances. 

The methods developed by Bode and other researchers who belong to the classic control school 

and used frequency domain approach were robust enough, but the robustness rank was found 

to be not in a sufficient level for other methods of modern control school which came into the 

picture by 1960s and were state-space oriented. Having such lacks lead to the start of robust 

control studies, by the late 1970s. later, many methods were introduced to solve the uncertainty 

issues in pre-defined and known boundaries.  
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H-infinity loop-shaping is considered to be a very common and famous example of a robust- 

control technique in modern control. This method was developed at Cambridge University by 

Duncan McFarlane and Keith Glover. Loop-shaping will guarantee that the system behavior 

will not change in a considerable manner once the system is subjected to un-wanted 

disturbances. This will be achieved by modifying the sensitivity of the system over frequency. 

Loop-shaping affects the response of the system at lower or higher frequencies, but it is 

increasing the stability margin if the response around unity gain of the system is adjusted. 

Other examples of robust control design methods include Loop Transfer Recovery 

(LQG/LTR), Lyapunov based control, quantitative feedback theory (QFT), and passivity-based 

control. 

To be highlighted also is that Least effort controller is considered among controllers that 

preserve system response while subjected to disturbance and hence, it has a good robustness 

quality. 

 

2.6  Least Effort regulation   

Whalley, R and M Ebrahimi offered the least effort control method (Whalley, R and M 

Ebrahimi, 2006) to solve a control problem of mixing system, the same system was previously 

regulated by Characteristic loci (CL), and inverse Nyquist array (INA) methods. Whalley, R 

and M Ebrahimi proved in that paper that the least effort controller could perform the same 

control task with less energy than the other mentioned techniques. 

The least effort control strategy is based on a closed-loop analysis which targets minimum 

control energy cost with acceptable control action for multivariable systems. The control action 

of the least effort controller will be based on simple gain feedback, structured in two loops, an 

inner loop with feedforward and feedback gain vectors k(s) and h(s), respectively. The inner 
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loop is adjusted to produce the required system transients like rise-time, settling-time, 

overshoot, etc. 

After adjusting the inner loop feedforward and feedback vectors, the system outer loop 

parameters are designed. First, the outer loop feed-forward gain is adjusted to give the required 

de-coupling between the outputs, after which the feedback gain f is calibrated to produce the 

required dynamics and disturbance rejection properties. 

 

2.7  H-infinity Control Method.   

In this research, the automatic control of feed mixing system is also achieved by using H∞ 

control methodology. 

H∞ loop-shaping control method is classified among the high-rank methods used to produce 

robust results in the modern control school. This method was spread not only because it results 

in robust controller but also because it wont affect the required system transients. This 

methodology practicality is one more advantage as it is capable to solve complex control 

problems with high practical association. 

This methodology was introduced in control theory by George Zames (Feedback and optimal 

sensitivity, 1981), J. William Helton (broadband matching, 1978), and Allen 

Tannenbaum (gain margin optimization, 1980). 

H∞ controllers can be considered as optimal controllers which minimize H∞ norm rather than 

the usual L2 quadratic norm. (Grimble, 1988). The result of this is the robust stability criteria 

of H∞ controllers, which is the main reason for the development of H∞ techniques (Zhou et 

al., 1996). 

H∞ controller is highly dependant on the selection of the weighting functions, which is a very 

critical decision to make since a non-proper selection of weighting functions will produce a 

poor controller. The problem of choosing proper weighing functions is solved by using 
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optimization techniques, such as Genetic Algorithms which optimize the weighting functions 

automatically (Goldberg, 1989). Genetic Algorithms (GAs) are numerical optimization 

techniques used to solve nonlinear or non-differentiable optimization problems by mimicking 

natural biological evolution.  

It is worthy to mention that referring to GAs usage in selecting proper weighting functions is 

not common in control theory references. Most designers use Loop-shaping method with GA 

method. If the structure of the loop shaping compensators is pre-defined, GA can be used in 

the optimization task of the parameters. Examples of such researches are (Dohna et al., 1997), 

and (Dakev et al., 1997). The range of practical applications of H∞ controller is vast, maybe 

flight control by (Sveriduk et al. 1998) was one to be highlighted. 
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Chapter III: Research Methodology 

3.1 Pneumatic mixing system model 

The pneumatic system in figure (3.1.1) with the system process mentioned represents the 

system under study. This system is detailed by Dutton (1997) and studied for a comparison 

between least effort controller and other controllers by Whalley (2006). The system is a 

pneumatic laboratory prototype machine used to simulate an industrial mixing process.  

The mixing process consists of two feeds of liquid, one hot and the other is cold. These two 

feeds are poured and mixed in a vessel. The mixture is taken from the vessel in a variable flow 

rate to the next step of the process. The requirement is to control the temperature and the level 

of the mixture in the vessel. And to maintain constant temperature and level, the system can 

change the flow rate of the hot and cold feeds. 

 

Figure 3.1.1: Multi-variable pneumatic system, (Dutton, 1997) 
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The lab machine to simulate this process consists of four pressure vessels with different 

dynamic behaviors. The four pressure vessels are fed in pairs from voltage input through 

voltage to pressure (E/P) converters. The machine has two outputs which depend on the 

pressure in two pressure vessels converted to a voltage signal by pressure transducer. (Dutton, 

1997).   

Interaction is present in this system since the outputs depend on combined pressure gauge 

readings of two pressure vessels that are not fed from the same input. Which means, the feeding 

the system from each input separately will influence both the outputs at the same time. 

The other system components comprise of two volume boosters that amplifies the weak output 

of the voltage to pressure converters. And two pneumatic computing relays that produce an 

output equal to twice the gauge pressure in one vessel minus the gauge pressure in the other 

vessel. The model of this system was obtained by applying a step signal to each input and 

measuring the system responses on both the outputs. It can be noted that the four pressure 

vessels are simple cylinders fitted with a flow restriction, four simple first order time delays 

can represent this.  

The E/P converters, and the volume boosters, shall have their own dynamics. However, they 

can be considered very fast compared to the slow dynamics of the pressure vessels. And they 

can be neglected accordingly.  

Fitting four 1st order transfer function models to the lab machine measured response suggested 

the following approximate results: 

Y1

U1
(s) =

1.02

11.76s+1
= g11(s)         ... (3.1.1) 

Y1

U2
(s) =

−0.52

10.25s+1
= g12(s)         ... (3.1.2) 

Y2

U1
(s) =

−0.54

10.25s+1
= g21(s)         ... (3.1.3) 

Y1

U1
(s) =

1.04

2.6s+1
= g22(s)        ... (3.1.4) 
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Considering all the above, the open-loop system model can be in the form: 

𝐲(s) = 𝐆(s)𝐮(s) + 𝛅(s) 

Where  

𝐲(s) = (
y1(s)

y2(s)
) 

And, y1(s) and y2(s)are the output signals related to the feed mixture temperature and the head 

level, respectively. And: 

𝐮(s) = (
u1(s)

u2(s)
) 

are the voltage input signals related to the feeding valves. 

And the pneumatic open-loop system model mentioned above can be represented by:  

[
𝐠𝟏𝟏(𝐬) 𝐠𝟏𝟐(𝐬)
𝐠𝟐𝟏(𝐬) 𝐠𝟐𝟐(𝐬)

] = 𝐆(𝐬) ≈ [

𝟏.𝟎𝟐

𝟏𝟏.𝟕𝟔𝐬+𝟏

−𝟎.𝟓𝟐

𝟏𝟎.𝟐𝟓𝐬+𝟏
−𝟎.𝟓𝟒

𝟏𝟎.𝟐𝟓𝐬+𝟏

𝟏.𝟎𝟒

𝟐.𝟔𝐬+𝟏

]     ... (3.1.5) 
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3.2 Open-loop Response and Control Objectives 

In the last section, the open-loop transfer function matrix is developed as in equation (3.1.5), 

the open loop transfer function is represented in the simulation model shown in figure (3.2.1). 

 
Figure 3.2.1: SIMULINK model for open-loop system 

 

The response of the open-loop system for a unit step change on first and second inputs is 

simulated, and shown in figures 3.2.2, 3.2.3 respectively. These plots show that it takes the 

system about 50 seconds to reach steady state following a change in either u1(t), or u2(t).  

Both outputs are noticed to be coupled in a considerable manner, it is noticed to reach about 

50% for every input variation which is very high.  

In this study, the controller will be designed to drive the system to steady state conditions in a 

time frame less than 10 seconds that is increasing the speed of reaction with no noticeable 

overshot problems and with less than 10% of steady state interaction. It is also required to 

minimize the steady-state output variations to unit step changes in 𝛅(t), which indicates a good 

disturbance rejection capability. Moreover, the design illustrated next chapter will aim to 
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accomplish the above-mentioned improvements with minimum energy consumption and 

simple design controller for practical implementation purposes. 

 
Figure 3.2.2: Response for a unit step change in 𝑢1(open-loop) 

 
Figure 3.2.3: Response for a unit step change in 𝑢2(open-loop) 
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3.3  Least Effort Control Method 

In the design method outlined in this section, two loops will be used to archive the required 

system performance. An inner loop will work on the regulation task to maintain system stability 

and regulate the system dynamics, and an outer loop which will develop the system de-coupling 

and disturbance rejection criteria. The derivation outlined below is with accordance to least 

effort control method by Whalley and Ebrahimi (2006). 

Design strategy 

The open-loop system Laplace representation in the frequency domain is represented by: 

𝒚(𝑠) = 𝑮(𝑠). 𝒖(𝑠) + 𝜹(𝑠)        ... (3.3.1) 

And the control low of the proposed feedback (closed-loop): 

𝑢(𝑠) =  𝑘(𝑠)(𝑟̅(𝑠) − ℎ(𝑠)𝑦(𝑠)) + 𝑷(𝑟(𝑠) − 𝑭𝑦(𝑠))    ... (3.3.2) 

In equations 3.3.1 and 3.3.2 there are 𝐦 independent inputs, disturbances, and outputs 

Where 𝐅 = Diag(f1, f2, ⋯ fm), 0 < fj < 1, 1 ≤ j ≤ m    ... (3.3.3) 

The inner loop control law is 

𝒌(𝑠)[𝑟̅(𝑠) − 𝒉(𝑠)𝑦(𝑠)]        ... (3.3.4) 

If 𝐤(s)  and 𝐡(s)  were carefully designed. The inner loop will satisfy the desired system 

dynamics. 

The control low of the outer loop is 

𝑷(𝑟(𝑠) − 𝑭𝑦(𝑠))         ... (3.3.5) 

𝐏 and 𝐅 are designed to achieve the required system steady state interaction and disturbance 

suppression. 
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Considering  r̅(s) = 0, inner and outer loops control law can be written as: 

𝑦(𝑠) = (𝑰𝑚 + 𝑮(𝑠)(𝒌(𝑠) >< 𝒉(𝑠) + 𝑷𝑭))
−1

× (𝑮(𝑠)𝑷𝑟(𝑠) + 𝜹(𝑠))  ... (3.3.6) 

In equation (3.3.6) ‖𝐆(s)(𝐤(s) >< 𝐡(s) + 𝐏𝐅)‖∞is finite for all s on the D contour. 

Now let 

y(0) = 𝐒sr(0),  

where 𝐒s is the steady state matrix 

substituting S = 0 in (3.3.6) yields 

 𝑷 = (𝑮(0)−1 + 𝒌(0) > < 𝒉(0)) 𝑺𝑠(𝑰 − 𝑭𝑺𝑠)
−1      ... (3.3.7)  

To achieve steady state de-coupling, the steady state matrix shall be ideally identity matrix 

𝐒s = 𝐈m. On the other hand, to obtain lower SS interaction, consider unity diagonal elements 

with off-diagonal elements less than 1, |si,j| ≪ 1. 

Substituting  𝐒s = 𝐈m for 𝐏 in (3.3.7) yields in (3.3.6) to be 

𝐲(s) = {(𝐈m + 𝐆(s)[𝐤(s) >< 𝐡(s) + (𝐆(0)−1 + 𝐤(s) >< 𝐡(s))(𝐈𝐦 − 𝐅)−1𝐅]}
−1

×

{(𝐆(s)𝐏r(s) + 𝛅(s))}         ... (3.3.8) 

At low frequencies 

𝐆(s) ≅ 𝐆(0) and 𝐆(s)𝐆(0)−1 ≅ 𝐈m 

Substituting in (3.3.8), 𝐲(s) will be in the following form: 

y(s) ≅ (𝐈m + 𝐆(s)𝐤(s) >< 𝐡(s) + (𝐈m + (𝐈m − 𝐅)−1𝐅))−1 × (𝐆(s)𝐏r(s) + 𝛅(s))... (3.3.9) 

Choosing F matrix such that 0 <  fm  <  1 , the output will be: 
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𝑦(𝑠) ≅ (1 − 𝒇)(𝑰𝑚 + 𝑮(𝑠)𝒌 >< 𝒉(𝑠))−1 × (𝑮(𝑠)𝑷𝑟(𝑠) + 𝜹(𝑠))    ... (3.3.10) 

From equations (3.3.7) and (3.3.9) 

𝑮(𝑠)𝑷 = 𝑮(𝑠)(𝑮(0)−1 + 𝒌(0) >< 𝒉(0))(𝑰𝑚 − 𝑭)−1     ... (3.3.11) 

At low frequencies, this can be reduced to 

𝑮(𝑠)𝑷 ≅
1

1−𝑓
(𝑰𝑚 + 𝑮(𝑠)𝒌(0) >< 𝒉(0))       ... (3.3.12) 

Equation (3.3.12) under steady state condition becomes  

𝒚(𝑠) = 𝑰𝑚𝑟(𝑠) + 𝑺(𝑠)𝜹(𝑠)         ... (3.3.13) 

And 𝐒(s) is the sensitivity matrix at low frequency 

𝑺(𝑠) = (1 − 𝑓)(𝑰𝑚 + 𝑮(𝑠)𝒌(𝑠) >< 𝒉(𝑠))
−1

  0 < 𝑓 < 1     ... (3.3.14) 

It can be noted from (3.3.13) that 𝐒s = 𝐈m, which means steady state de-coupling  requirement 

will be granted despite any changes in r(s). Moreover, from (3.3.14), increasing f without 

exceeding unity the system response shall be enhanced in terms of disturbance rejection 

criteria. 

For easy implementation purposes, a conventional multivariable regulator can be assumed with 

𝐊(s), and 𝐇(s) forward path and feedback gains, respectively. Then the closed-loop system 

will be: 

𝒚(𝑠) = (𝑰𝑚 + 𝑮(𝑠)𝑲(𝑠)𝑯(𝑠))
−1

(𝑮𝑲(𝒔)𝒓(𝑠) + 𝜹(𝑠))    ... (3.3.15) 

Comparing equations (3.3.6) and (3.3.15) yields in 

𝐊(s) = 𝐏         ... (3.3.16) 
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𝐊(𝐬)𝐇(𝐬) = 𝐤(𝐬) >< 𝐡(𝐬) + 𝐏𝐅  

and  

𝐇(𝐬) = 𝐏−𝟏𝐤(𝐬) >< 𝐡(𝐬) + 𝐅         ... (3.3.17) 

Where 𝐊(𝐬) and  𝐇(𝐬) are constant full rank m × m matrices, also, the feedback matrix 

𝐇(𝐬) is a stable proper easy to construct matrix. 

“In view of the above theory, the design methodology implemented here is to adjust the inner 

loop vectors 𝐤(s) and 𝐡(s) to achieve the desired system dynamics. After that, to achieve 

acceptable steady state coupling condition a pre-compensator 𝐏 to be configured. Finally, outer 

loop feedback gain  𝐟  to be selected to achieve final systems dynamics and acceptable 

disturbance rejection”. (Whalley and Ebrahimi, 2006) 

Inner loop design: 

In this section, the design strategy for configuring the pre-compensator 𝐏 and adjusting inner 

loop vectors 𝐤(s) and 𝐡(s) will be illustrated. 

The Laplace transfer open-loop system given in (3.3.1) is assumed to be m × m square linear, 

proper or strictly proper that can be factorized as: 

𝑮(𝑠) = 𝑳(𝑠)
𝑨(𝑠)

𝑑(𝑠)
𝑹(𝑠)𝜞(s)         ... (3.3.18) 

Where 𝐋(s), 𝐀(s), 𝐑(s), 𝚪(s), and the elements of 
𝐀(s)

d(s)
 ∈ H∞, s ∈ ℂ 

In equation (3.3.18), 𝐋(s) consists of 𝐆(s) left row factors 

𝐋(s) = Diag (
γj(s)

pj(s)
)  

And 𝐑(s) consists of 𝐆(s) right column factors  
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𝐑(s) = Diag(
ρj(s)

qj(s)
) 

And 𝚪(s) is the transformed finite time delay elemnt 

𝚪(𝐬) = Diag(e−sTj),   1 ≤ j ≤ m 

And 𝐀(s) is a non-singular matrix of rational functions where det 𝐀(s) ≠ 0 with elements 

aij(s) = aijs
m−1 + bijs

m−1 + ⋯+ γij   1 ≤ i, j ≤ m 

Since the output response is: 

y(s) = 𝐆(s)u(s) +  𝛅(s)         ... (3.3.19) 

Considering the inner loop control low to be 

𝐮(s) = 𝐤(s) [r̅(s) − 𝐡(s) y(s)]        ... (3.3.20) 

Combining (3.3.19) and (3.3.20)  

𝑦(𝑠)  = (𝑰𝑚 + 𝑮(𝑠)𝒌(𝑠) >< 𝒉(𝑠))
−1

(𝑮(𝑠)𝒌(𝑠)𝑟̅(𝑠) + 𝜹(𝑠))    ... (3.3.21)  

𝚪(𝐬) can be ordered with Ti ≥ Tj with 1 ≤ j ≤ m, and i ≠ j then the forward path vector will 

become 

𝒌(𝑠) = (𝑘1(𝑠)𝑒
−𝑠(𝑇𝑖−𝑇𝑗), 𝑘2(𝑠)𝑒

−𝑠(𝑇𝑖−𝑇𝑗), …… , 𝑘1, …… . , 𝑘𝑚(𝑠)𝑒−𝑠(𝑇𝑖−𝑇𝑗))
𝑇

 ... (3.3.22) 

Since 𝒉(𝒔) =  (ℎ1(𝑠), ℎ2(𝑠), ……ℎ𝑚(𝑠))       ... (3.3.23) 

Let kj(s) = kj∅j(s) and hj(s) = hjxj(s) , 1 ≤ j ≤ m 

Where ∅j(s) and xj(s) are proper or strictly proper, stable and minimum phase realization, then 

they may be chosen such that equation (3.3.21) becomes 
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𝑦(𝑠) = (𝐼𝑚 + 𝑒−𝑠𝑇𝑖𝑛(𝑠)𝐿(𝑠)
𝐴(𝑠)

𝑑(𝑠)
𝑘(𝑠) >< ℎ(𝑠))

−1

× (𝑛(𝑠)𝐿(𝑠)
𝐴(𝑠)

𝑑(𝑠)
𝑘(𝑠)𝑒−𝑠𝑇𝑖𝑟(𝑠) + 𝛿(𝑠))  

           ... (3.3.24) 

Where  𝐤(𝐬) =  (k𝟏, k𝟏, ……km)T        ... (3.3.25) 

𝒉(𝒔) = (ℎ1, ℎ2, …… , ℎ𝑚)         ... (3.3.26) 

d(𝐬) = sk + a1s
k−1 + ⋯ + a0 

deg(n(s)aij(s) < k), 1 ≤ i, j ≤ m 

Det. Of equation (3.3.24) is 

𝑑𝑒𝑡 [ 𝑰𝑚 + 𝑒−𝑠𝑇𝑖𝑛(𝑠)𝑳(𝑠)
𝑨(𝑠)

𝑑(𝑠)
𝒌(𝑠) >< 𝒉(𝑠)] = 1 + 𝑒−𝑠𝑇𝑖𝑛(𝑠) < 𝒉

𝑨(𝑠)

𝑑(𝑠)
𝒌 >   ... (3.3.27) 

Where the inner production in (3.3.27) equals 

< 𝒉
𝑨(𝑠)

𝑑(𝑠)
𝒌 > =  [1, 𝑠, … , 𝑠𝑚−1] × [

𝛾11 ⋯ 𝛾𝑚𝑚

⋮ ⋱ ⋮
𝑏11 ⋯ 𝑏𝑚𝑚

𝑎11 . . . 𝑎𝑚𝑚

] ×

[
 
 
 
 
𝑘1ℎ1

𝑘2ℎ1

.

.
𝑘𝑚ℎ𝑚]

 
 
 
 

    ... (3.3.28) 

If the gain ratios in equation (3.3.28) satisfy 

k2 = n1k1, ……… . . … km = nm−1k1       ... (3.3.29) 

And 

< 𝒉𝑨(𝑠)𝒌 > = 𝑏(𝑠)         ... (3.3.30) 

Then, equation (3.3.30) implies that  

𝑘1[𝑸]𝒉 = (𝑏𝑚−1, 𝑏𝑚−2, … , 𝑏0)
𝑇       ... (3.3.31) 

Where  
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𝐐 = [

γ11 + γ12n1  + γ1mnm−1 ⋮ γ21  + γ22n1 + γ2mnm−1 ⋮ ⋯ γm1 + γm2n1 + γmmnm−1

⋮ : : : : ⋮
b11 + b12n1  + b1mnm−1 ⋮ b21  + b22n1 + b2mnm−1 ⋮ ⋯ bm1 + bm2n1 + bmmnm−1

a11 + a12n1  + a1mnm−1 ⋮ a21  + a22n1 + a2mnm−1 ⋮ ⋯ am1 + am2n1 + ammnm−1

] 

And bj, 0 ≤ j ≤ m − 1  are the coefficients of b(s)given in equation (3.3.30), considering that 

n1 , n2 , … , nm−1  is selectable in equation (3.3.30) so that the unique solution for 

(h1 , h2 , … , hm )k1 exists and the matrix is invertible. 

So, if suitable b(s) function selected, and gain ratios, the closed-loop dynamics defined in 

equation (3.3.24) will be defined. And if equation (3.3.30) is solved, then “h” can be calculated 

based on the selection of k1. 

Optimization of least effort (minimum energy) 

In view of the above, the closed-loop model has been established. Free choice of 

n1 , n2 , … , nm−1 as gain ratios indicates the freedom to optimize this process. 

A benchmark to be considered initially is achieving the disturbance rejection and in the same 

time maintaining the inner loop required dynamics, with absolute minimum (least) control 

effort provided the constraint that the controller model generates a particular polynomial. 

The controller effort at time t is proportional to: 

(|k1h1| + |k2h1|+⋯ |kmh1|)|y1(t)| + (|k1h2| + |k2h2|+⋯ |kmh2|)|y2(t)| + ⋯

+ (|k1hm| + |k2hm|+⋯ |kmhm|)|ym(t)| 

So, the control energy cost is proportional to: 

𝐸(𝑡) = ∫ (∑ 𝑘𝑖
2𝑚

𝑖=1 ∑ ℎ𝑗
2 𝑦𝑗

2(𝑡)𝑚
𝑗=1 )

𝑡=𝑇𝑓

𝑡=0
𝑑𝑡       ... (3.3.32) 

Then the changes in the transformed output y following arbitrary disturbances: 

J = ∑ ki
2m

i=1  ∑ hi
2m

j=1           ... (3.3.33) 
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By minimizing the performance index in equation 3.3.33, the required control energy in 3.3.32 

would be minimized. 

If   

k2 = n1k1, k3 = n2k1 … km = nm−1k1 

Then the performance index J in (3.3.33) can be re-written as 

J =  (k1)
2(1 + n1

2 + n2
2 + ⋯+ nm−1

2 ) × (h1
2 + h2

2 + ⋯+ hm
2 )   ... (3.3.34) 

And (h1
2 + h2

2 + ⋯+ hm
2 ) < h, h > 

The closed-loop determinant of equation (3.3.27) and inner product in equation (3.3.30) and 

from equation (3.3.31) 

𝐡 = 𝐤1
−1𝐐−1𝐛          ... (3.3.35) 

Substituting for 𝐡  in equation (3.3.35), equation (3.3.34), becomes: 

J =  (1 + n1
2 + n2

2 + ⋯+ nm−1
2 )𝐛T(𝐐−1)T𝐐−1𝐛      ... (3.3.36) 

For 2 × 2 system, m = 2, and  

J = (1 + n1
2)𝐛T(𝐐−1)T𝐐−1𝐛        ... (3.3.37) 

With J is minimized when 

∂J

∂n1
= 0,

∂J

∂n2
= 0 

∂2J

∂n1
2  

∂2J

∂n2
2 − (

∂2J

∂n1 ∂n2
)

2

> 0, if 
∂2J

∂n1
2 > 0 

 

Disturbance Rejection 

Designing for minimum control energy is not generally enough to achieve the disturbance 

recovery conditions.  To achieve maximum disturbance suppression, the outer-loop feedback 

gain can be tuned between 0 and 1 as in equation (3.3.14). 

With f being adjusted, the system transient response will be changing, the target in this stage 

is to select feedback that gives the best transient response.  
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Stability of the combined system 

The stability of the system depends on the denominator of the input-output relationship given 

in equation (3.3.8). 

For simple analysis purpose, if  f1,f2,………..,fm = f,  

Then the denominator will be 

det {𝐈m + 𝐆(s) [
k(s)><h(s)

(1−f)
+

G(0)−1f

(1−f)
]}       ... (3.3.38) 

from equation 3.3.37, it is noticable  that, when f →1, the feedback compensator matrix 

elements [
k(s)><h(s)

(1−f)
+

G(0)−1f

(1−f)
] approaches infinity resulting in instability.  

Selecting f to be 0 < f ≤ 0.5, increases the impact of the inner loop feedback gain, and reduces 

the impact of the outer loop. However, selecting f to be 0.5 < f ≤ 1, leads to amplifying the 

effect of both loops’ gain. 

 

3.4  H-infinity control approach 

H-infinity control technique is widely used as it applies to control design problems involving 

multivariate systems with coupling between channels. “It is a design technique with a state-

space computational solution that utilizes frequency-dependent weighting functions to tune the 

controller's performance and robustness characteristics.” (John Bibel, 1992). 

H-infinity method is based on weighted control arrangement as in figure (3.4.1). Three 

weighting functions are used, W1(s), W2(s), and W3(s). W1(s) is the weighting function on 

the sensitivity transfer function. It is choosen to obtain a required performance characteristics 

(time response). 
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Figure 3.4.1: Block diagram of standard H-infinity feedback control. 

(Dingyu X, YangQuan C and Derek P, 2007) 

 

 

At low frequencies, W1(s) is designed with low gain a for good tracking and with high gain at 

high frequencies for limiting the overshoot. 

W1(s) is designed with high gain at high frequencies for limiting the overshoot. On the other 

hand, limiting the overshot mean increasing the system damping which will affect the system 

speed of response in a negative manner. Mainly, a tradeoff to be set between limiting overshot 

and system speed of response. Usually at low frequencies, W1(s) is designed with low gain for 

good tracking and with high gain at high frequencies for limiting the overshoot. 

The complementary sensitivity function T gives the response of the system to reference and 

noise inputs. T need to be ≈ 1 to achieve propper tracking and near zero noise. High pass 

weight W2(s)is usually used on T to achieve insensitivity to noise since most of the noise 
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energy is located at high frequency, where input signal usually comes at lower frequencies. 

The design purpose is to keep T ≈ 1 at low frequencies and low at high frequencies. 

Assuming that G(s), W1(s), and W3(s)G(s) are all proper functions. To be mentioned that 

W3(s) itself is not required to be proper. “The output vector y1 = [y1a, y1b, y1c] is not used 

directly to construct the control signal vector u(t). We should understand that y1 is actually for 

the control system performance measurement, So, it is not strange to include the filtered “input 

signal” u(t) in the “output signal” y1 because one may need to measure the control energy to 

assess whether the designed controller is good or not ” (Dingyu X, YangQuan C, and Derek P, 

2007). 

Considering a general robust system’s augmented plant model represented as 

P(s) =  [
A B1 B2

C1 D11 D12

C2 D21 D22

]        ... (3.4.1) 

With the following augmented state space 

ẋ =  Ax + [B1 B2] [
u1

u2
], and 

[
y1

y2
] =  [

C1

C2
] x + [

D11 D12

D21 D22
] [

u1

u2
]        ... (3.4.2) 

The system closed-loop transfer function will be 

Ty1u1(s) = 𝐏11(s) + 𝐏12(s)[𝐈 − 𝐅(s)𝐏22(S)]
−1𝐅(s)𝐏21(s)        ... (3.4.3) 

The form in equation (3.4.3) is called the LFT (linear fractional transformation of the 

interconnected system), and the goal of control in this section is to find a controller  u2(s) =

𝐅y2(s) such that ‖Ty1u1‖ < 1 and min𝐅(s)‖Ty1u1‖∞
. 

Given the system with state space model as (𝐀,𝐁, 𝐂, 𝐃). 

Let state space representation for 𝐖𝟏: 

 𝐖𝟏 = (𝐀𝐰𝟏, 𝐁𝐰𝟏, 𝐂𝐰𝟏, 𝐃𝐰𝟏)  

and  𝐖𝟐: 
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𝐖𝟐 = (𝐀𝐰𝟐, 𝐁𝐰𝟐, 𝐂𝐰𝟐, 𝐃𝐰𝟐)  

and 𝐖𝟑: 

𝐖𝟑 = 𝐂𝐰𝟑(s𝐈 − 𝐀𝐰𝟑)
−𝟏𝐁𝐰𝟑 + 𝐏msm + ⋯+ 𝐏1s + 𝐏𝟎 

Also, considering a general mixed sensitivity problem where all three weighting functions 

present, equation (3.4.1) can be re-written as: 

P(s) =  [

W1 −W1G
0 W2

0 W3G
I −G

]         ... (3.4.4) 

And the LFT for this problem can be represented by 

Ty1u1 = [
W1S
W2FS
W3T

]          ... (3.4.5) 

In optimal ℋ∞controller design, the optimal criterion is defined as 

max𝛄‖Ty1u1‖ <
1

𝛄
 

And in general 

max𝛄 [
W1S
W2FS
W3T

] ≤
1

𝛄
          ... (3.4.6) 

Where 𝐅(s)is the controller to be designed, 𝐒(s) is the sensitivity transfer function 

𝐒(s) = [𝐈 + 𝐅(s)𝐆(s)]−1        ... (3.4.7) 

And 𝐓(s)is the complementary sensitivity transfer function 

𝐓(s) = 𝐈 − 𝐒(s) = 𝐅(s)𝐆(s)[𝐈 + 𝐅(s)𝐆(s)]−1     ... (3.4.8) 

All three terms in the matrix of (3.4.6) can be individually weighted by γ. An iteration 

method, known as the γ -iteration method, can be used in finding the optimal γ. 
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Chapter IV: Controller Design 

4.1  Design of least effort controller 

Based on the methodology presented in section 3.3 in the previous chapter, direct 

implementation on the mixing system model will be discussed here. The transfer function 

representing the model as found in the last chapter is 

G(s) = [

1.02

11.76s+1

−0.52

10.25s+1
−0.54

10.25s+1

1.04

2.6s+1

]        ... (4.1.1) 

To apply least effort design, the open-loop transfer function G(s) can be re-written as 

G(s) = L(s)
A(s)

d(s)
R(s)Γ(s)        ... (4.1.2) 

For simplicity, the structure in equation (4.1.3) can be achieved with L(s) matrix with “null” 

off-diagonal elements and first row comprises of the multiplication of first row denominators 

and second row which is a multiplication of second-row denominators as below 

L(s) = [

1

(11.76s+1)(10.25s+1)
0

0
1

(2.6s+1)(10.25s+1)

]      ... (4.1.3) 

With R(s) =  Γ(s) = I        ... (4.1.4) 

Consequently, 

A(s) = [
1.02(10.25s + 1) −0.52(11.76s + 1)
−0.54(2.6s + 1) 1.04(10.25s + 1)

]     ... (4.1.5) 

If the inner loop control low mentioned as in equation (3.3.20) applied 

𝐮(s) = 𝐤(s)[r̅(s) − 𝐡(s)y(s)] 

Considering no time delay, the closed-loop equation will become 
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𝑦(𝑠)  = (𝑰𝑚 + 𝑮(𝑠)𝒌(𝑠) >< 𝒉(𝑠))
−1

𝑮(𝑠)𝑟̅(𝑠)      ... (4.1.6)  

Similar to equation (3.3.27) considering R(s) =  Γ(s) = I 

𝑑𝑒𝑡 [ 𝑰𝑚 + 𝑳(𝑠)
𝑨(𝑠)

𝑑(𝑠)
𝒌(𝑠) >< 𝒉(𝑠)] = 1+< 𝒉

𝑨(𝑠)

𝑑(𝑠)
𝒌 >     ... (4.1.7) 

In equation (4.1.7), Similar to equation (3.3.23) 

𝐡(𝐬) =  (h1(s), h2(s),……hm(s)) 

Let  𝒉(𝒔) =  (
11.76𝑠+1

2.6𝑠+1
ℎ1, ℎ2)         ... (4.1.8) 

Then, with phase advance compensator suggested in equation (4.1.8) 

< 𝐡(s)
𝐀(s)

d(s)
𝐤 > = [h1, h2] 

And so  

A(s)

d(s)
=

[
1.02(10.25s + 1) −0.52(11.76s + 1)
−0.54(2.6s + 1) 1.04(10.25s + 1)

]

(10.25s + 1)(2.6s + 1)
 

With 𝐡(𝐬) = [h1(s), h2]          ... (4.1.9) 

𝒌 =  [𝑘1, 𝑘2]            ... (4.1.10) 

And  d(s) = (10.25s + 1)(2.6s + 1)       ... (4.1.11) 

After changing the system to the required format of equation (4.1.2), the inner loop regulator 

design can be considered to improve the system transients, the inner-loop will be implemented 

as in equation (3.3.30) after including d(s) as follows 

< ℎ
𝐴(𝑠)

𝑑(𝑠)
𝑘 > =

𝑏(𝑠)

𝑑(𝑠)
          ... (4.1.12) 

Then, equation 4.1.12 can be considered as the system characteristic equation 

−1 =
𝑏(𝑠)

𝑑(𝑠)
=

(𝑠+0.09)𝑏0

(10.25𝑠+1)(2.6𝑠+1)
        ... (4.1.13)  
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Where, d(s) = (10.25s + 1)(2.6s + 1), the poles of the system reside at s1 ≈ 0.385and 

s2 ≈ 0.098. It is clear that s2 is slower and by choosing  

b(s) = (s + 0.09)b0          ... (4.1.14) 

The slowest system pole effect will be canceled moreover, the other pole at s1 ≈ 0.385 will be 

allowed to migrate along the negative real axis with increased values of b0 which leads to the 

enhancement of the system speed and stability refer to root locus plot at figure (4.1.1). b0 was 

selected to be 0.33. In the coming steps of design, selection of f > 0, will result in larger b0 as 

b0 = 
b0

(1−f)
. which will result in  higher performance index J  maximum, giving improved 

disturbance rejection properties. 

 

Figure 4.1.1: Root Locus for equation (4.1.13) 

 

From equation (4.1.14) and after selecting b0 = 0.33 
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𝐛(s) = [
0.09
1

] 0.33 = [
0.0297
0.33

]        ... (4.1.15) 

Now let k1 = 1  

From A(s) given in equation (4.1.5), the Q matrix of this system can be formulated in 

accordance with equation (3.3.28) as 

< h. A(s). k > = [h1, h2] × [
1.02(10.25s + 1) −0.52(11.76s + 1)
−0.54(2.6s + 1) 1.04(10.25s + 1)

] [
k1

k2
] 

= k1((10.455s + 1.02)h1 − (1.404s + 0.54)h2) + k2((10.66s + 1.04)h2

− (6.1152s + 0.52)h1) 

= [1 s] [
1.02 −0.052 −0.54 1.04

10.455 −6.1152 −1.404 10.66
] [

k1h1 

k2h1 

k1h2 

k2h2 

] 

With  

k1 = 1, k2 = nk1, (n is the gain ratio) 

= [1 s] [
1.02 −0.052 −0.54 1.04

10.455 −6.1152 −1.404 10.66
] [

h1 

nh1 

h2 

nh2 

] 

Since  < h. A(s). k > = 𝐐[h1, h2]
T 

Then 

Q = [
1.02 − 0.52n −0.54 + 1.04n

10.455 − 6.1152n −1.404 + 10.66n
]     ... (4.1.16) 

As m = 2, the performance index to be minimized is 

 J = (1 + n2)𝐛T(𝐐−1)T𝐐−1𝐛         ... (4.1.17) 

And after substituting with 
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Q from equation (4.16), and 𝐛(s) from (4.1.15), with k1 = 1 

J = 741.2
(1 + n2)(4.4329 − 1.5467n + 0.1854n2) × 10−3

(5.265 − 3.215n + 1.021n2)2
 

To find Jmin deriving J with respect to n 

dJ

dn
= 0.1482 × 104 ×

(10.18 + 12.78n − 9.847n2 + 0.1934n4)

(5.265 − 3.215n + 1.021n2)3
 

Leting  
dJ

dn
= 0 and solving the equation 

Results in the extremum values of J as n  = -7.026, -0.5598, 1.8797, 7.1267 

 

Figure 4.1.2: Performance Index J vs. gain ratio (n) 

 

From the graph in figure (4.1.2) above, it can be shown that min J is when n = 7.1267. 
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Now using equation (3.3.31): 

k1[𝐐]𝐡 = (bm−1, bm−2, … , b0)
T , After substituting with 

Q from equation (4.16), and 𝐛(s) from (4.1.15), with k1 = 1 

The inner loop feedback gain h will be 

𝐡 = 𝐐−1b = ([
1.02 − 0.52n −0.54 + 1.04n

10.455 − 6.1152n −1.404 + 10.66n
]
−1

× [
0.0297
0.33

])
n=7.1267

 

𝐡 = [h1, h2] = [−0.0019, 0.0036]        ... (4.1.18) 

And the inner feedforward gain k with n = 7.1267 selected as a gain ratio, and k1selected 

arbitrary as 1, k2 = nk1 

𝐤 = [
1

7.1267
]          ... (4.1.19) 

Moving on to the outer loop design, the outer loop as highlighted comprises of a forward and 

feedback path compensator 

Letting  

𝐅 = [
f1 0
0 f2

] 

And as the design requires, the steady state interaction of the system is not to exceed -10%, 

steady-state matrix is assumed to be 

Ss = [
1 −0.1

−0.1 1
], from equation (3.3.7): 

𝐏 = (𝐆(0)−1 + 𝐤(0) >< 𝐡(0)) 𝐒s(𝐈 − 𝐅𝐒s)
−1 
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With: G(0) = [
1.02 −0.52

−0.54 1.04
], 𝐤(0) = [

1
7.1267

], h(0) = [−0.0019, 0.0036], 

Ss = [
1 −0.1

−0.1 1
] and 𝐅 = [

f1 0
0 f2

] 

Taking into consideration that 𝐅 will be in the range 0 < f < 1. Closed-loop system response 

will be studied and examined for for several values of 𝐅.  

Let f1 = f2 = 0.1  that is   

F = [
0.1 0
0 0.1

], Then  

𝐏 = [
1.3984 0.58123

  0.59021   1.3993
]
f1=f2=0.1

      

Conventional compensator design 

To reach the conventional controller design, shown in figure (4.1.2), for easy implementation, 

feedback gain matrix 𝐇 can be computed as in equation (3.3.17). 

 
Figure 4.1.2: Block diagram showing least effort controller in the conventional structure 
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𝐇(𝐬) = 𝐏−𝟏𝐤(𝐬) >< 𝐡(𝐬) + 𝐅 

𝐇(𝐬) = 𝐏−𝟏 [
1

7.1267
] [−0.0019

11.76s + 1

2.6s + 1
, 0.0036] + 𝐅 

For f1 = f2 = 0.1 

𝐏 = [
1.3984 0.5812
  0.5902   1.3993

]
f1=f2=0.1

 

And  

𝐇(𝐬) = 𝐏−𝟏 [
1

7.1267
] [−0.0019

11.76s + 1

2.6s + 1
, 0.0036] + 𝐅 

𝐇(𝐬) ≈ [
0.1149 −0.0061

−0.0113 (
11.76s + 1

2.6s + 1
) 0.1207

]

f1=f2=0.1

 

Similarly, for f1 = f2 = 0.5 

𝐏 = [
2.4458 0.8296
  0.8458   2.4459

]
f1=f2=0.5

 

And  

𝐇(𝐬) ≈ [
0.5054 −0.0023

−0.0061 (
11.76s + 1

2.6s + 1
) 0.5111

]

f1=f2=0.5

 

And for f1 = f2 = 0.8 

𝐏 = [
6.2472 0.1866
  0.2326   6.2332

]
f1=f2=0.8

 And  

𝐇(𝐬) ≈ [
0.7990 0.00045

−0.00216 (
11.76s + 1

2.6s + 1
) 0.8041

]

f1=f2=0.8
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4.2 Design of H-infinity Controller 

Based on the methodology presented in section 3.4 in the previous chapter, and Considering a 

mixed-sensitivity problem, direct implementation on the mixing system model shall be 

discussed in this section. The open loop transfer function as per the last chapter is 

G(s) = [

1.02

11.76s+1

−0.52

10.25s+1
−0.54

10.25s+1

1.04

2.6s+1

]         ... (4.2.1) 

Selecting the weighting functions as 

W1 = [

0.1s+2

5s+0.05
0

0
0.1s+2

5s+0.05

]        ... (4.2.2) 

W3 = [

s

10
0

0
s

10

]         ... (4.2.3) 

Let W2(𝑠) be a “null” matrix. And, to avoid the problem of singularity, let’s assume that  

W2 = [10−8 0
0 10−8]         ... (4.2.4) 

The control problem here is to find a controller K that meets 

G(s),W1, W2 and W3 are all proper and bounded as s → ∞. 

After selecting the weighing filters, the system two-port augmented model can be created using 

the MATLAB® function (augtf), afterwhich the optimal ℋ∞ controller can be designed using 

MATLAB® function (hinfopt). 

The minimum value of the variable γ was calculated with MATLAB® as in figure (4.2.1). 
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Figure 4.2.1: MATLAB® result for the minimum of the variable 𝛾 = 4.9688 

 

And the ℋ∞ controller transfer function: 

𝐅(s) = [
F11 F12

F21 F22
], where  

F11 =
       3983.8 (𝑠 + 161.3) (𝑠 + 0.09756)^2 (𝑠 + 0.08503) (𝑠 + 0.01)

(𝑠 + 161.3)^2 (𝑠 + 0.01)^2 (𝑠^2 +  0.1722𝑠 +  0.007583)
 

F21 =
       524.7 (𝑠 + 161.3) (𝑠 + 0.3846) (𝑠 + 0.09756) (𝑠 + 0.08503) (𝑠 + 0.01)

(𝑠 + 161.3)^2 (𝑠 + 0.01)^2 (𝑠^2 +  0.1722𝑠 +  0.007583)
 

F12 =
505.27 (𝑠 + 161.3) (𝑠 + 0.3846) (𝑠 + 0.09756) (𝑠 + 0.08503) (𝑠 + 0.01)

(𝑠 + 161.3)^2 (𝑠 + 0.01)^2 (𝑠^2 +  0.1722𝑠 +  0.007583)
 

F22 =
863.84 (𝑠 + 161.3) (𝑠 + 0.3846) (𝑠 + 0.09756)^2 (𝑠 + 0.01)

(𝑠 + 161.3)^2 (𝑠 + 0.01)^2 (𝑠^2 +  0.1722𝑠 +  0.007583)
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Chapter V: Simulation 

5.1  Simulation of least effort controller 

The closed-loop system model structure shown in figure (4.1.2) was implemented in 

MATLAB® SIMULINK® presented in appendix II figure (A.1). The model consists of two 

reference inputs r1 and r2. Let’s say these are the hot and cold fluid inlet, respectively. Let’s 

assume that the temp in the vessel is below the set mixture temperature. And the first reference 

input r1 is used to achieve the required temperature in the vessel (i.e., Increase the mixture 

temperature to meet the required temperature). While the second reference input r2 is kept non-

changing. So, a single input will be used at once. That is r1. 

The second situation is that the temperature of the mixture in the vessel is above the set 

temperature, then the cold fluid line only "r2" need to feed the vessel to regulate the mixture 

temperature. 

In both situations, the mixture temperature will change, and that’s the system output y1. Also, 

the mixture head will change which is output y2. 

Testing the designed least effort controller achieved by simulating a unit step at the first system 

reference r1(s) and then on the second reference r2(s)  and measuring the closed-loop system 

response on y1(s)( the measured actual temperature of the mixture) and y2(s)(the mixture head 

in the vessel). 

figures (5.1.1) to (5.1.6) shows that the system response for a change in r1(s) and r2(s) with 

different values of 𝑓 (𝑓 = 0.1, 0.5, 0.8). 

Figure (5.1.1) shows the response for a unit step change in the first input r1(s), the output 

response of the closed-loop with f1 = f2 = 0.1 is reasonable but not up to the expected level.  

The response is stably overdamped with 0 overshot for both outputs  y1(s), y2(s). It can be 

noticed that both output responses settling time has improved (from 40s to 38s) for output 
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y1(s), but increased in a non-considerable manner for the output y2(s)(from 37s in open-loop 

case to 39s after application of the designed controller). 

While the first output response y1has a rising time of 22.8s (improved from 24s for the open-

loop response). The second output response y2  rise time improved from 22 (for open-loop 

system) to 18s.  

Additionally, no major interaction noticed between the two outputs. The steady-state 

interaction didn’t exceed the required 10% as per design. Both outputs settled at 1 and 0.1 as 

per steady state matrix Ss adjustment.  

 
Figure 5.1.1: Response for a unit step change in r1(f = 0.1) 
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On the other hand, figure (5.1.2) presents the response for a unit step change on the second 

input r2 with the same value of f (f1 = f2 = 0.1). 

From figure (5.1.2) shown below, it can be noticed that the response is stable starting with 6% 

overshot for output y1(s)and 7% overshot for output y2(s). The response has a noticeable 

improvement in terms of speed (from 22s to 9s for output y1(s)and from 6s to 3s for output 

y2(s)). On the other hand, the settling time is affected negatively from 36s to 40s for output 

y1(s), and from 10s to 25s for the output y2(s). 

Additionally, no major interaction noticed between the two outputs. The steady-state 

interaction didn’t exceed the required 10% as per design. Both outputs output y1(s)and output 

y2(s) settled at 0.1 and 1 as per steady state matrix Ss adjustment. 

 
Figure 5.1.2: Response for a unit step change in r2(f = 0.1) 

 

 

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

O
u

tp
u

t 
re

s
p

o
n

s
e

Closed loop response (f=0.1) following a unit step input on r2(t)

y1(t)

y2(t)



 

55 

 

Now the outer loop feedback increased to 0.5, and  the system was simulated with the new 

controller adjustment, the output responses for two outputs y1(s), and  y2(s) were plotted after 

exiting each input separately as shown in figure (5.1.3) for input r1(s) and figure (5.1.4) for 

input r2(s). Figure (5.1.3) shows more enhanced output y1(s), and  y2(s) response against 1% 

step in input  r1(s) in many aspects, as will be illustrated in the next paragraphs.  

The response is stably overdamped with 0 overshot for both outputs  y1(s), y2(s). It can be 

noticed that both output responses settling time has improved compared to the open-loop 

system and the previous system set-up (from 40s to 23s) for output y1(s), (from 37s in open-

loop case to 25s) output y2(s). While the first output response y1has a rising time of 12.5s 

(improved from 24s for the open-loop response). The second output response y2  rise time 

improved from 22s (for open-loop system) to 12s. Additionally, no major interaction noticed 

between the two outputs. The steady-state interaction didn’t exceed the required 10% as per 

design. Both outputs settled at 1 and 0.1 as per steady state matrix Ss adjustment. 
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Figure 5.1.3: Response for a unit step change in r1(f = 0.5) 

 

On the other hand, figure (5.1.4) presents the response for a unit step change on the second 

input r2 with the same value of f (f1 = f2 = 0.5). 

From figure (5.1.4) shown below, it can be noticed that the response is stable starting with 5% 

overshot for output y1(s) and output y2(s). The response has a noticeable improvement in 

terms of speed (from 22s to 5.4s for output y1(s)and from 6s to 2s for output y2(s)). On the 

other hand, the settling time is improved slightly for output y1(s)  from 36s to 33s, and 

degraded from 10s to 18s for the output y2(s). 

Additionally, no major interaction noticed between the two outputs. The steady-state 

interaction didn’t exceed the required 10% as per design. Both outputs output y1(s)and output 

y2(s) settled at 0.1 and 1 as per steady state matrix Ss adjustment. 
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Figure 5.1.4: Response for a unit step change in r2(f = 0.5) 
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interaction didn’t exceed the required 10% as per design. Both outputs settled at 1 and 0.1 as 

per steady state matrix Ss adjustment. 

 

Figure 5.1.5: Response for a unit step change in r1(f = 0.8) 

 

On the other hand, figure (5.1.6) presents the response for a unit step change on the second 
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From figure (5.1.6) shown below, it can be noticed that the response is stable starting with 10% 
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Figure 5.1.6: Response for a unit step change in r2(f = 0.8) 

 

Finally, figure (5.1.7, 5.1.8) below show the output response for f = 0.1, 0.5, 0.8 overlapped 
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Figure 5.1.7: Response for a unit step change in r1(f = 0.1, 0.5, 0.8) 

 

 
Figure 5.1.8: Response for a unit step change in r1(f = 0.1, 0.5, 0.8) 
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To be noted that even though the speed of response and settling time improved with increasing 

𝑓 from 0.1 to 0.8, increasing 𝑓 added up to the control energy used by the controller, so there 

shall be a trade-off between the energy consumed by the controller and enhancing the system 

response, to be highlighted that the change in controller energy in not in a considerable amount. 

Refer to figure (5.1.9), (5.1.10). 

 
Figure 5.1.9: Control energy consumption for a unit step change on r1(s) 
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Figure 5.1.10: Control energy consumption for a unit step change on r2(s) 
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Figure 5.1.11: Response following a negative step change in δ1(s) 

(f = 0.1, 0.5, 0.8) 

 

 
Figure 5.1.12: Response following a negative step change in δ2(s) 

(f = 0.1, 0.5, 0.8) 
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5.2  Simulation of H-infinity controller 

The closed-loop of the system including an H-infinity controller was implemented in 

MATLAB® SIMULINK® presented in appendix II figure (B.1). The model consists of two 

reference inputs r1 and r2. Similar to least effort controller case, testing the designed H-infinity 

controller achieved by simulating a unit step at the first system reference input r1(s) and then 

on the second reference input r2(s)  and measuring the closed-loop system response on y1(s) 

(the measured actual temperature of the mixture) and y2(s)(the mixture head in the vessel). 

Figure (5.2.1) presents how the system respond to a unit step change in the first reference 

input r1(s), the system response is good and meats the expected level. 

The response is stable overdamped with 0% overshot for output  y1(s), It can be noticed that, 

settling time for output y1(s) has improved (from 40s to 2s). 

 
Figure 5.2.1: Response for a unit step change in r1 
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While the open-loop first output response y1 has a rising time of 24s, y1 with H-infinity 

controller has a rise time of 1.1s, which is considered as a tremendous improvement. 

Additionally, the open-loop system steady state interaction problem was completely solved. 

The interaction between the two outputs y1(s) and y2(s)is almost 0. y1(s) settled at 99.5% and 

output y2(s)settled down at 0%.  The control energy used to achieve the control action 

mentioned above is plotted in figure (5.2.2) below. 

 
Figure 5.2.2: Control energy consumption for a unit step change on r1(s) 
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(5.2.3) below.  Figure (5.2.3) shows the system response to a unit step change in the input r2(s), 

the output response of the closed-loop is good and exceeds the expected level. 

The response is stable overdamped with 0% overshot for output  y2(s), It can be noticed that, 

settling time for output y2(s) has improved (from 10s to 1.95s). 

While the open-loop first output response y1 has a rising time of 5.7s, y2 with H-infinity 

controller has a rise time of 1.1s, which is considered a very good improvement. 

Additionally, the open-loop system steady state interaction problem was completely solved. 

The interaction between the two outputs y1(s) and y2(s)is almost 0. y2(s) settled at 99.5% and 

output y1(s)setteled down at 0%. 

 
Figure 5.2.3: Response for a unit step change in r2 

 

The control energy used to achieve the above-mentioned control action is plotted in figure 
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Figure 5.2.4: Control energy consumption for a unit step change on r2(s) 
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Figure 5.2.5: Response following a negative step change in δ1(s) 

 
Figure 5.2.6: Response following a negative step change in δ2(s) 
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Chapter VI: A Comparison study 

Every control design method for designing a controller for a multivariable system has its 

advantages and disadvantages. A comparison study of the two used design techniques will be 

held based on four main factors. The first comparison criterium is the closed-loop response 

offered by the controller. The second criterium of evaluation is the simplicity of the controller 

and the feasibility for real-life applications. The third criterium is the controller disturbance 

suppression. That is, how the controller reacted to a unit step change of disturbance on each 

output separately. The last factor selected for the comparison study is the energy used by the 

controller in order to produce a control action. 

 

6.1  Least effort controller 

 

From the British school of modern control, Least Effort Control method is used to design a 

controller for the open system matrix in the frequency domain. One flaw is that the transfer 

function must be in the form of equation (3.3.18). To achieve this form some approximation is 

required, and it is to be assured that the transient and steady state of the approximation matches 

the original system.  

 

6.2  H-infinity Controller 

H-infinity control, on the other hand, is a modern school method from the American school.  

The design problem is about finding the suboptimal feedback design optimization problem in 

which the control task is oriented about designing a stabilizing controller that minimizes the 

H-infinity norm of the closed-loop transfer function. First, weighting matrices (filters) are 

defined, which is vital to the final performance of the system. Then the controller is designed 
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by solving an optimization problem mathematically or numerically through genetic algorithms 

GAs (Goldberg 1989) or loop shaping. 

6.3 Closed-loop response 

The closed-loop control system response for a unit step changes on input r1(s) and input r2(s) 

was presented in the previous chapter, for both the controllers. Comparing the output y1(s) and 

y2(s) responses to input r1(s) in figures (5.1.5) and (5.2.1) shows that the H-infinity controller 

transcends the least effort controller but not in a considerable manner. The same can be noticed 

when comparing figures (5.1.6) and (5.2.3) related to the input r2(s). 

Regarding output interaction, while least effort controller meat the design requirement at less 

than 10% for both the inputs, H-infinity controller achieved a good result at approximately 

completed de-coupling. 

 

6.4  Disturbance rejection 

With respect to disturbance rejection, although H-infinity controller showed perfect rejection 

of the injected disturbance signal (100%) refer to figures (5.2.5) and (5.2.6), least effort 

controller with 𝑓=0.8 setting showed 80% disturbance rejection as shown in figures (5.1.9) and 

(5.1.10) which is also a good achievement that can be improved by increasing 𝑓 in the cost of 

energy consumption. 

 

6.5  Consumption of energy 

Energy consumption can be calculated by the following formula (R. Whalley and M. Ebrahimi, 

2006). 

𝐸(𝑡) = ∫ (𝑢1(𝑡)
2 + 𝑢2(𝑡)

2). 𝑑𝑡
𝑡=1

𝑡=0
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A Simulink® model shown in figures (A1), and (B1) in the appendix was used to calculate the 

energy cost by both controllers to perform the control job. For input r1(s), as shown in figures 

(5.1.9) and (5.2.2), H-infinity controller is near twice the cost of least effort controller. Also, 

for input r2(s) , as shown in figures (5.1.10) and (5.2.4) least effort controller energy 

consumption is around 17% of H-infinity controller. 

 

6.6  Simplicity & ease of implementation 

It can be noticed that while Least Effort controller has a simple form consisting of feedback 

and feedforward simple gains only. However, the H-infinity controller has a complicated 

structure with transfer functions of 5th order. Closed-loop controller model reduction 

techniques shall be used to make such controller applicable for real life applications. That 

makes the least effort controller a good choice in real applications. 
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Chapter VII: Conclusions and Recommendations 

7.1 Conclusions 

In this research two control methods (least-effort, and H-infinity) were highlighted. They were 

implemented to a 2 × 2  feed mixing system, and the system response to step inputs and 

disturbances on the outputs was studied.  

MATLAB® control system toolbox and Simulink® were used to simulate, study, design and 

verify the performance of the two controllers under study. 

The design method of the Least Effort Controller is based on a systematic method which gives 

the freedom for the designer to improves specific performance criteria in multivariable 

systems. Because it consists of a combination of two loops, inner and outer loop, the designer 

can adjust the inner loop to improve the system dynamics, while the outer loop improves the 

disturbance rejection properties and sets output interaction to the required design level. Most 

importantly, both loops control action is based on the least control effort. 

Moreover, least effort controller is very simple when it comes to application, while H-infinity 

controller consists of transfer functions of 5th order, least effort controller is as simple as a set 

of constant gains. This does ease not only the implementation process, but also the lifetime 

maintenance cost. 

The main difficulty that may face Least Effort Controller is when the system transfer function 

is not simple and cannot be written as per the required form. For more than 2 × 2 systems 

finding the optimum solution will not be as easy as it is for 2 × 2 systems. However, it this can 

be overcome by applying numerical methods for solving the optimization problem. 

The system response has shown a dramatic change regarding system dynamics including speed 

related parameters as settling time and rise time. Moreover, the steady state interaction was as 

per the design requirement, and the system shows a good performance regarding disturbance 

rejection. 



 

73 

 

On the other hand, the H-infinity controller design method has shown an adequate response 

and recognizable behavior regarding enhancing system dynamics and improving steady state 

interaction. Disturbance suppression far exceeded Least effort controller. But all of this came 

on the cost of control energy consumption. One more disadvantage of this control method is 

the complexity of the controller which raise the importance of model reduction techniques with 

such a controller. 

 

7.2  Recommendations 

o Least Effort controller has shown good performance with simple implementation of 

constant gains; less energy cost was noticed that’s why it is recommended as a control 

system for plants where control energy is essential. Constructing the controller depends on 

well-defined systematic procedure, and the response was meeting the design requirements. 

This control method is recommended for feed mixing system. 

o Like optimal LQR (lqr), (lqg), and H-infinity controller (hinfopt), an algorithm for least 

effort controller (LEQ) can be constructed in MATLAB® control system toolbox. Which 

will simplify the control job for more complex systems. 

o Least effort controller shall be extended to be implemented on digital systems control 

problem. 

o  H-infinity control shown superior performance in both transient and steady state parts. 

However, the complication of the controller model and the higher energy consumption by 

it made it stand behind lest effort controller. Also, additional studies need to be done to 

develop a systematic method of deriving the system weighing filters. 
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Appendix I: MATLAB® code  

A. Least Effort controller MATLAB® code 

1 %% A Program For Designing A Least Effort Controller For  

2 %% pneumatic feed mixing system 

3   

4 clear all 

5 clc 

6 format short 

7 format loose 

8   

9 disp('*************************************************************') 

10 disp('*************************************************************') 

11 disp(' This code is made to design a least effort comtroller for') 

12 disp(' pneumatic feed mixing system') 

13 disp('*************************************************************') 

14 disp('*************************************************************') 

15 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 

16 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 

17 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 

18 disp('*************************************************************') 

19 disp('*************************************************************') 

20 disp(' Press Enter to start ....') 

21 disp('*************************************************************') 

22 disp('*************************************************************') 

23   

24 pause 

25   

26 %% The Open-Loop Transfer Function 

27   

28 syms n s 

29   

30 G11=tf([1.02],[11.76 1]); 

31 G12=tf([-0.52],[10.25 1]); 
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32 G21=tf([-0.54],[10.25 1]); 

33 G22=tf([1.04],[2.6 1]); 

34   

35 disp('The open-loop transfer function of the system, G(s), is') 

36 G = [G11, G12; G21, G22]; 

37   

38 %another form of G 

39 G=[1.02/(11.76*s+1), -0.52/(10.25*s+1); -0.54/(10.25*s+1), 1.04/(2.6*s+1)]; 

40   

41 pretty (vpa (G)) 

42   

43 %% The Open-Loop system response 

44   

45 t=0:0.0001:50; 

46 y1=step(G11,t); 

47 y2=step(G12,t); 

48 y3=step(G21,t); 

49 y4=step(G22,t); 

50   

51 disp('=============================================================') 

52 disp('Press Enter to Plot the Open-loop system response') 

53 disp('and display response info.') 

54 disp('-------------------------------------------------------------') 

55 pause 

56   

57 figure(1) 

58 plot(t,y1,'b',t,y2,'r-.','LineWidth',1.5) 

59 disp('=============================================================') 

60 disp('from input1') 

61 disp('-------------------------------------------------------------') 

62 y1info = stepinfo(y1,t) 

63 y2info = stepinfo(y2,t) 

64 grid on 

65   

66 legend('y1(t)','y2(t)') 

67 title('Open-loop response for a unit step input on u1(t)') 
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68 xlabel ('Time (s)') 

69 ylabel ('output response') 

70 ax = gca; 

71 ax.FontSize = 10; 

72 axis([0,50,-0.6,1.2]); 

73   

74 figure(2) 

75 plot(t,y3,'b',t,y4,'r-.','LineWidth',1.5) 

76 disp('=============================================================') 

77 disp('from input2') 

78 disp('-------------------------------------------------------------') 

79 y1info = stepinfo(y3,t) 

80 y2info = stepinfo(y4,t) 

81 grid on 

82   

83 legend('y1(t)','y2(t)') 

84 title('Open-loop response for a unit step input on u2(t)') 

85 xlabel ('Time (s)') 

86 ylabel ('output response') 

87 ax = gca; 

88 ax.FontSize = 10; 

89   

90 axis([0,50,-0.6,1.2]); 

91   

92 %% Showing G(S) as G(S) = L(s) .A(s) / d(s) . R(s) . Gamma(s)  

93 G=1/(26.65*s^2+12.85*s+1)*[1.02/(11.76*s+1), -0.52/(10.25*s+1); -0.54/(10.25*s+1), 

1.04/(2.6*s+1)]; 

94 A = [1.02*(10.25*s+1), -0.52*(11.76*s+1); -0.54*(2.6*s+1), 1.04*(10.25*s+1)]; 

95 A = vpa (A); 

96 d = (10.25*s+1)*(2.6*s+1); 

97 d = vpa (d); 

98 L=[1/((11.76*s+1)*(10.25*s+1)), 0; 0, 1/((2.6*s+1)*(10.25*s+1))]; 

99 L = vpa (L); 

100 R = eye(2); 

101 Gamma = eye(2); 

102   
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103 % To Display A(S), d(s), L(s) and R(s) 

104 disp('=============================================================') 

105 disp('Press Enter to display A(s), d(s), L(s), R(s) and Gamma(s)') 

106 disp('-------------------------------------------------------------') 

107 pause 

108 disp('A(s) is') 

109 pretty(A) 

110 disp('d(s) is') 

111 pretty(d) 

112 disp('L(s) is') 

113 pretty (L) 

114 R 

115 Gamma 

116   

117 %% Forming the inner product <h.A(s).k> 

118   

119 syms n real k1 k2 h1 h2 

120   

121 hAk = [h1 h2]*A*[k1 k2]'; 

122 hAk = subs(hAk, k2, n*k1); 

123 hAk = subs(hAk, k1, 1); 

124   

125 disp('=============================================================') 

126 disp('Press Enter to display the inner product<h.A(s).k>') 

127 disp('-------------------------------------------------------------') 

128   

129 pause 

130   

131 disp('The inner product is:') 

132 pretty(hAk) 

133   

134 %% Presenting the system Q matix  

135   

136 Q=[(1.02-0.52*n) (-0.54+1.04*n);(10.455-6.1152*n) (-1.404+10.66*n)]; 

137   

138 disp('=============================================================') 



 

85 

 

139 disp('Press Enter to display the matrix Q') 

140 disp('-------------------------------------------------------------') 

141   

142 pause 

143   

144 disp('The Q matrix is:') 

145 pretty (vpa(Q)) 

146   

147 %% Finding the steady-state value of the transfer function 

148 disp('=============================================================') 

149 disp('Press Enter to display the steady-state of transfer function') 

150 disp('-------------------------------------------------------------') 

151 pause 

152 G0 = limit(G,s,0); 

153 pretty (vpa (G0)) 

154  

155 %% Designing the inner loop  

156   

157 syms G0 b0 b 

158   

159 G0 = subs(G,s,0); 

160 b = [0.09; 1]; 

161 b(1,1)=0.09; 

162 b(2,1)=1; 

163   

164 %Choose the zero of numerator b(2,1) 

165 disp('=============================================================') 

166 disp('Entering the value of the zero of b(s)/d(s)=-1') 

167 disp('-------------------------------------------------------------') 

168 X1=input('Enter the value of b(1,1) [0.09]:'); 

169   

170 if isempty(X1) 

171      disp ('defult b(1,1) sellected : 0.09') 

172      X1 = 0.09; 

173 end 

174   
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175 b(1,1) = X1  

176   

177 sysbsds=tf([b(2,1) b(1,1)],sym2poly(d)); 

178   

179 %root locus to sellect b0 

180 disp('=============================================================') 

181 disp('Press Enter to display the root locus of b(s)/d(s)=-1') 

182 disp('-------------------------------------------------------------') 

183 pause 

184   

185 figure(3) 

186 rlocus(sysbsds) 

187 ax = gca; 

188 ax.FontSize = 10; 

189 grid on 

190   

191 disp('=============================================================') 

192 display('The poles of bs/ds are:') 

193 disp('-------------------------------------------------------------') 

194   

195 p=pole(sysbsds) 

196   

197 % Choose b0 from root locus 

198 % setting the defult to 0.33  

199 syms b0 

200   

201 disp('=============================================================') 

202 disp('Entering the value of b0') 

203 disp('-------------------------------------------------------------') 

204 X2=input('Enter the value of b0 [0.33]:'); 

205   

206 if isempty(X2) 

207 disp ('defult b0 sellected : 0.33') 

208 X2 = 0.33; 

209 end  

210   
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211 b0 = X2; 

212   

213 b=b0*b 

214   

215   

216 %% Finding the performance index, J 

217 syms n 

218   

219 J=(1 + n^2) * (b)' * (inv(Q))' * inv(Q) * b; % performance index 

220   

221 disp('=============================================================') 

222 disp('Press Enter to display the performance index,J') 

223 disp('-------------------------------------------------------------') 

224   

225 pause 

226 pretty(vpa(J)) 

227   

228 disp('=============================================================') 

229 disp('Press Enter to display the graph of J as a function of n') 

230 disp('-------------------------------------------------------------') 

231   

232 pause 

233   

234 figure(4) 

235 ezplot(J,[-4,10, -0.5*10E-4,9*10E-4]); 

236 ax = gca; 

237 ax.FontSize = 10; 

238 grid 

239 title ('preformance index "J" vs. Gain ratio "n"') 

240 ylabel('Performance index J') 

241 xlabel('Gain ratio n') 

242   

243   

244 %% Finding the derivative of J to find the minimum 

245   
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246 dJ=diff(J); 

247   

248 r=solve (dJ); 

249 rnum = vpa (r); 

250   

251 % to find min 

252 djmin = subs (J, n, r);  

253 djminnum = vpa (djmin); 

254   

255 %J1=diff(J); 

256 [num, den] = numden (dJ); 

257 J1 = num / den;  

258   

259 % Finding the values of 'n' for which J is minimum 

260 syms x 

261 dJ = subs(dJ, n, x); 

262 n = solve(dJ); 

263 n = double(n); 

264 disp('=============================================================') 

265 disp('Press Enter to display n for which J has an extremum') 

266 disp('-------------------------------------------------------------') 

267 pause 

268   

269 N = sort(n) 

270 % Findind the corresponding values of J 

271 dJ = subs(J,n); 

272   

273 %% Finding the value of n at which J is the minimum 

274 disp('=============================================================') 

275 disp('Press Enter to display the value of n at which J is minimum') 

276 disp('-------------------------------------------------------------') 

277   

278 for nn = 1 : length(n) 

279 if isreal(n(nn))==0 n(nn) = inf; 

280 end 

281 end 
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282   

283 n = n (isfinite(n)); 

284 J = subs(J,n); 

285 pause 

286   

287 n = n(find (J == min(J))) 

288 disp('=============================================================') 

289 disp('Press Enter to display the corresponding value of matrix Q') 

290 disp('-------------------------------------------------------------') 

291 pause 

292   

293 Q = subs(Q,n); 

294 pretty (vpa(Q)) 

295   

296 %% Finding the value of (h1, h2) 

297 disp('=============================================================') 

298 disp('Press Enter to display the value of h1, h2') 

299 disp('-------------------------------------------------------------') 

300 pause 

301   

302 k1=1; 

303 h=inv(Q)*b/k1; 

304 pretty (vpa(h)) 

305 h = double (h); 

306   

307 %% Finding h(s) 

308   

309 disp('=============================================================') 

310 disp('Press Enter to display h(s)') 

311 disp('-------------------------------------------------------------') 

312 pause 

313   

314 hs(1,1) = h(1,1)*(11.76*s+1)/(2.6*s+1); 

315 hs(1,2) = h(2,1); 

316   

317 pretty (vpa(hs)); 
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318   

319 %% Finding the value of k 

320 disp('=============================================================') 

321 disp('Press Enter to display k') 

322 disp('-------------------------------------------------------------') 

323 pause 

324   

325 k2=n*k1; 

326 k=[k1 k2]' 

327   

328 %% Defining Ss 

329 disp('=============================================================') 

330 disp('Press Enter to display the value of Ss') 

331 disp('-------------------------------------------------------------') 

332   

333 pause 

334   

335 Ss=[1 -0.1;-0.1 1] 

336   

337 %% Defining the matrix F 

338 disp('=============================================================') 

339 disp('Entering the value of f') 

340 disp('-------------------------------------------------------------') 

341 r1=input('Enter the value of f (0<f<1)[0.8]: ') 

342   

343 if isempty(r1) 

344      disp ('defult (f) sellected : 0.8') 

345      r1 = 0.8; 

346 end  

347   

348 f = r1; 

349   

350   

351 F=[f 0;0 f] 

352   
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353 %% Outer loop feed-forward gain 

354 disp('=============================================================') 

355 disp('Press Enter to display the feed-forward') 

356 disp('gain matrix of the outer loop,p') 

357 disp('-------------------------------------------------------------') 

358 pause 

359   

360 P=(inv(G0)+k*h')*Ss*inv((eye(2)-F*Ss)); 

361 pretty (vpa(P)) 

362   

363   

364 %% Conventional outer loop feedback gain 

365 disp('=============================================================') 

366 disp('Press Enter to display the system feed-back') 

367 disp('gain matrix of the outer loop, H') 

368 disp('-------------------------------------------------------------') 

369 pause 

370   

371 H=(inv(P)*(k*hs))+F; 

372 pretty (vpa(H)); 

373   

374 HH=inv(P)*([1; 7.1267]*[-0.001939*((11.76*s+1)/(2.6*s+1)), 0.00356])+F; 

375 pretty (vpa(HH)) 

376   

377 %% Simulation and plotting the system response 

378   

379 % defining the system inputs 

380 syms r1 r2 d1 d2 

381   

382 disp('=============================================================') 

383 disp('Entering the value of r1') 

384 disp('-------------------------------------------------------------') 

385 r11=input('Enter the value of r1 (0 or 1)[0]:') 

386   

387 if isempty(r11) 

388      disp ('defult (r1) sellected : 0') 



 

92 

 

389      r11 = 0; 

390 end  

391   

392 r1=r11; 

393   

394 disp('=============================================================') 

395 disp('Entering the value of r2') 

396 disp('-------------------------------------------------------------') 

397 r22=input('Enter the value of r2 (0 or 1)[0]:') 

398   

399 if isempty(r22) 

400      disp ('defult (r2) sellected : 0') 

401      r22 = 0; 

402 end  

403   

404 r2=r22; 

405   

406 % defining the system disturbance 

407   

408 disp('=============================================================') 

409 disp('Entering the value of d1') 

410 disp('-------------------------------------------------------------') 

411 d11=input('Enter the value of d1 (0 or 1)[0]:') 

412   

413 if isempty(d11) 

414      disp ('defult (d1) sellected : 0') 

415      d11 = 0; 

416 end  

417   

418 d1=d11; 

419   

420 disp('=============================================================') 

421 disp('Entering the value of d2') 

422 disp('-------------------------------------------------------------') 

423 d22=input('Enter the value of d2 (0 or 1)[0]:') 

424   
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425 if isempty(d22) 

426      disp ('defult (d2) sellected : 0') 

427      d22 = 0; 

428 end  

429   

430 d2=d22; 

431   

432 %Running the simulation 

433 disp('||||||||||||||||(Enter to run Simulation )|||||||||||||||||||') 

434 pause 

435 disp('||||||||||( Simulation running, please wait ... )||||||||||||') 

436   

437 sim('least_effort') 

438   

439 %% Plotting the system response 

440   

441 if r1 == 1 

442 disp('=============================================================') 

443 disp('Press Enter to plot system response to unit step input on r1(t)') 

444 disp('-------------------------------------------------------------') 

445 pause 

446   

447 figure(5) 

448 plot(t,y1,'b',t,y2,'r-.','LineWidth',1.5) 

449 y1info = stepinfo(y1,t) 

450 y2info = stepinfo(y2,t) 

451 grid on 

452 legend('y1(t)','y2(t)') 

453 title('Closed-loop response for a unit step input on r1(t)') 

454 xlabel ('Time (s)') 

455 ylabel ('Output response') 

456 ax = gca; 

457 ax.FontSize = 10; 

458 axis([0,50,-0.6,1.2]); 

459 end 

460   
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461 if r2==1 

462 disp('=============================================================') 

463 disp('Press Enter to plot system response to unit step input on r2(t)') 

464 disp('-------------------------------------------------------------') 

465 pause 

466   

467 figure(5) 

468 plot(t,y1,'b',t,y2,'r-.','LineWidth',1.5) 

469 y1info = stepinfo(y1,t) 

470 y2info = stepinfo(y2,t) 

471 grid on 

472 legend('y1(t)','y2(t)') 

473 title('Closed-loop response for a unit step input on r2(t)') 

474 xlabel ('Time (s)') 

475 ylabel ('Output response') 

476 ax = gca; 

477 ax.FontSize = 10; 

478 axis([0,50,-0.6,1.2]); 

479 end 

480 if d1 == 1 

481 disp('=============================================================') 

482 disp('Press Enter to plot system response to unit step on d1(t)') 

483 disp('-------------------------------------------------------------') 

484 pause 

485   

486 figure(5) 

487 plot(t, y1, 'b', t, y2, 'r-.', 'LineWidth', 1.5) 

488 y1info = stepinfo(y1,t) 

489 y2info = stepinfo(y2,t) 

490 grid on 

491 legend('y1(t)','y2(t)') 

492 title('Closed-loop response for a unit step input on d1(t)') 

493 xlabel ('Time (s)') 

494 ylabel ('Output response') 

495 ax = gca; 

496 ax.FontSize = 10; 
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497 axis([0,50,-0.6,1.2]); 

498 end  

499 if d2==1 

500 disp('=============================================================') 

501 disp('Press Enter to plot system response to unit step on d2(t)') 

502 disp('-------------------------------------------------------------') 

503 pause 

504 figure(5) 

505 plot(t, y1,'b',t, y2, 'r-.', 'LineWidth', 1.5) 

506 y1info = stepinfo(y1,t) 

507 y2info = stepinfo(y2,t) 

508 grid on 

509 legend('y1(t)','y2(t)') 

510 title('Closed-loop response for a unit step input on d2(t)') 

511 xlabel ('Time (s)') 

512 ylabel ('Output response') 

513 ax = gca; 

514 ax.FontSize = 10; 

515 axis([0,50,-0.6,1.2]); 

516 end 

517 disp('=============================================================') 

518 disp('Press Enter to plot system Energy consumption') 

519 disp('-------------------------------------------------------------') 

520 pause 

521 figure(6) 

522 plot(t,E,'r','LineWidth',1.5) 

523 grid on 

524 legend('Energy consumption') 

525 title('Control energy consumption vs. time ') 

526 xlabel ('Time (s)') 

527 ylabel ('Control energy consumption') 

528 ax = gca; 

529 ax.FontSize = 10; 

530   

531 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 

532 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 
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533 disp('|||||||||||||||||||||(End of program)||||||||||||||||||||||||') 

534 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 

535 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 

B. H-infinity controller MATLAB® code 

1 %% A Program For Designing H-infinity Controller For  

2 %% pneumatic feed mixing system 

3 clear all 

4 clc 

5 format short 

6 format loose 

7 disp('*************************************************************') 

8 disp('*************************************************************') 

9 disp(' This code is made to design an H-infinity comtroller for') 

10 disp(' pneumatic feed mixing system') 

11 disp('*************************************************************') 

12 disp('*************************************************************') 

13 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 

14 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 

15 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 

16 disp('*************************************************************') 

17 disp('*************************************************************') 

18 disp(' Press Enter to start ....') 

19 disp('*************************************************************') 

20 disp('*************************************************************') 

21 pause 

22 %% The Open-Loop Transfer Function 

23 syms n s 

24 s=tf('s'); 

25 G11=tf([1.02],[11.76 1]); 

26 G12=tf([-0.52],[10.25 1]); 

27 G21=tf([-0.54],[10.25 1]); 

28 G22=tf([1.04],[2.6 1]); 

29   

30 disp('The open-loop transfer function of the system, G(s), is') 

31 G = [G11, G12; G21, G22] 
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32   

33 %% to find the state space matrices in its minimum realization. 

34 sys=ss(G,'min'); 

35 [A,B,C,D] = ssdata(sys); 

36   

37 % Displaying A,B,C and D for open-loop 

38 disp('=============================================================') 

39 disp('Press Enter to display A,B,C,D for open-loop system') 

40 disp('-------------------------------------------------------------') 

41 pause 

42 (A) 

43 (B) 

44 (C) 

45 (D) 

46   

47 %% The Open-Loop system response 

48   

49 t=0:0.0001:50; 

50   

51 y1=step(G11,t); 

52 y2=step(G12,t); 

53 y3=step(G21,t); 

54 y4=step(G22,t); 

55   

56 disp('=============================================================') 

57 disp('Press Enter to Plot the Open-loop system response') 

58 disp('and display response info.') 

59 disp('-------------------------------------------------------------') 

60 pause 

61   

62 figure(1) 

63 plot(t,y1,'b',t,y2,'r-.','LineWidth',1.5) 

64 disp('=============================================================') 

65 disp('from input1') 

66 disp('-------------------------------------------------------------') 

67 y1info = stepinfo(y1,t) 
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68 y2info = stepinfo(y2,t) 

69 grid on 

70   

71 legend('y1(t)','y2(t)') 

72 title('Open-loop response for a unit step input on u1(t)') 

73 xlabel ('Time (s)') 

74 ylabel ('output response') 

75 ax = gca; 

76 ax.FontSize = 10; 

77 axis([0,50,-0.6,1.2]); 

78   

79 figure(2) 

80 plot(t,y3,'b',t,y4,'r-.','LineWidth',1.5) 

81 disp('=============================================================') 

82 disp('from input2') 

83 disp('-------------------------------------------------------------') 

84 y1info = stepinfo(y3,t) 

85 y2info = stepinfo(y4,t) 

86 grid on 

87   

88 legend('y1(t)','y2(t)') 

89 title('Open-loop response for a unit step input on u2(t)') 

90 xlabel ('Time (s)') 

91 ylabel ('output response') 

92 ax = gca; 

93 ax.FontSize = 10; 

94 axis([0,50,-0.6,1.2]); 

95   

96 %% To define the weighting functions 

97   

98 W1 = [(0.1*s+2)/(5*s+0.05), 0; 0, (0.1*s+2)/(5*s+0.05)]; 

99 W2 = [tf(1e-8), 0; 0, tf(1e-8)]; 

100 W3 = [s/10, 0; 0, s/10]; 

101   

102 % Displaying the weighting functions 

103 disp('=============================================================') 
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104 disp('Press Enter to display the weighting functions') 

105 disp('-------------------------------------------------------------') 

106 pause 

107 (W1) 

108 (W2) 

109 (W3) 

110 %% H-infinity Controller design 

111 % To define the augmented system  

112 SysTss = augtf(G,W1,W2,W3); 

113   

114 % Displaying the augmented system 

115 disp('=============================================================') 

116 disp('Press Enter to display the augmented system model') 

117 disp('-------------------------------------------------------------') 

118 pause 

119 SysTss 

120   

121 %The two-port format of the augmented system 

122 [a,b1,b2,c1,c2,d11,d12,d21,d22]=branch(SysTss); 

123   

124 % To apply H-infinity controller on the defined augmented system 

125 disp('=============================================================') 

126 disp('Press Enter to design an H-infinity controller') 

127 disp('for the augmented system model') 

128 disp('-------------------------------------------------------------') 

129 pause 

130 [gamma, Gc] = hinfopt (SysTss) 

131   

132 %% Defining A,B,C,D of Gc 

133 [Ac,Bc,Cc,Dc] = ssdata(Gc); 

134   

135 %% defining num, den of the elemts of H-infinity controller 

136 [numg11,deng11] = tfdata(Gc(1,1)); 

137 [numg21,deng21] = tfdata(Gc(2,1)); 

138 [numg12,deng12] = tfdata(Gc(1,2)); 

139 [numg22,deng22] = tfdata(Gc(2,2)); 
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140   

141 % To display the controller transfer function 

142 disp('=============================================================') 

143 disp('Press Enter to display H-infinity controller transfer funtion') 

144 disp('-------------------------------------------------------------') 

145 pause 

146   

147 zpk(Gc) 

148   

149 %% Simulation and plotting the system response 

150 % defining the system inputs 

151 syms r1 r2 d1 d2 

152   

153 disp('=============================================================') 

154 disp('Entering the value of r1') 

155 disp('-------------------------------------------------------------') 

156 r11=input('Enter the value of r1 (0 or 1)[0]:') 

157 if isempty(r11) 

158      disp ('defult (r1) sellected : 0') 

159      r11 = 0; 

160 end  

161 r1=r11; 

162 disp('=============================================================') 

163 disp('Entering the value of r2') 

164 disp('-------------------------------------------------------------') 

165 r22=input('Enter the value of r2 (0 or 1)[0]:') 

166   

167 if isempty(r22) 

168      disp ('defult (r2) sellected : 0') 

169      r22 = 0; 

170 end  

171 r2=r22; 

172 % defining the system disturbance 

173 disp('=============================================================') 

174 disp('Entering the value of d1') 

175 disp('-------------------------------------------------------------') 
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176 d11=input('Enter the value of d1 (0 or 1)[0]:') 

177 if isempty(d11) 

178      disp ('defult (d1) sellected : 0') 

179      d11 = 0; 

180 end  

181 d1=d11;  

182 disp('=============================================================') 

183 disp('Entering the value of d2') 

184 disp('-------------------------------------------------------------') 

185 d22=input('Enter the value of d2 (0 or 1)[0]:') 

186   

187 if isempty(d22) 

188      disp ('defult (d2) sellected : 0') 

189      d22 = 0; 

190 end  

191 d2=d22; 

192  

193 %Running the simulation 

194 disp('||||||||||||||||(Enter to run Simulation )|||||||||||||||||||') 

195 pause 

196 disp('||||||||||( Simulation running, please wait ... )||||||||||||') 

197 sim('H_infinity_thesis') 

198   

199 %% Plotting the system response 

200 if r1 == 1 

201 disp('=============================================================') 

202 disp('Press Enter to plot system response to unit step on r1(t)') 

203 disp('-------------------------------------------------------------') 

204 pause 

205   

206 figure(3) 

207 plot(t,y1,'b',t,y2,'r-.','LineWidth',1.5) 

208 y1info = stepinfo(y1,t) 

209 grid on 

210   

211 legend('y1(t)','y2(t)') 
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212 title('Closed-loop response for a unit step input on r1(t)') 

213 xlabel ('Time (s)') 

214 ylabel ('Output response') 

215 ax = gca; 

216 ax.FontSize = 10; 

217 axis([0,50,-0.6,1.2]); 

218 end 

219   

220 if r2==1 

221 disp('=============================================================') 

222 disp('Press Enter to plot system response to unit step on r2(t)') 

223 disp('-------------------------------------------------------------') 

224 pause 

225   

226 figure(3) 

227 plot(t,y1,'b',t,y2,'r-.','LineWidth',1.5) 

228 y2info = stepinfo(y2,t) 

229 grid on 

230 legend('y1(t)','y2(t)') 

231 title('Closed-loop response for a unit step input on r2(t)') 

232 xlabel ('Time (s)') 

233 ylabel ('Output response') 

234 ax = gca; 

235 ax.FontSize = 10; 

236 axis([0,50,-0.6,1.2]); 

237 end 

238 if d1 == 1 

239 disp('=============================================================') 

240 disp('Press Enter to plot system response to unit step on d1(t)') 

241 disp('-------------------------------------------------------------') 

242 pause 

243 figure(3) 

244 plot(t,y1,'b',t,y2,'r-.','LineWidth',1.5) 

245 y1info = stepinfo(y1,t) 

246 grid on 

247 legend('y1(t)','y2(t)') 
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248 title('Closed-loop response for a unit step input on d1(t)') 

249 xlabel ('Time (s)') 

250 ylabel ('Output response') 

251 ax = gca; 

252 ax.FontSize = 10; 

253 axis([0,50,-0.6,1.2]); 

254 end 

255 if d2==1 

256 disp('=============================================================') 

257 disp('Press Enter to plot system response to unit step on d2(t)') 

258 disp('-------------------------------------------------------------') 

259 pause 

260 figure(3) 

261 plot(t,y1,'b',t,y2,'r-.','LineWidth',1.5) 

262 y2info = stepinfo(y2,t) 

263 grid on 

264 legend('y1(t)','y2(t)') 

265 title('Closed-loop response for a unit step input on d2(t)') 

266 xlabel ('Time (s)') 

267 ylabel ('Output response') 

268 ax = gca; 

269 ax.FontSize = 10; 

270 axis([0,50,-0.6,1.2]); 

271 end 

272 disp('=============================================================') 

273 disp('Press Enter to plot system Energy consumption') 

274 disp('-------------------------------------------------------------') 

275 pause 

276 figure(4) 

277 plot(t,E1,'r','LineWidth',1.5) 

278 grid on 

279 legend('Energy consumption') 

280 title('Control energy consumption vs. time ') 

281 xlabel ('Time (s)') 

282 ylabel ('Control energy consumption') 

283 ax = gca; 
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284 ax.FontSize = 10; 

285   

286 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 

287 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 

288 disp('|||||||||||||||||||||(End of program)||||||||||||||||||||||||') 

289 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 

290 disp('|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||') 

Appendix II: Simulation Model 

A. Least Effort Simulation Model 

 
Figure A.1: least effort controller simulation model 
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B. H-infinity controller Simulation Model 

 

Figure B.1: H-infinity controller simulation model 

 

 

 

 

 

 

 

 


