

Integration of Wind Catchers in Modern Residential Buildings in the UAE as a Means of Providing Thermal Comfort

دمج ملاقف الرياح في المباني السكنية الحديثة في دولة الإمارات العربية المتحدة كوسيلة لتوفير الراحة الحرارية

By

Raashid Riza Student ID number 110107

Dissertation submitted in partial fulfilment of the requirements for the degree of MSc Sustainable Design of the Built Environment

Faculty of Engineering & IT

Dissertation Supervisor

Professor Bassam Abu-Hijleh

April 2014

DISSERTATION RELEASE FORM

Student Name	Student ID	Programme	Date
Raashid Riza	110107	SDBE	30 April 2014

Title

Integration of Wind Catchers in Modern Residential Buildings in the UAE as a Means of Providing Thermal Comfort

I warrant that the content of this dissertation is the direct result of my own work and that any use made in it of published or unpublished copyright material falls within the limits permitted by international copyright conventions.

I understand that one copy of my dissertation will be deposited in the University Library for permanent retention.

I hereby agree that the material mentioned above for which I am author and copyright holder may be copied and distributed by The British University in Dubai for the purposes of research, private study or education and that The British University in Dubai may recover from purchasers the costs incurred in such copying and distribution, where appropriate.

I understand that The British University in Dubai may make that copy available in digital format if appropriate.

I understand that I may apply to the University to retain the right to withhold or to restrict access to my dissertation for a period which shall not normally exceed four calendar years from the congregation at which the degree is conferred, the length of the period to be specified in the application, together with the precise reasons for making that application.

Signature		

Table of Contents

Title	Page
Abstract	i
Dedication	v
Acknowledgement	vi
Section 1: Introduction	1
1.0 Introduction	3
1.1 Aims and Objectives	7
Section 2: Literature Review	9
2.0 Literature Review	10
2.1 Comfort Standards and Sustainable Design Strategies	10
2.2 Influence of climatic factors on building design	13
2.3 Traditional Architectural Techniques	14
2.4 Traditional architectural techniques used in Korea	15
2.5 Traditional architectural techniques used in India	20
2.6 Selected analysis of Traditional Cooling Systems used in the Gulf region	27
2.7 Wind catchers	31
2.8 Integrating traditional sustainable strategies in modern buildings	38
2.9 Literature review concluding remarks	51
Section 3: Methodology	52

3.0 Methodology	53
3.1 Field measurements	53
3.2 Scaled models and laboratory measurements.	54
3.3 Case studies and surveys	59
3.4 Simulation	61
3.5 Methodology selection	62
3.6 Software selection & Validation	63
3.7 Selection of the site	67
3.8 Abu Dhabi Weather	70
Section 4: Model Set Up	74
4.0 Model set up	76
4.1 Setting up the existing case	76
4.2 Testing out other parameters and models	80
4.3 Condition for window or wind tower opening to be operable (opening profile)	82
Section 5: Results & Discussion	87
5.0 Results & Discussion	88
5.1 The Reference Case	89
5.2 Impact of Floor to Ceiling height	90
5.3 Impact of the height of the wind tower	93
5.4 Impact of the Orientation of the Wind tower.	98

5.5 Impact of the area of the window.	100
5.6 Impact of the area of the wind tower opening.	102
5.7 Impact of the percentage opening of window opening	109
5.8 Impact of the percentage opening of the wind tower openings	112
5.9 Assessing the optimal configuration	115
5.10 Comparison between existing case and optimum case in	
terms of energy consumption and CO_2 emissions.	117
Section 6: Conclusions & Recommendations	119
6.0 Conclusions & Recommendations	120
6.1 Conclusion	120
6.2 Recommendations for future study	122
References	124
Appendix A	133
Appendix B	134

List of Figures

Figure Title	Page
Figure 2.1 Wind flowing from cooler to warmer areas (<i>Kim, 2006</i>)	16
Figure 2.2 Depth of the eaves responding to sun angles (<i>Kim, 2006</i>)	18
Figure 2.3 showing the function of the convection current (<i>Kim, 2006</i>)	19
Figure 2.4 Bioclimatic variations in different regions India (Priya et al,2012)	21
Figure 2.5 Air interchange facilitated by wind catchers (Priya et al, 2012)	26
Figure 2.6 Optimum orientation for buildings in the UAE. (Ecotect)	29
Figure 2.7 Allocation of functional spaces in respect to orientation in a	
traditional house in Dubai (Dubai Municipality, 2011)	29
Figure 2.8 Sirdah used in houses for thermal mass and cooling.	
(Edwards et al, 2006)	31
Figure 2.9 Summer wind affecting a UAE house. (Al Zubaidi, 2007)	32
Figure 2.11 Various elements of a wind catcher (Al Zubaidi, 2007)	33
Figure 2.12 The various ventilation strategies within a wind (Al Zubaidi,	
2007)	37
Figure 2.13 Souk Al Markazi in Sharjah with vaulted ceilings and wind	
catchers (Online)	40
Figure 2.14 Mashrabiyya in the Zahaby House, Cairo (Online)	41
Figure 2.15 Interior of the Institut du Monde Arabe with screening	
devices. (Online)	42
Figure 2.16 Screening devices open to allow sunlight. (Online)	43
Figure 2.17 Screening devices closed to block sunlight. (Online)	43
Figure 2.18 Traditional technological inspiration integrated in the	
modern Al Bahar towers. (Online)	44

Figure 2.19 Traditional architectural techniques integrated into the	
Central Market Abu Dhabi. (Online)	45
Figure 2.20 Traditional architectural techniques integrated into the	
Madinat Jumeirah, Dubai. (Online)	46
Figure 2.21 Temperature contour taken during tests by Calautit et al	
(2013).	47
Figure 2.22 How the traditional Malqaf works (Roaf, 2001)	48
Figure 2.23 Modern wind catcher techniques (Suleiman & Himmo, 2013)	49
Figure 3.1 Scaled model used by Montazeri & Azizian (2008)	57
Figure 3.2 Smoke injection studies carried out to study flow patterns	
(Montazeri & Azizian 2008).	58
Figure 3.3 IES VE 2013 start up image (online)	64
Figure 3.4 Summary of simulation software and their capabilities	
(Crawley et al, 2008)	65
Figure 3.5 Ground Floor Plan of site selected (Lacasa, 2014)	68
Figure 3.6 First Floor Plan of site selected (Lacasa, 2014)	69
Figure 3.7 First Floor Plan with indicative location of wind tower	
(author)	70
Figure 3.8 Stereograph solar position of Abu Dhabi (Ecotect)	72
Figure 3.9 Average temperatures and wind speeds (online)	72
Figure 3.10 Prominent wind directions from the North West (online)	73
Figure 3.11 Annual humidity levels in Abu Dhabi (online)	73
Figure 4.1 Modelling of the existing building using ModelIT (IES)	76
Figure 4.2 Wall construction type (IES)	77
Figure 4.3 Existing model upon completion of modelling on IES (IES)	78
Figure 4.4 External weather conditions in Abu Dhabi on 1 June (IES)	79
Figure 4.5 External weather conditions in Abu Dhabi on 1 December	
(IES)	79

Figure 4.6 Illustrated model in case 15 (IES)	81
Figure 4.7 Setting up of window opening formula (IES)	82
Figure 4.8 Degree of opening according to Opening Profile (IES)	82
Figure 4.9 External relative humidity and external and internal	
(IES)temperature conditions for 14 July	83
Figure 4.10 Air flow in and out for July 14 (IES)	83
Figure 4.11. Range test showing total hours annually in the thermal	
comfort range (IES)	84
Figure 4.12. Internal temperature figures for the space for every hour of	
the year (IES)	85
Figure 5.1 Temperature levels in case 1 (FCH=3m) & case 4 (FCH=6m)	
on April 1 in perspective (IES)	90
Figure 5.2 DDH & HTCR when floor to ceiling height is varied (MS Excel)	91
Figure 5.3 Effect of wind tower height on evaporative cooling at the outlet	
point (Calautit et al 2013)	93
Figure 5.4 DDH & HTCR when Wind tower heights are varied (MS Excel)	94
Figure 5.5 Increase in wind velocities with increase in height (Calautit et	
al, 2013)	95
Figure 5.6 Variation in air pressures outside wind tower (Hughes et al	
2012)	95
Figure 5.7 air flow volume for a single opening in wind tower heights 5m	
& 7m (<i>MS Excel</i>)	96
Figure 5.8 DDH & HTCR when Wind tower heights are varied (MS Excel)	97
Figure 5.9 DDH & HTCR when the area of the window is varied (MS	
Excel)	99
Figure 5.10 DDH & HTCR when the area of the wind tower openings are	
varied (MS Excel)	102

Figure 5.11 DDH & HTCR when the area of the wind tower openings are	
varied for optimum setting (MS Excel)	105
Figure 5.12 Air exchange through opening of 8m ² (IES)	107
Figure 5.13 Air exchange through opening of $2m^2$ (<i>IES</i>)	108
Figure 5.14 Variations of results as a function of percentage of window	
opening (MS Excel)	109
Figure 5.15 Variations of results as a function of percentage opening of	
wind tower opening (MS Excel)	111
Figure 5.16 Energy consumed for cooling in the existing case (<i>IES</i>)	116
Figure 5.17 Hours the optimum case internal temperature is greater than 26°C (IES)	117

List of Tables

Table Title	Page
Table.2.1 Showing Thermal performance of traditional walls (bold lettering) vs	
contemporary walls. L is the wall thickness.	24
Table 4.1 Test Matrix used for case study combinations	81
Table 5.1 Results yielded for Different wind tower openings	103
Table 5.2 Results yielded for Different wind tower openings	104
Table 5.3 Results yielded for Different wind tower openings	104
Table 5.4 Variation in DDH and HTCR when windows open 24 hours	110
Table 5.5 Variations in results between window opening percentage and wind tower	
opening percentage	112
Table 5.6 Variation in DDH and HTCR when wind towers open 24 hours	113
Table 5.7 Results obtained for various window percentages.	115

List of Abbreviations and Acronyms

- **DDH** Degree Discomfort Hours
- TCR Thermal Comfort Range
- **HTCR** Hours in the Thermal Comfort Range
- **FCH** Floor to Ceiling Height