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ABSTRACT 
 

A study of differentially expressed genes across different cell types will help in identifying 

cell-specific responses to treatments or diseases. Recent advances in single-cell technology 

enable an analysis of thousands of cells which brought lots of computational challenges in 

terms of noise in the data sets and required computational power to handle the big data. In 

recent years it has been found that the deep learning model is being used as a biological 

model for single-cell analysis. Using state-of-the-art techniques in deep learning 

successfully extracts non-linear feature set from single-cell data and is used for various 

downstream analysis.  

 

Recently, deep learning models such as Autoencoder (AE) and Variational Autoencoder 

(VAE) models are being used to capture hidden patterns from single-cell gene expression 

data.  In this paper, I proposed a framework that is based on a variational autoencoder called 

BiDiffVAE (Bi-directional Differential Variational Autoencoder) to extract differently 

expressed genes. The proposed method makes use of cluster distribution on every latent 

space and merged weights in the decoder to assign genes to a cluster.  My results discovered 

new sets of genes that were not shown using state-of-the-art techniques and can properly 

rank the top genes based on their significance in making clustering. 

 

  



 

 

 ملخص
 

 

لحسابية من حيث اتتيح التطورات الحديثة في تقنية الخلية الواحدة تحليل آلاف الخلايا التي جلبت الكثير من التحديات 

التعلم العميق  تم العثور على نموذج قائم على الأخيرة،الضوضاء في مجموعات البيانات والقدرة الحسابية. في السنوات 

نيات في التعلم لية مفردة ولتحليل استجابة معالجة السجادة. يؤدي استخدام أحدث التقيستخدم كنموذج بيولوجي لتحليل خ

التحليلات  العميق إلى استخلاص مجموعة الميزات غير الخطية بنجاح من بيانات الخلية المفردة واستخدام العديد من

دام أي أداة ها بشكل مختلف دون استخالنهائية. أقترح في هذه الورقة طريقة تعلم عميق لاستخراج الجينات المعبر عن

جموعة أخرى. إحصائية. تقوم الأداة المقترحة بتعيين الجينات إلى الكتلة وتعطي ترتيبًا يشير إلى مدى تميزها عن م

 اكتشفت نتائجي مجموعات جديدة من الجينات لا تظهر في أحدث التقنيات المستخدمة في التعلم العميق

 

  



 

 

ACKNOWLEDGMENT 

 

I would like to express my gratitude to my primary supervisor, Professor Sherief Abdalla, 

who guided me throughout this project. His feedback was very valuable in building the thesis 

paper 

 

I would also like to thank my collogues at NYU, Abu Dhabi who supported me and offered 

a deep understanding fundamentals of genomics. 

 

It is my privilege to thank my family for their consistent encouragement, support, and 

prayers throughout my master’s course. 

 

I am extremely thankful to Professor Sherief Abdalla and Prof. Khaled Shaalan for providing 

their valuable feedback through the courses and their research-oriented teaching methods 

helped in reviewing state-of-the-art techniques in the area of linguistic and deep learning. 

 

Finally, I would like to thank God, the Almighty who has granted me the countless blessing 

and let me go through all difficulties and achieve the goals. 

 

 

 

 

 

 

 



i 

 

TABLE OF CONTENTS 

TABLE OF CONTENTS ................................................................................................................ I 

LIST OF TABLES ........................................................................................................................ II 

LIST OF FIGURES ..................................................................................................................... III 

CHAPTER ONE: INTRODUCTION ................................................................................................1 

1.1 PROBLEM STATEMENT ...........................................................................................................2 
1.2 RESEARCH QUESTION ............................................................................................................2 
1.3 CONTRIBUTION ....................................................................................................................2 
1.4 SCOPE ...............................................................................................................................3 
1.5 ORGANIZATION OF THESIS ......................................................................................................3 

2 CHAPTER TWO: BACKGROUND ............................................................................................4 

3 CHAPTER 3: RELATED WORK ............................................................................................. 12 

CHAPTER 4: METHODOLOGY ................................................................................................... 17 

4.1 DATA SETS ........................................................................................................................ 17 
4.2 SOFTWARE TOOLS .............................................................................................................. 17 
4.3 PREPROCESSING................................................................................................................. 17 
4.4 PIPELINE TO IDENTIFY DIFFERENTIALLY EXPRESSED GENES. ............................................................ 18 
4.5 ANALYSIS. ........................................................................................................................ 23 

CHAPTER 5: CONCLUSION AND FUTURE WORK ....................................................................... 32 

REFERENCES ........................................................................................................................... 33 

APPENDICES ........................................................................................................................... 35 

 

 

 

 

 

 

 

 

 



ii 

 

LIST OF TABLES 
 

Table 1: Functions of proteins. ...............................................................................................5 
Table 2: Inclusion-Exclusion Principle ................................................................................12 
Table 3: Highly computed genes ordered by their ranking, .................................................23 
Table 4: Highly expresses genes found by (Bica et al., 2020) and  provided a ranking ......25 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

LIST OF FIGURES 
 

Figure 1: Levels of organization in a living organism …………………………………… 4 
Figure 2: An overview of the flow of information from DNA to protein ..............................6 
Figure 3: Codon encoded amino acids ...................................................................................6 
Figure 4: A typical artificial neural network ..........................................................................8 
Figure 5: Autoencoder Model (AE) .......................................................................................9 
Figure 6: Variational Autoencoder(VAE) ..............................................................................9 
Figure 7: VAE model summary and hyperparameter settings .............................................18 
Figure 8: (a) Latent Representation using tSNE (b) label the cluster by their cell type ......19 
Figure 9: Cluster distribution on latent dimension k ............................................................20 
Figure 10: Cluster distributions on the latent dimension .....................................................21 
Figure 11: Decoding layer after weight merge .....................................................................22 
Figure 12: Gene Expression of gene ....................................................................................25 
Figure 13: Gene Expression of fn1b, apln and rhag .............................................................27 
Figure 14: Cluster 1: Gene Expression of top listed genes by (Bica et al., 2020) ...............28 
Figure 15: Cluster 1: Gene expression of a new set of top listed genes discovered ............29 
Figure 16: Cluster 2: Gene Expression of top listed genes by (Bica et al., 2020) ...............30 
Figure 17:Cluster 2: Gene expression of new set top listed gene discovered ......................31 
Figure 18: Cluster 3: Gene Expression of top listed genes by (Bica et al., 2020) ...............35 
Figure 19: Cluster 3: Gene expression of new set top listed gene discovered .....................36 
Figure 20: Cluster 4: Gene Expression of top listed genes by (Bica et al., 2020) ...............37 
Figure 21: Cluster 4: Gene expression of new set top listed gene discovered .....................38 
Figure 22: Cluster 5: Gene Expression of top listed genes by (Bica et al., 2020) ...............39 
Figure 23: Cluster 5: Gene expression of new set top listed gene discovered .....................40 
 

  



 

1 

 

CHAPTER ONE: INTRODUCTION 
 

All individuals’ health state is controlled by their genes and their environment. 

Environmental changes can cause changes in genes which can lead to the development of 

disease. Identifying genetic variation in gene expression can help understand genetic 

disorders caused by mutations and targeted gene-drug discovery. A living organism is built 

from the smallest unit called a cell. Every cell has copies of hereditary information is 

encoded in a DNA molecule. DNA is responsible for the development of a living organism. 

Gene expression is the process of making cellular biological components based on 

instructions encoded in DNA. Identifying cell types in a sample collected from an organ can 

help researchers to understand how a particular cell type responds to disease or medicine.  

 

Advances in single-cell sequencing technologies accelerate the research in single-cell RNA 

sequencing to explore the RNA transcripts at a single cell granular level. This reveals 

heterogeneity in single-cell types and complexity within a single cell type.  Gene expression 

analysis is a popular method (Bondoc et al., 2021) to study living organisms at the single-

cell level.  

Marker genes of cell type are genes that are overexpressed in that cell type and not expressed 

highly in other cell types. Marker genes distinguish the cell subpopulations in given data 

sets. A very common step in single-cell RNA sequencing analysis is selecting marker genes 

and cell-type identification. Marker genes are selected concerning cluster and its selection is 

very critical for labeling clusters with cluster type and downstream analysis. Incorrect 

marker gene selection can cause incorrect downstream analysis. Though different statistical 

tools are available to find out the differentially expressed genes, the deep learning model is 

found to be the state-of-the-art technology to capture the differentially expressed genes. One 

of the major challenges in handling a large volume of single-cell high-throughput sequencing 

data is noise in the data. Very common technical noises are sparsity and variations in the 

data that cause other than biological factors. Deep learning models such as autoencoder (AE) 

and variational autoencoder (VAE) are state-of-the-art techniques for solving the technical 

noise in the data.  

 

Since variational autoencoder (VAE) has an inbuilt feature to remove technical noise, in this 

paper I propose a method called BiDiffVAE (Bi-directional Differential Variational 
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Autoencoder) that uses VAE to find the differentially expressed genes. BiDiffVAE is an 

extended version of DiffVAE (Bica et al., 2020). In DiffVAE first encoded values are used 

for labeling latent dimension by a cluster type. To do this, it computes all cell distribution at 

least cell value a standard deviation from the mean in latent dimension k.  The latent 

dimension will be labeled by the cluster type whose distribution is the highest in the same 

latent space. Once cluster type is identified merged weights in the decoding layer are used 

to get to differentially expressed genes. This method has a side effect. It didn’t consider all 

latent space together while labeling the genes.  

 

In the proposed model, cluster distribution at each latent space is also considered. Every 

gene compute cluster weight associated with a particular cluster by computing the sum of 

each merged weight in the decoding layer multiplied by the corresponding cluster 

distribution on latent space. If found in N clusters, cluster weights computation will be 

repeated for all N clusters by a particular gene. Gene will be labeled by cluster type with 

higher cluster weights. 

 

1.1  Problem Statement 
 

As stated above model based on VAE is capable of modeling biological interpretation, hence 

I explore a method to find differentially expressed genes based on VAE. 

 

1.2  Research Question 
 

 How to include the cluster wights in finding differentially expressed genes? 

 How does including the cluster distribution improve the performance? 

 

1.3  Contribution 
  

In this paper, I propose BiDiffVAE, an extension to the DiffVAE (Bica et al., 2020). I 

evaluated my proposed approach on real-world data set and show that my proposed approach 

outperforms the state-of-the-art in terms of gene coverage and the ability to rank genes 

concerning the gene that is differentially expressed. 
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1.4  Scope 
 

Finding top driving genes is very critical in cell type identification and gene set enrichment 

analysis (GSEA). GSEA(Subramanian et al., 2005a) is a method to find overrepresented 

pathways in the gene list.  

 

1.5 Organization of Thesis 
 

The thesis starts with an overview of this paper. I tried my best to give a background on the 

fundamentals of biology to get an understanding of genomics and machine learning to 

address both audiences who has either no biology background or no computer science 

background. In the related work section, reviewed papers based on variational autoencoder 

which used VAE as a biological model for gene expression. After the study of related work, 

discussed the methodology finally have a discussion section to conclude for finding and 

future scope. 

 

 

  



 

4 

 

2 CHAPTER TWO: BACKGROUND 
 

A cell is the smallest unit in a living organism that lives on its own and makeup all living 

organisms. Two types of living organisms are based on the number of cells in an organism. 

 

 Single cell:  Examples are bacteria and yeast 

 Multicell: Animals and plants 

 

All cell has three basic parts 

 Cell membrane: Outermost layer that separates the cell interior of cells from the 

outside environment and protects the cells from their environment.  

 Cytoplasm: Inside a cell membrane contains a liquid material called Cytoplasm. It is 

a medium for chemical reactions. Many cellar operations occur in the cytoplasm. 

 Nucleus: Found inside the nucleus.  

 

Based on structural differences, organisms (Prokaryotes vs Eukaryotes) are grouped into two 

categories: 

 Eukaryotes: These are organism which doesn’t have nucleolus and mitochondrial 

genes 

 Prokaryotes: DNA is found inside the nucleolus.  

 

Cell together forms tissue and tissue forms together with an organ. The order of things is 

shown in figure 1. 

 

 
Figure 1: Levels of organization in a living organism 

 

A human body consists of trillions of cells (Bianconi et al., 2013). A cell contains hereditary 

materials and cells can make copies of themselves. Hereditarily material is called DNA 

(Deoxyribose Nucleic Acid), carrying instructions for the development, and functioning 

growth of the living organism. DNA is like a ladder structure and is made up of 4 chemical 

bases adenine (A), guanine (G), cytosine (C), and thymine (T).  A long strand of DNA is 

arranged as a tightly coiled structure called a chromosome.  In humans, there are 23 pairs of 

chromosomes. One of the pairs is inherited from the mother and the other from the father. 
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All DNA in one cell is called a genome. A human genome contains 3 billion bases (ACGT) 

pairs. A gene is A portion of the long DNA strand. 

 

The majority of DNA is found inside the nucleus. All cells contain the same DNA sequence, 

based on the cell type certain genes will be turned on or off, which determines what kind of 

proteins needs to be generated for the certain type of cell.  

 

Table 1: Functions of proteins. 

Function Description 

Antibody Antibodies bind to specific foreign particles, such as viruses and 

bacteria, to help protect the body. 

Enzyme Enzymes carry out almost all the thousands of chemical reactions 

that take place in cells. They also assist with the formation of new 

molecules by reading the genetic information stored in DNA. 

Messenger Messenger proteins, such as some types of hormones, transmit 

signals to coordinate biological processes between different cells, 

tissues, and organs 

Structural 

component 

These proteins provide structure and support for cells. On a larger 

scale, they also allow the body to move. 

Transport/storage These proteins bind and carry atoms and small molecules within 

cells and throughout the body. 

 

(“What are proteins and what do they do? MedlinePlus Genetics,” n.d.) 

 

Gene Expressions (Proteins Synthesis): 

 

The process of making cell functional products (proteins) from instructions coded in a gene 

is called gene expression. Gene Expression is carried out in a two-stage process, 

transcription, and translation. In the transcription stage, mRNA will be created using DNA 

as a template. mRNA is a type of RNA which is a kind of single-stranded DNA. 

 

RNA polymerize is the process that unwinds the DNA to create mRNA. There are regions 

in the DNA where polymerize starts and ends. mRNA contains an Uracil molecule(U) 
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instead of thymine(T). The initial stage of mRNA is called pre-mRNA which contains both 

intron and exon. Exon and intron are two regions in RNA strand, where the exon region 

codes for the protein and the intron section is called the non-coding region. During the 

process of intron splicing, the intron regions will be removed from pre-mRNA and produce 

mature RNA (mRNA). 

 
Figure 2: An overview of the flow of information from DNA to protein 

 

mRNA leaves the nucleus to start the translation process. Translation begins at the 

cytoplasm. Three letter code in the mRNA is called a codon which codes for 64 different 

combinations of codons, that code for 20 different amino acids (“The Information in DNA 

Determines Cellular Function via Translation | Learn Science at Scitable,” n.d.). 61 codons 

encode amino acids and the remaining three encode stop signals. There is special amino also 

known as start codon (AUG). Amino acids are joined together to make polypeptides. 

Polypeptide foldup together makes proteins. 

 

 

 
Figure 3: Codon encoded amino acids 
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Transcriptomics 

 

Transcriptomics is the study of transcriptomes (RNA transcripts). Following are two main 

techniques to measure RNA 

• Micro-arrays: Profiles predefined transcripts/genes  

• RNA-Seq: Sequencing of the whole transcriptome 

 

RNA-Sequencing is a method to measure gene expression at the whole transcriptome level. 

RNA sequencing can be done in two says 

 Bulk RNA sequencing 

 Single-cell RNA sequencing 

 

In bulk RNA sequencing average gene expression is measured at the population level. 

Whereas in single-cell RNA sequence(scRNA-seq) gene expression is measured at the 

single-cell level. Cell to cell gene variability could be measured using the scRNA-seq 

method. Single-cell technology was introduced in 2009 starting by analyzing a single cell 

and the scale of handling cells increased exponentially over the past decades (Svensson et 

al., 2018). 

Sequencing technology differs based on the following characteristics (Chen et al., 2019). 

• Cell isolation 

• Cell lysis 

• Reverse transcription 

• Amplification 

• Transcript coverage 

• Strand specificity 

• Molecular tags that can be applied to detect and quantify the availability of the unique 

transcript 

 

 

Machine Learning 

 

Machine learning is the study of algorithms that can improve automatically through 

experience by making use of the data. There are two categories of machine learning, 

supervised and unsupervised.  The supervised learning model used labeled data for the 
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training. It solves two types of problems, classification, and regression. Classification is a 

supervised learning method that classifies the data into categories. Regression is another 

kind of supervised learning method that finds the relationship between dependent and in-

depended variables. 

 

The unsupervised learning model uses label data for the training. In scRNA-seq analysis, an 

unsupervised learning model is typically used for clustering and reducing the dimensionality 

of gene expression data. Clustering is a kind of classification problem, but here the cells are 

classified based on the cell similarity measurement. 

 

Deep learning 

 

Machine learning is always followed by feature engineering tasks. Feature extraction is 

sometimes very difficult if we have complex data. The deep learning model extracts hidden 

features on its own, and hence not required a feature engineering task. A deep learning model 

is constructed from many artificial neural networks with many neural network layers. 

Neurons on every layer are connected to other neurons in the next layers as given in figure 

4.  

 

 

 

Figure 4: A typical artificial neural network  
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In this paper, we are mainly focused variational autoencoder model (VAE) which is a variant 

of the autoencoder model. The basic autoencoder (AE) model has an encoder and decoder 

neural network which has symmetrical in shape as in figure 5.  

 

 
Figure 5: Autoencoder Model (AE) 

AE creates a lower dimension space of original data called latent space or bottleneck. The 

decoding layer is responsible for reconstructing input data from latent space. The objective 

of this model is to minimize the reconstruction error. Autoencoder is widely used in 

clustering, denoising, and dimensionality reductions (Eraslan et al., 2019). 

 

The main difference between Variational autoencoder (VAE) and autoencoder (AE), VAE 

model is to approximate latent distribution to be a Gaussian distribution. The encoder maps 

each input to a mean vector and variance in the latent space. The latent variable is sample 

data from a normal distribution which is scaled by the standard deviation and mean vector 

computed. This makes it model a generative model 

 
 

Figure 6: Variational Autoencoder(VAE) 
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Differential gene expression is important to understand the biological differences between 

healthy and diseased states. RNA-seq is a popular technique to quantify gene expression 

between conditions.  The following section is covering the single cell RNAseq pipeline.  

 

Single-cell RNA-seq analysis pipelines 

 

A typical single-cell RNA-seq analysis pipeline consists of preprocessing, clustering, 

visualization, cluster annotation, and different downstream analysis. Raw data from the RNA 

sequencing machine are processed and aligned to produce a gene count matrix. 

Preprocessing steps take this count matrix for quality control, normalization, data correction, 

feature selection, and dimensionality reduction(Luecken and Theis, 2019).  In downstream 

analysis main task is to cluster and cluster annotation or cell type identification. Finding the 

differentially expressed gene in each cluster will help in identifying marker genes. Marker 

genes are signature genes for specific cell types.  

 

Common Computational Challenges  

 

Large volume for single-cell high-throughput sequencing data and multiple characteristics 

of single-cell sequencing data leads to computational challenges.  The single cell isolation 

technique is a method to extract transcriptome data from individual cells. Though different 

protocols are available to extract transcriptome data (Hwang et al., 2018), transcriptome data 

is usually generally accompanied by higher noise and dropout rates. Due to cell 

heterogeneity in gene expression data, finding rare cell types is very difficult(Fang et al., 

2021). Another problem is that scRNA-seq suffers excessive zero (Fang et al., 2021). Some 

zero counts are true zeroes and others are not.  Imputation is a method to address the 

increased sparsity observed in scRNA-seq data.  

 

Integration of data from multiple sources and analysis of single-cell RNA sequencing 

(scRNA-seq) remains challenging due to the variation other than biological factors. The 

batch effect (Liu et al., 2020) can also cause differences in gene expression due to non-

biological factors. Batch effects can cause false clustering which leads to incorrect 

downstream analysis. This incorrect clustering will end up in the wrong conclusion. Later in 
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the section of this paper, I go over the state-of-the-art techniques that address these problems. 

A literature review is conducted mainly that focus on the deep learning approach. 

 

The typical feature size of scRNA-seq is around 20,000 and computing cell difference takes 

a lot of computational power and is difficult to visualize. The expression of many genes 

correlated; hence we don’t require all the genes to cluster similar cells. By lowering the 

dimensions, it keeps the most important features in the data sets. Hence it removes duplicate 

features from the data sets.  Low dimensional data should hold the properties of higher-

dimensional data. The dimensionality reduction method reduces the number of features in 

data sets keeping the distribution of the original data.  Dimensionality reduction methods 

help the researcher in various ways. It helps in visualizing high-dimensional data and 

minimizes the computation time and resources it consumes. If the data is a manifold space 

other than Euclidian space, then the non-linear dimensionality reduction method is required 

to bring down the higher dismissions 

 

Limited transferability is another problem mainly because of the batch effect and limited 

access to the data. This way the knowledge learned from one dataset cannot be easily 

transferred to benefit the modeling of another dataset. For reference data construction, 

integration methods required access to the data that has limited access. Small data sets are 

not adequate for training a model, it is required a larger amount of data.  In such cases, the 

transfer learning model is useful when you have small data sets. 

 

A very common step in single-cell RNA sequencing analysis is selecting marker genes. 

Marker genes are selected with respect to clusters. Marker genes selection is very critical for 

annotating clusters and downstream analysis. Marker genes distinguish the cell 

subpopulations in given data sets. There are exist many computational methods available 

that range from statistical to machine learning techniques. The statistical model usually has 

limited transferability; hence it is required very times to run the entire analysis pipeline. If 

the model support transferable learning, only during the training phase does it have to go 

over the pipeline. Once is learned the model; it may be needed to run the pipeline again.  
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3 CHAPTER 3: RELATED WORK 

 

Recent studies modified versions of the original Autoencoder (AE) and Variational 

autoencoder (VAE) framework for modeling single-cell RNA sequencing analysis. In this 

section, I explain the motivation behind using variational autoencoder for finding differential 

expressed genes. VAE is found to be powerful in exploring hidden biological patterns in 

gene expression. The low-dimensional latent space layer in VAE enforces the encoder to 

learn only the essential latent representations and the decoding procedure ignores non-

essential sources of variations of the expression data. I search the latest research papers based 

on VAE/AE as a computational tool using the following inclusion/exclusion principle.  

 

Table 2: Inclusion Exclusion Principle 

Es32w1q Exclusion Principle 

("Autoencoder" or "variational 

autoencoder") and ("single-cell RNA") 

Excluded the papers if not using scRNA 

seq data as input data 

Included the papers from nature.com, 

pubmed.ncbi.nlm.nih.gov 

Ignore the data is not a single cell RNA 

sequencing data 

Included in the literature if common 

techniques discussed in most of the paper 

 

 

 

Initialize literature all are based on tools that are primarily used autoencoder (AE) for 

denoising, dimensionality reduction, and cluster labeling. Deepimpute(Arisdakessian et al., 

2019)is a standard autoencoder based on an artificial neural network with a dropout layer 

included. A dropout layer is included to avoid overfitting the data. DCA(Eraslan et al., 2019) 

used autoencoder as a computational framework for performing mainly data imputation. 

Since it is an artificial neural network, it can capture non-linearity in the data, encoding part 

of the model compresses the data into low dimensional space it can be used as a tool for 

dimensionality reduction. DCA model replaces the conventional mean square error (MSE) 

loss function with a zero-inflated negative binomial (ZINB) model-based loss function. 

scScope(Deng et al., 2019) is another tool based on autoencoder which uses a recurrent 

neural network where the output is connected back to the encoder to improve imputation 

performance iteratively.  scDeepCluster (Tian et al., 2019) follows DCA which uses ZINB 



 

13 

 

model-based loss function, and clustering loss function (KL-divergence) is applied. In 

Sparsely Connected Autoencoder (SCA) encoding and decoding module consisted of a 

single sparse layer with connections based on known biological relationships. MARS(Brbić 

et al., 2020) is a two-stage model, in the first stage weights were assigned with a deep 

autoencoder network and then perform learning cell-type landmarking after removing the 

decoder from the autoencoder. 

  

So far, the discussion has reviewed the tools which are based on autoencoder models. From 

here onwards, the literature will focus mainly variational autoencoder-based model. VEGA 

(Seninge et al., 2021) is a generative model, based on VAE for inferring the biological model 

from its latent representation. VEGA’s latent space could group the control and treated cells 

separately in response to different perturbations. In VEGA each latent dimension defines as 

a gene module variable (GMV) which could be cell type, pathway, or gene regulator. 

Pathways are biologically related genes.  GSEA(Subramanian et al., 2005b)gene set enrich 

analysis is used to search for pathways that were statistically significant with target 

phenotypes. Example target phenotypes are diseased vs healthy. Since VEGA’s latent 

dimension define a pathway, this model is used for enrichment analysis. In scETM(Zhao et 

al., 2021) variation autoencoder is used for constructing the embedded topic model. In 

typical VAE, encoder and decoder are symmetrical in structure. In scTEM encoder is 

constructed from the nonlinear neural network, but the decoder is constructed using a linear 

decoder using matrix tri-factorization. scTEM outperforms when tested with unseen data 

with zero-transfer learning performance. In resVAE(Lukassen et al., 2020) Restricted latent 

variational autoencoder (Lukassen et al., 2020) decoder is modeled using a sparsed weighted 

matrix. Spared weighted matrix is constructed based on prior knowledge about pathways or 

gene sets. SCVI (Ding et al., 2018) takes raw gene expression count and assumes data 

distribution is kind of (Poison, ZINB, NB). scVI is a bayesian variational autoencoder that 

accounts for batch-specific variation and it applies the ZINB-loss function to optimize the 

performance.  SCVIS(Ding et al., 2018) uses the student’s t-distributions instead of the loss 

function mean square error. trVAE(Lotfollahi et al., 2020) is an improved variational 

autoencoder (VAE) structure to pre-train the multiple datasets simultaneously. It is built 

upon a conditional variational autoencoder and uses the regularization method maximum 

mean discrepancy (MMD) in the decoding path. SCANVI(Xu et al., 2021) is a scVI based 

framework where it uses the annotated label to improve the cell type assignment. 
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scArches(Lotfollahi et al., 2021) maps the gene expression onto reference datasets for data 

integration and identification of cell types. Existing approaches like the Seurat (Hao et al., 

2021) platform allow for integration of data but require that users run the complete pipeline 

on new datasets which requires excessive computational resources and time. scArches uses 

a transfer learning approach to transfer the knowledge from a pre-trained model to user-

specific data. The pre-trained model will be useful annotate unseen data without any kind of 

delay. scGEN (Lotfollahi et al., 2019) predicts the perturbation response of unseen species 

or cell types. It used vector arithmetic to compute the difference in the perturbation response 

in latent space. LDVAE(Svensson et al., 2020)  is a linear-decoded variational autoencoder 

where it uses a linear model in the decoding layer. DeepSEM(Shu et al., 2021) is a variational 

autoencoder-based model where it uses the adjacency matrix of the GRN in both encoder 

and decoder. In general, a single cell feature from gene expression data will be input into the 

model, whereas in DeepSEM single gene feature is used as input the for model. Hence 

weight in the neural network will be shared across all genes. DeepTCR(Sidhom et al., 2021) 

implemented a variational autoencoder. The encoding layer is reconstructed by use of 

deconvolutional and fully connected layers. The scDHA core modules were constructed 

using two stacked encoders, the first encoder is a vanilla autoencoder, and the second one 

variational autoencoder. 

 

Principle component analysis (PCA) is a popular unsupervised linear dimensionality 

reduction method to characterize cell types and cell states. PCA finds linear projection of 

the high dimensional data where the variance of projected data is maximized. Euclid distance 

will not work with manifold data, as the actual distance could be much larger in the manifold 

space. So PCA doesn’t work so well for visualization as its preserves large pairwise 

distances. tSNE (van der Maaten and Hinton, 2008) is a non-linear dimensionality reduction 

method. tNSE works by maximizing the probability between two points remaining close in 

a low dimension space as they were in the original dimensional space. tSNE suffers a 

performance penalty if the data sets are too large and suffers from inter-cluster relationships. 

UMAP (Becht et al., 2018) is like tSNE but differs in similarity measurement. UMAP gives 

better computation performance. Seurat (Hao et al., 2021) is a popular tool for single-cell 

RNA-seq analysis. It uses both UMAP and tSNE for the visualization process. To speed the 

UMAP and tSNE, the Seurat package first runs PCA to a reasonable number of dimensions 

before transferring the data into two-dimensional space.  
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During data integration, there are non-biological factors that can cause changes in the data 

produced by different experiments.  Examples of confounding factors are different 

processing times and different handlers. Seurat (Hao et al., 2021) introduced a package that 

used state an art techniques method based on the anchor which will remove the batch effect 

from scRNA-seq datasets. The idea is to identify the cells across samples having the same 

biological states. These cells will be used to correct technical differences observed in the 

data sets collected from different samples.  

 

To identify differentially expressed genes, very commonly used methods are FDR (false 

discovery rate) and log fold changes (Kamath et al., 2022). FDR uses adjusted p-value to 

measure the null hypothesis. The statistical test uses two groups for testing. If we have 

multiple clusters, then one cluster is compared with all other clusters.  Log fold changes are 

typically used to understand whether the genes are upregulated or downregulated. 

Commonly used differential expression testing software packages are Seurat (Hao et al., 

2021) which is an R package, and Scanpy (Wolf et al., 2018) which is a python package. 

 

Seurat uses the following statical test method for differential expression testing 

 Wilcoxon rank sum test (default) 

 Likelihood-ratio test for single-cell feature expression (McDavid et al., 2013) 

 Standard AUC classifier 

 Student’s t-test 

 Likelihood ratio test assuming an underlying negative binomial distribution. Use 

only for UMI-based datasets 

 Likelihood ratio test assumes an underlying negative binomial distribution 

 Logistic regression framework to determine differentially expressed genes.  

 MAST: (Finak et al., 2015) 

 DESeq2 (Love et al., 2014) 

 

Scanpy uses the following statical test method for differential expression testing: 

 t-test,  

 t-test with overestimation of variance of each group,  

 Wilcoxon rank sum test,  

 logistic regression 
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Since these all tests are statistical models, it is required to rerun all single-cell analysis 

pipelines from the beginning. It also has a scaling issue if the number of features and input 

data sets is too large. Machine learning model has transfer learning capacity, hence trained 

model can be applied to unset input data for prediction. 

 

DiffVAE (Bica et al., 2020) introduced a method to find differentially expressed genes in a 

cluster using weights associated between output layers (Gene expression reconstructed) and 

latent space. DiffVAE use modified vanilla VAE with batch normalization. In this paper, we 

propose an improved version of DiffVAE which gives an accurate measure of differential 

expressed gene lists ordered by their importance in constructing clusters. Later this section 

it is been elaborated in detail on the architecture and performance results.   
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CHAPTER 4: METHODOLOGY 

 

By using the unsupervised learning model VAE-variational autoencoder, it can get 

differentially expressed genes that separate clusters from other cluster groups. The proposed 

methodology is motivated by the paper (Bica et al., 2020)  that uses a variational autoencoder 

to find out the differentially expressed genes. But the top listed genes were not uniquely 

expressed in those clusters. My proposed solution gives high-quality genes that separate a 

cluster from other clusters in the group by their expression values. The top listed gene are 

ordered based on their significance in making clusters 

 

4.1 Data sets 

 

To do a performance comparison I use the same set of data sets from the paper  (Bica et al., 

2020) and followed the same sets of preprocessing as described in (Bica et al., 2020). The 

zebrafish data sets have gene set size 1845 which are considered to be highly variable genes 

and 1422 zebrafish cells.  

 

4.2 Software Tools 
 

To model variation autoencoder we use python3+ and the following packages for 

preprocessing, training, and visualization 

• Sklearn 

• Pandas 

• Seaborn 

• Keras  

 

4.3 Preprocessing 

Gene expression data is the first log normalized and then transformed it using Min-Max 

scaling to retain the expression values within [0, 1]. Sometimes gene expression may contain 

extreme values known as outliers and the performance of deep learning could be impacted 

by these outliers. Min-Max scaler can bring outlier closer to [0,1]. If are using raw data 

directly from RNA-Sequencer, then it is very common that either Seurat (Hao et al., 2021) 

or Scanpy (Wolf et al., 2018) packages be used. The quality matric used for preprocessing 

is based on the method described in the paper (Ilicic et al., 2016).  
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4.4 Pipeline to identify differentially expressed genes. 

 

The initial procedure in the proposed pipeline is the almost same procedure explained in 

(Bica et al., 2020). The main difference comes in the selection of top genes from weight 

distribution. The procedure will be discussed in detail in the following sections. 

 

Hyperparameter setting for variation autoencoder: 

 

Variation autoencoder is built using an encoder and decoder neural network and its 

architecture is symmetrical in shape. The encoding layer has 512 and 256 neurons in the first 

and second hidden layers respectively whereas in the decoding layer it is 256 and 512. The 

summary of for VAE model and its hyperparameter is given in figure 10. 

 

 

 

 
Figure 7: VAE model summary and hyperparameter settings 

 

Dimensionality reduction and clustering  

 

After the training phase gene expression is passed through DiffVAE(Bica et al., 2020) to 

encode the gene expression into its latent space representation of size 50. This latent 

representation is gone further through dimensionality reduction techniques using the tSNE 

method into size 2. Clustering unsupervised method KMEANS algorithm is run over the 2-

dimensional space and labeled each cluster by their cluster group as shown in figure 8. 

 

 



 

19 

 

 
 

 

Figure 8: (a) Latent Representation using tSNE (b) label the cluster by their cell type 

 

It may lead to confusion because a latent dimension size for a variational encoder is being 

set at 50 instead of 2 to avoid using tSNE in the pipeline. Higher dimension size will help in 

capturing the hidden biological feature in gene expression. Later in the section will discuss 

in detail how this latent dimension size is useful. 

 

Cell distribution on latent representation. 

 

Measure the distribution of cells on every latent dimension. If we have N number of cells, 

then every latent dimension can have an array of values with size N. 

 

𝑧𝑘  =  (𝑥1
𝑘, 𝑥2

𝑘 , 𝑥2
𝑘 , 𝑥3

𝑘  ⋯ 𝑥𝑁−1
𝑘 , 𝑥𝑁

𝑘 )  

 

 

Let  𝑘  is mean and 𝑘 is the variance of the distribution of a latent variable 𝑧𝑘.  Filter all 

the cells with a value greater than  | 𝑘    −𝑘|   from 𝑧𝑘  (figure 9). 



 

20 

 

 

Figure 9: Cluster distribution on latent dimension k 

 

Now we have a certain distribution of cells in each dimension 𝑧𝑘 by their cluster types as 

given the figure 9. Identify the highly influencing latent dimension for each cluster. From 

figure 10, it has been observed that cluster 2, latent dimensions 2, 11, 38, 33, and 40 are the 

top 5 influential latent dimensions. These dimensions will be responsible for capturing 

hidden gene expression patterns. 

 

 



 

21 

 

 
 

Figure 10: Cluster distributions on the latent dimension 
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Merging weights in the decoding layer to single layer weighted matrix 

 

Weights associated with each layer in the decoding layers are merged into single weighted 

matrix that creates a direct weighted relationship between the latent dimension and output 

gene expression 

 

𝑊0  ∈  𝑅𝑚𝑋𝑛1,  𝑊1 ∈ 𝑅𝑛1𝑋𝑛2 ,  𝑊1 ∈ 𝑅𝑛2𝑋 𝑛 

𝑾 =  𝑊0
 𝑊1

 𝑊2 
 

From figure 11, 𝑾𝒊𝒋 indicates the weight of the connection between latent dimension-i and 

gen-j. 

 
Figure 11: Decoding layer after weight merge 

Finding the top-ranked genes that highly differentiate a cluster from other clusters 

 

Let Matrix WC be the weighted sum of weight matrix 𝑊 and matrix 𝐶 (distribution 

percentage of clusters on latent dimensions), cluster weight can be computed as shown in 

equation 1. 
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Equation 1: Cluster weight computation 

𝑊𝐶𝑁𝑥50 = 𝑊𝑁𝑥50  ×  𝐶50𝑥5 

 

Gene-i will be assigned to the cluster with the highest weighted sum. 

 

𝑊𝐶𝑗 = MAX (𝑊𝐶1𝑗, 𝑊𝐶2𝑗 , 𝑊𝐶3𝑗 , 𝑊𝐶4𝑗 , 𝑊𝐶5𝑗) 

 

After this stage, all genes will be assigned to a cluster.  Genes in the cluster are sorted based 

on the weight of genes computed.  Genes in each of the clusters are ranked by their associated 

weights 𝑊𝐶𝑗. 

 

 

4.5 Analysis. 
 

In table 3, genes are ordered by their ranks from high to low. Associated logFC values are 

from the paper  (Athanasiadis et al., 2017) and are also shown in the table for validation. But 

logFC entries were not ordered by decreasing value. Later in this section using visual 

methods, we can see proposed method is providing a better ordering of the genes than logFC 

method. 

 

 

Table 3: Highly computed genes ordered by their ranking,  

logfc is from (Athanasiadis et al., 2017) 

Cluster1

-

(Throm

bocytes) 

logF

C  

Cluster2(Neut

rophils) 

logF

C 

Cluster3(HS

PC) 

logF

C 

Clutser4(Mon

ocytes) 

logF

C 

Cluster5(Ery

throcytes) 

logFC 

fn1b 9.15

9 

lyz 11.9

61 

npm1a 2.98 s100a10b 5.53

5 

si:xx-

by187g17.1 

7.537 

ctgfa 10.2

49 
npsn 10.9

34 
si:ch211-16
1c3.6 

3.57

6 
lgals2a 7.99

3 
ba1l 7.630 

gp1bb 5.50

3 

mpx 11.1

23 

cad 3.33

4 

c1qb 8.23

8 

hbaa1 7.480 

itga2b 9.21

12 
ponzr6 8.36

9 
CABZ01070
258.1 

2.82

9 
c1qc 12.1

55 
ba1 7.447 

tuba8l3 11.9

87 

lect2l 9.17

2 

Pcna 1.69

3 

hp 5.50

2 

zgc:92880 7.456 

bmp16 9.07

8 
illr4 8.84

7 
Mych 2.12

3 
si:ch211-165
i18.2 

 slc4a1a 5.840 

rac3a 8.05

2 

cpa5 8.38

2 

eif4a1a 1.78

0 

c1qa 10.3

25 

si:ch211-

5k11.6 

7.061 

tspan7 9.54

9 
cfl1l 8.92

8 
nanos1  cfp 4.81

9 
si:ch211-103
n10.5 

6.832 

si:ch211

-

7.41

1 

sult2st1 6.76

9 
fgfrl1a  lgals3bpb  si:dkey-

25o16.2 

5.302 
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195b11.

3 

si:ch211

-214p13.

9 

7.39

5 
BX908782.3 7.08

8 
prmt3  KRT18 5.90

4 
alas2 5.634 

thbs1b 7.73

0 

ctssa 9.08

7 
ascc1  si:dkey-5n18.1 8.18

5 

cahz 6.374 

apln 8.96

8 
thy1 5.90

0 
rhebl1 1.64

8 
slc3a2a 7.32

8 
aqp1a.1 6.148 

ADM 9.07

0 

si:ch1073-

429i10.1 

8.21

6 
SSBP4  tspan36 4.05

1 
dmtn 4.594 

sele 6.21

6 
alox5ap 5.41

9 
 

ndst3 
 FCER2 5.51

5 
si:ch211-207
c6.2 

6.874 

mpl 5.38

1 

gapdh 8.20

8 

tnrc18 2.89

8 

grna 6.90

8 

igfbp1a 3.874 

si:dkeyp

-116a7.2 

4.05

4 
abcb9 7.55

5 
si:dkey-25
7i7.5 

 irf8  nt5c2l1 4.464 

blf 3.72

7 

PLPP1 

 

5.38

1 
si:ch211-

250k18.7 

 si:ch211-

283g2.2 

 

 si:ch211-

250g4.3 

5.245 

 

 

 

From the paper (Athanasiadis et al., 2017) logFC value for gene (hbegfb) is 9.881 which 

belongs to cluster 1(Thrombocytes) and comes within the top 5.  But according to our 

ranking, it comes at 47th position. Our ranking is reasonably working well as you see in 

figure 14. Based on the ranking, using the tool I developed gene (bmp16) comes in 5th 

position. It is clear from figure 11 that the gene (bmp16) is more highly expressed than the 

gene (hbegfb). Their difference in the ranking also shows how significantly they differ. You 

can see in figure 11, that logFC is not able to capture some genes that differentiate from 

another cluster. Examples of such genes are (si:ch211-165i18.2) and (lgals3bpb) which are 

belongs to cluster 4. 
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Figure 12: Gene Expression of gene  

bmp16, hbegfb, lgals3bpb, si:ch211-165il8.2 

 

 

 

As stated, before our reference data is from (Bica et al., 2020) and I did a performance 

comparison with top genes published in that paper. Table 4 lists the top genes for each cluster 

published by paper (Bica et al., 2020) which differentiate a cluster from another cluster 

group. I give a ranking for those genes based on our tool. In every cluster, it is observed 

missing values in the ordered gene ranking.  

 

Table 4: Highly expresses genes found by (Bica et al., 2020) and provided the ranking 

Cluster1-

gene 

Ran

k 

Cluster2-

gene 

Ran

k 

Cluster3-

gene 

Ran

k 

Cluster4-

gene 

Ran

k 

Cluster5-

gene 

Rank 

fn1b 0 lyz 0 npm1a 

 

0 s100a10b 0 si:xx-by187

g17.1 

0 

ctgfa 1 npsn 1 si:ch211-16

1c3.6 

1 lgals2a 1 ba1l 1 

itga2b 3 ponzr6 3 cad 2 c1qc 3 hbaa1 2 
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bmp16 5 illr4 5 pcna 4 hp 

 

4 ba1 3 

rac3a 6 cpa5 6 nanos1 7 si:ch211-1

65i18.2 

5 zgc:92880 4 

tspan7 7 cfl1l 7 fgfrl1a 8 lgals3bpb 8 si:ch211-5k

11.6 

6 

si:ch211-1

95b11.3 

8 ctssa 10 prmt3 9 FCER2 13 si:ch211-10

3n10.5 

7 

thbs1b 1 si:ch1073-

429i10.1 

12   si:ch211-2

83g2.2 

16 si:dkey-25o

16.2 

8 

apln 11 hsd3b7 17   cd74a 10 alas2 9 

blf 16 scpp8 18   marco 20 dmtn 12 

pmp22b 21 mmp13a 20   zgc:13687

0 

53 si:ch211-20

7c6.2 

13 

rhag 31 cfd 47   zgc:13687

0 

53 igfbp1a 14 

bmp6 48 ANPEP 53     rgcc 18 

tnr 50 mmp9 54     mibp 19 

fhl2a 66 Aspm 311

8 

    si:ch211-19

7g15.10 

23 

  kif11 

 

436       

 

 

 

In the above table 4 gene (fn1b) and (rhag) which are belongs to cluster 1. The table is listing 

top 15 genes. But the difference in the ranking as per my tool is 31. In my top listed genes 

in table 3, the 11th ranked gene is (apln). The comparison of genes (fn1b, rhag and apln) 

expressions are given the figure 12. This shows that the modified algorithm works very well 

than the original algorithm explained in (Bica et al., 2020) 
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Figure 13: Gene Expression of fn1b, apln and rhag 

 

 

 

Visual comparison of top listed genes listed with genes listed in (Bica et al., 2020) 

 

Here I am doing a performance comparison using the visual method to show how my top 

listed genes were expressed and ranked based on their significance in cluster make. By 

giving ranking to all genes that were published as top listed genes in the paper Bica et al., 

2020, we can measure the quality level of every gene in the cluster make. The following 

section will go to each cluster for performance comparison. 
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Cluster 1: 

 

 

 
 

Figure 14: Cluster 1: Gene Expression of top listed genes by (Bica et al., 2020) 
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Figure 15: Cluster 1: Gene expression of a new set of top listed genes discovered 
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Cluster 2:

 
 

Figure 16: Cluster 2: Gene Expression of top listed genes by (Bica et al., 2020) 
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Figure 17: Cluster 2: Gene expression of new set top listed gene discovered 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 
 

As stated, earlier BiDiffVAE is an extension of DiffVAE to find the marker genes. In 

DiffVAE it gets its maker gene, by merging all top genes associated with latent dimensions. 

Merging of genes will be done on the same type of latent dimension. Hence one gene can be 

assigned to multiple cluster groups. This way it is looking at genes from each latent 

dimension space. But in BiDiffVAE one gene is assigned to one cluster group as the gene is 

looking at all latent space together to compute cluster weightage to assign respective cluster 

type. This computed cluster weightage is used for ranking genes in clusters. From our result, 

it has been observed genes with higher ranks gene expressiveness in one cluster is high and 

in the other cluster is very low. This expressiveness will decrease for low-ranking genes  

 

Here are my research questions and their answers. 

 How to include the cluster wights in finding differentially expressed genes? 

BiDiffVAE followed the basic computational model from DiffVAE. Weights in the 

decoding layer merged first and computed cluster distribution in every latent 

dimension. But in BiDiffVAE genes’ weights were multiplied by the corresponding 

cluster distribution. 

 How does including the cluster distribution improve the performance? 

In BiDiffVAE all weights associated with a gene are added together. But this tool is 

expecting a different total sum for different cluster types. To achieve this all 

weights are multiplied by the corresponding cluster distribution. BiDiffVAE this 

way accounts for all latent dimensions together while assigning cluster type and 

outperforms in finding high quality differentially expressed genes. 

 

 

This opens up further research, since there is no gold model available to compare the results 

with the tool I proposed, it would be nice to have simulated/synthetic data that can be run 

against other popular statistical tools. It would be nice to try techniques used exclusively in 

the BiDiffVAE to those models covered in the related work section.  Since this tool 

discovered new sets of genes it will open a new set of research questions for the researcher 

for the downstream analysis. 
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Figure 18: Cluster 3: Gene Expression of top listed genes by (Bica et al., 2020) 
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Figure 19: Cluster 3: Gene expression of new set top listed gene discovered 
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Cluster 4: 

 
 

Figure 20: Cluster 4: Gene Expression of top listed genes by (Bica et al., 2020) 
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Figure 21: Cluster 4: Gene expression of new set top listed gene discovered 
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Cluster 5: 

 

 
 

Figure 22: Cluster 5: Gene Expression of top listed genes by (Bica et al., 2020) 
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Figure 23: Cluster 5: Gene expression of new set top listed gene discovered 


