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Chapter 1 

Introduction 

Aircraft flight accidents often result in disastrous consequences. This is why a major 

concern of aircraft companies is to prevent structural failures caused by 

environmental or fatigue problems (I. Trendafilova, 2005). 

In flexible structures, a dangerous phenomenon encounters, called flutter, which 

subject to aerodynamic forces (Burnside, Joseph E., 2011). In this oscillatory 

condition, unsteady aerodynamics excites the structure natural frequencies at the 

airstream speed. This includes aircraft, bridges and buildings. Moreover, the 

interaction between the stiffness, aerodynamics and the structural inertial forces cause 

flutter. In aircrafts, with an increase in the speed of the air stream, inadequacy of the 

structural damping may increase to suppress the motion excited by the airstream 

forces which increase due to impartation of the aerodynamic energy to the structure. 

Structural failure can occur due to this vibration can cause. Hence, to design an 

aircraft wing, considering flutter characteristics is an essential part (Chad Herbert et 

al. 2011). 

Additionally, the interaction between the motion of an aircraft structure and the 

aerodynamic load can also cause flutter. Sometimes, the instability in flutter may 

affect aircraft performance or even lead to the structural failure (L.Librescu, and 

P.Marzocca, 2002). Earlier, local stiffening and mass balancing were applied as 

traditional and passive ways of avoiding flutter. However, these methods are usually 

insufficient as they add mass to the structure (Zhoa, 2009).  

In early 1970s, active flutter suppression as a new method was developed to 

overcome the insufficiency of the previous techniques so aircrafts can fly at a greater 

velocity than the flutter velocity. 
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“In active flutter suppression, flutter is suppressed through the pitching motions of 

the control surfaces actuated by an onboard automatic control system.” (Zhoa, 2009) 

Afterwards, many advanced control strategies were developed and applied in the 

flutter suppression control systems design (Zhoa, 2009), such as robust control 

(J.H.Han, and J.Tani, 2006), optimal control (D.Borglund, and J.Kuttenkeuler, 2002), 

and adaptive control (M.Andrighettoni, and P.Mantegazza, 1998).  

Furthermore, active vibration control has been applied to aircraft to increase 

performance, extending the operational region and decreasing structural mass (Kanai, 

K., 1985). 

Another strategy which has been widely used in active vibration control is Positive 

Position Feedback (PPF) (Nima Mahmoodi, et al. 2010), for aerospace applications 

(Goh and Caughey, 1985). In this method, piezoelectric sensors and actuators are 

used for vibration control (Fanson and Caughey, 1990). Adaptive approaches have 

been included to PPF to improve the efficiency of the controller (Hu, 2008). 

Aircraft experience many types of vibrations. Vibrations may be reciprocating, 

oscillating, or losing a position or state of equilibrium for any periodic motion of an 

elastic or rigid body. Generally, passengers only notice minor vibrations, such as noise 

and flexing of the wings, which are common and completely safe. However, there can 

be more serious, irregular vibrations. Aircraft engineers continue to study these 

vibrations improving performance and safety. 

Linear differential equation models with constant coefficients were employed in 

many previously used models on vibration analysis (R Whalley, and M Ebrahimi, 

1998). There are many design procedures available for these systems with single or 

multiple inputs and outputs, such as the time domain procedures by Collar A. R. and 

Simpson, A. (1987) and the frequency response methods discussed by Rao, S. S. 

(1986). 
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Attempts to validate any model for design purposes or analysis are necessary when 

model variations are introduced due to physical alterations such as pressure, 

temperature and velocity. Generally, a very time consuming procedure called 

linearization is used by selecting and evaluating the system model according to the 

desired steady state conditions. When many parameters are variable, it is almost 

impracticable to obtain the performance for all possible combinations of the 

parameters. Usually, design analysis is based on the worst case conditions models. 

Nevertheless, considering controller analysis in accordance with worst case situations 

is risky and unsafe as stability of the performance may not be assured (R Whalley, 

and M Ebrahimi, 1998). 

Unfortunately, wing model’s variations are usually complicated and extremely 

nonlinear and vary due to physical alterations such as velocity, temperature and 

pressure. Furthermore, the demand for high performance aircraft requires precise 

design, analysis and simulation studies in order to achieve specification requirements. 

In the following analysis, this issue will be further discussed. The purpose of 

designing a controller for a wing arrangement will be demonstrated using 

multivariable system techniques to provide the desired operational performance 

enabling the regulation of flutter during low speed flight conditions. 

There are many techniques such as least effort regulation (R Whalley, and M 

Ebrahimi, 1999), optimal control (Kalman R.E., 1960), and the Inverse Nyquist Array 

method (Rosenbrock, 1969) for aircraft wing controller design. In this paper, the 

design of the system will be based on least or minimum effort regulation by 

minimizing a performance index. The procedure includes two steps: an inner loop 

design and an outer loop design. The inner loop design provides the flexibility to 

improve the dynamic response of the wing system. The outer loop design is employed 

to provide specified disturbance suppression conditions and specified steady state 

output decoupling (R Whalley, and M Ebrahimi, 1999). 
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Simple transformation techniques enabling the establishment of a conventional pre 

and feedback compensator structure will be applied. 

Additionally, the Nyquist array method will be investigated for this wing 

arrangement, for energy consumption and gain comparison purposes. In order to 

apply single input single output control method, the system transfer function matrix 

must be diagonally dominant. For this purpose, Gershgorin’s band theorem will be 

used. 

Eventually, the energy dissipation by these controllers will be computed and 

compared in order to prove that Least effort controller dissipates the least energy for 

this wing arrangement. 

In general, this dissertation is organized as follows: 

Chapter one gives an introduction regarding the flutter occurring in aircraft wings and 

the control strategies that can be applied for regulation purposes. It includes a brief 

summary of previous work. 

Chapter two provides a literature review considering flutter and the control of aircraft 

wings. It addresses the subject of various control strategies applied to wing models 

such as optimal control (D.Borglund, and J.Kuttenkeuler, 2002), robust control 

(J.H.Han, and J.Tani, 2006) and adaptive control (M.Andrighettoni, and 

P.Mantegazza, 1998). 

Chapter three concerns the introduction and analysis for aircraft wing models. The 

computation of the transfer function matrix for a wing assembly is also included. 

Chapter four includes the Least Effort control strategy and the complete approach to 

obtain the inner and outer loop controllers. Inner loop calculations for a wing model 

at zero airstream velocity are also included. 
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Chapter five contains the design procedure for the compensator network for this wing 

arrangement. A mathematical derivation and analysis is included. 

Chapter six includes an outline of the Nyquist array method for this wing model using 

a pre-compensator and proportional control. The Gershgorin’s band theorem is also 

included. 

Chapter seven shows and discusses the results of the simulation for the Least effort 

control strategy. 

Chapter eight contains the disturbance suppression results for the Least effort control 

strategy. The energy dissipation of the system model for various gain ratios for the 

Least effort control strategy is also included. 

Chapter nine shows and discusses the results of the simulation for the Nyquist array 

method. The energy dissipation comparison of the system model for the Least effort 

control strategy and the Nyquist array method is also included. 

Chapter ten presents a complete comparison study concerning the difficulties of each 

strategy. 

Chapter eleven concludes the research and discusses the advantages and 

disadvantages of the selected methods for control purposes. In addition, a 

recommendation for future work is stated. 
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Chapter 2 

Literature Review 

Flutter is a dynamic instability condition, described in details by Theodorsen (1935), 

and reported in 1916 (Kehoe, M. W., 1995) that can cause mechanical failure of 

aircraft wings. As aircraft design techniques develop by using lighter materials, in 

order to improve aircraft stability and fuel consumption, active flutter suppression 

becomes extremely important (Jeffrey M. Barker et al. 1999). 

“Scientists and engineers studied flutter and developed theories for the cause and 

mathematical tools to analyze the behavior. In the 1920s and 1930s, unsteady 

aerodynamic theory was developed. Closed-form solutions to simple problems were 

studied in the 1940s and 1950s. In the next thirty years, strip theory aerodynamics, 

beam structural models, unsteady lifting surface methods (e.g. double-lattice) and 

finite element models expanded analysis capabilities. The advent of digital computers 

has further supported the development of other powerful methods. Disciplines 

involved in analyzing flutter include aerodynamics, structural finite element 

modeling, control theory and structural dynamics.” (Chad Herbert et al. 2011) 

To determine the performance of the aeroelastic systems, different techniques have 

been applied for structural modeling considering their own limitations. Structural 

modeling starts with simple models such as mass-spring model and continues to 

higher dimension models where analytical computational strategies or Finite Element 

method have been applied (Karpouzian G, and Librescu L., 1996) and (H. 

Haddadpour, and R.D. Firouz-Abadi, 2006). 

 

http://www.sciencedirect.com/science/article/pii/S0263823106001431
http://www.sciencedirect.com/science/article/pii/S0263823106001431
http://www.sciencedirect.com/science/article/pii/S0263823106001431
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The National Aeronautics and Space Administration (NASA) is one of the most 

important research centers in the design, control and development of high 

performance aircraft wings. In 1986, the U.S. Navy and NASA designed an oblique 

wing for an aircraft and implemented active control using Linear Quadratic Gaussian 

design techniques. A method of modal residualization was used to reduce the order of 

the controller used for flutter suppression from 24
th

 order to 7
th

 order (Burken et al. 

1986). 

The design process for this research involved (Burken et al. 1986): 

1. Formulation of the state space model including independent wing actuators and s-

plane approximations of the unsteady aerodynamics 

2. Determination of full state optimal control law 

3. Determination  of robust feedback control law 

4. Formulation of reduced order control law 

5. Evaluation of a practical control law 

An organized study for active flutter suppression of a high aspect-ratio wing with 

multiple control surfaces was presented (Zhoa, 2009) and (Barzegari, Mohammad M. 

2012). Finite element methods were used to model the wing structure. Doublet lattice 

methods (E.Albano, and W.P.Rodden, 1969) were applied to model unsteady 

aerodynamic loads effecting on the leading and trailing edge control surfaces. The 

modal transformation of the structural equations and a minimum state approximation 

of an aerodynamic influence coefficient matrix were employed to construct the open 

loop equations with input delays. To suppress flutter of the time delayed system 

models, a dynamic controller was designed using H  control theory framework, as 

shown in figure 2.1.  
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“The modern approach to characterizing closed-loop performance objectives is to 

measure the size of certain closed-loop transfer function matrices using various 

matrix norms. Matrix norms provide a measure of how large output signals can get 

for certain classes of input signals. Optimizing these types of performance objectives 

over the set of stabilizing controllers is the main thrust of recent optimal control 

theory, such as 2H  and H  control.” (Zhoa, 2009) 

“In practical situations, the delay-independently stable region is usually a very small 

part of the parameter space of system. If the system parameters do not fall into the 

delay-independent stable region, the real part of at least one characteristic root 

changes its sign when the time delay varies. That is, the stability of the controlled 

system cannot keep unchanged with an increase of time delay. Such a change of 

stability with time delay is referred to as the stability switch.” (Zhoa, 2009) 

The stability of the closed loop system was tested by tracing the eigenvalues of the 

system. To demonstrate the suitability of the calculated critical time delay values, 

“(time delays at which the eigenvalues become purely imaginary are called critical 

time delays generate potential points for a stability switch of the system)” (Zhoa, 

2009), a time delay can be gradually increased to see the changes in the stability of 

 

System 

Plant 

Figure 2.1, Block diagram of system plant with  

feedback controller  (Zhoa, 2009) 
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the system. For this purpose, time delays   of 02.0 , 03.0  and 0325.0  sec were 

tested, respectively. As shown in figure 2.2, the closed loop system is stable for both 

  03.0,02.0  sec whereas instability arises for  0325.0  sec (Zhoa, 2009). 

It was discovered that applying the infinitesimal generator approximation for the 

solution operator matrix for the eigenvalues of the system was useful to get the right 

critical time delay c 0315.0  sec, at which the system became unstable (Zhoa, 

2009). 

 

 
Figure 2.2, Time responses of the system at different time delays (a) vertical 

bending  deflection and (b) torsional angle of the elastic axis  (Zhoa, 2009) 
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Another research achieved successful results for vibration attenuation similar to 

(Zhoa, 2009) by designing a gain scheduled controller using linear fractional 

transformations. This method is a continuation of H  control for systems that vary 

with measurable parameters such as Mach number, (speed of an object in relation to 

the speed of sound), and dynamic pressure. Time domain simulations showed the 

stability of the closed loop where both dynamic pressure and Mach number were 

allowed to vary whilst disturbances were existed. The closed loop system stability in 

the operating region was achieved by applying an optimized linear controller and the 

linear fractional gain-scheduled controller (Jeffrey M. Barker et al. 1999). 

It was stated: “There are two main performance objectives for any flutter suppression 

system. The first is to extend the flutter boundary, that is, to use feedback control to 

stabilize the wing over a larger region of operating conditions. Secondarily, flutter 

control is used to suppress vibrations in the operating region where the wing is open 

loop stable. By allowing the controller to depend explicitly on Mach number and 

dynamic pressure, attaining improved closed-loop performance and stability should 

be possible.” (Jeffrey M. Barker et al. 1999) 

Accordingly, parametric uncertainties were considered in both pitch stiffness and 

damping for adaptive control design to suppress limit cycle oscillations. Firstly, in 

accordance with partial feedback linearization for the wing section having a single 

trailing edge control surface, an adaptive controller was derived, as shown in figure 

2.3. Simulation results showed that the damping uncertainty is proportional to control 

efficiency.  Secondly, adaptive control was implemented using a structured model for 

an aeroelastic system with both trailing edge and leading edge control surfaces 

(Daochun Li et al. 2008). 
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For this purpose, a Structured Model Reference (SMR) using adaptive control law 

was derived. This method has been implemented for a specific structure by Akella 

and Junkins (1998), and used for suppressing the flutter of an aeroelastic system (J. 

Ko et al. 1998). Besides, considering the damping uncertainty, simulation results 

showed that the SMR adaptive controller was useful in the free, low air velocity. 

However, at higher velocities the positive effect of the controller reduced although 

the damping uncertainty caused the closed loop system flutter velocity to be greater 

(Daochun Li et al. 2008). 

 

 

In 2006, flutter was modeled using a simple spring mass system with two degree of 

freedom and aerodynamics forcing, as shown in figure 2.4, where hK  and aK  are 

representative of the bending and torsional stiffness of the wing about its elastic axis. 

For this purpose, the equation of motion for a 2-D wing model was derived to 

represent flutter prediction, as shown by Theodorson and Garrik (1940), for a straight 

wing of large span by giving it the inertial and geometric characteristics for the cross-

section (Karthik Palaniappan et al. 2006). 

Figure 2.3, Aeroelastic model with leading and trailing edge control surfaces 

(Daochun Li et al. 2008) 
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Figure 2.4, Typical Section Wing Model Geometry 

(Karthik Palaniappan et al. 2006) 

The dynamics of the system were represented in State Space form. An Adjoint 

method (Antony Jameson, 1988, and Siva Nadarajah, 2003) was used to obtain 

sensitivity matrix of the state vectors, with respect to the control variables. The 

objective of the problem was to control the given system to produce a final value of 

the state vector. For optimization purpose, the function including a positive definite 

weighting matrix was minimized (Karthik Palaniappan et al. 2006). 

Moreover, to control flutter, regulation by means of air suction and blowing was 

used. This was based on deriving a feedback control law from a linearized model and 

solving the Riccati equation for the aero-structural system. The feedback matrix 

derived was tested on a nonlinear model and was found to effectively control the 

flutter (Karthik Palaniappan et al. 2006). 

A new design approach called ‘Reciprocal State Space’ framework was introduced 

for vibration control problems of an aircraft wings where the state derivatives can be 

measured and fed back directly. Finite element methods and State Space were used 

for modeling the aircraft wing as shown in figure 2.5 (Yuan-Wei Tseng, and Rama K. 

Yedavalli, 1997). 
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Information on acceleration, velocity and displacement were obtained and fed back 

by applying integrators and accelerometers. In this framework to improve closed loop 

performance, the state and its derivative and integral may be fed back. Since 

accelerometers are widely used, this technique is useful in structural control (Yuan-

Wei Tseng, and Rama K. Yedavalli, 1997). 

 

Figure 2.5, The wing box Finite Element model 

(Yuan-Wei Tseng, and Rama K. Yedavalli, 1997) 

“Recently, frequency-based least-squares (LS) estimators have found wide 

application in identifying aircraft flutter parameters. However, the frequency methods 

are often known to suffer from numerical difficulties when identifying a continuous-

time model, especially, of broader frequency or higher order models.” (Tang Wei et 

al. 2008) 

“A numerically robust LS estimator based on vector orthogonal polynomial is 

proposed to solve the numerical problem of multivariable systems and applied to the 

flutter testing. The key idea of this method is to represent the frequency response 

function (FRF) matrix, by a right matrix fractional description (RMFD) model, and 

expand the numerator and denominator polynomial matrices on a vector orthogonal 

basis.” (Tang Wei et al. 2008) 
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Consequently, an ideal numerical condition was achieved for linear least-squares 

estimator. Eventually, this method was verified by a flutter test on a wing model in a 

wind tunnel as shown in figure 2.6 and real flight flutter test of an aircraft (Tang Wei 

et al. 2008). 

 

Figure 2.6, Flutter test schematic diagram 

(Tang Wei et al. 2008) 

Figure 2.6 depicts the typical setup of the flutter test. It is equipped with a flutter 

excitation system (FES), which is operated for structural excitation to insert 

programmed digital signals such as actuator sweep commands to the control system. 

The responses were measured by accelerometers located in the aircraft wingtips. In 

practice, the input signal for excitation is known beforehand and is free from noise. 

For simplicity, only the errors in the output were considered (Tang Wei et al. 2008). 

In the past three decades, with the quick development of both control systems 

strategy and actuator techniques, an increase of interests in the active control of 

aircraft wing flutter was noticeable (Mingli Yu, and Haiyan Hu, 2012). The earlier 

hydraulic types of actuators for control surfaces were mainly used, as reviewed in 

Waszak and Fung (1996). Various new actuators have been implemented, with the 

improvement of practical materials and new theories such as using high performance 

linear motors to achieve the active flutter control for huge wings using wind tunnel, 

by Borglund, and Kuttenkeuler (2002). 

http://www.sciencedirect.com/science/article/pii/S0889974611001472
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Obtaining the transient response of systems from frequency response data was one of 

Rosenbrock’s interests (Rosenbrock, 1958). Afterward, the multivariable control 

systems theory in the frequency domain was introduced. His papers include the 

transformations of linear constant system equations, the reduction of system matrices, 

and linear system theory (Rosenbrock, 1967). He presented the Nyquist and Inverse 

Nyquist Array method for multivariable control systems design which was done by 

reducing the system coupling assuring the diagonally dominance of the transfer 

function matrix model in 1969. Thereafter, single input single output theory could be 

simply applied. 

Gershgorin’s band theorem was used to investigate stability and diagonally 

dominance for the system transfer function matrix (Gershgorin, 1931). It states that, 

the system transfer function is diagonally dominant when the union of Gershgorin’s 

bands does not enclose the origin of the complex plane. Additionally, when the union 

of Gershgorin’s bands does not enclose the (-1,0) point, closed loop stability is 

attained (Munro, 1972). 

The main problem of using Nyquist and Inverse Nyquist Array method is that of 

achieving diagonal dominance for the square system transfer function matrix. Many 

suggestions had been introduced regarding this problem such as an optimal constant 

diagonal scaling matrix which was suggested by Mees (1981) and Psedudo-

diagonalisation technique by Hawkins (1972). Moreover, spectral factorization 

technique for decoupling the system, and then compensator relaxation would result in 

diagonally dominance (R Whalley, 1978).   

 

 

 

 

 Figure 2.7, Gershgorin’s bands 
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In last decades, the conventional Inverse Nyquist Array (INA) method was used by 

many engineers for the improvement of controllers for many processes (Koudstaal et 

al. 1981) and (Grujic, 1995). From a design point of view, such controllers seem 

acceptable, although instability in the closed loop performance may appear when 

modelling errors are existed. The robustness cannot be detected by INA, and may 

affect the diagonal dominance and significantly cause instability in the performance 

of multivariable control systems. Therefore, Arkun et al. (1984) presented Robust 

INA control methodology. 

Dejan D. Ivezic´, and Trajko B. Petrovic (2003) used Robust Inverse Nyquist 

Array method for a milling circuit control design. The transfer function matrix 

of the system model was derived from the milling circuit diagram in equation 

2.1 below. 

 

 

 

The goal of their paper was to construct a practical system model. As the real 

environment varies due to disturbances and time, the control system is required 

to be able to resist these changes. For this purpose, the uncertainties with 10%, 

equation 2.2, were added to the transfer function matrix to be assumed for real 

process. Therefore, a set of transfer function matrix were obtained instead of 

single transfer function matrix, as approximations of the uncontrolled plant, 

which could cover all other transfer function matrices (Dejan D. Ivezic´, and 

Trajko B. Petrovic, 2003).  

2.1 
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The uncertainty was easier to describe in terms of uncertainty in each elements of the 

transfer function matrix because the process model was obtained from experimental 

identification of the system. To satisfy the relation below, the upper boundary of 

additive uncertainty for each element in the transfer matrix was defined as: 

 

 

 

for any change of uncertainty parameters which proves independency of each element 

in plant  , but confined to a disk with a specific radius in the Nyquist plane as shown 

in figure 2.8 (Dejan D. Ivezic´, and Trajko B. Petrovic, 2003). 

The following notation will be used, as INA method requires inverse values of 

transfer matrixes defined above. (Symbol ^ denotes inversion): 

 

 

 2.2 
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The feedback system was constructed using model in figure 2.9 with a pre-

compensator transfer function matrix which includes two matrices as below: 

 

where these must be selected so that the robust dominance feature of the system is 

assured as following: 

 

Figure 2.8, Uncertainties imposed for the Nyqist array of the nominal 𝑃  and 

perturbed 𝑃 transfer matrix elements  

(Dejan D. Ivezic´, and Trajko B. Petrovic, 2003) 
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The first step for the robust INA controller design was providing diagonally 

dominance for the system as the Gershgorin’s row bands showed that the 

uncompensated system was not diagonally row dominant. The pre-compensator was 

calculated but this did not result to a stable, proper transfer function matrix. Adding 

post-compensators and solving optimization problems, as given in Arkun et al. 

(1984), were also tried by the authors to achieve column dominance but this also 

failed. Therefore, diagonally dominance investigation of the closed loop system was 

essential. The obtained compensators are as follows: 

 

Appropriate dominance was achieved as robust Ostrowski row bands of the closed 

loop system can be seen in figure 2.10. 

Figure 2.9, The standard multivariable feedback system 

(Dejan D. Ivezic´, and Trajko B. Petrovic, 2003) 
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The second step was designing the single-input single-output SISO controllers for the 

diagonal transfer function obtained above. Achieving certain dynamic performances 

such as no overshoot and no steady-state error was the purpose of designing these 

controllers as below: 

 
 

Figure 2.10, Diagonal elements INA with robust Ostrowski bands for  

compensated closed system 

(Dejan D. Ivezic´, and Trajko B. Petrovic, 2003) 
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In order to obtain the performance of the proposed robust controller, computer 

simulations were performed. The transient responses of the closed loop system using 

robust INA and some other methods such as classical PI controller, decentralized 

(DC) controller, RINA controller and previously designed Grujic´ (1995) INA 

controller were shown and compared in figures 2.11 and 2.12 (Dejan D. Ivezic´, 

and Trajko B. Petrovic, 2003). 

 

 

Here the responses for the second input are only shown. The time responses of the 

nominal plant are shown in figure 2.12. The INA and RINA controllers responses for 

the closed loop system following a step signal, on second input show better 

performances in comparison with the DC and PI controllers where the dominance 

concept effect is noticeable in the system behavior. The presence of the time delays in 

the diagonal elements of the transfer matrix, whilst applying INA and RINA 

controllers for small amplitudes, prevents the realization of first output zero time 

responses following a step input on the second reference. A better performance was 

achieved by RINA controller than INA controller where the settling time is nearly 

100 times shorter with no overshoot and similar behavior as DC and PI controllers 

(Dejan D. Ivezic´, and Trajko B. Petrovic, 2003). 

Figure 2.11, Transient responses of nominal plant following a unity step signal on 

second input (Dejan D. Ivezic´, and Trajko B. Petrovic, 2003) 
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The worst case assumption time responses were computed for satisfactory 

verification of the robust responses and shown in figure 2.12. The perturbation plant 

model for selected combinations of maximal model parameters is: 

 

“In real cases, uncertainties will be smaller, so that corresponding time responses will 

have similar features, though less distinctive.” (Dejan D. Ivezic´, and Trajko B. 

Petrovic, 2003) 

The closed loop system transient responses with perturbed plant and with RINA 

controller have similar performances as with the nominal plant as shown in figure 

2.12. It is reasonably obvious that the plant model uncertainties were added in the 

design procedure (Dejan D. Ivezic´, and Trajko B. Petrovic, 2003). 

Figure 2.12, Transient responses of perturbed plant following a step signal on second 

input (Dejan D. Ivezic´, and Trajko B. Petrovic, 2003) 
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In the classical INA design, avoiding uncertainties of the system is a disadvantage. 

The INA controller responses are slower with greater overshoots in comparison with 

the RINA controller. The reason is that the INA method considers only the nominal 

plant in providing the dominance of the system model. For that reason, the system 

dominance can be seriously damaged by changes in the nominal model (Dejan D. 

Ivezic´, and Trajko B. Petrovic, 2003). 

The transient response of the closed loop system with RINA controller is better 

compared to the ones with DC and PI controllers and a perturbed plant. In addition, 

their responses are more satisfactory than the responses of INA controller compared 

to their poor responses in the nominal case (Dejan D. Ivezic´, and Trajko B. 

Petrovic, 2003). 

Additionally, most aircraft have the control surface at the trailing edge of each wing. 

In 1998, the research of controlling the trailing edge was done by R Whalley, and M 

Ebrahimi (1998). 

Figure 2.13 shows the cross section of the wing system that has been used in (R 

Whalley, and M Ebrahimi, 1998) to control the trailing edge of the aircraft. The 

inputs of this system were leading and trailing edge forces and the outputs were 

leading and trailing edge displacements. 

As it can be seen, there was no point of employing leading edge aileron flaps. 

Therefore, a single input, trailing edge force, and two outputs, trailing edge and 

leading edge deflections, realization was used for the regulation problem (R Whalley, 

and M Ebrahimi, 1998). 
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Figure 2.13, Cross section diagram of the wing system 

(R Whalley, and M Ebrahimi, 1998) 

The model for this wing arrangement was used by Frazer et al. (1963). Stability was 

investigated directly by tracing the roots of the characteristic equation of the transfer 

function of this system which was the determinant of the impedance transfer function 

for various values of velocity. It was clear that for this wing arrangement, flutter 

occurred at low airstream velocities. Furthermore, the poles of the system varied with 

changes in velocity, as shown in figure 2.14 (R Whalley, and M Ebrahimi, 1998). 

Additionally, the controllability properties of the model were examined in order to 

ensure that all of the system’s vibrational modes could be affected by controlled 

inputs through the trailing edge flaps. Similarly, the investigation of observability 

would be essential if only one output measurement was available, so that not all the 

vibrational modes could appear in this output. This consideration was important for 

the reason that “If an unobservable mode of vibration is slow, for example, or even 

unstable then it could not be measured and hence controlled by regenerative 

feedback.” (R Whalley, and M Ebrahimi, 1998) 

 



Sahar Sadat Tavalla                                                   ID 90082   25 
 

The controllability test proved to be positive across the desired speed range by 

applying the spectral factorization for the transfer function matrix and observability 

was simultaneously guaranteed, as both outputs were observable to feedback the 

system (R Whalley, and M Ebrahimi, 1998). 

 

Figure 2.14, Pole velocity variations of the open loop wing model 

(R Whalley, and M Ebrahimi, 1998) 

To stabilize and reduce the variation in the deflections of this wing model, a restoring 

force was introduced. For example, to obtain corrective action, if roll control was 

utilized for the flap mechanism, then the wing force would increase proportionally to 

velocity squared. The following control law would show this effect: 

  )(11)()( 2

2

1
sqvsrsf 













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where )(sf  is the percentage changes of the leading edge and trailing edge, )(sq   is 

leading edge and trailing edge deflections and v  is the wing steady state air velocity. 

In order to find the displacements difference, this arrangement for control law was 

constructed. The values for 1  and 2  depend on the dimensions of the flaps. 

Furthermore, it was obtained by R Whalley and M Ebrahimi (1998) that the 

difference in the leading edge and trailing edge displacements can cause oscillatory 

behaviour for the wing assembly. 

“Oscillatory flutter behaviour has its origins in repeated deflection differences at the 

leading and trailing edges, which increase cumulatively.” (R Whalley, and M 

Ebrahimi, 1998) 

A control law was constructed in order to restore the forces which are proportional to 

the difference, in the leading edge and trailing edge deflections. The control law was 

tested on this wing model successfully. This approach provided a significant 

improvement in the wing performance. The wing was stable in the time and 

frequency domain responses at higher speeds and remained nearly similar to the open 

loop analysis at lower speeds (R Whalley, and M Ebrahimi, 1998). 

 

Figure 2.15, The open loop step response for the trailing edge deflection  

(R Whalley, and M Ebrahimi, 1998) 
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The open loop and closed loop time responses for this research have been shown in 

figures 2.15 and 2.16. 

 

Figure 2.16, The closed loop step response for the trailing edge deflection 

(R Whalley, and M Ebrahimi, 1998) 

This paper is continuous of the work of R Whalley and M Ebrahimi (1998) with two 

inputs (leading and trailing edge forces) and two variable outputs (leading and trailing 

edge deflections) and the control surface is applied on both outputs whereas in R 

Whalley and M Ebrahimi’s paper (1998), only the trailing edge had a control surface. 

In addition, Least effort control strategy is applied to control this MIMO (multiple 

input – multiple output) wing model instead of simple SIMO (single input – multiple 

output) feedback controller. Furthermore, the Nyquist array method is applied for 

comparison purposes. 
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Chapter 3 

Research Methodology 

Basically large variations are experienced by wing structures due to their frictional 

and stiffness factors which are proportional to the airstream velocity. According to 

equation 3.1, frictional parameter occurs in proportion to aircraft velocity and 

stiffness parameter occurs in proportion to aircraft velocity squared. Furthermore, 

there is a characteristic which is independent of the air velocity, and dependent of the 

damping, mass-inertia and stiffness features (R Whalley, and M Ebrahimi, 1998). 

General transformed wing models with zero initial conditions could be formed as 

following, as shown by Collar, and Simpson (1987): 

)()()(])([ 2 ssfsqCvvBssAn   

where 

)(sAn  impedance matrix model relating leading and trailing edge characteristics 

B  damping ratio matrix 

C  stiffness matrix 

)(sq  is the transformed output vector. 

The transformed input force vector and the disturbance vector are given by )(sf  and 

)(s  respectively. 

 

3.1 
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The quadratic matrix below which has two degree of freedom is independent of 

velocity. Upon transformed, the model becomes: 

21

2

02 )( AsAsAsA   

where 

0A  inertia matrix 

1A  matrix of friction 

2A  stiffness matrix 

 

3.1. Analysis of the Wing Model 

The scaled transformed wing matrix equation, from Frazer et al. (1963), with zero 

initial conditions, is: 

)()()(])([ 2

2 ssfsqCvvBssA   

where )(sq  the transformed output vector (the leading and trailing edge deflections) 

and the input vectors of )(sf  as applied input force and )(s as applied disturbance 

force, where: 

21

2

02 )( AsAsAsA   

with 











743.4907.2

907.2443.5
0A  















99

929
1A   















7.14877.614

7.6147.2502
2A   

3.2 

3.3 

3.4 
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The damping and stiffness matrices, as given in equation 3.5, are dependent of 

airstream velocity: 













8064.03456.0

9076.04466.0
B  















144.0144.0

633.0633.0
C  

The percentage of the transformed leading and trailing edge deflections are: 

 Tsqsqsq )(%)(%)( 21  

and the percentage of applied forces at leading and trailing edges and disturbances, 

are as follows, respectively: 

 Ttl sfsfsf )(%)(%)(   

 Tsss )(%)(%)( 21    

The maximum values of inputs, outputs and disturbance for this wing model in 

percentage terms, given by equation 3.2, are as below: 

254.0)()( 21  tqtq  mm 

8.444)()(  tftf tl  N 

96.60max v  m/s 

 

 

3.5 
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The transfer function of the wing model can be found by inverting equation 3.2 and 

substituting for )(2 sA from equation 3.3 as follows: 

)()()(])([ 2

2 ssfsqCvvBssA 
 

   )()(][)( 12

21

2

0 ssfCvsvBAsAsAsq    

     )()(][)( 12

21

2

0 ssfCvAsvBAsAsq  

 

The transfer function of the wing model becomes: 

    12

21

2

0 ][)(  CvAsvBAsAsG
 

The open loop block diagram of the wing model is shown in figure 3.1 below. 

 

  

 

 

  

 

Then, substituting for BAAA ,,, 210  and C  from equations 3.4 and 3.5 in 

equation 3.6 yields: 

1

2222

2222

)144.07.1487()8064.09(743.4)144.07.614()3456.09(907.2

)633.07.614()9076.09(907.2)633.07.2502()4466.029(443.5

)(


















vsvsvsvs

vsvsvsvs

sG

 

3.6 

Figure 3.1, Open loop block diagram of the wing model 
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After inverting the previous equation, the general transfer function matrix for the 

system is given by: 

 
 

)(

)633.07.2502()4466.029(443.5)144.07.614()3456.09(907.2

)633.07.614()9076.09(907.2)144.07.1487()8064.09(743.4

)(

2222

2222

s

vsvsvsvs

vsvsvsvs

sG


















where

 

    svvssvsss

sssss

32223

642434

11.0737.28088.232966564.31164.5

10456.31046.510372.286.238365.17)(




 

 

To apply the least effort control method for this wing arrangement, the numerator of 

the transfer function should be reduced to a first degree polynomial and the transient 

and steady state responses of the system model must be preserved. For this purpose, 

factors having 2s  in the numerator in equation 3.7 have been eliminated and this 

results in equation 3.8 below. The denominator is unchanged as a characteristic 

equation of the system. To verify this, zero velocity is chosen for the system model. 

The open loop time responses have been shown before and after neglecting the 2s  

factors from the numerator of )(0 sG  in figures 5.1 and 5.2 where the correspondence 

is excellent. In view of this, the reduced model is given by: 

   
   

)(

)633.07.2502()4466.029(144.07.6143456.09

633.07.6149076.09)144.07.1487()8064.09(

)(
22

22

s

vsvvsv

vsvvsv

sG















  

where 

    svvssvsss

sssss

32223

642434

11.0737.28088.232966564.31164.5

10456.31046.510372.286.238365.17)(




 

 

3.7 

 3.8 
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Substituting zero for v  in equation 3.7 yields in: 

 
 

)(

7.250229443.57.6149907.2

7.6149907.27.14879743.4

)(
0

22

22

0
s

ssss

ssss

sG















  

where 

642434

0 10456.31046.510372.286.238365.17)(  sssss  

After eliminating the factors having 2s  from the numerator in equation 3.9, the 

transfer function becomes: 

)(

7.2502297.6149

7.61497.14879

)(

0

0

0
s

ss

ss

sG

v




















 

where 

642434

0 10456.31046.510372.286.238365.17)(  sssss
 

As mentioned earlier, to apply the least effort method to this system, the factors 

having 2s  were neglected. Equations 3.9 and 3.10 are the transfer function matrix 

equations before and after eliminating the factors having 2s . The open loop system 

models, figures A.1 and A.2 in the Appendix, were simulated in MATLAB. Figures 

7.1 and 7.2 show that the behaviour of the open loop system after approximation, at 

zero velocity, have been changed only slightly. Therefore equation 3.10 for the 

system model was used to apply the least effort control method. 

 

 

 

3.9 

3.10 
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Figure 3.2, Open loop step responses for transfer function in equation 3.9  

Figure 3.3, Open loop step responses for transfer function in equation 3.10  
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Chapter 4 

Least Effort Control Strategy 

In the design procedure, a dual loop approach will be applied as shown in figure 4.2. 

The inner loop is employed to achieve desired dynamics and satisfactory disturbance 

recovery. The outer loop is employed to achieve the required steady state by 

generating a pre and feedback compensator structure for the closed loop system (R 

Whalley, and M Ebrahimi, 1999). 

The Laplace transformed transfer function for the open loop system is given by )(sG . 

The open loop system model is: 

   Ttl

T
sfsfsfsusqsqsqsyssusGsy )()()()(,)()()()(,)()()()( 21  

 

and the control (feedback) law for the system is: 

   )()()()()()()( sFysrPsyshsrsksu   

                  Inner loop                 Outer loop 

                 (Dynamics)             (Steady state) 

 

As shown in figure 4.1, the inner loop controller is:  

 )()()()()( syshsrsksu   

and the outer loop controller is: 

 )()( sFysrP   

An outer loop gain matrix F  is proposed to restrict output interaction as follows: 

10,,),( 2121  ffffffDiagF  
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With 0)( sr , the closed loop system equation becomes: 

   )()Pr()()()()()(
1

sssGPFshsksGIsy 


 

 

 

Figure 4.1, Inner loop block diagram for the system model 

The steady-state relationship is: 

)0()0( rSy s  

For zero interaction, the steady state matrix should be: 

 ms IS   

Combining equations 4.1 and 4.2 with 0)( s
 
results in: 

    11 )0()0()0(
  ss FSIShkGP
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4.3 

 4.1 
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Figure 4.2 shows the block diagram for the outer loop controllers. 

 

Figure 4.2, Block diagram for inner and outer loop controllers 

For implementation purposes, a conventional pre and feedback compensator structure 

as shown in figure 4.3 could be employed yielding: 

   )()()()()()()()(
1

ssrsKsGsHsKsGIsy 


 

Comparing equation 4.1 with 4.4, evidently: 

PsK )(  
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and: 

FshskPsH   )()()( 1  

)(sH and )(sK are constant and full rank matrices, respectively. 

 

 

Figure 4.3, Conventional multivariable feedback structure block diagram 
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4.1.     Inner Loop Control Strategy 

The complete equation for the system can be written as below: 

   )()()()()()()()(
1

ssrsksGshsksGIsy 


 

where 

 
 21

21

)(

)(

hhsh

kksk
T





 

The characteristic equation can be computed from the determinant of 

  )()()( shsksGI  as following, as  )()( shsk  is a rank one matrix. 

    




















2

12221

1211

21
)(

)()(

)()(

1)()()(1)()()(det
k

k

s

sgsg

sgsg

hhsksGshshsksGI

 

   














)(

)()()()(
1 22212122121111

s

sghsghksghsghk

 

Hence:

 

  )()()(det shsksGI
 






















22

12

21

11

22122111

)(

)()()()(
1

hk

hk

hk

hk

s

sgsgsgsg
 

Let 12 nkk  . 
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If 

 
























21

11

21

11

22122111

)(

)()()()(

)(

)()()(

hnk

hnk

hk

hk

s

sgsgsgsg

s

sksAsh

 

and 

)()()()()( xsbsbsksAsh    

then 

  )()()()()(

21

11

21

11

22122111 xsb

hnk

hnk

hk

hk

sgsgsgsg 



















  

Rearranging equation 4.7 results in: 

    



































1
)(

1
1)(1

2

1

1

2

1

1

x
b

h

h
nQk

x
bs

h

h
nQsk   

Let 11 k  then the inner loop controllers can be calculated from the following 

equations. 

  ob
x

nQ
h

h
sh

nk

k
sk

T









































1
)()(

1
)(

1

2

1

2

1

 

To find the characteristic equation and the appropriate gain ratio n , the determinant 

of   )()()( shsksGI  is equated to zero. 

  0)()()(det  shsksGI

 

4.8 

4.7 
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Hence: 

 


























21

11

21

11

22122111

)(

)()()()(
1

)(

)()()(
1

hnk

hnk

hk

hk

s

sgsgsgsg

s

sksAsh
0

)(

)(
1 






s

xsb  

The characteristic equation is: 

1
)(

)(






s

xsb  

Under closed loop conditions, detection of the minimum control effort with the 

constraint that the controller model produces a particular zero is essential, to provide 

a minimum effort performance index (Sahar Tavalla, 2011). 

The control energy cost is proportional to: 

     














 

T m

i

m

j

jji

T

dttyhkdttututE
0 1 1

222

0

2

2

2

1 )()()()(  

Hence minimizing:  

 
 


m

i

m

j

ji khnJ
1 1

22
)(  

would minimize the control energy required to suppress the resulting arbitrary 

disturbance changes. 

Since 12 nkk   and b
x

nQ
h

h
















 

1
)(1

2

1
, the performance index )(nJ becomes:  

       bnQnQbnhhnknJ
TT )()(11)( 1122

2

2

1

22

1

  

 4.9 

 4.11 

 4.10 
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In order to find the extremum values of the gain ratios n , the performance index 

derivative, 
dn

ndJ )(
, is equated to zero. 

The block diagram for computing the energy dissipation for this system, equation 

4.10, is shown in figure 4.4 below. 

 

Figure 4.4, Block diagram of the system model including the energy dissipation 

following random disturbances 
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4.2. Inner Loop Calculations for the Wing Model at Zero Airstream 

Velocity 

According to equation 3.10, the open loop transfer function matrix for the wing 

model, at zero velocity is: 

)(

7.2502297.6149

7.61497.14879

)(

0

0

0
s

ss

ss

sG

v




















 

642434

0 10456.31046.510372.286.238365.17)(  sssss
 

The equation for the Root Locus from equation 4.9 is: 

1
)(

)(

0






s

xsb

 

If 1.0x  and 1b  

then the Root Locus equation for this system model becomes: 

 
1

10456.31046.510372.286.238365.17

)1.0(
642434






ssss

s
 

Hence: 

 
  

1
119386.125.161895.0

)1.0(057587.0
22






ssss

s
 

Figure 4.5 shows the Root Locus plot for the equation 4.12. 

 4.12 
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Figure 4.5, Root Locus plot for the inner loop system 

An appropriate b  can be chosen, as shown in figure 4.6, to achieve an acceptable 

response for the inner loop. 

    
 1

4321
0575875.0

Z

PPPP

ZEROS

POLES
b 






    
 7635.12

5468.56951.24543.223391.45


 

Hence: 

0575875.0/100969.1 4b  

As it can be seen, the calculated value for b  for an acceptable response is high.
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Figure 4.6, Root Locus to find the proper b  

As mentioned in the previous section, after calculating the suitable b , the gain ratio 

n  must be calculated to obtain the inner loop controller. In order to find n , the 

coefficient matrix )(nQ  should be obtained from equation 4.7 as following. 

    



























1
1)()()()()(

21

11

21

11

22122111

x
sbxsb

hnk

hnk

hk

hk

sgsgsgsg   

Substituting  1.0  for x : 

  )1.0(7.2502297.61497.61497.14879

21

11

21

11





















 sb

hnk

hnk

hk

hk

ssss 
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Hence: 

    bs

hnk

hnk

hk

hk

sk 




































1

1.0
1

29999

7.25027.6147.6147.1487
1

21

11

21

11

1

  

and 



















1
)(

2

1

1

x
b

h

h
nQk 

 

If 

11 k , b
x

nQ
h

h
















 

1
)(1

2

1

 

then 































1

1.0

92999

7.6147.25027.14877.614

2

1

1 b
h

h

nn

nn
k

 

The coefficient matrix and its inverse will be: 















92999

7.6147.25027.14877.614
)(

nn

nn
nQ

    

 
 

 7857.00619.24698.010

7.14877.61499

7.6147.2502929

)(
24

1
















 

nn

nn

nn

nQ

 

Let 

 057587.0100969.1

1

4

1





b

k

 

 

 4.13 
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then equation 4.13 becomes: 

 
 

 
 057587.0100969.1

1

1.0

7857.00619.24698.010

7.14877.61499

7.6147.2502929

4

24
2

1


































nn

nn

nn

h

h

 

Substituting for b  and )(nQ  in the performance index equation for )(nJ , in equation 

4.11 yields: 

 

 
 

 
 

   















































1

1.0

7857.00619.24698.010

7.14877.61499

7.6147.2502929

7.14877.6147.6147.2502

99929

1

1.0
1

)(

224

22

nn

nn

nn

nn

nn

nb

nJ

T

o

 

    
  224

262

7857.00619.24698.010

5873.2864.46258.6101
)(






nn

nnn
nJ  

Hence: 

6173.02401.35132.39374.12207.0

5873.2894.42131.9894.46258.6
)(

234

234






nnnn

nnnn
nJ

 

To find the minimum of )(nJ , 
dn

ndJ )(
 must be equated to zero. 

Hence:        

0362.58049.67589.367537.644889.429169.13
)( 2345  nnnnn

dn

ndJ

 

The roots of above equation are: 

3814.0,5691.05956.0,2777.4  in  

4.14 
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Figure 4.7 shows the graph for the performance index with its minimum when: 

3298.0n  

 

Figure 4.7, Performance Index )(nJ  against gain ratio n  

Substituting for n  in )(sh and )(sk  in equations 4.8 and 4.14 results in:      



















3298.0

1

2

1

k

k

 

    057587.0100969.11057.009.0 4

21 hh  

After finding the inner loop controller, the outer loop controller using equation 4.3 is 

given by: 

    11 )0()0()0(
  ss FSIShkGP
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Substituting  0s  to find )0(0G  in equation 3.10 yields: 

60
10456.3

7.25027.614

7.6147.1487

)0(











G  

Hence: 

















7.14877.614

7.6147.2502
)0(

1

0G  

Using equations 4.15 and 4.16 results in: 

   057587.0100969.1
0349.00297.0

1057.009.0
1057.009.0

3298.0

1

)0()0(

4























ob

hk

 

 

If  

 

 ffdiagF

IS s

,

1.0 2




 

then 

   
 f

I
FSIS ss 




1
1.0 2

1
 

Substituting in equation 4.2: 

 f
P

















1

53.81324.504

87.195102.1464
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If 0f   

then: 













53.81324.504

87.195102.1464
P  

If 5.0f   

then: 













06.162748.1008

74.390304.2928
P  

At higher values than 5.0f , the system responses exhibit large overshoots, high 

frequency characteristics which should not be acceptable in practice. 
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Chapter 5 

Compensator Design 

The purpose of compensator design is usually to satisfy both transient and steady 

state responses. Compensators are used to modify the response of a control system in 

order to accommodate set design specifications. 

To design the compensator, the transfer function of the system, in equation 3.10 has 

been written as: 

 

  119386.125.161895.0

7.2502297.6149

7.61497.14879
057587.0

)(
220

















ssss

ss

ss

sG  

The poles of the system can be calculated by equating the characteristic equation 

which is the denominator of the transfer function to zero. This system has four 

complex poles at: 









is

is

9359.334301.6

6991.124475.0
 

To eliminate oscillatory effects of the two complex poles closest to the imaginary 

axis, the following compensator has been designed for this system. The compensator 

network is a second order active filter network, given by equation 5.1, shown in 

figure 5.1. 

 
 5.1625.25

5.161895.0
)(

2

2






ss

ss
sC   

The zeros and poles of the compensator are: 









13,5.12

6991.124475.0

poles

izeros
 

 5.1 
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The compensator equation and the required conditions are: 

 
 21

2

21

2

)(
asas

bsbs
sC




  

   

2142

2

11

1

1

1

CCRR
a

CR
a





 

      111

83

71
1 1 aba

RR

RR
b 










  

      222

93

72
2 1 aba

RR

RR
b 










  

 

Figure 5.1, Compensator circuit diagram 
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The parameters of this network can be calculated after comparing equation 5.1 with 

equations 5.2 and 5.3 which are shown in table 1 below. 

1a  5.25  

2a  5.162  

1b  895.0  

2b  5.161  

1R  96078.1  kΩ 

2R  5  kΩ 

3R  96801.79  kΩ 

4R  0769.3  kΩ 

5R  10  kΩ 

6R  842.9  kΩ 

7R  842.9  kΩ 

8R  2501.0  kΩ 

9R  100  kΩ 

1C  20  µF 

2C  20   µF 

Table 1, Parameters of the compensator network 
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The analytical derivation for this network is as follows. The equations for the four 

nodes at cba vvv ,,  and dv  can be written as below: 

As 11 || CR , then: 
 
  11

1

11

1

11

11
1







sCR

R

sCR

sCR
Z  

First node at av  : 



















sCRV

V

R

R

V

V

a

b

b

c

24

5

5

1

1

 

Hence: 

sCRV

V

a

c

24

1
  

Second node at bv  : 

0
3

1

21


R

E

R

V

Z

V ca  

Hence: 










 

















 


sCRRR

RsCRRsCCRRR
V

sCR
V

R

sCR
V

R

E
aaa

2421

1242

2

21421

241

11

3

1 11
 

Third node at cv  : 

0
6

2

7

1

89


R

E

R

E

R

V

R

V ac
 

Hence: 










 













sCRRR

RsCRR
V

R

V

sCRR

V

R

E

R

E
a

aa

2984

8294

82496

2

7

1
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Combining the previous node equations results in: 

 









 










 




sCRRR

RsCRR
V

sCRRR

RsCRRsCCRRR
V

RERE

RE

a

a

2984

8294

2421

1242

2

21421

6271

31  

Hence: 

  82129421

9831298432

2

21984321

6271

1

RRRsCRRRR

RRRRsCRRRRRsCCRRRRRR

RERE

E







 

If 

821294212

9831298432

2

219843211

RRRsCRRRRX

RRRRsCRRRRRsCCRRRRRRX




 

then 

  2

1

6271

1

X

X

RERE

E



 

and 








 


1

172

7

6

1

2

6

12

7

11
21 ,

X

XRX

R

R

E

E

R

XE

R

XE
XE

 

Substituting for 1X  and 2X  yields in: 

   




















9831298432

2

21984321

9831298432

2

21984321782129421

7

6

1

2

RRRRsCRRRRRsCCRRRRRR

RRRRsCRRRRRsCCRRRRRRRRRRsCRRRR

R

R

E

E
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and 
















































214211

2

21943

7

2142183

7

11

2

7

6

1

2

11

11

CCRR
s

CR
s

CCRRR

R

CCRR
s

CRR

R

CR
s

R

R

E

E
 

The transfer function of this network will be as shown in equation 5.4 below which is 

matched with equations 5.2 and 5.3. 
































































214211

2

214293

72

1183

712

7

6

1

2

11

1
1

1
1

CCRR
s

CR
s

CCRRRR

RR
s

CRRR

RR
s

R

R

E

E  76 RR   

 

5.1.   Inner and Outer Loop Design for the System with Compensator 

After combining equations 3.10 and 5.3, the new transfer function of the system )(sG

will be: 

 

  119386.125.161895.0

7.2502297.6149

7.61497.14879
057587.0

5.1625.25

5.161895.0
)()()(

222

2

0





























ssss

ss

ss

ss

ss
sGsCsG

 

   
   

  119386.125.1625.25

116.01123.1440146.013987.35

0146.013987.35006.016722.85

)(
22 















ssss
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  119386.125.1625.25)( 22  sssss  
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The inner loop block diagram of the system with compensator is shown in figure 5.2. 

 

Figure 5.2, Inner loop system block diagram with compensator 

 

Same procedure as used in previous sections for inner loop controllers can be applied 

for the new system model as follows, from equation 4.5: 
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The controller generated zero is selected initially at  6x  in order to increase the 

separation from the imaginary axis.
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 

)6(

123.14467.1,3987.355183.0,3987.355183.0,6722.855183.0

21

11

21

11


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















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hnk

hnk

hk

hk

ssss

o

 

Hence: 

    bs

hnk

hnk

hk
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
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
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


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
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
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


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

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

1
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b

h

h
nQk   and 11 k  
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b
x

nQ
h

h
















 

1
)(1

2

1

 







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








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nn
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The coefficient matrix and its inverse for the system model with compensator at zero 

velocity will be: 














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and 

 
 

 0568.263736.685831.15

6722.853987.355183.05183.0

3987.35123.1445183.067.1

)(
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Substituting for b  and )(nQ  in performance index equation )(nJ  in equation 4.11 

yields in: 

  

 
 

 
 

  
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
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As mentioned earlier, to find the minimum value of )(nJ , 
dn

ndJ )(
 must be equated to 

zero, where: 

00167.27417.25152.125105.20621.303691.133987.4

)(

23456 



nnnnnn

dn

ndJ

 

After finding the roots of the previous equation which are: 

n = 4.7406, -1.2184, -0.2411 ± 0.7622i, 0.3521, -0.3527 

the minimum occurs when: 

3521.0n  

Figure 5.3 shows the graph for the performance index in equation 5.7 and the 

minimum of it. 

 

Figure 5.3, Performance Index )(nJ  against gain ratio n  
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Substituting for the calculated n  in )(sh and )(sk  in equations 4.8 and 5.6 results in: 

   9488.16495.1)(

3521.0

1
)(

21

2

1






















hhsh

k

k
sk

 

After finding the inner loop controllers, the outer loop controllers have been obtained 

as follows using equation 4.3. From equation 5.5: 

   
   

  119386.125.1625.25

116.01123.1440146.013987.35

0146.013987.35006.016722.85

)(
22 
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
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then: 

 
 1201.1

99.011.0

1.099.01

2

1



















ff

f

f

FSIS ss  

Substituting for P  in equation 4.3: 

 1201.1

99.011.0

1.099.01

74525.149714719.619

61761.61679459.2516

2 
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













ff

f
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P  

If  55.0  is selected for f , then: 















3

3

100169.38245.639

5411.145102806.5
P

 

The inner and outer loop controller block diagram of the system with compensator is 

shown in figure 5.4 below.  

 

Figure 5.4, Block diagram for inner and outer loop controllers 
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For implementation purposes, as the values for P  are high in equation 5.10, the gains 

have to be distributed between forward and feedback path. The blocks that have to be 

changed are shown in figure 5.5. As it can be seen, the forward gain of  1001   has 

been included in the model, the outer loop forward path gain P  is divided by  100  

and the outer loop feedback gain f  is multiplied by  100 . Thus, the new values for 

P  and f  become: 















169.30398245.6

455411.1806.52
P  

55f  

 

Figure 5.5, The block diagram changes in figure 5.4  

for implementation purposes 
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Using equations 4.4, 4.5, 4.6 and 5.10, the conventional multivariable feedback 

structure can be constructed in figure 5.6.  

)(sK and )(sH are calculated for 55.0f  as below: 















3

3

100169.38245.639

5411.145102806.5
)(sK

   

 



















4

4

10075.35502.0

5503.0101954.3
)(sH

    

It is noticeable that the values for )(sK  are high in equation 5.13. The same 

procedure is applied to distribute the gains between )(sK  and )(sH . The blocks that 

have to be changed are shown in figure 4.5. As it can be seen, the forward path gain 

of  1001   has been included in the model, the outer loop feedback gain )(sK  has 

been divided by  100  and the outer loop feedback gain )(sH  is multiplied by  100 . 

Thus, the new values for )(sK and )(sH  become: 


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
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





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Figure 5.6, Conventional multivariable feedback structure block diagram 
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Chapter 6 

Nyquist Array Method 

In this chapter, Nyquist array method is applied to this wing arrangement to be 

compared to the earlier method discussed in previous chapter. The fundamental 

objective of this method is to decrease system output interaction so that the closed 

loop system design problem reduces to a set of independent single loop designs and 

this happens when the system is diagonally dominant. 

From previous chapters, the reduced transfer function matrix of this wing 

arrangement at zero velocity is given by: 

)(

7.2502297.6149

7.61497.14879

)(
0

0
s

ss

ss

sG















  

where 

642434

0 10456.31046.510372.286.238365.17)(  sssss  

As mentioned earlier, the first step is to obtain row or column diagonally dominant 

system transfer function. The Nyquist array for the equation 6.1 could be plotted with 

Gershgorin’s bands superimposed. According to Gershgorin’s bands theorem, the 

system is diagonally row dominant if the union of Gershgorin’s bands does not 

enclose the complex plane’s origin. Additionally, the closed loop system stability is 

attained if the Gershgorin’s bands does not enclose the (-1,0) point (Munro, 1972). 

 

6.1 
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The Gershgorin’s bands for the first row of )(sGo  were imposed for the Nyquist 

diagram of the element )(11 sgo  in figure 6.1 below. It can be clearly seen that none of 

the bands include the origin, therefore, diagonally dominance of the system (first 

row) is achieved.  

 

 
Figure 6.1, Nyquist diagram of  with Gershgorin’s bands (first row) 
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Similarly, from figure 6.2 below, imposed Gershgorin’s bands for the second row ofr 

the Nyquist diagram of the element )(22 sgo , shows clearly none of the bands include 

the origin of the complex plane, hence the system is completely row dominant. 

 

 

 

 

Figure 6.2, Nyquist diagram of  with Gershgorin’s bands (second row) 
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A pre-compensator is designed as 1)0( 

oG , equation 6.2, to produce the desired 

dominance condition. A controller for each loop could be designed independently, as 

diagonal dominance is achieved by this pre-compensator (Taher Khalifa, 2012). 

















7.14877.614

7.6147.2502
)0(

1

0G  

Figure 6.3 shows the block diagram of the system using controllers and pre-

compensators. Additionally, unity feedback is proposed with independent loops. 
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Figure 6.3, Block diagram of the system with pre-compensator and controllers 
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Proportional controllers are designed for both outputs. The controllers are given by: 

11,1.0,1.0 21  kkk  

The simulation models are shown in The Appendix. The responses for this model will 

be shown and discussed in next chapter. Additionally, the disturbance recovery and 

energy consumption by the controllers will be examined. 
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Chapter 7 

Simulation Results and Discussion 

7.1.   Least Effort Control Strategy Results 

The transformed wing transfer function matrix was obtained and calculated for 

different velocities. As it was seen, the numerator of the transfer function is now of 

second degree polynomial form. To apply the least effort method to this system, the 

factors having 2s  were neglected. Equations 3.8 and 3.9 are the transfer function 

matrix equations before and after eliminating the factors having 2s . The open loop 

system models, figures A.1 and A.2 in The Appendix, were simulated in MATLAB. 

Figures 7.1 and 7.2 show that the behaviour of the open loop system after 

approximation, at zero velocity, have been changed only slightly. Therefore equation 

3.9 for the system model was used to apply the least effort control method. 

 

Figure 7.1, Open loop step responses for transfer function in equation 3.8  
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Figure 7.2, Open loop step responses for transfer function in equation 3.9 

As stated in the previous sections, designing the Least effort, optimum control system 

includes two steps: Inner loop design and Outer loop design. In the inner loop design, 

the Root Locus for the equation 4.12 was plotted using MATLAB and shown in 

figure 4.5. In figure 4.6, the controller generated )(sb  has been selected to improve 

the dynamics of the closed loop system. The gain was selected as 

0575875.0100969.1 4b  and a controller generated zero was generated at 

 1.0s . Other places for the controller generated zero were tested but the responses 

were either highly oscillatory or had very high overshoots. It can be seen from the 

same figure that the selected gain has a damping ratio of  456.0  which is acceptable. 

To find the gain ratio n  for the inner loop controllers )(sh and )(sk , the absolute 

minimum control effort was detected. For this purpose, the graph of the Performance 

Index )(nJ  against gain ratio n  was plotted in figure 4.7. It was calculated that the 

function of )(nJ  has an absolute minimum at  3298.0n . Thus this value has been 

chosen for the gain ratio of the inner loop controllers. 
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After finding the inner loop controllers )(sh and )(sk in equations 4.15 and 4.16, the 

inner loop system shown in figure 4.1 was simulated using MATLAB. Figure 7.3 

shows the inner loop response for the trailing and leading edge deflection at zero 

velocity. As it can be seen, the responses have been improved comparing them to the 

open loop responses shown in figures 7.1 and 7.2. The rise time has been reduced to 

 sec1.0  and the responses are underdamped and well behaved whereas the open loop 

responses had large oscillations as indicated in figures 7.1 and 7.2. Moreover, the 

overshoots for leading and trailing edge have been decreased from 3103.1   and 

3108.1   to 4102.6   and 4102.5   which is good. There are still small oscillations 

which rapidly disappear and are acceptable compared to the open loop responses. 

Essentially, the controlled flutter amplitude oscillation has been reduced by almost a 

factor of 10. 
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Figure 7.3, Inner loop step responses for the trailing and leading edge deflection 

 at zero velocity 
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As the responses were acceptable for inner loop design at zero velocity, the outer loop 

controllers were calculated. For the outer loop design, the steady-state output 

interaction was assigned to be  1.0 . As it can be seen in equation 4.18, the value for 

P  when  5.0f  is high. Figure 7.4 shows the transient responses for the leading 

and trailing edge deflection when  5.0f  and unity signal is applied to the first 

reference input by simulating the model in figure 4.2. The responses are not 

satisfactory at all. 

The same model has been simulated when  0f . Figure 7.5 shows the time 

responses for the leading and trailing edge deflection following unity step change in 

the first reference input when  0f . It was anticipated to get the similar responses 

as the inner loop responses in figure 7.3 when  0f  but the input at leading edge 

force would play the role of a disturbance at the inner loop reference input. However, 

the responses are very oscillatory. This was unexpected because the responses show 

the poles of the system have been changed due to a high gain for the inner and outer 

loop controllers. 

The other reason that caused oscillations is the poles of the system. The characteristic 

equation for the wing model has four complex poles at  is 6991.124475.0   and 

 is 9359.334301.6  . The dominant complex poles at  is 6991.124475.0 

are very close to the imaginary axis and they cause closed loop oscillations. Thus the 

use of compensator for this system was necessary to compensate the effect of the 2 

poles close to the imaginary axis that are causing the oscillations, in the system 

model. 
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Figure 7.4, Outer loop time responses for system model at zero velocity when 

 5.0f   following unity step change at Leading edge force 

 

Figure 7.5, Outer loop time responses for system model at zero velocity when 

 0f   following unity step change at Leading edge force 
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As it was seen in figure 7.4, the system time responses were unstable. Therefore, 

designing a compensator was essential for this wing model. 

The open loop wing model characteristic equation has four complex poles at: 









is

is

9359.334301.6

6991.124475.0
 

The poles at  is 6991.124475.0   are the dominant poles which cause the 

oscillations. Thus, the compensator )(sC  was designed, to produce the effect of 

equation 5.1, in order to cancel the influence of these poles. Therefore, the numerator 

of the compensator has zeros at  is 6991.124475.0  . The denominator was 

designed according to the second order active filter network in equation 5.2. The 

circuit diagram of this network, was shown in figure 5.1. The parameters for this 

network were calculated as in table 1. 

After designing the compensator )(sC , the new transfer function was generated in 

equation 5.5. The inner loop design procedure was applied for the new system model. 

The inner loop controllers were designed and calculated according to the performance 

index graph, equation 5.7 in figure 5.3. The controller which generates the zero for 

the system was chosen at  6x  and with a gain of  1b  in order to increase the 

separation from the imaginary axis. The inner loop controllers were calculated in 

equation 5.8. 
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velocity 

(m/s) 
Open loop transfer function 

0v  
)(

7.2502297.6149

7.61497.14879

)(
0

0
s

ss

ss

sG















  

642434

0 10456.31046.510372.286.238365.17)(  sssss  

5v  
)(

9.2486233.311.611728.10

875.598462.43.1491032.13

s

ss

ss

G















  

642434 10456.3109516.6103803.268.264365.17)(  sssss  

10v  
)(

4.2439466.333.600456.12

4.551076.01.1502064.17

s

ss

ss

G















  

62434 103169.384658103736.25.290365.17)(  sssss  

15v  
)(

3.2360699.353.582184.14

275.472614.41.1520096.21

s

ss

ss

G















  

652434 102818.3100011.1103518.232.316365.17)(  sssss  

20v  
)(

5.2249932.371.577912.15

5.361152.93.1545128.25

s

ss

ss

G















  

62434 102327.3115952103151.214.342365.17)(  sssss  

 

Table 2, Computation of the transfer function of the system model at  

different air velocities 
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The system model in figure 7.2 was simulated using the inner loop controllers found 

in equation 5.8. Figure 7.6a shows the inner loop time response for the system model 

with the compensator, for zero air flow velocity. The transfer functions for different 

velocities were computed in table 2. The inner loop responses were obtained for other 

air velocities at 5 , 10 , 15  and 20  (m/s) as well shown in figures 7.6b, 7.6c, 7.6d and 

7.6e using the transfer functions in table 2, in the simulation model in figure 5.2. The 

responses are acceptable enabling the outer loop controller to be determined. 
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Figure 7.6a, Inner loop responses for the system model at  (m/s) 

Figure 7.6b, Inner loop responses for the system model at  (m/s) 
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Figure 7.6c, Inner loop responses for the system model  

at  (m/s) 

Figure 7.6d, Inner loop responses for the system model 

 at  (m/s) 
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For the outer loop design, the steady-state matrix sS  was chosen in order to limit the 

steady-state output interaction to %10  and the outer loop feedback gains to  1.0 . 

The outer loop controller P  was obtained from equation 5.10 by applying the same 

procedure of previously. It is noticeable that the numerical values for this controller 

are high. In order to distribute these values for P , the gains were dispersed between 

the forward path gain P  and the feedback gain f . This follows as shown in figure 

5.5. 

The outer loop model in figure 5.4 was simulated for different velocities for 

 55.0f following a step change of unity on )(tf l  and then on )(tf t . Figure 7.7 

shows the outer loop responses following step change on the leading and trailing edge 

forces. Noticeably, from figure 7.7, the steady state values are almost  1  and  1.0 , 

as designed. As the velocity increases, the responses become more oscillatory with 

less overshoots. The responses have rise time less than  sec1.0  which compared to 

open loop responses, are faster. 
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Figure 7.6e, Inner loop responses for the system model 

 at  (m/s) 
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Finally, conventional pre and feedback compensator structure was achieved using 

simple transformation. The block diagram for  55.0f  and calculated values for 

the pre and feedback compensators )(sK  and )(sH  can be found in figure 5.6 and 

equations 5.13 and 5.14 respectively. As the numerical values for )(sK  are high, the 

same procedure was applied to distribute these gains. Equations 5.15 and 5.16 are the 

new values for  )(sK  and )(sH . The block diagram is shown in figure 5.7 after 

distributing the gains. 
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Figure 7.7a, Closed loop system responses following a step change on  

leading edge force when  m/s 

Figure 7.7b, Closed loop system responses following a step change on  

trailing edge force when  m/s 
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Figure 7.7c, Closed loop system responses following a step change on 

 leading edge force when  m/s 

Figure 7.7d, Closed loop system responses following a step change on  

trailing edge force when  m/s 
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Figure 7.7e, Closed loop system responses following a step change on 

 leading edge force when  m/s 

Figure 7.7f, Closed loop system responses following a step change on  

trailing edge force when  m/s 
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Figure 7.7h, Closed loop system responses following a step change on  

trailing edge force when  m/s 

Figure 7.7g, Closed loop system responses following a step change on 

 leading edge force when  m/s 
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Figure 7.7i, Closed loop system responses following a step change on 

 leading edge force when  m/s 

Figure 7.7j, Closed loop system responses following a step change on  

trailing edge force when  m/s 
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Chapter 8 

Disturbance Suppression Results 

“Disturbances coming from the environment often constitute an annoyance in the 

operation of dynamic systems. Disturbance rejection control (DRC), in which the 

controller is designed to suppress the disturbance’s effect, is the major concern in the 

design of feedback control systems. Since external disturbances are usually not 

accessible for measurement, in the early development of disturbance rejection 

control, high gain control is used to suppress the unknown disturbance.” (Jeang-Lin 

Chang, 2011  

The closed loop system time responses when 55.0f  following a step change of 

unity on disturbances )(1 t  and then )(2 t  for different velocities, setting references 

inputs to zero, are shown in figure 8.1. From figures 8.1a and 8.1b at least %55  

disturbance suppression is achieved when 0v  (m/s). As the velocity increases, the 

disturbance recovery increases slightly as well. For example, the disturbance 

suppression is %57  when 20v  (m/s) as it shows in figures 8.1i and 8.1j with 

quiescence being achieved in less than 1 sec. 
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Figure 8.1a, Closed loop system responses following  step change on   

when  m/s  
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Figure 8.1b, Closed loop system responses following  step change on  

when  m/s  

Figure 8.1c, Closed loop system responses following  step change on   

when  m/s  
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Figure 8.1e, Closed loop system responses following  step change on   

when  m/s  

Figure 8.1d, Closed loop system responses following  step change on  

when  m/s  
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Figure 8.1f, Closed loop system responses following  step change on  

when  m/s  

Figure 8.1g, Closed loop system responses following  step change on   

when  m/s  
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Figure 8.1h, Closed loop system responses following  step change on  

when  m/s  

Figure 8.1i, Closed loop system responses following  step change on   

when  m/s  
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In order to prove that the Least effort method dissipates the least energy, different 

gain ratios were chosen and simulated using the model shown in figure 4.4. Figure 

8.2 shows control energy dissipation for different gain ratios following random 

changes on disturbances )(1 t  and )(2 t , for  55.0f  with the reference inputs set 

to zero. It can be seen from these graphs that the energy required increases. The graph 

with the gain ratio of  3521.0n  gives least effort control, as predicted, with least 

energy requirements, compared to the other two gain ratios of  3.01 n  and 

 4.02 n . This energy dissipation difference is proportional to the area difference 

under these curves which is monotonically increasing with time. 
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Figure 8.1j, Closed loop system responses following  step change on  

when  m/s  
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Figure 8.2, Energy dissipation following random disturbances on  and  

 when gain ratio of ,  and  
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Chapter 9 

Nyquist Array Method Results 

For comparison purposes, Nyquist array method was also applied to the same wing 

arrangement. As mentioned in previous chapter, according to Gershgorin’s bands in 

figures 6.1 and 6.2, the system transfer function matrix was row diagonally 

dominance. To produce desired diagonal dominant conditions, pre-compensator 

)0(
1

oG  was added to the system. The proportional controllers k , 1k  and 2k  were 

designed as given by equation 6.3. 

The model in figure A.5 in the Appendix was simulated following a step input on 

leading edge force using MATLAB software. Figure 9.1 shows the transient response 

for this wing assembly at zero velocity using Nyquist array method. It is obvious that 

the system response requires much more time to settle and to reach steady state 

compared to the system response using the Least effort strategy in figure 7.7a. The 

complete decoupled system can be seen at steady state.  

 

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

2

2.5

Time (sec)

%
 C

h
a
n

g
e
 i

n
 D

e
fl

e
c
ti

o
n

 

 

q1

q2

Figure 5.10, Closed loop system responses following  step change on 

 leading edge force when  m/s  
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Additionally, following a unit step change on leading force when 20v m/s in 

simulation model, figure A.6 in The Appendix, results in the response shown in 

figure 9.2. Similar to the system response at zero velocity, the settling time is much 

more when 20v m/s compared to the response using the Least effort strategy in 

figure 7.7i. It is noticeable that the system is completely decoupled in steady state. 

 

 

The models in figures A.7 and A.8 in the Appendix were simulated following a step 

input on first and second disturbances using MATLAB software. From figures 9.3a, 

9.3b, 9.4a and 9.4b at least %10  disturbance suppression was achieved when 0v  

and 20  (m/s) which is poor.  
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Figure 9.2, Closed loop system responses following  step change on 

 leading edge force when  m/s  
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Figure 9.3b, Closed loop system responses at zero velocity following  step change 

on disturbance  

Figure 9.3a, Closed loop system responses at zero velocity following  step change 

on disturbance   



Sahar Sadat Tavalla                                                   ID 90082   97 
 

 

 

 

 

 

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

%
 C

h
a
n

g
e
 i

n
 D

e
fl

e
c
ti

o
n

 

 

q1

q2

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

%
 C

h
a
n

g
e
 i

n
 D

e
fl

e
c
ti

o
n

 

 

q1

q2

Figure 9.4a, Closed loop system responses following  step change on disturbance 

 when  m/s   

Figure 9.4b, Closed loop system responses following  step change on disturbance 

 when  m/s   
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Finally, control energy dissipation following random changes on disturbances )(1 t  

and )(2 t  was computed. Figure 9.5 shows that controllers using Nyquist array 

method consumes substantial energy whereas the Least effort controller is very 

frugal, almost occupying the zero energy dissipation level. 
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Figure 9.5, Energy dissipation following random disturbances on  and  

using Nyquist array method 



Sahar Sadat Tavalla                                                   ID 90082   99 
 

Chapter 10 

Comparison study 

Each technique for designing a multivariable controller has its own advantages, 

disadvantages and difficulties. There are four factors which are important: 

1. Difficulties of applying the techniques and its practicality 

2. Evaluating the closed loop response following a unit step change on each 

input independently 

3. Achieving acceptable disturbance rejection 

4. Using minimum energy to obtain 1, 2 and 3 

 

Designing a controller for the system transfer function in the Laplace domain is 

required for applying the Least effort control strategy. However, to be suitable for 

designing purposes, the transfer function numerator should be approximated. The 

reduced transfer function transient and steady state values must be approximately 

same as the original one. Thus, this method can be applied to complicated systems 

with multiple of inputs and outputs. 

On the other hand, the difficulty of the Nyquist array method lies in achieving 

diagonal dominance, to reduce the system output coupling, before applying the 

single-input single-output design techniques. There is no special technique for finding 

a pre-compensator which would induce this condition. Moreover, the question 

remaining is that there is the possibility of none or many pre-compensators which 

could be used to achieve this. 

According to each controller, closed loop responses following a unit step changes on 

first reference input are compared. From figures 7.7, 9.1 and 9.2, it is clearly seen that 

the Least effort control results in superiour transient response and steady state 
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performance compared to Nyquist array method. Moreover, the responses using the 

Least effort control strategy have desirable transients, in comparison to the ones 

obtained using the Nyquist array method. 

Furthermore, the closed loop responses following a unit step disturbance change, 

from the simulation models of figures A.7 and A.8 in the Appendix are compared 

according to each controller. As discussed earlier, from figures 8.1a and 8.1b at least 

%55  disturbance suppression is achieved when 0v  (m/s) using Least effort control 

strategy whereas from figure 9.3, the disturbance suppression is only %10  when 

0v  (m/s) using the Nyquist array method. Additionally, the disturbance 

suppression is %57  when 20v  (m/s) using the Least effort control as it shows in 

figures 8.1i and 8.1j whilst for the Nyquist array method is only %10  when 20v  

(m/s) as it shows in figure 9.4. Hence, it can be clearly seen that the Least effort 

controller results in much better recovery responses disturbances for deterministic 

disturbances on the outputs. 

Finally, the energy consumed by each controller is computed and compared 

according to equation 4.10. It can be clearly seen from figures 9.5 that the controller 

using Nyquist array method dissipates much more energy compared to the Least 

effort method as the range of the energy for the Nyquist array is proportional to 10
5
 

whereas for the Least effort, it is almost zero. This concludes that Least effort 

controller consumes the least control energy as pridicted. 
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Chapter 11 

Conclusion and Future Work 

In this paper, the analysis and design processes for an aircraft wing, flutter 

suppression at low-velocities, were presented. Measured data were used to construct 

the multiple input multiple output wing model from relating the wing deflections and 

applied forces, as given by Frazer et al. (1963). 

In the beginning, the open loop transfer function models for this wing assembly were 

simplified in order to apply the Least effort control strategy. This had virtually no 

effect on the predicted wing performance. The Least effort control method was 

applied to the simplified transfer function. The inner loop design was applied to the 

system by plotting the Root Locus, (figure 4.5), for the equation 4.12 using 

MATLAB. In figure 4.6, the controller generated zero given by )(sb  was selected to 

improve the dynamics of the closed loop system. However, the results for the 

uncompensated system were not satisfactory as the input force at the leading edge 

played the role of a disturbance at the inner loop reference input when  0f . This 

was unexpected because the responses, figure 7.5, show the poles of the system had 

been changed due to a high gain for the inner and outer loop controllers. 

Thus, a second order active filter network was employed as the compensator for this 

system. Following the applications of this compensator, Least effort control was 

applied to the system model. Dual of inner and outer loops were employed as 

required by the theory. The Least effort performance index was minimised by 

minimising the sum of the squared gain elements to find the appropriate gain ratio n  

for the inner loop controller.  



Sahar Sadat Tavalla                                                   ID 90082   102 
 

It is worth noting that, finding the appropriate gain ratio n  was essential to give 

minimum energy dissipation. As shown in figure 8.2, the energy required, for the 

selected gain ratio n , is much smaller in comparison to all other gain ratios. 

To maintain the desired steady state performance of the system whilst retaining 

energy consumption properties and the loop gains, the outer loop controller was 

computed. The outer loop gains were distributed between the forward path gain P  

and the feedback gain, as the gains were high. For implementation purposes, simple 

transformation techniques enabled the establishment of a conventional pre and 

feedback compensator structure. 

Consequently, the transient behaviour of the system, leading and trailing edge 

deflections, for various values of velocity were presented and discussed. The 

responses were no longer highly oscillatory. The rise time and settling time were 

improved significantly. The desired steady state performance was virtually achieved. 

The disturbance recovery of approximately 55% was obtained. The control of the 

flutter vibrational problem for this wing arrangement was successfully achieved. 

For comparison purposes, the Nyquist array method was also applied to the same 

wing arrangement. In order to apply single-input single-output control method, 

diagonal dominant conditions were achieved for this wing system model by using 

Gershgorin’s bands theorem with adding a series, open loop pre-compensator. 

Proportional controllers were designed and applied to the system model, as indicated 

by equation 6.3. Although the transient responses were oscillatory, but the system 

was completely decoupled at steady state, as predicted. 

Outer %10  disturbance suppression was achieved when 0v  and 20  (m/s) which 

was very poor for this system using the Nyquist array method compared to the Least 

effort control method. 
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Finally, the energy dissipation for both controllers using the Least effort control and 

Nyquist array method were computed and compared. The model configuration used 

for computing the energy consumption considered the components of )(1 su  and 

)(2 su  negative. Squaring and adding these factors gave the dissipation required. It 

was evident that the calculated optimum gain ratio for Least effort controller 

dissipated the least control energy. 

The Least effort control technique satisfied all the research objectives. There are 

many advantages when using this method. First, it is simpler and easier for 

implementation purposes. Second, the outer loop gains controls the disturbance 

recovery of the system. Third, the gains for this controller can be designed so that it 

will have the least energy consumption. Forth, it requires less electrical power and 

this leads to less wear, actuator activity, heat generation and noise. In order to apply 

this method, approximations may be essential to reduce the transfer function matrix 

numerator order. However, as demonstrated, remote zeros have little effect on the 

system response, giving excellent correspondence with the original dynamic 

descriptions. 

Future work may include applying alternative control strategies to this flexible wing 

arrangement for purpose of comparison. However, the high gains required arise from 

the wing stiffness characteristics which cannot be altered. 

Least effort control strategy is recommended for other system models. For higher 

dimensional 3 input - 3 output models, numerical minimisation methods would be 

appropriate. 

 

 


