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ABSTRACT 
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Chairperson of the Supervisory Committee: Dr. Saad Ali Amin 

A thesis presented on the classification of cancerous and normal tissue 

samples using microarray data. In treating cancer time is of the essence and 

early detection can dramatically increase the chances of survival. Imaging 

techniques, which are the prevalent method of detection and diagnosis, are 

only useful once the cancerous growth has become visible. 

Department of Informatics 

However, if techniques that detect cancerous processes at a genetic level are 

utilized then the cancerous tissues could be identified, and the disease 

diagnosed much earlier, thus giving a far better prognosis. 

Therefore, the aim of this thesis is to evaluate the performance of a variety of 

different classification methods with a particular dataset containing genetic 

samples of both normal and cancerous biopsies of the colon tissue.   

A classifier will be recommended which is able to learn the patterns within the 

microarray data that best determines the classification of the samples. 
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C H A P T E R  1 : I N T R O D U C T I O N  

Cancer is, without a doubt, a major cause of death throughout the World: whether in 

richer, more developed states, where early detection is common, or those lesser-

developed countries where such early warning systems are not routinely in place. 

According to the World Health Organization (WHO, 2009) cancer, “...accounted for 

7.4 million deaths (or around 13% of all deaths worldwide) in 2004.” WHO’s own 

data projects a dramatic increase in these figures in the next few years (WHO 2007:  

Figure 1).  

Figure 1: Projected Deaths for Selected Causes - 2030 
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The United Arab Emirates (U.A.E.) is no exception to this rule – statistical 

projections indicate that by the year 2030 more than 16% of deaths in the UAE will 

be due to cancer (Figure 2).  

 

Data from 2005 showed that of the 1200 deaths caused by cancer in the UAE that 

year, the large majority (1000) were under the age of seventy (WHO Global 

InfoBase).   

Cancer is a disease that affects not only affluent countries but is also prevalent in the 

developing world. According to WHO (2009, p. 1), “(A)bout 72% of all cancer 

deaths in 2007 occurred in low and middle-income countries.” Often these deaths 

occur in younger patients. Howard et al. (2008, p. 1), noted that, “80% of the world’s 

children live in middle- and low-income countries (MIC and LIC), where poverty, 

Figure 2: Main Causes of Death in the UAE - 2030 (WHO Global InfoBase). 
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lack of public health infrastructure...(under 5-year mortality rates), and low 

childhood cancer cure rates are pervasive.” 

This often indicates a lack of resources for effective detection and treatment. Such a 

situation is particularly worrying as, according to WHO (2009, p. 2), “(A)bout one-

third of the cancer burden could be decreased if cases were detected and treated 

early.” Early detection is paramount in the battle against cancer, and has been shown 

to dramatically reduce mortality rates from colon, rectal, breast and uterine cervix 

cancers in particular (ACS, 2008; Danaei et al., 2005). Thus, the need for a more 

efficient and accurate diagnostic system becomes apparent. 

Cancer itself is a generic term referring to a group of more than one hundred chronic 

diseases, which can affect any given part of the body. Cancerous cells differ from 

normal cells at the intra-cellular level. These abnormalities are clearly visible at this 

level, where cancerous tissues vary from normal tissue in a number of ways 

including texture, spatial arrangement, and colour, amongst other aspects (Xu et al., 

2003). 

With such reasons in mind, a number of image processing algorithms have been 

designed in order to create automatic classifiers that are able to differentiate between 

normal and cancerous tissues. Yuan et al. (2009) have suggested a skin lesion 

segmentation algorithm that utilises feature differences between cancerous and non-

cancerous regions for early diagnostic purposes. Skin cancer has also been closely 

studied by Tang (2009), who proposed the use of multi-direction gradient vector 

flow (GVF) for the segmentation of skin cancer images. Often CAD (Computer-

Aided Detection), or diagnosis techniques, are used as ‘second readers’ to aid 

radiologists’ diagnoses. Such techniques typically make use of the fact that there are 

visual differences between cancerous and non-cancerous tissues. Wei et al. (2009) 

proposed an image-retrieval based approach to CAD, where images similar to the 

one being examined are used to create a classifier, which yields a malignancy 
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measure for the tissue under examination. Yao et al. (2009) recommended a new 

technique to detect colon cancer polyps (these are pre-cursors to colon cancer 

growths) using CT Colonography, which utilizes concepts from geographic 

information systems. Additionally, Hafner et al. (2009) proposed a method of 

classification and assessment of colonic polyps using a colour wavelet cross 

occurrence matrix to extract texture features. Although many of these visual 

techniques are currently being used to research and refine improved methods for 

cancer detection and classification, most of the features used for classification only 

become visible once the cancer has started to develop: if the disease is detected at an 

early stage; the prognosis for the patient is, for obvious reasons, far better.  

One other method for classifying cancerous tissues occurs at a deeper level – at the 

level of changes in cellular expression – (i.e. in the form of genes). Genes are 

particles made of DNA (deoxyribonucleic acid). DNA contains protein-building 

instructions. It is these proteins that control the structure and function of every cell in 

the human body. Genes are found on chromosomes – most human cells contain two 

copies of each chromosome and therefore of each gene – one from each parent. If 

there are ‘errors’ in the DNA building these genes it can lead to abnormal cell 

growth and thus produce cancerous tissues. There are 100,000 genes that encode the 

human genome, which are, in turn, expressed as proteins in a two-step process.  

DNA sequences are first transcribed into mRNA sequences within cells and then 

translated into amino acid sequences, which are used to build proteins that perform a 

number of different cellular functions. Different cell types express different subsets 

of genes and this ensures proper cell function. Normal cells can change into 

cancerous cells through gene mutation. The analysis of gene expression data can 

help identify a classification or diagnosis platform for different cancers. Such 

analyses can also improve our understanding of the response of cell tissues to certain 

drugs. In the last 2-3 decades, vast amounts of biological data have been collected 
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about the human genome and its functionality. This extremely large collection of 

data has necessitated careful storage, sequencing and indexing methods (see 

Appendix One (1) for details of some public domain databases). 

As early as 1999, it was discovered that oligonucleotide arrays could be used to 

gather a snapshot of a cell’s current state by monitoring the gene expression levels of 

thousands of genes at any given time. Research was also conducted into how to 

extract meaningful information from these large collections of data. One of the most 

useful methods discovered was the clustering of genes according to similarity in 

their temporal expression. This method identified functionally related groups of 

genes, which helped to reduce the high dimensionality of the gene array dataset 

(Alon et al., 1999). This study also noted the importance of developing, “the ability 

to process and extract useful information from large gene expression data sets.” 

There have also been a number of different approaches towards creating an 

automatic classifier for the early detection of cancer. This paper will utilise a public 

dataset looking exclusively at colon cancer.  

Researchers have also looked at using statistical techniques to predict the risk posed 

to any given individual (Whiteman et al., 2005). This approach is unfortunately of 

limited value when looking at colorectal cancer because, “75% of cases occur in 

people without these risk factors.” (ACS, 2009, p. 4) This particular cancer is the 

third most commonly diagnosed cancer, and is also the, “third leading cause of 

cancer death in both men and women in the US.” (ACS, 2008, p. 3) 

Colon cancer, if detected at an early stage, can be treated with comparatively high 

rates of success (the five-year survival rate for patients is 90%). However, to date 

only 40% of patients are diagnosed at a suitably early, or preliminary, stage. Of the 

49,920 people expected to die of colorectal cancers in 2009, approximately half 

could be prevented by early screening processes. (ACS, 2009) Colorectal cancer is 

one of the few cancers that can also be prevented through screening because 
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precancerous polyps, from which colon cancers often develop, can be identified and 

removed.  

As such, this paper will review some of the most important approaches and evaluate 

the more pertinent techniques required to build a suitable classifier for colon cancer. 

Therefore, the aim of this study will be to analyse the aforementioned dataset, and 

then create a classifier based on that data. The comparative accuracy for each type of 

classification method will be measured and evaluated before the most suitable 

classifier is recommended.  

This study is being carried out in the field of BioInformatics, and will involve the 

use of Data Mining techniques including Exploratory Data Analysis and Predictive 

Classification. The original dataset consists of gene samples of patients who have 

colon cancer and those who do not. This particular dataset contains expression levels 

for 2000 genes taken over 62 different samples (1.9 MB data, 529 KB names, 207 

bytes labels). The samples indicate whether they were taken from tumour biopsies 

i.e. they carry metadata. The first task (as above) was to perform exploratory data 

analysis on the dataset. As new genomic data is not easily, or freely, obtained, the 

same dataset is often used by a number of different researchers: this particular 

dataset has been explored in previous studies. 

In order to do so, this research will utilise Exploratory Data Analysis (EDA) 

including data visualisation. For data that has greater dimensions than three this 

becomes difficult and so the dimensions must first be decreased using projection 

methods. One of the most common methods to use for visualisation is the scatter 

plot, and as this dataset has high dimensionality, a projection technique will be used 

– Principal Component Analysis (PCA). The dataset will be converted to different 

formats in order to facilitate exploration using various software packages, such as 

Matlab and WEKA, for the initial exploration. These software packages are readily 

available, making any further research and verification of results easily replicable. 
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Once this step has been completed, the next stage will be to build a model that will 

learn from the dataset and can use this knowledge to predict values – predictive 

modelling, where the concept is to build a classifier which can correctly predict 

labels for sample data. In classification the predicted variable is categorical, whilst in 

regression it is quantitative. A number of different classification algorithms will be 

used, including, amongst others, the Nearest Neighbour Method, the Naive Bayes 

Model and Logical Discriminant Analysis. Once this has been completed, the 

performance of the various classifiers, and the results they yield, can be usefully 

compared and analysed.  

This thesis is structured so that Chapter 2 contains a review of the salient literature 

(Literature Review), whilst Chapter 3 focuses on the methodology adopted. The 

Data Analysis and Classification techniques are featured in Chapter 4, while the 

results, and a discussion of the implications arising from these results, are contained 

in the 5th Chapter, followed by a conclusion (Chapter 6). 
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C H A P T E R  2 :  L I T E R A T U R E  R E V I E W  

2.1 MICROARRAYS 

Cancer is a widespread disease affecting a large number of disparate people. As 

such, there is an urgent need to understand the underlying mechanism and 

characteristics of this potentially virulent disease in order to more efficiently detect 

(at as early a stage as possible) and treat this ubiquitous affliction. Most previous 

diagnostic methodologies have relied on human interpretation of imaging data in 

order to study areas of diseased tissue. These images are, more often than not, 

obtained by using personally invasive methods and, perhaps more significantly; 

before such cancerous growths manifest themselves in an easily observable way, the 

cancer will often have been present for a considerable length of time. Yet, this is still 

often the primary method available to, and therefore used by, most doctors when 

diagnosing any form of cancer.   

 

However, over the past few years research into cancer genetics has indicted a link 

between some forms of cancer and specific ‘marker’ genes (Memo to the Media, 

2009: Ferracin et al., 2008; Polakis et al., 2007; Chung et al., 2007; De Soto et al., 

2006). These observations have led to the establishment of genetics clinics, such as 

those set up by the National Health Service in the U.K., the European Directory of 

DNA Diagnostic Laboratories and the clinics listed in the databank of the National 

Centre for Biotechnology Information in the US. The National Cancer Institute in 

the United States has also dedicated an entire section of its website to cancer 

genetics. 

 

Winawer (2007), would remind us that colorectal cancer is a global disease with a 

steadily increasing number of cases reported every year – probably due to an ever 

increasing global population and a lack of effective screening facilities. This is also 
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echoed by (Malikzadeh et al., 2009), in their study of colorectal cancer incidence in 

Iran. They reported an accelerated growth rate for colon cancer in Iran’s 

comparatively young population, and that the incidence was usually observed in 

close relatives of other colon cancer patients – clearly indicating a genetic link. One 

method for decreasing the incidence of death in colorectal cancer patients would be 

to devise screening technology that is, as proposed by Rennert (2009, p.1), “as 

simple as possible, easy to perform, cheap, and, most importantly, acceptable to the 

population, that is, noninvasive and with an overall balance of more benefit than 

harm.”

 

   

Recently a new technique for diagnosing colorectal cancer has been introduced 

(Rennert 2009b, p. 1), which uses genetic biomarkers to identify patients. The same 

paper states that: 

 

          Genetic diagnosis of colorectal cancers and meaningful adenomas has 

          now reached a new phase that, when further fine-tuned, may carry the    

          promise of becoming a suitable and affordable means of prevention and 

          early detection of

 

colorectal cancer in the general population. 

The concept of using microarrays to detect genetic data, that can help to predict the 

probability of cancer, holds out the hope of many potential breakthroughs in the fight 

against this major disease. DNA microarrays are, according to (Eisen et al., 1999, p. 

1), “valuable tools in areas of research that require the identification or 

(quantification) of many specific DNA sequences in complex nucleic acid samples.” 

These arrays have been used extensively in the last few years in a wide range of 

studies including mutational analysis (Salvado et al., 2007; Giordano et al., 2005), 

genetic mapping (Drost et al., 2009; Altshuler et al., 2008

 

), and genome wide 

monitoring of gene expression (Takata et al., 2005; Tamura et al., 2007).  
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Since the publication of the aforementioned work technical advances have made 

possible the generation of arrays with high densities of DNA, which means 

thousands of genes can now be represented in minute areas. This in turn means more 

data can be captured and analysed in order to give a clearer understanding of cellular 

activity and to assist in diagnosing and preparing a better classification system for 

the various forms of cancer (Lora et al., 2007; Goldstraw et al., 2007). 

2.2 QUALITY OF COLON CANCER MICROARRAY DATASET 

Although much of the process for creating microarrays is fully automated, there is 

still scope for error – e.g. some dots have ‘comet tails’, arrays where individual dots 

appear as ‘donut holes,’ or abnormally high fluorescent backgrounds. The various 

steps involved in creating these microarrays unfortunately leaves room for error, in 

which case the quality of the data may well be compromised to an extent. Indeed, 

(Brazma et al., 2000, p. 18)  remind us that, “(I)n any physical experiment it is 

important to know not only the value of the measurement, but also the standard error 

or some other indicator of reliability for each data point.” Spots are typically based 

on EST sequences; and linking the EST sequence to a particular gene is not a simple 

process. (see Appendix 1: EST Sequence Definition) 

 

Wang et al. (2001) described how microarray data often carries noise and other 

irregularities. They mentioned five of the most common problems, including: spot 

size (likely due to isolated noise); signal-to-noise ratio (which quantifies how well 

one can resolve a true signal from system noise); local background variability; 

excessive high local background and saturation in photo intensity detection. The 

same study went on to mention that there were many steps leading to the creation of 

a microarray and each step had scope for error. These errors affect the quality of the 

final image produced and will then cause variations in the intensity readings on 
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which most data analysis will be based. For these reasons, their report noted that it 

was very important that every spot be measured qualitatively on the microarray slide. 

A standardized quality control measure should therefore be adopted so that reliable 

data can be generated for the purposes of data mining and to ensure that data can be 

shared with confidence across laboratories, even worldwide. At the moment the 

colon cancer dataset which is being studied has not been benchmarked. 

2.3 DIMENSION REDUCTION 

Pochet, et al. (2004) conducted experiments on microarray data using Least Squares 

SVMs with linear kernels and RBF kernels. They noted that for both methods 

dimensionality reduction (using PCA or other methods) is necessary to avoid over 

fitting of the data by the classifiers.   

 

One useful method for dimension reduction is that of clustering. Eisen et al. (1998, 

p. 14863) note that a, “natural basis for organizing gene expression data is to group 

together genes with similar patterns of expression.” Of course, this necessitates a 

mathematical measure of similarity being established, that will help to cluster genes 

(this is often the Euclidean distance, or the dot product between two gene vectors).  

 

Clustering can be divided into two categories: supervised and unsupervised. In the 

former, vectors are classified using known reference vectors, whilst in the latter no 

predefined reference points are used. Supervised clustering methods include 

neighbourhood analysis, maximum entropy models, SAM (significance analysis of 

microarrays) and other ranking-based methods (Tang et al., 2002). One of the 

disadvantages of using supervised methods for clustering, or indeed for any form of 

data-mining, is the fact that they are limited to hypothesis testing and cannot reveal 

the, ‘unexpected, (they can) never lead to new hypotheses’ (Domany 2003, p.1124). 
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Also, if there are samples that have been misclassified before they are used for 

training purposes, then the supervised method will not be able to discover this 

anomaly. For this reason, this study will employ unsupervised clustering methods. 

 

There are a number of different clustering methods including Average Linkage 

(Sorlie, et al., 2001), K-means and Self-Organising Maps (SOM) and Coupled Two 

Way Clustering (CTWC), as used by Alon, et al., (1999), for clustering the colon 

cancer dataset used in this study. Au et al. (2005) introduced the k-modes Attribute 

Clustering Algorithm and further research (Alon et al., 1999; Au et al., 2005) noted 

that Clustering can be a tool for reducing the dimensionality of a data-mining 

algorithm. Bi-clustering algorithms other than CTWC are also outlined by Madeira, 

et al., in a 2004 survey. 

 

One of the better known types of clustering algorithms is ‘hierarchical clustering,’ 

(Perou, et al., 2000; Lonning et al., 2001) the object of which is to create a 

dendrogram which illustrates the different clusters in a given dataset. This algorithm 

has been coded by a number of researchers including those mentioned by (Eisen et 

al., 1998 p. 3). They also noted that there is a, “strong tendency for (genes in the 

same cluster) to share common roles in cellular processes.”   

 

This study will make use of the well-documented hierarchical clustering methods as 

a visualisation tool and will also investigate the Fuzzy Clustering Toolbox (Abonyi 

et al., 2004) to determine the optimal number of clusters for this dataset. The 

methods available in this toolbox have not been used on this particular dataset prior 

to this study.  These methods have been chosen because they are readily available 

and thus easily replicable, without great expense or highly specific expertise being 

required.  
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Projection methods such as Principal Components Analysis (PCA) can also be used 

to reduce the dimensionality of the dataset. However, this has the disadvantage in 

that none of the original features can be eliminated. At the same time it is a standard 

method often used in Data Mining to reduce dataset dimensionality. Other methods 

use the concept of pruning redundant features – e.g. SVM-RFE: Support Vector 

Machines – Recursive Feature Elimination (Guyon, et al., 2002; Shen, et al., 2005; 

Hernandez, et al., 2008 and others). The SVM –RFE method was applied by 

Mundra, et al. (2007) with the addition of an extra criterion to the existing weight 

criteria integrated into their method. Additionally, this has been modified by Yousef, 

et al., (2007) to become SVM-RCE (Recursive Cluster Elimination), which has 

comparably accurate results, but is reported to be computationally more expensive.  

 

Other schemes that can be, and have been, used for attribute extraction and 

dimension reduction include Linear Discriminant Analysis (LDA) and Uncorrelated 

Discriminant Analysis (ULDA) as proposed by Ye, et al., (2004). LDA has also been 

further developed by Yue, et al., (2007), where they proposed a variation called 

Null-Space LDA. Bayesian variable selection is mentioned by Yoo, et al. (2004), as 

is singular value decomposition and PCA as possible methods for dimension 

reduction. An SVM and GA (Genetic Algorithm) hybrid was proposed by Xiong, et 

al. (2006), and Li, et al. (2008) amongst others, whilst Nguyen, et al., (2006) 

proposed the use of Random Forests to select features before classification.  

 

Genetic Algorithms were used with fuzzy clustering by Mukhopadhyay, et al. (2009) 

and on their own for feature selection. (Chandana, et al., 2009) Mukkamala, et al. 

(2006) experimented with the use of Regression Splines (MARS), Classification and 

Regression Trees (CART) and Linear Genetic Programs (LGP). Genetic 

Programming has also been used by other researchers, (Almal, et al., 2006; 

Hernandez, et al., 2007) for feature selection. Then there is Mutual Information 

Rough Set Theory, which is another method of variable selection proposed by Zhou, 
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et al. (2006). Tandem use of the T-test method and Kernel Partial Least Squares 

(KPLS), (Li, et al., 2006) also yield promising results for gene extraction.  

 

Peng, et al. (2006) proposed the use of bootstrapping to select genes iteratively. 

Boosting (one example of which is the AdaBoost algorithm) was also developed to 

include a level of consistency (Pang, et al., 2007; Lausser, et al., 2008). Kernel 

methods including Kernel Fisher Discriminant Analysis (KFDA) and Kernel Partial 

Least Squares (KPLS) were evaluated by Li, et al. (2007), who noted that both these 

methods reached a high level of classification accuracy on the colon cancer dataset. 

 

Of the various classification systems mentioned thus far, Lee, et al., (2007, p.180) 

classifies these as either linear or non-linear and found that the non-linear methods, 

“outperformed the corresponding linear methods”. This choice of method also has an 

impact upon the particular classification model that is used. For instance, Lee (2007, 

p.180) found that classification accuracy for SVMs and C4.5 Decision Trees were, 

“consistently higher when using features obtained by nonlinear (Dimension 

Reduction) methods compared to linear methods.” The non-linear methods used 

were, Graph Embedding, Isometric Mapping and Locally Linear Embedding, whilst 

the linear methods were, PCA, LDA and Classical Multidimensional Scaling. 

 

Deegalla, et al. (2007, p. 801) also noted that, “the classification accuracy of kNN 

often decreases with an increase in dimensionality.” For such classification 

algorithms dimension reduction is imperative. These researchers added Random 

Projection and Information Gain to the methods they compared and discovered that 

there was no one ideal method for the eight datasets they examined. However, they 

noted that for a binary class problem (such as the one being considered in this study) 

Partial Least Squares seemed to perform well. This same method has also been 

extensively used by Zeng, et al. (2007).   
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Chang, et al., (2007) proposed a Heuristic Branch-and-Bound Depth First Search. 

Another approach (Chen, et al., 2007) is to add noise to the data. The assumption, in 

this case, being that irrelevant features will have little influence on classification 

performance whilst this performance will be influenced if important features are 

perturbed. This method, unlike SVM-RFE, can be used with any algorithm. 

However, it is computationally more expensive 

 

2.3 CHOSEN METHODS FOR DIMENSIONALITY REDUCTION 

 

Although there are many and variable methods that could be used for the purposes of 

dimensionality reduction, it was decided, in order to fit the scope of the current 

study, that PCA would be utilised, as this is a standard method used for dimension 

reduction in data mining. In order to be able to contrast results a second method for 

dimensionality reduction was also trialed. There were several suitable choices 

available for attribute selection via the WEKA software package: this has been more 

fully explored in Chapter 3 (below). 

2.4 BUILDING CLASSIFICATION MODELS  

The next part of the process of building a classifier involves choosing, from amongst 

a variety of options, a suitable classification algorithm. Possible algorithms abound 

with perhaps the following being the most important of these: 

 

Artificial Neural Network Based Classifiers (ANN) (Piatetsky-Shapiro et al., 2003; 

Alladi et al., 2008) and Support Vector Machines (SVM) (Mukhopadhyay et al., 

2009; Zeng et al., 2007) are popular methods for microarray classification.  
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Decision Trees (DT) are one of the methods used by Wang et al. (2009), whilst 

Winkler, et al. (2009) and Chandana, et al. (2009) have used kNN (k-Nearest 

Neighbours) classifiers in addition to some of the aforementioned methods. k-NNs 

has also been used by an number of other researchers including Xu, et al. (2007); Li 

et al. (2006); and Rao, et al. (2003). For the colon cancer dataset this study reported 

that a single Nearest Neighbours (NN) classifier performed better than an ensemble. 

 

Donoho, et al. (2008) in their examination of various feature selection methods also 

used ‘Bagboost’ and ‘LogitBoost’ for classification. Another similar method used 

for microarray classification is ‘AdaBoost,’ with variations such as ‘MadaBoost’ and 

‘AdaBoost-VC’ (Lausser, et al., 2008) also available. Random Forests is a popular 

variation of decision trees and is in fact an ensemble of such trees (Nguyen et al., 

2006). 

 

Prediction Analysis for Microarrays (PAM) (Sorlie, et al., 2003) and Linear 

Discriminant Analysis (LDA) were explored by Meleth, et al. (2007). SAM 

(Significance Analysis of Microarrays) was previously used to analyse microarray 

datasets by Sorlie, et al. in 2001. In addition, Mukkamala, et al. (2006) utilised a 

number of classification methods including Regression Splines (MARS) and 

Classification and Regression Trees (CART). Plus, Self Organising Maps (SOM) 

were used by Tang, et al., in 2002 and Genetic Algorithms (GA) were used for 

classification by Winkler et al. (2009) and Almal et al. (2006). 

 

Combinations of classification methods have also been investigated (Shen et al., 

2005; Peng et al., 2005). The former reported that Partial Least Squares (PLS), 

Penalized Logistic Regression (PLR) and Singular Value Decomposition (SVD) can 

be combined to improve both training speed and classification accuracy. In a similar 

vein (Blanco et al., 2007) experimented with classifier combinations including 

Bagging with SVM, k-NN and DLDA (Diagonal Linear Discriminant Analysis). 
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Chen, et al. (2007) also proposed a classifier fusion model consisting of a 

combination of SVM classifiers using a fuzzy logic system assisted by genetic 

algorithms. Additionally, Ensemble Classifiers were employed by Zhao, et al. 

(2007), using an Estimation Distribution Algorithm (EDA). And, a similar method 

was used by Hernandez et al. (2007) and Nguyen et al. (2006) respectively where an 

SVM classifier was combined with Genetic Algorithms. Eduardo, et al. (2005, p. 63) 

combined five classifiers (k-NN, k-Means, SOM, PCA, Parzen Window) and noted 

that generally, “a combined approach improves the robustness of the overall 

(classification) decision.”  

 

Nguyen, et al. (2005), used kernel functions with SVM. They experimented with 

radial, neural and inverse multi-quadric kernel functions as well as a combination of 

all three. For the colon cancer dataset they found the best classification results were 

obtained with the combined kernel functions and SVM. 

 

Marchiori, et al. (2005), used RFE-SVMs with an ensemble of classifiers in Optimal 

Bayes and as attributes in Naive Bayes and reported that this combination of 

techniques led to a more robust classification scheme. Also, Ben-Dor, et al. (2000), 

compared the performance of NN, Clustering, SVM and Boosting, finding that 

SVM, Boosting and NN performed well on the colon cancer dataset. 

 

A comparative study by Hong, et al., in 2006 looked at various classifiers including 

C4.5, Random Forests, Adaboost C4.5, Bagging and LibSVMs. According to this 

study, the last three methods gave the best classification results for the colon cancer 

dataset.  

 

Naive Bayes (NB) is another well-known data-mining algorithm, used by a number 

of researchers over the years including Ruiz et al., in 2006, Au et al. (2005), and Li, 

et al. (2003), for classification. Shen, et al. (2005), also proposed two new algorithms 
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– Kernel Partial Least Squares – Minimum Squared Error (KPLS-MSE) and Kernel 

Singular Value Decomposition – Minimum Squared Error (KSVD-MSE) – both 

methods are comparable in performance but do not always outperform SVMs; 

however they do have the advantage of having shorter training times. Radial Basis 

Functions were also proposed by Wang, et al. (2005) to contrast non-linear (k-NN 

and Gaussian SVM) and linear classification (Diagonal Linear Discriminant and 

Linear-SVM).  

 

2.5 CHOSEN METHODS FOR CLASSIFICATION 

 

The classic approach to classification is to use a linear hyperplane to define class 

boundaries. More complex methods allow higher order polynomial functions 

yielding polynomial decision boundaries. Flexible non-linear boundaries can be 

found using classifiers based on neural networks – piece wise linear boundaries are 

also possible and one example of such an algorithm is Nearest Neighbors. 

 

When building classifiers three basic approaches are possible (Hand et al., 2001): 

 

1. Discriminative Approach: the decision boundary is modeled directly without 

any calculations of posterior class probability. Examples are  Perceptrons and 

Support Vector Machines. 

 

2. Regression Approach: where posterior class probabilities are modeled. The 

most common technique used in this category is logistic regression. 

 

3. Class-conditional Approach: The class-conditional distributions are modelled 

along with estimates of class probability for a given point. Examples of this 

type of classifier are ‘Bayesian’ classifiers. 
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Both the discriminative and regression approaches focus on the differences between 

classes whereas the class-conditional approach focuses on the distribution of the 

input data vector for the classes. As noted by Hand et al. (2001), in datasets with 

high dimensional spaces the class-conditional approach may be difficult as with such 

cases it is difficult to estimate functions. The same paper proposed that in high 

dimension classification problems discriminative approaches may be better. It is also 

worth noting that methods based on the discriminative approach need to fit the least 

parameters, the regression requires more parameter fitting and the class-conditional 

approach requires the most. 

 

Therefore, it was decided that the best methodological approach was to make use of 

a number of different methods in combination. Highly prevalent and relevant 

methods include: Bayesian methods, Tree models, Linear Regression, Nearest 

Neighbour algorithms and Neural Nets. Therefore, these broad methods will be 

utilized in combination.   
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C H A P T E R  3 :  M E T H O D O L O G Y   

3.1 JUSTIFICATION 

There are several public datasets available for analysis and this study will utilise one 

such dataset <http://microarray.princeton.edu/oncology/> in order to help build a 

classifier to detect accurately the onset of cancer using genetic information. 

 

There are various types of microarrays, each of which uses different technological 

techniques to measure RNA expression levels (Piatetsky-Shapiro et al., 2003). The 

dataset in this study uses Affymetrix microarrays, which contain short 

oligonucleotide arrays. 

 

The raw microarray data is an image where the brightness of 

the dots in the matrix represents the intensity of gene expression. This is often 

translated into a numerical value before analysis takes place. The dataset used in this 

study has already been translated and will be used in its current form.  

3.2 QUALITY OF COLON CANCER MICROARRAY DATASET   

 

It should be stated from the outset that the actual quality of the colon cancer 

microarray dataset is unknown and (as above) there is always room for human, and/ 

or machine, error in the creation of these arrays. There were originally 

approximately 6000 genes represented in the array, of these, “2000 genes were 

selected ‘based on the confidence in the measured expression levels’” (Ben-Dor et 

al., 2000, p. 12). In fact, Ben-Dor et al. (2000, p. 20) note that;  

 

          Cancer classification based on array-based gene expression profiling 

          may be complicated by the fact that clinical samples, e.g tumor vs. 

          normal, will likely contain a mixture of different cell types. In addition, 

          the genomic instability inherent in tumor samples may lead to random 

http://microarray.princeton.edu/oncology/�
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          fluctuations in gene expression patterns.   

 

Earlier (Alan et al., 1999) also noted that the normal colon biopsy also included 

smooth muscle tissues from the colon walls. For this reason, smooth muscle related 

genes exhibited high expression levels in the normal samples.   

 

The contamination of the dataset with muscle specific genes and the fact that tumors 

exhibit higher metabolic rates may affect classification performance. Ben-Dor et al. 

(2000), took these factors into account and noted that they only affect the results in 

cases where very small sets of genes were examined, highlighting the fact that with 

an error score threshold of 10 (genes) or higher, there was no significant change in 

performance. It is, therefore, clear from previous research in microarray analysis that 

some form of pre-processing will be necessary. Different software packages may 

require different formats to facilitate correct data input. 

 

3.3 PRE-PROCESSING 

 

One of the challenges posed by genetic data analysis is the small number of samples 

(rows) compared to the very large number of columns (genes). This usually leads to 

‘false positives’ – i.e. gene combinations which correlate with a target variable by 

chance and, as noted by 

 

Piatetsky-Shapiro et al. (2003), this is more of a problem for 

learning algorithms, such as neural networks and decision trees, which typically try 

and find complex non-linear combinations of features in order to build classifiers. 

One way of dealing with this situation is feature reduction, which transforms the raw 

data into a form that is suitable for analysis. These data preparation techniques 

include thresholding, which is used to filter out noisy data and affymetrix devices 

that measure expression levels indirectly.  
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Then there is the n

 

ormalization procedure, where classification algorithms are able 

to use the gene expression measurements just as they are. However, clustering 

algorithms would require this additional step, so that, in this case, data would then be 

normalized to mean zero and have a standard deviation of one across all genes. 

There is also filtering, where some genes may not be expressed at all, in which case 

they can be omitted from our analysis. Typically, genes that have low variation 

across samples are omitted. 

Once the data has been prepared, the next step is the feature selection process which 

reduces the dimensionality of the dataset. This was originally a concept in data-

mining that was used to model the physical properties of an inhomogeneous 

ferromagnet (Blatt et al., 1997).   

 

Some form of normalization may benefit the performance of the classifiers. In this 

study filtering, attribute selection methods, normalization and PCA will all be 

employed in different combinations to yield datasets that will then be used with 

various classification methods. 

 

3.4 SOFTWARE PACKAGES 

 

There are, of course, many possible methods and approaches that could have been 

utilized before the methodology chosen was finally settled upon. Such, useful, but 

discarded resources have been placed in Appendix 3: Part B. An initial, but 

ultimately only superficial analysis was begun and these results have been recorded 

in the aforementioned appendix. Therefore, this study will use Matlab with the 

intention of building the desired  classifiers. MatLab Version 7.2.0.232 – R2006a 

was the version chosen for this study. Apart from the Matlab software, the WEKA 

package has also been used. It has been selected mainly due to the following 

features: 
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1. It contains modules that implement a number of data mining algorithms; 

including, most notably, decision trees; K Nearest Neighbours and Naïve 

Bayes among others. 

 

2. WEKA supports meta-learning schemes that are often used in Bio 

Informatics such as Bagging and Adaboost. 

 

3. WEKA contains data pre-processing support modules: including those which 

allow for the replacement of missing attributes, discretisation of numeric 

values, and the removal of attributes with only one distinct value. 

 

The WEKA package also integrates data visualization, data preparation, feature 

selection and data mining algorithms, all of which make it an attractive package to 

explore within the scope of this study. Additionally, unlike Matlab, which requires a 

user’s license, WEKA is open source software and therefore more easily obtained, 

thus, making any replication of such a study easy and affordable. 

Data Cleaning was also used in order to ignore missing values (Han & Kamber, 

2000). Also Noisy Data (random variance in dataset) can be removed using 

‘binning’ (a technique used in Weka) and clustering. When clustering is used in this 

way the outliers are considered as noise. In the Matlab function, one step was to 

remove genes whose variability was low.   

 

One of the techniques used for Data Transformation is Normalization. The colon 

cancer dataset was used in both its original form and the normalized version. 

Dimension Reduction will form a large part of the pre-processing phase due to the 

large dimensions (2000 attributes) of the dataset. Some of the better-known 
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techniques for this purpose include Principal Components Analysis (PCA), Linear 

Discriminant Analysis and Multidimensional Scaling.  PCA will be used in this 

study as it is a standard methodology. 

 

Cluster Analysis does not need class labels to analyze objects. Often clustering is 

carried out without class labels which are not known a priori. It can therefore be used 

to facilitate a taxonomy formation – the organization of objects in hierarchical 

classes in order to group similar events. Clustering has previously been used in 

microarray cancer studies to distinguish sub-classes of tumour (Sorlie et al., 2001). 

 

3.5 CLASSIFICATION METHODS 

 

Data Mining as defined by (Han & Kamber, 2000, p. 24) encompasses the task of 

classification: a “process of finding a set of...functions that describe...data classes...to 

use the model to predict the class of objects whose class label is unknown.” The 

derived model is created using a set of training data whose class labels are known 

and is presented using classification rules, decision trees or neural networks. Often, 

as suggested above, classification is preceded by relevance analysis, where those 

attributes that do not contribute to the classification process are excluded. 

 

There are a vast number of classification methods extant. However, the purpose of 

this study is not an exhaustive analysis of all possible classification methods – such 

an undertaking is well beyond the scope of this study. Instead, the aim will be to 

explore, in as much detail as possible, a subset of the most prominent and popular  

classification methods available.   
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3.6 CLASSIFICATION TECHNIQUES 

 

Eighteen different methods from the four main categories (i.e. Trees, Bayes, 

Functions and Meta learning) were chosen (see Appendix 3: Part A). Mitchell 

(1997), mentions that a well-defined learning problem should have three features: 

the class of tasks, the measure of performance to be improved and the source of that 

experience. For the classifiers that this study is seeking to build, the task will is to 

accurately classify samples of colorectal tissue data as to whether they are being 

cancerous or not.   

 

3.7 DESCRIPTION OF DATA 

The colon cancer dataset consists of the expression levels for 2000 genes taken over 

62 different samples.  Of these samples 22 are taken from normal colon tissue while 

40 samples are taken from cancerous tissue.   

3.8 CROSS-VALIDATION 

 

Since the number of samples is comparatively small, the measure of performance 

used will be cross validation. The number of folds will be set to 10 since for Witten 

et al. (2005, p.150), “(E)xtensive tests on numerous datasets, with different learning 

techniques, have shown that 10 is about the right number of folds to get the best 

estimate of error.” The source of experience is the 62 available samples, divided into 

both testing and training sets. 

 

3.9 CONFUSION MATRICES 

 

To measure the accuracy of the classifiers’ performance, confusion matrices were 

also recorded. Evaluation by classification accuracy assumes equal error costs, but in 
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most cases and especially in the domain of medical diagnosis there is a far greater 

cost attached to, for instance, a false negative result where the patient may lose 

treatment time because he/ she has been misdiagnosed as not suffering from a certain  

disease. In this case, a potentially fatal cancer. A two-class prediction, such as the 

one looked at in this study, (positive = bengin, negative = cancer) has four possible 

outcomes as shown in the table below: 

 

Predicted Class 

 Positive Negative 

Actual Class Positive TP FN 

Negative FP TN 

 

Table 1:  Confusion Matrix 
 

Where TP = True Positive, TN = True Negative, FP = False Positive, FN =False 

Negative.   

 

In the case of the FP, which is also an incorrect result, the patient would face 

emotional distress when in fact they would have had no reason to worry. A problem 

easily solved by a second opinion/ test. The FN number is the figure that the 

classification algorithm should be concerned with minimizing, as far as is possible. 

Therefore, if a classifier exhibits a very high classification performance but an 

examination of the relevant confusion matrix shows a high number of FN, then that 

classifier is not accurate and not suitable for diagnostic purposes. 
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C H A P T E R  4 :  D A T A  A N A L Y S I S  

 

INPUT AND VISUALISATION  

 

The first step was to read the data into MatLab (see Appendix 2: Data Preparation).  

The M-file output includes a 2-dimensional graphic representation of the array 

variable Num (Figure 3). 
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Figure 3: Gene Expression Versus Genes 
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Figure 3 represents each attribute with a different color – there is no reflection of 

interdependence of attributes. However, it shows that some gene intensities are far 

greater numerically than others. To deal with this problem a logarithmic graph of 

gene expression intensity versus genes was also plotted – Figure 4. 

 

 

 

 

Figure 4 seems to indicate a decrease in gene expression value throughout the 

dataset. It would seem that the genes are perhaps ordered in the dataset. However, 

there is no information available to indicate this or allow for a more informed 

guess. 

 

To check if there is correlation, the Correlation Coefficients (‘corrcoef’) function 

was run. The Correlation coefficient (also called Pearson’s product moment 

coefficient) is calculated using the following formula: 

Figure 4: Log of Gene Expression Levels Versus Genes 
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Where: n is the number of records  

  ,   are the means of A and B 

σA and σB are the standard deviations of A and B 

Σ(AB) is the sum of AB cross-product. 

 

N.B.: 

• If rA,B > 0, A and B are positively correlated (A’s values increase as B’s 

increases). The higher the value: the stronger correlation. 

• rA,B = 0: independent 

• rA,B < 0: negatively correlated     

      (Han J, 2009, slide 40) 

 

Once the correlation coefficient matrix has been calculated the correlation 

coefficient values can be plotted against the attribute number (see Figure 5), where 

both axes represent the genes and the color represents the value of the correlation 

coefficients. 
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The correlation coefficient is one measure of the relatedness of variables.  Since the 

dataset that is being studied is one that contains biological data it was expected that 

there would be a high degree of correlation between attributes. From Figure 5 it can 

be deduced that this is indeed the case, since most values fall between the values of 

zero (no correlation) and one (strong positive correlation). There are also some 

negative correlations, but the maximum value for this is negative 0.4, which means 

the negative correlation between those particular genes is not very strong. 

 

Since there are positive correlations between almost all variables in the dataset, it can 

be assumed that data reduction can be performed satisfactorily. This would mean 

that, upon traversing the dataset, groups of related attributes can be found and 

represented more concisely.   

 

 

 

 

Figure 5: Plot of Correlation Coefficients.   
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4.1 PART 1A: Initial Analysis of Data Which Has Not Been Normalized 

 

The dataset was saved in the following form: 

I. FILE: colorectal_dataset.mat, which contains the following variables: 

 

Name      Size   Bytes Class   Data 

colon_class               1x62   496 Double  +1 or -1  

colon_genes            2000x1   144024   Cell Gene names 

colon_genevalues       2000x62    992000 Double Expressions 

colon_samples 1x62   496   Double    Samples 

 

FILTERING 

 

The ‘genevarfilter’ function removed genes with low expression variability – a good 

indication that the gene is not actively involved in the process. This reduced the 

number of genes from 2000 to 1800. Next the ‘geneentropyfilter’ function was used 

to remove genes whose profiles showed energy levels in the bottom 15th

 

 percentile 

of the dataset. This further reduced the number of genes to 1530. The reduced 

dataset was saved in following file: 

II. FILE: colorectal_dataset_reduced.mat 

 

Name      Size   Bytes Class   Data 

colon_genes_reduced              1530x1 110182 cell Gene names 

colon_genevalues_reduced       1530x62    758880 double Expressions 

 

CLUSTERING 

 



36 
 

To help in visualizing and summarizing data clustering methods were used (Kumar 

et al., 2007). Most clustering algorithms require the number of clusters as an input 

argument. Therefore, in order to determine the optimal number of clusters the 

function ‘optnum’ was utilized. This came from by Abonyi et al.’s (2004) ‘Fuzzy 

Clustering Toolbox’.  

 

This function uses the Gustafson-Kessel (GK) fuzzy clustering method (with squared 

Mahalanobis as the distance measure). GK is an extension of the standard fuzzy c-

means (FCM) algorithm. The FCM algorithm uses Euclidean distance as a distance 

measure – which means that it can only detect clusters with a similar shape and 

orientation. The Gustaffson-Kessel algorithm modifies KCM to use an adaptive 

distance measure which allows for different geometrical clusters to be discovered in 

a given dataset (Abonyi et al., 2004). 

 

The maximum number of clusters is set at 14, which is thus the default value.  Figure 

6 shows this algorithm dynamically creating clusters. The x and y axes show values 

for the data which is first normalized by the algorithm. The data points are 

represented as dots in the plot. The circular formations are the decision boundaries  
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calculated for each cluster by the algorithm which iteratively seeks the optimal 

number of clusters. During this process seven clustering validity measures were 

calculated by the sub-function labelled, ‘modvalidity.’ These functions were run on 

the original data (ǀ: File: colorectal_dataset.mat). The results are represented in 

Figures 6-10. 

 

Figure 7 shows two plots – the number of clusters versus the Partition Coefficient 

(PC) and the number of clusters verses the Classification Entropy (CE). Both of 

these are Cluster Validity Indices that are used in Fuzzy Clustering methods to 

determine the number of optimal clusters for given datasets. 

 

 

 

 

 

 

 

 

 

   

 

Figure 7: PC and CE (y-axis) vs. Number of Clusters (x-axis) 
 

a) Partition Coefficient (PC) measures the amount of "overlapping" between 

clusters and is defined by Pal et al. (1995) as: 

 

 

Figure 6: Fuzzy Clustering Using the Gustafson-Kessel Algorithm 
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Where   denotes the membership (continuous value) of data value j in cluster 

i. The maximum value denotes the optimal number of clusters. PC has the 

disadvantage that it does not denote any direct relationship with the dataset 

properties. 

 

b) Classification Entropy (CE), which is plotted in the second graph also 

measures the “fuzzyness” of the cluster partition.  It is calculated using the 

following formula: 

  N.B.: The first local minimum value 

here gives the optimal number of 

clusters. 

 

Figure 8 shows the following three indices calculated for the same clustering 

algorithm: 

 

c) Partition Index (SC) - ratio of the sum of compactness and separation of the 

clusters. 

 

 

 

d) Separation Index (S) – validates the clusters depending on minimum 

separation distance and is computed using: 
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e) Xie and Beni’s Index (XB): a ratio of inter cluster variation and cluster 

separation: 

 
For the optimal number of clusters this index should be at a minimum value (which 

is at 5 clusters as shown in Figure 9). 

 

 

Abonyi et al. (2004) noted that no validation index is reliable on its own. Thus, all 

the indexes must be calculated and then compared. They also noted that partitioning 

with fewer clusters is preferable when there are only minor differences between 

validation indices. Since both CE and PC exhibit monotonic change with an 

increasing number of clusters this suggests that both these indices have no 

connection to data attributes. Both methods indicate that the optimal number of 

clusters is 5. The remaining three indices i..e. SC, S and XB all show a local 

minimum at c=5.   

 

This optimal number is also confirmed in Figure 9, which shows two more indices: 

Figure 8: SC, S and XB Indices (y-axis) vs. Number of Clusters (x-axis) 
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f) Dunn’s Index (DI) – this is used to identify compact and well separated 

clusters.  This is a computationally expensive index to calculate: 

 

  

g) Alternative Dunn’s Index (ADI) – is a modified version of DI with the aim 

of simplifying the calculation. 

 

Both DI and ADI show minimums at c=6. However, as the lower number of clusters 

(five) is preferable, this is the number of clusters that will be used for both K-means 

and hierarchical clustering. 

 

 

N.B: The same functions were also applied to the reduced feature dataset (ǁ: File: 

colorectal_dataset_reduced.mat), with the same number of optimal clusters obtained.  

This is as expected since the filter methods were meant to remove genes that did not 

contribute to the process. 

 

Figure 9: DI and ADI (y-axis) vs. Number of Clusters (x-axis). 
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Hierarchical clustering was implemented using the ‘cluster’ function in Matlab with 

number of clusters set to 5.  The x-axis shows the class which is either -1 (cancerous 

sample) or +1 (benign sample), whilst the y-axis shows the gene expression values. 

The results can be seen in Figure 10: 

 

 
Figure 10: Hierarchical Clustering: Gene Expression (y-axis) vs. Class (x-axis) in 5 
Clusters. 
 

It is apparent from Figure 10 that there are fewer genes with lower expression values 

in clusters 1 and 2. Clusters 3, 4 and 5 on the other hand show a greater density of 

points – which include both positive and negative samples. Clusters 3 and 4 seem to 

have clustered genes which have far greater expression values than are found in the 

other groups. 

 

A dendrogram was also drawn using the results of the hierarchical clustering (see 

Figure 11). Hierarchical clustering; unlike partition-based methods of cluster 

analysis, such as k-means, which begin with a set number of clusters; either merge 
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points or divide superclusters. The algorithm used here merges points into clusters. It 

is interesting to note that it was expected that the data would be classified into two 

clusters – one showing the cancerous tissues and the other the normal tissues.  

However, the clustering algorithms used are unsupervised learning methods, 

whereby the class data was not used by the learning algorithm. The resultant five 

clusters clearly show that there are complex underlying processes involving the data 

structures being studied. That is, the genes that show similarity may not always 

contribute to the process that leads to the development of cancer. 

 

 
Figure 11: Hierarchical Clustering Dendrogram 
 

K-means is one of the methods that ensures the distance between clusters is at a 

minimum. This function, which is a crisp/ hard clustering algorithm, was applied but 

with the number of clusters set to 5.   
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Results can be seen in Figure 12, which shows how the samples were placed by the 

algorithm. The x-axis shows the sample number whilst the y-axis indicates the 

distance of the point from the cluster center. It should be noted that all five clusters 

contain points that are far from the center of the cluster – possibly indicating outliers.   

 
Figure 12: K-means Clustering Showing Five Clusters 
 

To represent the samples placed in each cluster Figure 13 was obtained: the right 

axis shows positive (cancer: class variable = -1) and left axis shows negative 

(benign: class variable = +1) samples in each cluster. 

 

It is clear that all the five clusters contain both positive and negative samples. That is 

the clustering has not partitioned the data into the two initial classes of positive and 

negative samples. This would seem to indicate that there are sub-classes within the 

dataset – possibly sub-clusters that contribute to the process but in a more complex 

way than initially assumed. 
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DIMENSIONALITY REDUCTION USING PCA 

 

Microarrays have the problem that they display dimensionality, where the number of 

samples is exceeded by the number of attributes (Jiang et al., 2008; Tan et al., 2007; 

Li et al., 2006; Shen et al., 2005; Yoo at al., 2004). For any form of analysis some 

method of dimensionality reduction needs to be employed. There are a number of 

techniques that can be used for this purpose. One of the better-known methods for 

data reduction is Principal Components Analysis. As it is difficult for people to 

visualize data with greater than three dimensions, the idea behind PCA is that if there 

are groups of variables (attributes) that are behaving similarly, or have similar 

values, in any given situation, then this group can be replaced by a single variable.  

For simplification purposes this works well. 

 

Figure 13: K-means Clusters With Class Information. 
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Initially the ‘mapcaplot’ function was used to create a plot of the principal 

components of the dataset (Figure 16). This figure shows a screenshot of the Matlab 

tool used to view principal component data. 

 

Figure 14: Scatter Plot Using PCA Visualisation Tool. 
 

If data points are highlighted on one screen and corresponding points are also 

highlighted on the second screen, then the gene IDs will be displayed in the 

‘Selected Data’ window. This is very useful for viewing multiple dimensions of the 

same dataset at the same time. 

 

The function ‘pcvars’ gives a measure of the variance in the dataset. About 78% of 

the variance is contained in the first principal component. In fact, the first five 



46 
 

components account for about 90% of the variance, and the first two components 

account for 83% of data variance. The first two principal components have been 

represented on a scatter plot (Figure 15). 

 

Figure 15: Scatter Plot Showing First Two Principal Components 
 

A plot of the Eigen Values (Figure 16) shows that most of the original data can be 

captured using the first three principal components. In order to reduce the 

dimensionality of the dataset farther the first three principal components alone were 

saved in the file ‘PCA_colon.csv’. These were then multiplied with the original data 

and the results were saved in the file labeled, ‘colon_classification_data.mat’. 

  



47 
 

 

Figure 16: Plot of Eigen Values (y-axis) vs. Eigen Value Number (x-axis). 
 

All files used for this analysis have been placed in the PCA folder; the Matlab codes 

are also placed in Appendix 2: Part B. 

 

4.2 PART 1B: Initial Analysis of Normalized Data 

 

Normalization.  

 

Han & Kamber (2006 p. 114), describe normalization as being, “particularly useful 

for classification algorithms involving neural networks…nearest neighbor 

classification and clustering.” Usefully, a normalized version of this dataset is 

readily available and has already been processed using the same methodology as 

described in PART 1A (above). Both datasets (normalized and un-normalized) will 

be used for classification in order to verify if indeed there is a difference in 

classification accuracy related to normalization. 
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I.  FILE: colon_dataset_n.mat 

 

Name      Size   Bytes Class   Data 

colon_class_n              1x62   496 double  +1 or -1  

colon_genes_n            2000x1   144024   cell Gene names 

colon_genevalues_n       2000x62    992000 double Expressions 

colon_samples_n 1x62   496   double    Samples 

 

FILTERING 

 

When a filter for low variance was applied the number of genes reduced from 2000 

in the initial dataset to 1799 in the latter. The last 15th

 

 percentile of genes (those with 

the lowest activity in the dataset), were removed – leaving a final total of 1524 

genes. The reduced dataset was placed in the file labeled, 

‘colorectal_dataset_reduced_n.mat’. The variables saved in the file were as follows: 

II.  FILE: colon_dataset_reduced_n.mat 

 

Name      Size   Bytes Class   Data 

colon_genes_n_reduced     1524x1 110182 cell Gene names 

colon_class_n_reduced 1x62 496 double Class Information 

colon_samples_n_reduced 1x62 496 double Sample Information 

colon_genevalues_n_reduced     1524x62    758880 double Expressions 

 

CLUSTERING 

 

The ‘optnumber’ function was used to determine the optimal number of clusters for 

the normalized dataset.  In contrast to the dataset which had not been normalized, 
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marginally different results were obtained with the normalized dataset, whether 

filtered or unfiltered. 

 

The function was initially run on the normalized, unfiltered data  

(See Figures 17-20): 

 

Figure 17: Fuzzy Clustering G-K for Normalised Data. 
 

The Partition Coefficient (PC) and Classification Entropy (CE) can be seen in Figure 

18.   
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Figure 18: PC and CE for G-K Normalized Data 
 

The first local maximum for PC occurs when the number of clusters is 6: the same is 

true for the first local minimum for CE.   

Figure 19 shows the SC, S and XB validation indices: 

 

Figure 19: SC, S and XB Indices for Normalized Data. 
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The SC and S indices show their minimum points when the number of clusters is 

three, whilst XB seems to show a minimum at cluster number 4. Figure 20 shows the 

DI and ADI: 

 

Both of these indices indicate a local minimum value at cluster number three. Given 

that a lower number of clusters is the preferred outcome, the normalized version is 

considered to be optimally clustered when the cluster number is set to three. The 

complexity of the dataset has been clearly reduced as a result of normalization as can 

be seen in Figure 21. 

 

 

 

 

 

 

 

 

Figure 23: Hierarchical clustering of normalized data 

Figure 20: DI and ADI for Normalized Data. 

Figure 21: Hierarchical Clustering: Gene Expression (y-axis) vs. Class (x-
axis) in 3 Clusters. 
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The results have also been plotted as a dendrogram (Figure 22). 

 
 

 

Figure 23 shows the results for K-means clustering run on the normalized dataset for 

three clusters:   

 

 
Figure 23: Class Data (x-axis) vs. Distance From Cluster Centre for Normalized 
Data. 

Figure 22: Dendrogram From Hierarchical Clustering of Normalized Data. 
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It is obvious that the clustering process did not partition according to the two initial 

classes of cancerous (negative) or non-cancerous (positive) samples. A plot of 

sample number in clusters shows a similar trend. 

 

PCA 

 

The eigenvalue plot for this dataset (Figure 24) indicates that the first 10 vectors will 

represent the majority of the data:    

 

Figure 24: Eigen Values(y-axis) vs. Eigen Value Numbers (x-axis) for Normalized 
Data. 
 

The first 10 components were saved in the file labeled ‘PCA_colon_n.csv’. All 

relevant files have been placed in the folder ‘PCA_n’. (Relevant code is placed in 

Appendix 2 – Parts A and B).  
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 Figure 25 shows the first two principal components: 

Figure 25: Plot of First Two Principal Components for Normalized Data. 
 

Figure 25 indicates three clear clusters – although it is difficult to assess whether 

these clusters have partitioned data according to the negative/ positive class divide, 

since this information is not included in the plot. This analysis was run on the 

normalized, unfiltered dataset; and in order to see if there were any differences the 

same analysis was run with the normalized, filtered control version. 

 

CLUSTERING 

 

The optnum function was run with the normalized, filtered data (see Figures 26-29). 

 

Both the PC and CE results indicate that five clusters is the optimal number for this 

dataset (Figure 26).   
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Figure 26: PC and CE for Normalized Data. 
 

In Figure 27 the S and SC indices show a minimum at three clusters whilst the XB 

minimum is visible as 2 clusters. 

 

Figure 30 shows the DI and ADI for the filtered, normalized dataset. Whilst the DI 

shows a minimum at two clusters, the ADI does so for three clusters. Thus, taking 

into account the optimal number given by all indices, the lower number is two and 

therefore this dataset can be clustered optimally using only two clusters. 
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Figure 28: DI and ADI for Normalized Filtered Data. 
 

Figure 27: SC, S and XB for Normalized Filtered Data 
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The hierarchical clustering algorithm for this dataset produces a plot similar to 

Figure 21 but with two clusters only. The dendrogram is likewise similar to Figure 

22 and both clusters contain positive and negative samples. 

 

PCA 

 

Figure 31 shows the eigenvalues for the normalized, filtered dataset. The first eight 

eigenvalues capture most of the variance in the data. Therefore, the first eight 

principal components were saved as ‘PCA_colon_n_reduced.csv’. Additionally, the 

data to be used for the classification was stored in the 

‘colon_classification_data_n_reduced.mat’ file.  

 

Figure 29: Eigen Values(y-axis) vs. Eigen Value Numbers (x-axis for Normalized, 
Filtered Data. 
 

The next step was to use the three datasets (normalized, normalized and filtered, 

filtered) in the classification algorithms and compare the results. 
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4.3 PART 1C:  Initial Analysis Using WEKA 

 

Data Mining is the process of finding and describing structural patterns that can help 

to explain data and thus make useful predictions based upon these patterns.  

Occurrences in any given dataset are usually denoted by the values of features or 

attributes – in this case, the attributes are 2000 genes whose expression levels have 

been recorded for 62 samples or instances. The outcome shows whether any given 

sample is cancerous or not – indicated as negative (cancerous) and positive (benign). 

 

WEKA has a limited capability when it comes to scaling and working with large 

datasets. Therefore, as part of the pre-processing phase heap size inside the package 

had to be increased in order for the data to be loaded into the WEKA application. 

Details of the data preparation procedure for WEKA have been placed in Appendix 

2 – Part A. 

The data (WEKA_Data.arff) is shown in Figure 30. 

 Figure 30: The WEKA_Data.arff file Loaded in WEKA. 
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This view shows all the attributes and the class distribution for the entire dataset – 

it represents a near normal distribution. The colors denote the two classes – 

positive and negative (blue for negative; red for positive). Some basic descriptive 

statistics are shown – highest gene expression value; the corresponding lowest 

value: the mean and also standard deviation. WEKA contains limited Visualization 

tools when compared to Matlab but as this has been explored elsewhere it will not 

be repeated. 

DATA ANALYSIS, LEARNING METHODS AND RESULTS  

For any form of data analysis to be carried out the dimensionality of the colon cancer 

dataset (2000 attributes) had to be reduced. According to (Hall et al., 2003, p. 1), 

“the success of many learning schemes...hinges on the reliable identification of a 

small set of highly predictive attributes…Regardless of whether a learner attempts to 

select attributes itself or ignores the issue, attribute selection prior to learning can be 

beneficial.” 

 

The Pre-processing module provided in WEKA contains both supervised and 

unsupervised methods. Supervised learning methods provide class data for attributes, 

while by way of contrast, unsupervised learning methods do not provide such class 

data – in fact, the number of classes is determined by the method. Therefore, in this 

case, because the class was already known (either negative or positive) the 

supervised learning methods were used. 

 

The first supervised method used was ‘AttributeSelection’ from the Pre-process 

module provided by WEKA.    

   

The AttributeSelection method has two options: 
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1) Evaluator – Determines how attributes/ attribute subsets are evaluated (18 

options) and;  

2) Search – Determines the search method (12 options). 

 

Each of the options above represents different algorithms. To see if there was a 

difference in the number of attributes chosen by these options a comprehensive 

examination was conducted by running all available evaluators with all available 

search methods and the results were placed in the file labeled, 

‘AttributeSelection.xlsx’ (Sheet = Attribute_Selection_1).   

 

Certain methods resulted in lack of memory error messages (marked in blue), others 

ran slowly (marked in orange) and still others would not work with this particular 

dataset due to the design of the filter (see Table 2). 

 

The size of the maxheap variable (RunWEKA.ini file) was changed from 128Mb to 

512 Mb, and finally to 1012 MB to see if this would enhance the performance of the 

slow filter methods with no discernible change in the results. 

 

The heap size was also increased in the JVM (version 1.6.0_13-b03) which created a 

problem due to limited RAM (2GB). This line of investigation was therefore 

curtailed, and it was thus decided that only this current depth of analysis could be 

aimed at for Attribute Selection methods in this instance. 
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In evaluating the performance of the various filters, only those filters that resulted in 

a number of attributes less than the original 2001 were placed in the file, 

AttributeSelection.xlsx (Sheet = Attribute_Selection_2). The results can also be seen 

in Table 3. 
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Search Methods                   

Best 
First 

27 / 1 / / / / 27 / / / / / / / / / 1 

Exhaustive 
Search 

s / s / / / / 25 / / / / / / / / / S 

FCBF 
Search 

/ / / / / / / / / / / / / / / / 16 / 

Genetic 
Search 

628 / 2 / / / / 628 / / / / / / / / / 628 

Greedy 
Stepwise 

27 / 1 / / / / 27 / / / / / / / / / 27 

Linear 
Forward 
Selection 

24 / 1 / / / / 22 / / / / / / / / / 24 

Race 
Search 

/ / b / / / / / / / / / / / / / / S 

Random 
Search 

s / s / / / / s / / / / / / / / / S 

Ranker 
/ 2001 / / / 2001 2001 / 2001 2001 11 2001 b 2001 S 2001 / / 

Rank 
Search 

48 / 2 / / / / 48 / / / / / / / / / 2 

Scatter 
SearchV1 

b / b b / / / b / / / / / / / / / S 

SubsetSize 
Forward 
Selection 

 / 1 / / / / 22 / / / / / / / / / B 

Table 2:  Attribute Selection Methods in WEKA 
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Search Methods             

BestFirst 27 1 27 / / 1 
ExhaustiveSearch s s 25 / / S 
FCBFSearch / / / / 16 / 
GeneticSearch 628 2 628 / / 628 
GreedyStepwise 27 1 27 / / 27 
LinearForwardSelection 24 1 22 / / 24 
RaceSearch / b / / / S 
RandomSearch s s s / / S 
Ranker / / / 11 / / 
RankSearch 48 2 48 / / 2 
ScatterSearchV1 b b b / / S 
SubsetSizeForwardSelection   1 22 / / B 
 

 

 

It was neither possible, nor desirable, within the scope of this small-scale study to 

evaluate all the methods and methodologies available in order to determine whether 

the performance of the classifiers was influenced by the method used to select 

attributes. However, as this was, strictly speaking, not the ultimate goal of the 

study, it was decided to use the default method (marked in red in Table 3) for 

attribute selection.  

 

Table 3:  Subset of Attribute Selection Methods in WEKA 
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This also had the advantage of being easily accessible and thus potentially replicable. 

That said, an assessment of all potential methods, in order to see which is the best for 

evaluating classification performance, would be an interesting further study in its 

own right. 

 

THE DATASETS FOR CLASSIFICATION 

 

In Parts 1A and 1B of this chapter there were three sets of data ready for evaluation 

using classifiers: the filtered, normalized, filtered and normalized datasets. To read 

these into WEKA they had to be converted into the .csv format. Details of these 

datasets have been placed in Appendix 2: Part A. Table 4 below shows a summary 

of the 7 different datasets that will be used with the classification algorithms in 

WEKA: 

 

Dataset Name Description 

Data 1 Filtered but not Normalized Dataset – PCA Reduced to 62 x 3 

Data 2 Normalized Dataset – PCA Reduced to 62 x 10 

Data 3 Normalized and Filtered Dataset – PCA Reduced to 62 x 8 

Data 4 Attribute Selection + PCA  

Data 5 Discretization + PCA 

Data 6 Attribute Selection + Discretization + PCA 

Data 7 No Pre-Processing (Control) 

 

RESULTS 

The results for the first run of datasets and methods are shown in Table 4 (below).  

More detailed results tables are available in Appendix 2: Part C. The results revealed 

Table 4:  Summary Description of Datasets 
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very low classification accuracy for Data 1 (the highest being 69%). This was found 

to be due to an error in moving files from the .csv format from Matlab to the .arff 

format for Weka. The ‘fixed’ data results are placed in the column labeled ‘Data 1_3 

in Table 5 (below). Also seeAppendix 2: Part C. 

  
All the methods shown in Table 5 used cross-validation as the performance matrix 

with the number of folds set to ten (McLachlan et al., 2004).  PCA was applied to all 

datasets, except Dataset 7, before classification. 

 
 Filtered 

D
ata 

1_3 
(D

ata1 fixed). 

N
orm

alized 

Filtered, 
N

orm
alized 

A
ttribute 

Selection 

D
iscretizaton 

A
ttribute 

Selection, 
D

iscretization 

U
nfiltered 

dataset 

Classifier Data1 Data1_3 Data2 Data3 Data4 Data5 Data6 Data
7 

BayesNet 63.71 59.68 72.58 74.19 82.26 88.71 98.39 77.42 
NaiveBayes 68.55 80.65 77.42 77.42 87.10 93.55 100.00 53.23 
NaiveBayesSimple 68.55 80.65 72.58 75.81 85.48 95.16 100.00 NA 
NaiveBayesUpdateable 68.55 80.65 74.19 77.42 87.10 93.55 100.00 53.23 
RandomTree 67.34 70.97 64.52 69.35 74.19 62.90 70.97 67.74 
REPTree 64.92 70.97 72.58 70.97 90.32 90.32 98.39 69.35 
Logistic 69.35 82.26 83.87 83.87 77.42 82.26 93.55 74.19 
Multilayer Perceptron 66.53 83.87 72.58 74.19 80.65 88.71 96.77 Slow 
RBFNetwork 69.35 79.03 74.19 77.42 85.48 91.94 96.77 79.03 
SimpleLogistic 68.95 80.65 83.87 79.03 87.10 83.87 96.77 77.42 
SMO 64.11 75.81 85.48 88.71 87.10 91.94 96.77 85.48 
Voted Perceptron 64.52 64.52 77.42 82.26 83.87 91.94 98.39 75.81 
AdaBoostMI 65.73 79.03 72.58 75.81 83.87 95.16 96.77 74.19 
Bagging 64.52 79.03 75.81 79.03 87.10 90.32 96.77 79.03 
LogitBoost 67.34 69.35 72.58 72.58 88.71 91.94 96.77 75.81 
MultiBoostAB 65.73 77.42 74.19 75.81 85.48 95.16 96.77 85.48 
MultiClassClassifier 69.35 82.26 83.87 83.87 77.42 82.26 93.55 74.19 
OrdinalClassClassifier 64.52 79.03 66.13 77.42 87.10 93.55 98.39 75.81 
Random Committee 69.35 72.58 61.29 77.42 82.26 72.58 91.94 72.58 
 
 
 

Table 5:  Results of classification on all datasets. 
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The results in Table 4 show that, overall, Dataset 6, which was the dataset that had 

undergone the most pre-processing in WEKA yielded the best classification results.  

This is consistent with the available literature and consequent expectation.   

 

100% classification results were also obtained with the Naïve Bayes, 

NaïveBayesSimple, and NaiveBayesUpdateable algorithms. All three of these (see 

Appendix 3: Part A) are versions of the same basic algorithm. Naïve Bayes is also 

one of the simplest classification algorithms used in Data Mining. Given the 

complex nature of the dataset it was surprising that the best classification results 

were achieved with this algorithm as opposed to a more complex one such as the 

MultiLayerPerceptron among others. 

 

To evaluate the results Leave One Out Cross-Validation (LOOCV) was used. This is 

a special case in cross-validation where the number of folds is chosen to be n-1 

where n is the total number of samples. In the case of this study n = 62 so the 

number of folds was chosen to be 61 and the classifiers were run again on the subset 

of results that had yielded a 100% classification. 

 

The results of running LOOCV on Dataset 6 can be seen in Table 6. 

 

 

  Classification  
Method 

Correctly 
Classified 
Instances 

Incorrectly 
Classified 
Instances 

Confusion 
Matrix   

        a,b <-- classified 
as   

1 Naïve Bayes 100% 0% 
40  0 |  a = 
negative  

 0 22 |  b = 
positive 

2 Naïve Bayes Simple 100% 0% 
41  0 |  a = 
negative  

 1 22 |  b = 
positive 

3 
Naïve Bayes 
Updateable 100% 0% 

42  0 |  a = 
negative  

 2 22 |  b = 
positive 

Table 6:  Results of running LOOCV on Dataset 6. 
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As can be seen, Naïve Bayes performs very well – giving a hundred percent 

classification with very accurate results. There were 40 negative samples that were 

classified correctly, and 22 positive samples. There were no False Negative (FN) or 

False Positive (FP) results with this classifier. That said, variations of Naïve Bayes 

returned slightly anomalous results in their respective covariance matrices.  

 

One sample was incorrectly classified by NaïveBayesSimple as negative (giving 41 

negative samples as opposed to the original 40) and consequently there was one 

misclassification for the positive samples (22). A similar trend can also be observed 

in the results obtained from NaiveBayesUpdateable. In this case though there is an 

error of two samples i.e. two samples are classified as positive making the total 42 

when in fact it should be 40. Therefore, both NaiveBayesSimple and 

NaiveBayesUpdateable are misclassifying samples but this error is not reported as a 

misclassification. This would seem to be a problem with the error estimate (in this 

case LOOCV).  

 

LOOCV and Cross-Validation are very useful in cases where samples are sparse.  

LOOCV in fact uses the greatest amount of training data, thus increasing the 

accuracy of the classifier and also this procedure, unlike cross-validation, is not 

randomized but is deterministic. However, there is the disadvantage that this method 

cannot be stratified – in fact LOOCV guarantees a non-stratified sample.   

 

N. B.: Stratification means that the correct proportion of examples of each class are 

placed into the test set and this is difficult when, as in the case of LOOCV, the test 

set contains only a single sample. Statistically the original dataset contained a bias as 

it held 40 samples of one class (negative or cancerous ) as compared to only 22 

samples of the second class(positive or benign). This may be one reason for the 

anomalous results shown in Table 5 above. 
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C H A P T E R  5 :  I M P L I C A T I O N S  

The aim of this study was to build a classifier that accurately classifies microarray 

samples of both normal and tumor tissues for colon cancer. During the investigation 

of nineteen different classification algorithms it was found that Naïve Bayes returned 

100% classification results that were also highly accurate. 

 

This study also sought to find out whether normalization, filtering and discretization 

had any significant effect on the classifiers’ performances. When the results from the 

control Dataset 7 (Table 13: Appendix 2: Part B) are compared to the normalized 

dataset Dataset 2 (Table 8: Appendix 2: Part B) it would seem that the accuracy of 

the classifiers is increased when normalization is applied. The misclassification of 

positive samples is not as significant as for negative samples, perhaps as positive 

samples are under-represented in the dataset.   

 

Similarly, when the results of the filtered dataset Dataset 1_3 (Table 7: Appendix 2: 

Part B) and the control Dataset 7 (Table 13) are compared, it is clear that the 

accuracy and classification is much improved where the data has been filtered. 

 

To evaluate whether discretization has had any effect on classification performance 

results from the control (Table 13) and Dataset 5 (Table 11) were also compared.  It 

was once again clear that discretized data aids the performance of almost all 

classification methods. It is also clear that a combination of filtering, discretization 

and normalization yields the best results (see to Table 4 in Chapter 3 -above). This 

combination of methods was applied to Dataset 6 and the results are available as an 

appendix – Appendix 2: Part B: Table 12. 

 

Most recent studies that have looked at classification of microarray data proposed 

complex algorithms that are better suited to non-linear class separation problems 
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such as Neural Networks (MLPs). Although this method also returns good result 

with Dataset 6 (96.77% correctly classified instances), and even when looking at the 

confusion matrix, it remains highly accurate, it still seemed unusual and a little 

surprising that a method as simple as that of Naïve Bayes returned the most accurate 

set of results. Since this is the case, it can be safely assumed that once the data has 

been pre-processed it is in fact linearly separable. Most datasets used in more recent 

studies contain greater dimensions than the colon cancer dataset used here – they 

often also contain a greater number of samples. This may account for this particular 

dataset being linearly separable rather than requiring a more complex method for 

class separation. 

 

This dataset was first made publicly available almost a decade ago when microarray 

technology was still developing. There is also is a degree of sample contamination.  

The normal (i.e. non-cancerous) samples which were already under-represented in 

the dataset (22 out of a total of 62) contained some gene expressions specific to 

smooth muscle tissue. Thus, instead of just containing tissues from a specific organ 

the samples also contained some surrounding tissue. This may well have biased 

some of the classification methods. Ben-Dor et al. (2000), suggested that such bias is 

considered significant if less than 10 dimensions are used: with some of the datasets 

PCA reduced the number of dimensions down to lower numbers such as 8, or even 

3. 

 

However, it should be noted here that a single 10-fold cross-validation may not have 

been enough to obtain a reliable error estimate. It is well-known that cross-validation 

randomly partitions the data which means that there is a different result obtained 

with each run due to the effect of random variation in choosing the folds. To reduce 

this effect, cross-validation should be repeated 10 times and the results averaged. 

“When seeking an accurate error estimate…repeat the cross-validation process 10 
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times – that is, 10 times 10-fold cross-validation-and average the results”, (Witten et 

al. 2005, p. 151). This procedure was not implemented due to sample size and other 

operational constraints, yet to fully verify all results this should perhaps have been 

the case.   

 

All the above notwithstanding the purpose of the study was achieved in that a Naïve 

Bayes classifier was built that classified a filtered, discretized and PCA-reduced 

dataset with 100% accuracy. As above, cancer is fast becoming a major global 

disease and cancer treatment can be both financially prohibitive and distressingly 

invasive. Therefore, especially in developing nations, with fewer available medical 

resources, a comprehensive study looking at how genetic information can help to 

prevent cancer (and other diseases) could have potential far-reaching effects. 
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C H A P T E R  6 :  C O N C L U S I O N S  

The aims behind this study were largely realised. However, as with many such 

pieces of small-scale research, it was obviously that the scope of the study was 

limited and that there is much further research needed in this and other related areas/ 

fields of study. This could include applying similar techniques to benchmarked 

microarrays whose quality has been pre-established. 

The Attribute Selection method used in WEKA (see Chapter 3) was only a single 

setting from amongst a larger number. Attribute Selection was one of the pre-

processing procedures used in Dataset 6, which recorded the best classification 

results. This would imply that attribute selection is very important for classification 

purposes. Therefore, a more detailed study of the different Attribute Selection 

options available and how they affect the performance of the classifiers would be 

extremely informative. 

Another direction worth exploring is the performance of non-linear learners such as 

Neural Networks, Support Vector Machines and Genetic Algorithms on this 

particular dataset.   

Clustering Analysis was used in this study using fuzzy clustering algorithms which 

revealed, depending on the pre-processing of the data, cluster numbers that were 

greater than the expected result of two: given that there should have been only two 

classes present in the dataset. It would again be interesting to look at clustering in 

more detail to determine if the results obtained are biologically significant. 

In this study genes were not isolated using their IDs – it was not determined which 

genes were removed during filtering, because this study was not looking at the 

biological significance of the results – rather the intention was to find the most  

accurate classifier for this dataset. However, this dataset has biological significance 
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and to make more sense of the results gene IDs could be mapped at all stages in the 

procedure. That said gene identities and their physiological importance remains, at 

present, the domain of medical and scientific experts.   

Exploring if we can identify the exact gene sequence that can lead to colon cancer is, 

obviously, of great significance. The identification of the genes involved in such a 

highly complex process is not straightforward but could certainly prove very 

rewarding and important. If cancer sufferers are to experience the life-enhancing 

effects of early detection then microarray analysis might well prove a most useful 

tool, whether in developing countries with few resources to fight this disease, or in 

more developed nations such as the U.A.E ., where lifestyle issues (diet, tobacco 

consumption, etc.) often result in the virulent spread of this potentially fatal disease. 
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A P P E N D I X  1 :  E S T  &  D A T A S E T S

The ultimate goal of any investigation involving genes is not so much to find 

particular genes but more to find out how and why a gene in the DNA 

sequence is ‘turned on’.  This is also known as gene expression and is the 

first step towards understanding the role a given gene plays in coding for 

proteins.   

This is, by no means, an easy task – the link between proteins and genes has 

usually been found in two ways: 

1. Clinical studies may indicate a relationship – researchers then isolate 

the protein and determine its function and the genes that held the 

particular code for it 

2. Researchers conduct linkage studies to identify the chromosomal 

location of genes and then biochemical methods are used to isolate 

that gene and the protein it hold the code for.   

Both these methods are time consuming and only reveal small portions of the 

genes in the human DNA code. 

However, in the last few years this process has been speeded up with the 

emergence of a technique that yields EST (Expressed Sequence Tags) for 

genes. An Expressed Sequence Tag is a tiny portion (200-500 nucleotides 

long) of an entire gene used to help identify unknown genes and to map their 

positions within a genome. 1

                                                 
1 

 The Sequence pertains to either one or both 

ends of an expressed gene.   

http://www.ncbi.nlm.nih.gov/About/primer/est.html 

 

http://www.ncbi.nlm.nih.gov/About/primer/est.html�


83 
 

The basic premise is that all living organisms contain DNA (genes) that 

belong to the same pool. So if an expressed gene is tagged in a certain 

organism, it can be used to identify the same gene in another organism by 

matching base pairs.   

This is a complicated task because of the different genomic sizes of different 

organisms. This fact, and the existence of interruptions in DNA sequences 

known as introns, adds to the complexity of the task. In fact, gene 

identification is very difficult in the human genome because of the existence of 

a large number of introns. 

 

Genes are expressed as proteins – a two step process: 

 

1. Each gene is converted (transcribed) into messenger RNA (mRNA) 

which is a template for protein synthesis.  

2. The mRNA then becomes a guide for the synthesis of a protein 

through a process called translation. 

 

mRNA does not contain introns and therefore is the key to gene identification.  

However, it is unstable outside the cell – so through enzyme action the mRNA 

is converted into complementary DNA (cDNA).  

 

cDNA is a much more stable compound and because it is generated from 

mRNA it represents only expressed DNA sequences (exons). 
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FROM cDNA to EST 

Once cDNA from a given expressed gene is isolated either extremity of the 

molecule can be sequenced to give two kinds of EST: 

1.  5' EST is the sequence for the beginning portion of the cDNA and is 

usually the code for a protein. This sequence is often conserved 

across species and is very similar in gene families (group of genes 

that code similar proteins). 

2. 3' EST is the sequence that signals the end of the cDNA molecule and 

is often found in untranslated regions (UTR) – these are gene parts 

that do not translate into proteins. For this reason 3’ESTs are not 

usually seen across species. 

ESTs: TOOLS FOR GENE MAPPING AND DISCOVERY 

   

The human genome is made of billions of nucleotides – so to be able to 

navigate to given genes genome maps are necessary – these are constructed 

using Sequence Tagged Site (STS) mapping.  

An STS is a short, unique DNA sequence - 3' ESTs are often used as an STS 

because they are likely to be unique to a given species and because they 

point directly to a particular expressed gene. 

An EST is a copy of only the expressed part of the genome, which is why 

they are a very powerful tool in identifying genes that participate in a given 

process. This has been demonstrated in the hunt for gene sets that are 

involved in hereditary diseases such as Alzheimer’s.    
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ESTs are generated rapidly and inexpensively and so there are practical 

reasons for this being a preferred method of gene identification. Scientists 

usually look for observable biological clues to first identify EST’s that may 

participate in disease causing processes. Once this is done patient DNA is 

analysed to try and confirm the identity of genes that have mutated. 

ESTs and NCBI 

There has been a rapid proliferation of EST’s in the last few years. In the 

beginning once an EST was generated it was submitted to GenBank (NIH 

sequence database). With multiple parties submitting EST identification 

became a problem. So, the dbEST was set up where tagged and identified 

ESTs were recorded. This database records data on human ESTs as well as 

over 300 other organisms. Records are annotated with DNA and mRNA text 

data.      

There was a great deal of redundancy found in EST data because the same 

mRNA can be expressed by a given gene multiple times. The solution was to 

create UniGene – a database that automatically partitions the sequences into 

non-redundant clusters. 

The use of ESTs is an efficient method for understanding processes within 

organisms – however there are limitations.  mRNA is difficult to isolate from 

tissues which means that in some cases there is limited data available for 

some genes. This in turn affects result reliability. Also, important gene 

sequences may be found in introns. These introns are removed in order to 

obtain the ESTs – which means some valuable data may be lost.  
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A P P E N D I X  2 :  D A T A  P R E P A R A T I O N ,  C O D E  
A N D  R E S U L T S  

PART A: DATA PREPARATION 

NORMALISED DATA: 

The software known as mRMR (Miniumum Redudancy Maximum Relevance) 

<http://penglab.janelia.org/proj/mRMR/index.htm> is a tool for variable selection. 

The dataset that is input should be discretized and the colon cancer dataset is in fact 

available in this format (discretized to three states) on the project website (saved as 

‘test_colon_mRMR_discretized.csv’). 

 

The authors mention the process they used, “We discretized the observations of each 

gene expression variable using the respective σ (standard deviation) and μ (mean) for 

this gene’s samples: any data larger than μ + σ/2 were transformed to state 1; any 

data between μ−σ/2 and μ+σ/2 were transformed to state 0; any data smaller than μ − 

σ/2 were transformed to state −1. These three states correspond to the over -

expression, baseline, and under-expression of genes.”  

 

When this dataset is uploaded into the online system the top ranking 50 genes are 

returned. The result is stored as ‘mRMR_result.docx’.  

 
 

MATLAB DATA PREPARATION 

 

For calculating covariance the data had to be transposed and to avoid inadvertent 

deletion of any data during this copying and appending phase, all the data (tissues, 

names and gene) were collated into a single file. This data was stored as a new 

sheet (data_names_tissues) in the I2000_Excel_Fixed_with_Names.xls file.  

http://penglab.janelia.org/proj/mRMR/index.htm�
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The first row contains the sample number and the second row contains data 

indicating whether the sample was taken from a cancerous (negative) or non-

cancerous (positive) tissue. The Matlab code associated with this procedure was 

also changed (data_2_read.m). 

 

FILE: colorectal_dataset.mat, which contains the following variables: 

 

Name      Size   Bytes Class   Data 

colon_class               1x62   496 double  +1 or -1  

colon_genes            2000x1   144024   cell Gene names 

colon_genevalues       2000x62    992000 double Expressions 

colon_samples 1x62   496   double    Samples 

 

The files used to read the data from Excel and text files were saved in the folder 

‘colorectal_dataset’. All the files used for initial filtering were saved in folder 

‘initial_analysis'. This folder also contains: 

 

FILE: colorectal_dataset_reduced.mat, which contains variables: 

 

Name      Size   Bytes Class   Data 

colon_genes_reduced              1530x1 110182 cell Gene names 

colon_genevalues_reduced       1530x62    758880 double Expressions 

 

FILE AND DATA MANIPULATION 

The signed integers, used to denote class information (both positive and negative) 

were substituted with lexical items (i.e. word labels) before loading the data into the 
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WEKA application. In order to achieve this, a worksheet (Sample_Class_Word) was 

created inside the ‘tissue_transpose’ file.   

 

It was observed that the text file I2000_Names contained double quotation marks at 

the end of certain lines. These irrelevant quotation marks were replaced by spaces to 

aid the data processing stage. Then the data was copied back into the Excel 

spreadsheet I2000_Names.xlsx, inside a worksheet labeled as ‘Raw_no_spaces’. To 

simplify the data all gene identifiers were amalgamated into a single column using 

the ‘Concatenate’ function in Excel. This single column was then placed in file, 

I2000_Names.xls, inside the worksheet ‘Raw_single_cloumn’.   

 

A large amount of white space was attached to some names (which could be costly 

in terms of space and processing time). Thus, in order to see the location of these 

spaces, they were replaced by asterisks and the results saved in the 

I2000_Names_single_column.txt file. Next, the Excel function ‘Trim’ removed the 

spaces and the results were placed in the I2000_Names spreadsheet in the worksheet 

labeled ‘Final_Single_Column’. The same column was appended to Spreadsheet 

‘I2000_Excel_without_blank_lines’ and data from the file, ‘tissue_transpose.xls’ 

was inserted as the last row. 

 

All of this data was gathered in one single spreadsheet and saved as a Workbook 

labeled ‘WEKA_data’. The final step converted this data to a format that WEKA 

could work with - the ARFF (Attribute Relation File Format) format. This format 

defines the dataset but does not specify which of the attributes are to be predicted. 

For this reason the file can be used to investigate how well each attribute can be 

predicted, or for determining association rules or clustering. 

 

To convert the data, it was then saved using the CSV (Comma Separated Value) 

format (Weka_Transpose.csv) and placed in WEKA’s working directory. The data 
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format was changed to general number – to remove scientific notation, which 

interfered with the conversion process from .csv to .arff. 
 

To ensure that the genes were read as attributes, the data was transposed. However, 

the large number of attributes led to problems with WEKA hanging due to a lack of 

memory, meaning that the heap size had to be increased. The Simple Command Line 

Interface (CLI) included in the WEKA GUI was used to change the amount of 

memory allocated.  The command used was: 

 

java weka.core.SystemInfo 

 

This returned a list of system properties: 

memory.initial: 4.9MB (5177344) 

memory.max: 127.1MB (133234688) 

 

The maximum heap size was changed in the RunWeka.ini file using the variable 

‘maxheap’ with an initial value of 128m (128MB later changed to 512mb (MB). The 

WEKA GUI Chooser then converted the .csv file to an .arff format file. In the 

Simple GUI console the following command was typed: 

 

java weka.core.converters.CSVLoader Weka_Transpose.csv > Weka_Data.arff 

 

This read the Weka_Transpose file, converted it to a .arff format and saved it as a 

file in the WEKA Directory. The contents of the .arff file were also saved as a text 

file: 

  

• The top-level relation in this file is:  

@relation Weka_Transpose 
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• This file contained 2000 attributes such as: 

 
@attribute 1 numeric 

@attribute 2 numeric...and so on for the 2000 attributes. 

 

• The last attribute was: 
@attribute class {'negative ',positive} 

  

• The data was represented using the:  
@data  relation 

Note:  

• to convert .csv files to the .arff format the following command was used in 

the CLI in WEKA: 

java weka.core.converters.CSVLoader PCA_filtered_set1_2.csv > 

Weka_Data_2_2.csv 

• to convert .arff files to the .csv format the following would be used in the 

WEKA CLI: 

java weka.core.converters.CSVSaver -i Weka_Data.arff -o Weka_Data.csv 

In both instances the files being converted must be placed in the working directory.  

This is also where the output file will be saved. 

 

DATASET 1 

 

The filtered (but not normalized) data was saved in the file labelled, 

‘colon_classification_data.mat’. This file contained the following variables: 
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Variable Dimensions Data 

PCA 62 x 3 un-normalized dataset 

colon_class 1x62 Class information 

colon_samples 1x62 Sample numbers 

 

The files were saved as .csv files and then the colon_class was transposed and placed 

inside the PCA variable. This was then saved as one file: ‘PCA_filtered_set1.csv’. 

The numeric values were changed from scientific to general. Also a header row was 

added and the class variable saved with the lexical labels ‘negative’ and ‘positive’. 

Once this was done the dataset was saved as ‘Matlab_Data1.arff’. 

 

DATASET 2 

 

The second dataset was the normalized dataset, which had been processed in Matlab. 

The variables were saved in the file labelled, ‘colon_classification_data_n.mat’ as 

follows: 

 

Variable Dimensions Data 

PCA_n 62 x 10 normalized dataset 

colon_class_n 1x62 Class information 

colon_samples_n 1x62 Sample numbers 

 

These variables were then saved as .csv files; and the class data was appended to the 

PCA data before the results were saved in the file PCA_normalized_set2.csv. This 

was finally converted and saved as ‘Matlab_Data2.arff’ 
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DATASET 3  

 
The third dataset, also processed in Matlab, was the normalized, filtered dataset. The 

variables were saved in the file labelled, ‘colon_classification_data_n_reduced.mat’ 

as follows: 

 

Variable Dimensions Data 

PCA_n_reduced 62 x 8 
Normalized, filtered 

dataset 

colon_class_reduced 1x62 Class information 

colon_samples_reduced 1x62 Sample numbers 

 

These variables were then written to .csv files, and the class data was appended to 

the PCA data before the results were saved in the PCA_normalizedfiltered_set3.csv 

file. This was finally converted and saved as ‘Matlab_Data3.arff’ for use in WEKA. 

 
DATASET 4 

 

This was the original dataset that was pre-processed using Attribute Selection in 

WEKA followed by PCA, where the data was normalized and 95% of the variance 

was captured. This data was saved as ‘WEKA_Data4.arff’. 

 

DATASET 5 

 

In this dataset the data were first discretized and then PCA (with normalization) was 

applied. The resulting data was saved as ‘WEKA_Data5.arff’ 
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DATASET 6 

 

Attribute Selection was applied to the original dataset followed by discretization and 

then PCA with normalization. The results were saved in the file 

‘WEKA_Data6.arff’. 

 

DATASET 7 

 

This was the raw dataset that had not been normalized, filtered nor discretized and 

was saved as ‘WEKA_Data.arff’. 

 

PART B: CODE 

PYTHON CODE: 
 
(Python_remove_blank_lines.py) 
 
#open file and read contents into string variable. 
fd = open("Raw_Text.txt") 
file = fd.readlines() 
fd.close() 
 
new_file = [] 
 
#remove blank lines 
for line in file: 
    # Strip whitespace, should leave nothing if empty line was just "\n" 
    if not line.strip(): 
        continue 
    # We got something, save it 
    else: 
        new_file.append(line) 
 
# Print file sans empty lines 
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#print "".join(new_file) 
 
p = "".join(new_file) 
#send output to a new file. 
 
#f=open('Raw_Text.txt', 'w') 
 
 
MATLAB CODE: 
 

To read the data into Matlab the file ‘data_1_read.m’ was written which read the 

excel data and placed it in an array variable labeled Num. The text column 

containing gene identification data was separated into a new array by Matlab. The 

M-file output includes a 2-dimensional graphic representation of the array variable 

Num: 

 
data_1_read.m: 

clear 
num = xlsread('I2000_Excel_Fixed_with_Names.xls', 'data_1'); 
size(num) 
plot(num) 
 
data_2_read.m: 

clear 
num = xlsread('I2000_Excel_Fixed_with_Names.xls', 'data_names_tissues'); 
size(num) 
plot(num) 
 
colon_microarray_creation.m 
 
clear 
colon_genevalues = xlsread('Cell_Matrix.xlsx', 'only_values'); 
colon_class = transpose(xlsread('Cell_Matrix.xlsx', 'class')); 
[colon_genes] = textread('Cell_Matrix.txt','%s'); 
 
save('colorectal_dataset', 'colon_genes', 'colon_genevalues', 'colon_class') 
microarray_creation_n.m 
clear 
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colon_genevalues_n = transpose(xlsread('test_colon_mRMR_discretized.csv', 
'test_colon_mRMR_discretized')); 
%colon_class_n = xlsread('test_colon_mRMR_discretized.csv', 'class'); 
[colon_genes_n] = textread('Cell_Matrix.txt','%s'); 
colon_class_n = transpose(xlsread('Cell_Matrix.xlsx', 'class')); 
 
save('colorectal_dataset_n', 'colon_genes_n', 'colon_genevalues_n', 'colon_class_n'); 
 
colorectal_reduce.m 

%original data is loaded 
load colorectal_dataset.mat 
colon_genes=transpose(colon_genes); 
% Filtering the Genes 
mask = genevarfilter(colon_genevalues);  
colon_genevalues = colon_genevalues(mask,:); 
colon_genes = colon_genes(mask); 
 
% remove low entropy profile genes 
[mask, colon_genevalues, colon_genes] = 
geneentropyfilter(colon_genevalues,colon_genes,... 
                                                           'prctile',15); 
save('colorectal_dataset_reduced', 'colon_genes', 'colon_genevalues')  
%new file saved with reduced dimensions. 
                                                        
%Hierarchical clustering 
corrDist = pdist(colon_genevalues, 'corr'); 
clusterTree = linkage(corrDist, 'average'); 
clusters = cluster(clusterTree, 'maxclust', 5); 
 
figure 
for c = 1:5 
    subplot(1,5,c); 
    plot(colon_class,colon_genevalues((clusters == c),:)'); 
    axis tight 
end 
suptitle('Hierarchical Clustering of Profiles'); 
 
% Dendrogram from the output of the hierarchical clustering. 
clustergram(colon_genevalues(:,2:end),'RowLabels',colon_genes,... 
                                     'ColumnLabels', colon_samples(2:end)) 
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%  K-means clustering function.  
rand ('twister', 0);  
[cidx, ctrs] = kmeans(colon_genevalues, 5, 'dist','corr', 'rep',5,... 
                                                        'disp','final'); 
 
% plot just the centroids. 
figure 
for c = 1:5 
    subplot(1,5,c); 
    plot(colon_class,ctrs(c,:)'); 
    axis tight 
    axis off    % turn off the axis 
end 
suptitle('K-Means Clustering of Profiles with class information'); 
                 
colorectal_reduce_n.m 
%hierarchical clustering for noramlized filtered data 
load colon_dataset_n_reduced 
 
 
%Hierarchical clustering 
corrDist = pdist(colon_genevalues_n_reduced, 'corr'); 
clusterTree = linkage(corrDist, 'average'); 
clusters = cluster(clusterTree, 'maxclust', 2); 
 
figure 
for c = 1:2 
    subplot(1,2,c); 
    plot(colon_class_n_reduced,colon_genevalues_n_reduced((clusters == c),:)'); 
    axis tight 
end 
suptitle('Hierarchical Clustering of Profiles'); 
 
% Dendrogram from the output of the hierarchical clustering. 
clustergram(colon_genevalues_n_reduced(:,2:end),'RowLabels',colon_genes_n_re
duced,... 
                                     'ColumnLabels', colon_samples_n_reduced(2:end)) 
 
 

kmeans_n.m 
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load colorectal_dataset_n.mat 

%  K-means clustering function.  

rand ('twister', 0);  
[cidx, ctrs] = kmeans(colon_genevalues_n, 3, 'dist','corr', 'rep',5,... 
                                                        'disp','final'); 
 
%cidx contains cluster number 1-3 
%ctrs contain cluster centers 
 
%Clusters showing sample numbers. 
figure 
for c = 1:3 
    subplot(1,3,c) 
    plot(colon_samples_n,ctrs(c,:)'); 
    xlabel('sample number') 
    axis tight 
end 
suptitle('K-Means Clustering of Profiles versus Sample Number for Normalized 
Data'); 
 
figure 
for c = 1:3 
    subplot(1,3,c); 
    scatter(colon_class_n, ctrs(c,:)); 
    xlabel('class'); 
end; 
    axis tight 
suptitle('K-Means Clustering of Profiles showing Class Information of Samples in 

Clusters for Normalized Data'); 

optnumber.m 

load colorectal_dataset_reduced.mat 
data.X=colon_genevalues(:,[1 2]); 
[N,n]=size(data.X); 
 
%data normalizaiton 
data = clust_normalize(data,'range'); 
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%parameters 
ncmax=14; %maximal number of cluster 
param.m=2; 
param.e=1e-3; 
% 
ment=[]; 
figure(1) 
for cln=2:ncmax 
param.c=cln; 
    param.ro = ones(1,param.c); 
    result=GKclust(data,param);  
    clf 
    plot(data.X(:,1),data.X(:,2),'b.',result.cluster.v(:,1),result.cluster.v(:,2),'r*'); 
    hold on 
    new.X=data.X; 
    clusteval(new,result,param) 
    %validation 
    result=modvalidity(result,data,param); 
    ment{cln}=result.validity; 
 
end 
 
 
PC=[];CE=[];SC=[];S=[];XB=[];DI=[];ADI=[]; 
 
    for i=2:ncmax 
       PC=[PC ment{i}.PC]; 
       CE=[CE ment{i}.CE]; 
       SC=[SC ment{i}.SC]; 
       S=[S ment{i}.S]; 
       XB=[XB ment{i}.XB]; 
       DI=[DI ment{i}.DI]; 
       ADI=[ADI ment{i}.ADI]; 
   end 
    figure(2) 
    clf 
    subplot(2,1,1), plot([2:ncmax],PC) 
    title('Partition Coefficient (PC)' 
    subplot(2,1,2), plot([2:ncmax],CE,'r')   
    title('Classification Entropy (CE)') 
    figure(3) 
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    subplot(3,1,1), plot([2:ncmax],SC,'g') 
    title('Partition Index (SC)') 
    subplot(3,1,2), plot([2:ncmax],S,'m') 
    title('Separation Index (S)') 
    subplot(3,1,3), plot([2:ncmax],XB) 
    title('Xie and Beni Index (XB)') 
    figure(4) 
    subplot(2,1,1), plot([2:ncmax],DI) 
    title('Dunn Index (DI)') 
    subplot(2,1,2), plot([2:ncmax],ADI) 
    title('Alternative Dunn Index (ADI)') 
 
PCA_colon.m 

%Use reduced dataset 
load colorectal_dataset_reduced.mat 
 
% Principal Component Analysis 
mapcaplot(colon_genevalues, colon_genes) 
 
%pc = matrix of the principal components 
% zscores, are the principal component scores 
%pcvars, contains the principal component variances. 
 
[pc, zscores, pcvars] = princomp(colon_genevalues); 
 
% pcvars./sum(pcvars) * 100; 
% cumsum(pcvars./sum(pcvars) * 100); 
 
plot (pcvars) 
 
%figure 
scatter(zscores(:,1),zscores(:,2)); 
xlabel('First Principal Component'); 
ylabel('Second Principal Component'); 
title('Principal Component Scatter Plot'); 
 
%outputfilename 
csvwrite('PCA_colon_2.csv', zscores (:,1:3)); 
 
%ColorSet = varycolor(50); 
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PCA_2=(colon_genevalues)'*PCA_colon_2; 
save('colon_classification_data', 'PCA_2', 'colon_class', 'colon_samples') 

PART C: RESULTS 

Dataset 1 was filtered and it was expected that if anything the classification 

performance would be better than the control dataset (highest classification 

performance 85%). The low classification performance for Dataset 1 was true for all 

methods which seemed to indicate a problem possibly with the processing steps. (see 

Table 6 below).  

 

Upon investigation it was found by looking at the confusion matrices that the 

number of instances for this dataset was saved as 248 instead of the sample number 

of 62. This was found to be because there were some appended data in the file 

‘PCA_filtered_set1.csv’. These errors were fixed and the file saved as 

‘PCA_filtered_set1_2.csv’ and was then converted to the .arff format as  

‘Weka_Data_1_2.arff’. There were still problems running classification algorithms – 

many were not available.   

 

Further investigation revealed that the class attribute had not been converted to text. 

This was done and the file saved as ‘PCA_filtered_set1_3.csv’. This file was  

converted and saved as ‘Weka_Data_1_3.arff’. The methods used on the other 

datasets were also run on this dataset and the results are shown in Table 4 in Chapter 

3 (above). 

 

 
 

 



101 
 

 

 

There was clearly a problem shown by the confusion matrices recorded. E.g. taking 

the confusion matrix for the first classifier BayesNet: 

Predicted Class 

 Positive Negative 

Actual Class Positive 157 3 

 Negative 87 1 

 

This would indicate that there are 157 + 3 + 87 + 1 = 248 samples. In fact, the total 

number of samples was only 62. This led to the creation of Data 1_3 as mentioned 

above.  

  Classification  
Method Correct Incorrect Confusion Matrix   

        a,b <-- classified as   
1 BayesNet 63.71 36.29 157   3 |   a = negative  87   1 |   b = positive 
2 NaiveBayes 68.55 31.45  154   6 |   a = negative  72  16 |   b = positive 
3 NaiveBayesSimple 68.55 31.45  154   6 |   a = negative  72  16 |   b = positive 
4 NaiveBayesUpdateable 68.55 31.45  154   6 |   a = negative  72  16 |   b = positive 
5 RadomTree 67.34 32.66  153   7 |   a = negative  74  14 |   b = positive 
6 REPTree 64.92 35.08  159   1 |   a = negative   86   2 |   b = positive 
7 Logistic 69.35 30.65 154   6 |   a = negative   70  18 |   b = positive 
8 Multilayer Perceptron 66.53 33.47  148  12 |   a = negative  71  17 |   b = positive 
9 RBFNetwork 69.35 30.65 157   3 |   a = negative   73  15 |   b = positive 
10 SimpleLogistic 68.95 31.05 155   5 |   a = negative  72  16 |   b = positive 
11 SMO 64.11 35.89 159   1 |   a = negative  88   0 |   b = positive 
12 Voted Perceptron 64.52 35.48 160   0 |   a = negative  88   0 |   b = positive 
13 AdaBoostMI 65.73 34.27  151   9 |   a = negative   76  12 |   b = positive 
14 Bagging 64.52 35.48  160   0 |   a = negative  88   0 |   b = positive 
15 LogitBoost 67.34 32.66  152   8 |   a = negative  73  15 |   b = positive 
16 MultiBoostAB 65.73 34.27  153   7 |   a = negative  78  10 |   b = positive 
17 MultiClassClassifier 69.35 30.65 154   6 |   a = negative   70  18 |   b = positive 
18 OrdinalClassClassifier 64.52 35.48 160   0 |   a = negative  88   0 |   b = positive 
19 Random Committee 69.35 30.65  157   3 |   a = negative  73  15 |   b = positive 

Table 6: Results for Dataset 1 
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The results for classification were much better for Data 1_3 as compared to Dataset 

1 (see Table 7): 

 
 
  

Classification  
Method Correct Incorrect Confusion Matrix   

        a,b <-- classified as   
1 BayesNet 59.68 40.32  29 11 |  a = negative 14  8 |  b = positive 
2 NaiveBayes 80.65 19.35  34  6 |  a = negative 6 16 |  b = positive 
3 NaiveBayesSimple 80.65 19.35 34  6 |  a = negative 6 16 |  b = positive 
4 NaiveBayesUpdateable 80.65 19.35 34  6 |  a = negative 6 16 |  b = positive 
5 RandomTree 70.97 29.03  30 10 |  a = negative  8 14 |  b = positive 
6 REPTree 70.97 29.03 37  3 |  a = negative  15  7 |  b = positive 
7 Logistic 82.26 17.74 35  5 |  a = negative   6 16 |  b = positive 
8 Multilayer Perceptron 83.87 16.13 33  7 |  a = negative  3 19 |  b = positive 
9 RBFNetwork 79.03 20.97 35  5 |  a = negative 8 14 |  b = positive 
10 SimpleLogistic 80.65 19.35 35  5 |  a = negative 7 15 |  b = positive 
11 SMO 75.81 24.19 35  5 |  a = negative 10 12 |  b = positive 
12 Voted Perceptron 64.52 35.48 40  0 |  a = negative 22  0 |  b = positive 
13 AdaBoostMI 79.03 20.97 33  7 |  a = negative 6 16 |  b = positive 
14 Bagging 79.03 20.97  36  4 |  a = negative   9 13 |  b = positive 
15 LogitBoost 69.35 30.65  30 10 |  a = negative   9 13 |  b = positive 
16 MultiBoostAB 77.42 22.58 33  7 |  a = negative  7 15 |  b = positive 
17 MultiClassClassifier 82.26 17.74 35  5 |  a = negative  6 16 |  b = positive 
18 OrdinalClassClassifier 79.03 20.97 37  3 |  a = negative  10 12 |  b = positive 
19 Random Committee 72.58 27.42  32  8 |  a = negative 9 13 |  b = positive 

 

 

This data was filtered and reduced to three dimensions using PCA.   
 

Table 7: Results for Data1_3 
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  Classification  
Method 

Correctly 
Classified 
Instances 

Incorrectly  
Classified 
 Instances 

Confusion Matrix   

        a,b <-- classified as   
1 BayesNet 72.58 27.42 30 10 |  a = negative  7 15 |  b = positive 
2 NaiveBayes 77.42 22.58 33  7 |  a = negative  7 15 |  b = positive 
3 NaiveBayesSimple 72.58 27.42  30 10 |  a = negative  7 15 |  b = positive 
4 NaiveBayesUpdateable 74.19 25.81 32  8 |  a = negative  8 14 |  b = positive 
5 RandomTree 64.52 35.48  29 11 |  a = negative  11 11 |  b = positive 
6 REPTree 72.58 27.42  36  4 |  a = negative  13  9 |  b = positive 
7 Logistic 83.87 16.13  36  4 |  a = negative   6 16 |  b = positive 
8 Multilayer Perceptron 72.58 27.42 34  6 |  a = negative  11 11 |  b = positive 
9 RBFNetwork 74.19 25.81  33  7 |  a = negative  9 13 |  b = positive 
10 SimpleLogistic 83.87 16.13  35  5 |  a = negative   5 17 |  b = positive 
11 SMO 85.48 14.52  37  3 |  a = negative   6 16 |  b = positive 
12 Voted Perceptron 77.42 22.58  29 11 |  a = negative  3 19 |  b = positive 
13 AdaBoostMI 72.58 27.42  34  6 |  a = negative  11 11 |  b = positive 
14 Bagging 75.81 24.19  35  5 |  a = negative  10 12 |  b = positive 
15 LogitBoost 72.58 27.42  33  7 |  a = negative  10 12 |  b = positive 
16 MultiBoostAB 74.19 25.81  34  6 |  a = negative  10 12 |  b = positive 
17 MultiClassClassifier 83.87 16.13  36  4 |  a = negative 6 16 |  b = positive 
18 OrdinalClassClassifier 66.13 33.87  31  9 |  a = negative  12 10 |  b = positive 
19 Random Committee 61.29 38.71 32  8 |  a = negative  16  6 |  b = positive 

 

 

 

This dataset was normalized and PCA reduced to 10 dimensions. The results are 

more accurate than those obtained for the control (Dataset 7 – see Table 13).  

Interestingly, Data 1_3 seemed to return more accurate results than those obtained 

from Dataset 2. E.g. looking at the Naïve Bayes results for the negative (tumor) class 

there were 6 misclassifications out of 40 for Data 1_3 and 7 misclassifications for 

Dataset 2. 

Table 8: Results for Dataset 2 
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This dataset was both normalized and filtered; it was PCA-reduced to 8 dimensions.  

Generally the classification results seem better than those reported in Tables 6-8.  

N.B. the accuracy seems to have improved.  

  Classification  
Method 

Correctly 
Classified 
Instances 

Incorrectly 
Classified 
Instances 

Confusion Matrix   

        a,b <-- classified as   
1 BayesNet 74.19 25.81  28 12 |  a = negative  4 18 |  b = positive 
2 NaiveBayes 77.42 22.58 34  6 |  a = negative 8 14 |  b = positive 
3 NaiveBayesSimple 75.81 24.19 34  6 |  a = negative  9 13 |  b = positive 
4 NaiveBayesUpdateable 77.42 22.58 34  6 |  a = negative  8 14 |  b = positive 
5 RandomTree 69.35 30.65 30 10 |  a = negative 9 13 |  b = positive 
6 REPTree 70.97 29.03  32  8 |  a = negative 10 12 |  b = positive 
7 Logistic 83.87 16.13 36  4 |  a = negative  6 16 |  b = positive 
8 Multilayer Perceptron 74.19 25.81  33  7 |  a = negative  9 13 |  b = positive 
9 RBFNetwork 77.42 22.58 33  7 |  a = negative   7 15 |  b = positive 
10 SimpleLogistic 79.03 20.97  37  3 |  a = negative  10 12 |  b = positive 
11 SMO 88.71 11.29 38  2 |  a = negative 5 17 |  b = positive 
12 Voted Perceptron 82.26 17.74 32  8 |  a = negative 3 19 |  b = positive 
13 AdaBoostMI 75.81 24.19  35  5 |  a = negative 10 12 |  b = positive 
14 Bagging 79.03 20.97 35  5 |  a = negative 8 14 |  b = positive 
15 LogitBoost 72.58 27.42 34  6 |  a = negative 11 11 |  b = positive 
16 MultiBoostAB 75.81 24.19 34  6 |  a = negative 9 13 |  b = positive 
17 MultiClassClassifier 83.87 16.13 36  4 |  a = negative  6 16 |  b = positive 
18 OrdinalClassClassifier 77.42 22.58 32  8 |  a = negative 6 16 |  b = positive 
19 Random Committee 77.42 22.58 36  4 |  a = negative 10 12 |  b = positive 

Table 9: Results for Dataset 3 
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This dataset was created using Attribute Selection with PCA in WEKA. The 

accuracy shown by the confusion matrices is better than reported in earlier Tables.

  Classification  
Method 

Correctly 
Classified 
Instances 

Incorrectly 
Classified 
Instances 

Confusion Matrix   

        a,b <-- classified as   
1 BayesNet 82.26 17.74  36  4 |  a = negative  7 15 |  b = positive 
2 NaiveBayes 87.10 12.90 38  2 |  a = negative   6 16 |  b = positive 
3 NaiveBayesSimple 85.48 14.52  38  2 |  a = negative    7 15 |  b = positive 
4 NaiveBayesUpdateable 87.10 12.90  38  2 |  a = negative    6 16 |  b = positive 
5 RandomTree 74.19 25.81 33  7 |  a = negative  9 13 |  b = positive 
6 REPTree 90.32 9.68  38  2 |  a = negative    4 18 |  b = positive 
7 Logistic 77.42 22.58  29 11 |  a = negative    3 19 |  b = positive 
8 Multilayer Perceptron 80.65 19.35  35  5 |  a = negative    7 15 |  b = positive 
9 RBFNetwork 85.48 14.52 34  6 |  a = negative   3 19 |  b = positive 
10 SimpleLogistic 87.10 12.90 35  5 |  a = negative    3 19 |  b = positive 
11 SMO 87.10 12.90  38  2 |  a = negative    6 16 |  b = positive 
12 Voted Perceptron 83.87 16.13  35  5 |  a = negative    5 17 |  b = positive 
13 AdaBoostMI 83.87 16.13  34  6 |  a = negative    4 18 |  b = positive 
14 Bagging 87.10 12.90  36  4 |  a = negative    4 18 |  b = positive 
15 LogitBoost 88.71 11.29  37  3 |  a = negative    4 18 |  b = positive 
16 MultiBoostAB 85.48 14.52  35  5 |  a = negative    4 18 |  b = positive 
17 MultiClassClassifier 77.42 22.58 29 11 |  a = negative   3 19 |  b = positive 
18 OrdinalClassClassifier 87.10 12.90  36  4 |  a = negative    4 18 |  b = positive 
19 Random Committee 82.26 17.74  37  3 |  a = negative    8 14 |  b = positive 

Table 10: Results for Dataset 4 
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This dataset was created using Discretization and PCA in WEKA. Again, the results 

seem to have improved compared to earlier Tables. 

  

  Classification  
Method 

Correctly 
Classified 
Instances 

Incorrectly 
Classified 
Instances 

Confusion Matrix   

        a,b <-- classified as   
1 BayesNet 88.71 11.29 36  4 |  a = negative    3 19 |  b = positive 
2 NaiveBayes 93.55 6.45 39  1 |  a = negative    3 19 |  b = positive 
3 NaiveBayesSimple 95.16 4.84  39  1 |  a = negative    2 20 |  b = positive 
4 NaiveBayesUpdateable 93.55 6.45  39  1 |  a = negative    3 19 |  b = positive 
5 RandomTree 62.90 37.10  31  9 |  a = negative   14  8 |  b = positive 
6 REPTree 90.32 9.68  36  4 |  a = negative    2 20 |  b = positive 
7 Logistic 82.26 17.74 33  7 |  a = negative    4 18 |  b = positive 
8 Multilayer Perceptron 88.71 11.29  36  4 |  a = negative    3 19 |  b = positive 
9 RBFNetwork 91.94 8.06  39  1 |  a = negative    4 18 |  b = positive 
10 SimpleLogistic 83.87 16.13  34  6 |  a = negative    4 18 |  b = positive 
11 SMO 91.94 8.06  37  3 |  a = negative    2 20 |  b = positive 
12 Voted Perceptron 91.94 8.06  38  2 |  a = negative    3 19 |  b = positive 
13 AdaBoostMI 95.16 4.84  40  0 |  a = negative   3 19 |  b = positive 
14 Bagging 90.32 9.68  37  3 |  a = negative    3 19 |  b = positive 
15 LogitBoost 91.94 8.06  38  2 |  a = negative    3 19 |  b = positive 
16 MultiBoostAB 95.16 4.84  40  0 |  a = negative    3 19 |  b = positive 
17 MultiClassClassifier 82.26 17.74 33  7 |  a = negative    4 18 |  b = positive 
18 OrdinalClassClassifier 93.55 6.45  39  1 |  a = negative   3 19 |  b = positive 
19 Random Committee 72.58 27.42  37  3 |  a = negative   14  8 |  b = positive 
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This dataset showed the best classification results which were more accurate than all  

the other datasets used. This dataset was created using a combination of Attribute 

Selection, PCA and Discretization in WEKA.

  Classification  
Method 

Correctly 
Classified 
Instances 

Incorrectly 
Classified 
Instances 

Confusion Matrix   

        a,b <-- classified as   
1 BayesNet 98.39 1.61  40  0 |  a = negative    1 21 |  b = positive 
2 NaiveBayes 100.00 0.00  40  0 |  a = negative    0 22 |  b = positive 
3 NaiveBayesSimple 100.00 0.00  41  0 |  a = negative    1 22 |  b = positive 
4 NaiveBayesUpdateable 100.00 0.00  42  0 |  a = negative    2 22 |  b = positive 

5 
RandomTree 

70.97 29.03  33  7 |  a = negative  
 11 11 |  b = 
positive 

6 REPTree 98.39 1.61 40  0 |  a = negative    1 21 |  b = positive 
7 Logistic 93.55 6.45  39  1 |  a = negative    3 19 |  b = positive 
8 Multilayer Perceptron 96.77 3.23  40  0 |  a = negative    2 20 |  b = positive 
9 RBFNetwork 96.77 3.23  40  0 |  a = negative    2 20 |  b = positive 
10 SimpleLogistic 96.77 3.23  39  1 |  a = negative    1 21 |  b = positive 
11 SMO 96.77 3.23 39  1 |  a = negative    1 21 |  b = positive 
12 Voted Perceptron 98.39 1.61  40  0 |  a = negative    1 21 |  b = positive 
13 AdaBoostMI 96.77 3.23  39  1 |  a = negative    1 21 |  b = positive 
14 Bagging 96.77 3.23  39  1 |  a = negative    2 21 |  b = positive 
15 LogitBoost 96.77 3.23  39  1 |  a = negative    2 21 |  b = positive 
16 MultiBoostAB 96.77 3.23  39  1 |  a = negative    2 21 |  b = positive 
17 MultiClassClassifier 93.55 6.45  39  1 |  a = negative    3 19 |  b = positive 
18 OrdinalClassClassifier 98.39 1.61  39  1 |  a = negative    0 22 |  b = positive 
19 Random Committee 91.94 8.06  40  0 |  a = negative    5 17 |  b = positive 

Table 12: Results for Dataset 6 
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This was the control dataset, which was loaded into WEKA without any processing.  

Some of the methods would not work with the dataset since it was not normalized 

(NaïveBayesSimple) and others were too slow (MultilayerPerceptron). The 

accuracies of the classifications are quite low with high false negative and false 

positive results. 

 

  Classification  
Method 

Correctly 
Classified 
Instances 

Incorrectly 
Classified 
Instances 

Confusion Matrix   

        a,b <-- classified as   
1 BayesNet 77.42 22.58 31  9 |  a = negative    5 17 |  b = positive 
2 NaiveBayes 53.23 46.77  19 21 |  a = negative    8 14 |  b = positive 
3 NaiveBayesSimple NA       
4 NaiveBayesUpdateable 53.23 46.77  19 21 |  a = negative    8 14 |  b = positive 
5 RandomTree 67.74 32.26  26 14 |  a = negative    6 16 |  b = positive 
6 REPTree 69.35 30.65  37  3 |  a = negative   16  6 |  b = positive 
7 Logistic 74.19 25.81  36  4 |  a = negative   12 10 |  b = positive 
8 Multilayer Perceptron Slow       
9 RBFNetwork 79.03 20.97  35  5 |  a = negative    8 14 |  b = positive 
10 SimpleLogistic 77.42 22.58  34  6 |  a = negative    8 14 |  b = positive 
11 SMO 85.48 14.52  36  4 |  a = negative    5 17 |  b = positive 
12 Voted Perceptron 75.81 24.19  36  4 |  a = negative   11 11 |  b = positive 
13 AdaBoostMI 74.19 25.81  35  5 |  a = negative   11 11 |  b = positive 
14 Bagging 79.03 20.97  36  4 |  a = negative    9 13 |  b = positive 
15 LogitBoost 75.81 24.19  35  5 |  a = negative   10 12 |  b = positive 
16 MultiBoostAB 85.48 14.52  37  3 |  a = negative    6 16 |  b = positive 
17 MultiClassClassifier 74.19 25.81  36  4 |  a = negative   12 10 |  b = positive 
18 OrdinalClassClassifier 75.81 24.19  33  7 |  a = negative    8 14 |  b = positive 
19 Random Committee 72.58 27.42  36  4 |  a = negative   13  9 |  b = positive 

 
 
 

Table 13: Results for Dataset 7 
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A P P E N D I X  3 :  M E T H O D S  A N D  R E S O U R C E S  

PART A: CLASSIFICATION METHODS USED IN WEKA 

BAYES 

 

1. BayesNet – this function learns Bayesian networks under the assumptions that 

attributes are nominal and there are no missing values. For some of the 

processed datasets the nominal assumption will hold – for the raw dataset it 

does not. In this case the attributes are discretized by the method.   

Search is carried out using two possible algorithms: 

• TAN 

• K2 

In this study, this function is run using K2 because the TAN algorithm is 

linear in the number of instances and quadratic in the number of attributes. It 

will therefore be computationally more expensive. To improve search speed 

AD trees was also used. 

 

2. NaiveBayes – implements a probabilistic Naive Bayes classifier. This 

technique gives equal weight to all attributes in the dataset and because of 

this principle the performance of the classifier can be affected by redundant 

attributes. Also, in this algorithm it is assumed that attributes are normally 

distributed. Since this is a biological dataset it would seem that such an 

assumption is reasonable. Discretization of the attributes will nullify the need 

for such an assumption. This method can use kernel density estimators to 

determine the kind of attribute distribution. In this study, the method was run 

with and without the kernel estimator. A better classification result was then 

recorded. 



110 
 

 

3. NaiveBayesSimple – uses normal distribution to model numeric attributes. 

 

4. NaiveBayesUpdateable – processes one instance at a time and can also use a 

kernel estimator but will not discretize the data. 

 

TREES 

 

5. RandomTree – builds a tree using tests based on a given number of random 

features at each node. This is done with no pruning. 

 

6. REPTree – the regression tree used by this method is built by using variance 

reduction and prunes the tree using reduced-error pruning. This method is 

optimized for speed so it only sorts numeric attributes once. 

 

FUNCTIONS 

 

7. Logistic – builds and uses multinomial logistic regression models with a 

ridge estimator to guard against over-fitting. 

 

8.  MultilayerPerceptron – this function allows the user to change the number 

of passes (epochs) through the data as well as the learning rate and the 

momentum. The standard gradient descent method is used to determine 

weights for the units – this method looks for a minimum which is the value 

assigned. However, it can only detect a local minimum and MLP error 

functions often exhibit a number of minima. This is therefore a drawback. 

 

9. RBFNetwork – this method implements a Gaussian radial basis function 

network. This kind of network has three layers and only differs from 
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Multilayer Perceptrons in the way the hidden units perform the 

calculations. The activation of each unit depends on the distance between 

the unit and the test point. Most often the activation function takes the 

shape of a Gaussian function – each unit may have differing widths for 

their associated functions. RBF networks assign all attributes an equal 

weight and so cannot deal with irrelevant attributes unlike MLPs. 

 

10. SimpleLogistic – builds simple regression models fitting the models using 

LogitBoost with simple regression functions as base learners and deciding 

the number of iterations by performing cross-validation.   

 

11. SMO is a method that implements the sequential minimal optimization 

algorithm for training a support vector classifier. It was run using a 

polynomial kernel. 

 

12. VotedPerceptron – in a linear perceptron the algorithm iterates through the 

training set and updates the weight vector every time there is a 

misclassification. In this perceptron the solution vector depends on the 

order in which instances are encountered.  To make this algorithm more 

stable all weight vectors encountered during the learning process are 

allowed to vote on a prediction. This is the salient feature of a 

VotedPerceptron algorithm. 

 

META 

  

The Metalearning algorithms in WEKA are often used in more recent times in 

cancer classification. Some of these have been used in this study including: 
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13. AdaBoostMI – boosting aims to try and combine classification methods that 

complement each other. It uses voting from the different algorithms to 

combine the output of individual models. Boosting combines models of the 

same type (for instance a number of different decision trees). Boosting is an 

iterative process, i.e. new models are influenced by those built before. New 

models are encouraged to become experts for instances misclassifie by 

previous models.   

 

14. Bagging – this is similar to boosting. 

 

15. LogitBoost – performs additive logistic regression. 

 

16. MultiBoostAB – combines boosting with a variant of bagging to prevent 

overfitting. 

 

17. MultiClassClassifier. 

 

18. OrdinalClassClassifier. 

 

19. Random Committee – an ensemble of base classifiers is built and their 

predictions are averaged. Each classifier is based on the same data but uses 

a different seed number. 

PART B: RESOURCES 

Software packages and algorithms available for research purposes include: 
 

1. Matlab. 
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2. Weka and BioWeka (extension library). 
 

3. Clementine (PASW Modeler) – SPSS.  (to build classifier decision trees, k-
nn, svm, C5.0, C&RT, Neural Nets). 

 
4. XCluster is a software available from 

<http://fafner.stanford.edu/~sherlock/cluster.html>.  Re-compilation may 
be necessary. 

 
5. ScanAlayze is a software for analysing microarray data available from:  

< http://rana.lbl.gov/eisen/?page_id=41> .  Four softwares are also available 
for Cluster Analysis and Visualization Software < 
http://rana.lbl.gov/eisen/?page_id=42> 
 

6. SVM have been mentioned extensively in the literature.  They are described 
in details at :< http://www.isis.ecs.soton.ac.uk/resources/svminfo/> which 
also includes a Matlab Toolbox for SVMs. 
 

7. The MAExplorer software can be used to analze microarray datasets and is 
available at: < http://maexplorer.sourceforge.net/> 

 
8. CLUTO is a family of data clustering and cluster analysis programs.  They 

are available for download at: < 
http://glaros.dtc.umn.edu/gkhome/views/cluto> 

 
9. A number of software packages are mentioned at <http://www.genopole-

lille.fr/logiciel/microarray/norm_tools.html>  for microarray analysis. 
 

10. J-Express allows users some clustering analysis capability:  
< http://www.molmine.com/tryMain.php> 
 

11. Infer.Net is a state of the art package from Microsoft that allows users to 
build Bayesian networks. http://research.microsoft.com/en-
us/um/cambridge/projects/infernet/default.aspx 
 

12. The Spider is an object oriented environment inside Matlab  
< http://www.kyb.tuebingen.mpg.de/bs/people/spider/> 
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http://rana.lbl.gov/eisen/?page_id=41�
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13. Least Squares –SVM have been implemented as a Matlab toolbox at :  

< http://www.esat.kuleuven.ac.be/sista/lssvmlab/> 
 

14. An implementation of PAM (Prediction Analysis for Microarrays) is 
available at  
< http://www-stat.stanford.edu/~tibs/PAM/> 
 

15. A list of Open Source packages for microarray data analysis are available 
at:  
< http://www.kdnuggets.com/solutions/microarray.html#free> 
 

16. Matlab code is available for some methods at: 
<http://www.public.asu.edu/~jye02/Software/index.html>at: 
<http://www.tsi.enst.fr/~gfort/GLM/Programs.html> and at: 
http://www.tech.plym.ac.uk/spmc/links/bioinformatics/microarray/microarr
ay_matlab.html 
 

17. A list of SVM implementations is available at: <http://www.support-vector-
machines.org/SVM_soft.html> and http://www-ai.cs.uni-
dortmund.de/SOFTWARE/MYSVM/index.html 
 

18. A package for normalization geNorm is available at :< 
http://medgen.ugent.be/~jvdesomp/genorm/#download> (password for 
download obtained via email) and candidate genes for normalization can be 
obtained using NormFinder at: < 
http://www.mdl.dk/publicationsnormfinder.htm> 

 
19. The CS.4 algorithm is mentioned at <http://datam.i2r.a-

star.edu.sg/datasets/krbd/>.  An email was sent to request source code with 
no response. 

 
20. The Data Description (DD) toolbox available at:< 

http://ict.ewi.tudelft.nl/~davidt/dd_tools.html> provides resources but for 
one-class problems. 
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21. The Netlab toolbox provides methods coded in Matlab and can be found at: 
< http://www.ncrg.aston.ac.uk/netlab/index.php> 

 
22. An Open Source version of SVM is also available at: < 

http://svmlight.joachims.org/> 
There is also a set of functions that make it easier to call the method from 
within Matlab: < http://ida.first.fraunhofer.de/~anton/software.html> 
 

23. A number of Clustering implementations are listed at:  
< http://www.dcorney.com/ClusteringMatlab.html> 
 

24. K-means resources are listed at  
< http://people.revoledu.com/kardi/tutorial/kMean/Resources.htm> 
 

25. Fuzzy Clustering resources listed at 
< http://people.revoledu.com/kardi/tutorial/kMean/Resources.htm> 
 

26. A number of software packages for microarray analysis can also be 
accessed at:  
< http://www.broadinstitute.org/science/software> 
 

27. A number of classification tree algorithms can be found at:  
< http://www.stat.wisc.edu/~loh/> 
 

28. An implementation of an ensemble classifier is available at:  
< http://www.ams.sunysb.edu/~hahn/research/CERP.html> 
 

29. An SVM library can be found at :< 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/> 
 

30. An implementation of Random Forests is available at  
     < http://ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html> 
 
31. A visualisation package and other methods are included at  

< http://hanchuan.peng.googlepages.com/hanchuan%27ssoftware> 
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32. The source code for some methods include some forms of SVMs are 
available at: 
< http://showelab.wistar.upenn.edu/> 
 

33. The Boosting method has been implemented as an R package and is 
available at: < http://showelab.wistar.upenn.edu/> 
 

34. GIST is a set of software tools for SVM and k-PCA analysis.  It is 
implemented in C and can be accessed at < 
http://www.bioinformatics.ubc.ca/gist/index.html> 

 
35. An optimization Matlab implemented toolbox is available at:  

< http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/> 
 

36. Another SVM Matlab implementation can be accessed at:  
< http://svm.sourceforge.net/download.shtml> 
 

37. A Gene Pattern Analysis Suite is also available online: < 
http://www.gepas.org/> 
 

38. A number of software tools for microarrays are available at:  
< http://www.jcvi.org/cms/research/software/#c622> 
 

39. A web application for the integrated analysis of global gene expression 
patterns in cancer can be accessed at: < 
http://bioinformatics2.pitt.edu/GE2/GEDA.html> 
 

40. AMIADA is an integrated computer program for organizing, exploring, 
visualizing, and analyzing microarray data and can be accessed at:  
< http://dambe.bio.uottawa.ca/amiada.asp> 
 

41. Another package that can be explored is KNIME  
< http://www.knime.org/introduction> 

Not all of the listed resources were used in this study. The scope of this study was 

limited some packages were not as functional given limitations in processing power, 
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the need for expensive licenses, etc. A brief analysis was begun the results of which 

can be seen in the Table below. 

 
 
Resource Analysis 

 

Resource Analysis Used 

XCluster Oracle installation needed. No 

ScanAlyze Used for microarray raw image data analysis No 

Cluster/ 

Tree View 

Installed Yes 

MAExplorer Problem with installation files. No 

SeqExpress Machine hangs on loading data No 

JExpress J-Express config file cannot be read. No 

Fuzzy Clustering 

Toolbox 

Matlab codes. 

<http://www.mathworks.com/matlabcentral/fileexchange/7486> 

Yes 

My Clustering 

Toolbox 

Similar algorithms coded as Fuzzy Clustering Toolbox. No 

Neuralware http://www.neuralware.com/products.jsp 

Commercial use 

No 

MatArray http://www.ulb.ac.be/medecine/iribhm/microarray/toolbox/getstar

ted.html 

Kmeans and hierarchical clustering codes. 

Most methods already coded in Matlab. 

No 
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