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Abstract 

This research includes the design of a multivariable control system for aircraft 

wings. Two objectives are desired. The first is to control the vibrational problem for 

low-speed flight by applying a feedback control strategy. The second goal is to 

demonstrate that the controller for this wing assembly dissipates the least energy by 

comparing an alternative controller design technique. Simple procedures using 

established methods relating the wing vibrational problems, are outlined. The control 

strategies invoked using a simplified flutter dynamic model. A compensator designed 

to provide enhanced flutter suppression was employed. The transient performance of 

the system was computed for various flight velocities. Comparison of the energy 

dissipation for the gain ratios investigated was obtained. Numerical simulation was 

used to demonstrate the effectiveness of the approach advocated. 
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Notations and Abbreviations 

)(sA  numerator of )(sG  

)(sAn  
invariant impedance model of degree n  relating leading and trailing 

edge acceleration, velocity and displacements to applied forces
 

0A  inertia or mass matrix  22  

1A  damping or frictional matrix  22  

2A  stiffness matrix  22  

)(2 sA  polynomial impedance matrix of degree 2   22  

1a  coefficient of compensator 

2a  coefficient of compensator 

B  velocity-dependant damping matrix  22  

)(sb  Polynomial 

b  controller gain 

1b  coefficient of compensator 

2b  coefficient of compensator 

C  velocity-squared-dependant stiffness matrix  22  

)(sC  Laplace transformed compensator transfer function 
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1C  capacitor 

2C  capacitor 

)(tE  control energy 

1E  input voltage 

2E  output voltage 

F  outer loop feedback gain matrix  22  

1f  outer loop feedback gain 

2f  outer loop feedback gain 

)(tf  input vector  21  

)(sf  transformed leading and trailing edge force vector  21  

)(sf l  leading edge force
 

)(sf t  trailing edge force
 

)(s  force disturbance vector  21
 

)(1 s  disturbance 

)(2 s  disturbance 

)(sG  Laplace transformed system transfer function matrix 

)(0 sG  Laplace transformed system transfer function matrix at zero velocity
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)(11 sg  transfer function 

)(12 sg  transfer function 

)(21 sg  transfer function 

)(22 sg  transfer function 

)(sh  forward path inner loop compensator 

1h  forward path inner loop gain 

2h  forward path inner loop gain 

)(sH  feedback path controller gain 

H  optimal control 

)(nJ  performance index 

)(sk  feedback path inner loop compensator 

1k  feedback path inner loop gain 

2k  feedback path inner loop gain 

)(sK  forward path controller 

21 ,, nnn  gain ratio 

P  outer loop feedback gain 

)(sq  output vector  21  
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)(1 sq  leading edge deflection 

)(2 sq  trailing edge deflection 

)(nQ  coefficient matrix 

)(sr  reference input 

)(sr  reference input 

1R  resistance 

2R  resistance 

3R  resistance
 

4R  resistance 

5R  resistance
 

6R  resistance
 

7R  resistance
 

8R  resistance
 

9R  resistance
 

s
 

Laplace variable 

sS  steady-state matrix
 

)(su  open loop input vector  21  
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v  air speed 

maxv  maximum air speed for wing model 

av  node voltage 

bv  node voltage 

cv  node voltage 

dv  node voltage 

x
 

closed loop generated zero
 

)(sy  output vector  21  

1Z  impedance 

)(s  denominator of )(sG  

)(0 s  denominator of )(0 sG
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