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Abstract 
 

This dissertation presents a novel drug classifier to automate the prediction of drug 

indication and drug interactions with other drugs. The study integrates knowledge 

visualization, analysis, as well as development of a predictive model based on the Drug-

Drug Interactions (DDIs) as a complex network. DDIs network analysis reveals unique 

drug features and explains unknown drug behaviors. Each drug molecule has a unique 

chemical structure and a set of pharmacological features. This set of attributes imposes 

how each drug performs its action inside a human body. Drug molecule interacts with 

multiple components in the biological system, for example, enzymes, proteins, among 

other drugs. The complexity of the chemical and pharmacological features forces the 

interaction between drug molecule and all other entities in the biological system to 

follow specific rules. The full features for each drug are not fully explained by 

researchers due to the incomplete drug profile description. DDIs network has a 

significant role in drug repurposing; it uncovers the hidden properties of the drug 

behavior. Predicting drug properties is presented as a contribution effort to drug 

repositioning approach. 

To confirm the visual analysis, a binary matrix is drawn from each drug profile 

based on DDIs dataset. In this matrix, each drug is represented by a vector of attributes 

from all other drugs. A predictive model is developed to predict drug indication as well 

as to predict new DDIs using multiple machine learning algorithms. 

This dissertation presents a case study of predicted anti-cancer activity for 38 drugs. 

The proposed Artificial Intelligence approach for drug-related properties prediction 



 

demonstrates a high potential in complementing the current computational techniques. 

The predicted anti-cancer activity is computationally validated by a 10-fold cross 

validation evaluation technique and clinically supported by extensive literature review 

confirming the achieved results. In conclusion, the predicted drug features can provide 

new directions towards promising candidates for drug repositioning.



 

 

 :الملخص

 تشمل .لبعضا بعضھا مع یةالأدو تفاعلات وكذلك یةالأدو بخصائص للتنبؤ یرللعقاق یدا  جد مصنفا   البحث ھذا یعرض

 كشبكة یةالدوائ-یةائالدو التفاعلات على القائم التنبؤ نموذج یرتطو إلى بالإضافة ، یلوالتحل المعرفي التصور الدراسة

 ءجزي كل .معروفة یرالغ الخصائص بعض یوضحو یدةالفر الدواء خصائص عن یكشف الشبكة ھذه یلتحل .معقدة

 داخلبعمله  دواء كل یقوم یفك تحدد الصفات ھذه .یةالدوائ الخصائص من ومجموعة یدةفر یمیائیةك یبةترك له دواء

 یناتوبروت اتیمإنز  المثال یلسب على یولوجيالب النظام في متعددة مكونات مع الدواء جزيء تفاعل. یالإنسان جسم

 یاناتالك وكل الدواء جزيء ینب التفاعل یجبر یةوالدوائ یمیائیةالك السمات یدتعق إن. أخرى یرعقاق إلى بالإضافة

 إستخدام في یربك دور لھا یةالدوائ-یةالدوائ التفاعلات شبكة محدد. قواعد اتباع على یولوجيالب النظام في الأخرى

 عن الكشف یقطر عن وذلك قبل من أستخدامھا المألوف من یكن لم أمراض علاج في یا  حال الموجودة یةالأدو

 ھذا كمساھمة یةالأدو بخصائص التنبؤ عرض یتم باستخدام تقنیات الذكاء الإصطناعيللدواء  یدیةتقل یرالغ الخصائص

 .یةلأدوأستخدامات جدیدة ل إكتشاف إعادة في البحث

 ھذه في. اءدو كل لوصف یةالدوائ-یةالدوائ التفاعلات شبكة یاناتب مجموعة على تعتمد یةثنائ مصفوفة إنشاء یتم

 باستخدام التنبؤ نموذج یمتصم تم .الأخرى یةالأدو یعجم من السمات ناقل بواسطة دواء كل یلتمث یتم المصفوفة

 مع یدةالجد تفاعلاتھاب التنبؤ إلى بالإضافة یةخصائصالأدو استنتاج علي قادرا   یكونل المتعددة الآلي التعلم یاتخوارزم

 .البعض بعضھا

 یقطر عن ئجالنتا صحة من التحقق تم. للسرطان مضادة خصائصه یلد یرالعقاق من مثالا 38 ل توقعات الدراسة تقدم

 .التوقعات ھذه تؤكد سابقة ینیكیةإكل لدراسات النطاق واسع بحث
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1.   Introduction 

 
1.1.  Overview 

 
This chapter presents an introductory background about the role of Artificial 

Intelligence in the drug repurposing (repositioning) process. Drug interactions will be 

discussed in order to explain the different types of drug interactions and the different 

databases used by researchers in this field. The problem is explicitly mentioned as 

well as the rationale and motivation behind this work. This dissertation is designed to 

answer specific questions related to drug interactions database and its role in drug 

repurposing. The research aims and objectives are clearly identified and stated. The 

detailed dissertation structure and design are fully explained. In this chapter, all 

necessary and related concepts, as well as technical terms, are explained under the 

Definition Section. 

 

1.2.  Background 

 
Machine learning (ML) is a branch of Artificial Intelligence science with a great 

endeavor to ameliorate the performance of multiple areas of research fields especially 

the medical field. Classification is one of the cornerstone tasks of ML and Artificial 

Intelligence (AI) (Weiss & Kulikowski 1991). Classification postulate a predictable 

class (label) and a reliable collection of attributes to build a high-fidelity dataset. Such 

dataset is the core of a predictive model to the desired label attribute. The challenge in 

the classification task is how to find the reliable set of attributes that accurately describe 

each example in the dataset. 

Pharmaceutical drug molecule performs a particular action inside the human body 
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and interacts with other drugs based on a unique set of pharmacological rules. Factors 

controlling these rules include chemical structure, gene expression, metabolic 

pathways, enzymes, carriers, and transporters. 

Conventional drug screening approaches are costly and time-consuming as it 

depends on the experimental extraction of pharmacologically active substances from 

different possible sources and performs experimental analysis of animals. Then, 

researchers perform clinical trials on humans to affirm the proper indication with the 

optimum dose for each drug. Not all drugs succeed to reach the final approval phases 

on humans due to failure to demonstrate a safe toxicology profile. 

As a result, only very few drugs reach the market after a long and expensive process. 

Indeed, the computational method becomes essential in terms of providing promising 

drug candidates to bypass the blind screening steps (Chen et al. 2015). 

The main DDIs prediction approaches reported by researchers are similarity-based, 

knowledge-based or mechanism-based methodologies. This thesis combines multiple 

approaches into one approach that focuses on predicting novel drug indications for 

already available drugs in the market; this approach is called drug repurposing 

(repositioning). For instance, (Huang et al. 2018) confirms that antipsychotic drugs 

have been repositioned for anti-cancer purposes. In addition, the author reviewed the 

possible mechanisms by which the anti-psychotic medications could possess anti-

cancer properties. 

In this dissertation, the researcher sheds the light on recent and related efforts by 

multiple authors who are interested in the same field of study. There are multiple 

conceptual models behind each author’s work and a set of different Machine Learning 

techniques were applied. Authors predicted new drug-related attributes based on 
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already established relationships extracted from multiple databases. They validated 

their findings against extensive literature reviews. Finally, they provided 

recommendations for drug repurposing. 

This study is based on information about drug-drug interactions (DDIs) which is 

extracted from DrugBank standard database to predict new drug indications using 

Machine Learning techniques. 

1.3.  Problem Statement 

 
Novel drug screening before clinical trials lasts for a long time but needs a huge fund. 

ML provides the guidance for researchers to prioritize their efforts and target the most 

likely promising drug candidates. This work is designed to investigate the significance 

of Machine Learning techniques in saving clinical research resources. Previous studies 

utilized DDIs data combined with other databases for multiple predictions. However, 

indication-based prediction using DDIs is considered an opportunity for this study to 

cover. 

Introducing new drugs to the market is an ongoing process. Relatively old drugs 

have a number of reported DDIs much more than that those comparatively new drugs. 

Safe and effective patient care is much easier to achieve with sufficient drug profile 

data. However, incomplete DDIs information might lead to serious and unavoidable 

events. 
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1.4.  Rationale and Motivation 

 
Drug repurposing (repositioning) is the discovery of novel indications for already 

known drugs. The significance of drug repurposing originates from the economical 

point of view in terms of saving the money and time spent on new drug discovery steps. 

The canonical process of drug design and discovery is lengthy and consumes a lot of 

resources. 

Cancer is a prime populace health problem and is one of the major contributors to 

the worldwide disease burden. The extreme expensive cost of new drug development 

has led to an increase the concerns towards finding a novel, inexpensive anti-cancer 

drugs. 

The primary idea of introducing ML techniques in such a process is to offer a faster 

yet an accurate alternative. The finding of this dissertation is a list of top qualified drug 

candidates to proceed to the next step of the expensive clinical trials. 

 

In addition, application of association rules on DDIs would provide a guidance for 

rational use of prescribing drug alternatives. 

 

1.5.  Research Hypotheses 
 

This dissertation tests the following hypotheses: 

 
 Visual representation and analysis of the Drug-Drug Interactions (DDIs) 

complex network could function as a classification tool between 

different drug groups based on their clustering structure. 

 Unexplained drug behavior and properties could be explained by graph 
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analysis of the DDIs network. 

 Machine learning classification models could be applied in the Drug-

Drug Interactions (DDIs) dataset in order to classify two different drug 

groups and to predict new drug indications for drug repurposing. 

 

1.6.  Aim of Research 

 
This dissertation seeks to provide a fast, inexpensive, reliable, and yet accurate tool for 

drug repurposing. The study investigates the reliability of DDIs network to infer drug-

related properties. The idea is to maximize the role of DDIs data in providing multiple 

therapeutic options. Furthermore, the study targets the clinical decision support system 

by providing possible enhancement for better quality of care. 

 

1.7.  Dissertation Structure and Organization 

 
In this dissertation, the work is organized in the following order: 

 

Chapter (1) introduces background information about the point of study and explains 

the significance of ML in drug repositioning. The research problem and motivation are 

discussed in this chapter. In addition, the aim of work and the hypotheses to be 

investigated are explicitly mentioned in this chapter. A brief description of the technical 

terms and domain-specific concepts are clearly stated. 

 
Chapter (2) provides a state-of-the-art literature review of similar studies. In this 

chapter, the various types of databases used will be mentioned as well as the techniques 

applied by researchers with an example of all predictable attributes in each article. As 
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a contribution, a comment on the current limitations is stated with possible solutions 

for improvements. 

 

 
Chapter (3) explains the exact steps of the methodology applied in this dissertation. It 

provides a graphical illustration for clear apprehension. This chapter discusses the 

dataset acquisition and preparation before visualization and model development. The 

data mining software and the tool used in network visualization are specifically 

mentioned. Specific algorithms applied are clearly explained. 

 

 
Chapter (4) demonstrates the results of three experiments. Each experiment is designed 

to classify two different drug groups at two steps. First, the results of a classification 

model are presented in the form of a confusion matrix. Second, the result visually 

compares each group’s clustering pattern in the DDIs graphical network representation. 

 

 

Chapter (4) provides discussion and interpretation of the reported results. This 

chapter correlates the results from the visual network analysis with the classifier 

models. Extensive literature evidence are provided to support the findings. 

 

 
Chapter (5) summarize the overall study outcome in the conclusion statement. 

Recommendation for future work is provided as well as the implications for future 

application. 
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1.8. Definitions 

 
All study-related terms and concepts are listed and briefly explained to avoid any 

ambiguity in understanding the research idea. This work is considered a 

multidisciplinary project. It is expected to combine Computer Science terms with 

medical and pharmaceutical-related terminologies. 

 ML is the application area of Artificial Intelligence (AI) which allows systems 

to automatically learn as well as to improve its performance based on its own 

experience without being expressly programmed. ML centers on developing 

computer programs that can read data and learn from it. 

 Pharmaceutical Bioinformatics is a branch of Bioinformatics that focuses on 

chemical and biological interactions related to drug discovery. However, 

bioinformatics is a multidisciplinary field of science that combines biological 

information, mathematics, computer science, and engineering. 

 Graph Theory is a visual approach to represent different knowledge domains 

as a graph for further analysis. The graph is a type of data structure which is 

extensively used in our real-life. A graph is defined by two elements (nodes, 

edges). A node or a vertex (N) is a representation of any point or entity in any 

domain. An edge (E) is a connection between two nodes. The connection could 

be directed when we have a source and a target. While the undirected graph 

has no source and target nodes. The edge weight reflects how strong the 

connection between two different nodes is. In the case of an unweighted graph, 

it is set to the value (one) as a default. 

 Modularity is a measure that distinguishes a network into communities (clusters). 

High modularity networks have concentrated edges between their nodes inside the 

same module but sparse edges between their nodes in different modules. Modularity 
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is used as a community detection technique in the network structures analysis. 

 Eigenvector centrality is considered a ranking measure between nodes in the 

graph theory. Unlike in-degree centrality, a node with high eigenvector centrality 

score is not necessarily highly connected with a high number of edges. 

Eigenvector centrality score is more concerned about the node significance than 

the node degree. 

 Drug Indication is the approved use of a particular drug for treating a particular 

disease. 

 Drug repurposing (repositioning) is the process of finding a novel indication for 

already existing drugs. 

 Transcriptomics is the science of studying the transcriptome. The transcriptome 

is defined as the entire set of RNA transcripts expressed by the genome, under 

particular conditions or in particular cell lines using methods such as microarray 

analysis.  

 Ribonucleic acid (RNA) is an essential molecule in the biological system. It plays 

a significant role in the process of gene expression. 

 Clustering is a special technique of unsupervised ML that performs grouping of 

similar data objects. Data points within the same cluster share a similar set of 

features. 

 Classification is a supervised ML technique that assigns a class to a set of data 

points. It needs a training example and a predictable attribute (Class Label). 

 Association Rules are produced by observing data for frequent patterns. The rule 

is in the form of (if X then Y). The rules are controlled by two parameters 

(Support and Confidence). 
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2 Literature Review 

 
2.1  Overview  

 
This chapter represents the main literature review themes. The first theme is a unique 

collection of top quality peer-reviewed articles related to the dataset type utilized and 

the applied technique. Authors applied different computational techniques on various 

drug-related databases. Each article has a unique design and one or more predictable 

criteria. The main two approaches presented for drug repurposing are (network-based 

and similarity-based). Summary and conclusion of each article are demonstrated as well 

as the overall limitations of the current work. 

In addition, the second theme in this chapter presents the clinical evidence from the 

literature that supports anti-cancer predicted properties for each candidate drug. 

 
2.2 Review Articles 

 
Network-based analysis is becoming a highly significant tool to help visualize 

and understand the connections between drugs and their actions in the body 

(Berger & Iyengar 2009). Erdos-Renyi (Random or Poisson or Gaussian) 

networks are considered the basic foundation of the real world complex network 

development (Newman 2003). Random network assumes that each network is 

composed of nodes (vertices) which could be individuals or drugs based on the 

presented domain knowledge. These nodes are connected with each other by 

connections (edges). The number of edges for each node is called node degree. 

The degree distribution also known as (neighbor distribution) is considered a 

characteristic property for each complex network structure. 

The principal theory of any random graph is founded on that, each contributing node in 

the graph has the exact same chances to connect with any other node in the network. 
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So, the theory expects normal distribution curve by plotting a histogram representing 

the number of nodes against the number of edges each node has. While this random 

graph theory could represent some networks in the world, it fails to represent a lot of 

real networks (Wang & Zeng 2013). The author identified three types of complex 

network topology (Poisson, Power-Law, and Scale-free). While Poisson topology did 

not succeed to represent all existing real networks in nature, Scale-free type of networks 

succeed to represent almost all real networks including DDIs networks. Power-Law 

(Exponential) is another degree distribution type that represents some networks such as 

scientists’ co-authorship. 

This dissertation discusses the concept behind different representation models 

which were applied to construct distinguishable DDIs networks. Also, it provides 

suggestions to build a new representation model in order to improve the prediction 

accuracy of already existing models. Studies presenting the DDIs using networks aim 

to find common properties describing the quality of each relationship in order to predict 

unknown interactions between existing drugs or newly discovered drugs using the 

computational methods rather than experimental ones. The accuracy of the prediction 

depends on the proper identification of the attributes used to build the network model. 

The proposed idea of this work posits the significance of using drug-drug 

interactions network to extract a set of features for each contributing entity in the 

network system. The model analyzes a pharmaceutical dataset called DrugBank version 

(5.1.1) (Law et al. 2013). Each drug unit has a particular structure with multiple 

attributes. The main proposed idea is to use each contributing member of the DDI 

network as an attribute for other members. The value for each attribute is binary in 

nature [0, 1], in which [0] indicates no interaction and [1] indicates the presence of 

interaction. The constructed matrix consists of rows representing the list of example 

drugs, and columns representing the features list. 1991 drugs involved in interactions 

with other drugs as per the DrugBank version 5.1.1 update. 
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The standard course in the drug development process is costly in terms of money. 

Time is a significant parameter to be considered as well. In silico methods provide 

quicker, reliable nevertheless affordable solutions compared to the traditional 

experimental methods. 

Clinical trials on drugs are time-consuming, costly and restricted to a relatively 

limited number of targets. However, recent studies express that repositioning of already 

existing drugs can act efficiently as those investigational new drugs. 

Earlier studies have confirmed that network analysis is a powerful platform. For 

example, researchers succeeded to model biological interactions by analyzing 

biological networks. 

This section summarizes related as well as recent work published by researchers 

focusing on applying machine learning techniques for drug repurposing 

(repositioning). In general, the main approaches include: 

• Application of clustering techniques based on graph theory using complex 

network visualization and analysis. 

• Prediction of a novel drug features or an expected relationship between the drug 

and other network components based on drug similarity measures. The 

similarity was calculated from the established connections between the two 

networks. 

There are several biological entities that interact with drugs. For instance, proteins are 

an essential component of the biological system. Drugs interact with proteins as in the 

form of target receptors, enzymes. 

Gene expression network provides details about gene-related information about 

drugs as well as diseases. Drugs could have some undesirable side effects, this side 

effect profile for each drug allow researchers to draw a very informative network to 
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measure the similarity between drugs. However, researchers face challenges in 

building prediction models. For example, incomplete or missing reported data lead to 

a significant decline in the performance measures of any prediction model. Supervised 

machine learning algorithms are the most sensitive techniques for missing data, the 

training step for any supervised learning technique necessitates a proper identification 

of positive data from negative data. Negative data must not be confused by missing 

data. However, in real life databases, unreported or missing data is considered 

negative. 

(Udrescu et al. 2016) presented a visual analysis to the drug-drug interactions 

DDIs network. In the first step, the author applied the community detection 

algorithm in order to identify the modularity-based structure in the DDIs network. 

Modularity is directly connected to the distribution and density of relationships 

(edges) between drugs (nodes), which in this study represent DDIs. Nodes in the 

same modularity were considered to be related because they share the same 

distribution and density of edges. Each modularity was assigned a distinct color 

for identification. In the next step, the author applied another algorithm called the 

topology detection algorithm (Force Atlas II) to discover the main drug clusters 

within the network structure. Each identified cluster represents a 

pharmacologically related drug group. However, the distinct color was assigned 

for each modularity detected in the developed network. The author selected the 

Force Atlas II layout (Krzywinski et al. 2011) to illustrate the relationship among 

drugs (nodes) in the network. Force Atlas II is an example of a force-directed 

layout. It is inspired by the standard laws of physics to visualize networks in the 

space. In this layout, each node (drug) repulses other nodes as if they have a 
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similar polarity of charges, while edges (reported interaction between each drug 

pair) act as a connection springs to attract their nodes. These two conflicting 

forces of repulsion and attraction eventually reach a balanced state. This final 

spatial property is expected to provide an explanation and help interpret some 

findings in the data network. In the Force Atlas II layout, the position of each 

node depends on other nodes, and the number of connections (edges) each node 

has. Force Atlas II layout relies on a specific equation to calculate both kinds of 

forces (attraction and repulsion). The distance (D) between any given nodes (in 

the geometric space) and the number of edges (E) each node has the main 

parameters in the equations. 

Gephi version (0.9.2) is a specialized software that was used for building and 

visualizing complex networks (Bastian et al. 2009). It provides the essential analytical 

tools and measures required to analyze network architecture and discover relations 

between network components. These measures provide guidance for researchers to 

interpret unexplained findings. 

Ideally, pharmacologically-related drugs should be located close to each other and 

within the same cluster as well as the same assigned color by modularity. The result 

shows that clusters of pharmacologically-related drugs are located close to each other. 

However, the author reports exceptions of particular drugs that showed a tendency to 

be located next to a different color group of drugs. He concludes that some drugs tend 

to have unexpected pharmacological actions and act as if they belong to a different 

group. The author proposed those drugs as promising candidates for drug repurposing 

according to the predicted new properties. 

He validated the results using two versions of DrugBank. The first version (Drug- 
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Bank 4.1) database to build the graph and predict drug properties and the second version 

(DrugBank 4.3) to confirm the predicted properties for 85% of the findings. The author 

argues that complex network analysis provides a high-level of understanding on the 
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Pharmacological characteristics.  Furthermore, the clustering approach can be applied to 

predict drug-target interactions or customized patient’s medicine applications. 

Drug-drug interactions were visually analyzed in a previous work done by (Hu & 

Hayton 2011), the author demonstrated drug-drug interactions (DDIs) network. He 

affirmed that the presented DDIs network showed scale-free features and followed 

a power-law frequency distribution. The DDIs network consisted of 966 drugs 

(nodes) and 3351 interactions (edges). The author selected the top-forty interacting 

drugs (hot spots). Then, he combined Pharmacokinetics (PK) and 

Pharmacodynamics (PD) information along with patient demographics to 

construct a prediction model. The study confirmed the potential activity of a few 

drugs which was represented as hot spots. The hot spots are connected to a higher 

number of edges with other drugs compared to the majority of those less active 

drugs. The findings confirmed that DDIs frequency distribution follows the rules 

of power-law. 

Repositioning drugs for novel indications were investigated by (Hurle et al. 

2013). The authors reviewed the in-silico machine learning techniques applied to 

various drug-related databases. The author highlighted the significant role of 

transcriptomics data represented by a connectivity map (CMap), side effects (SE) 

data, and gene-related data represented by the genome-wide association study 

(GWAS). 

In a similar work done by (Setoain et al. 2015), the author utilized 

transcriptomic data (data related to gene expression) to construct a gene 

expression signatures dataset. This dataset represented each drug profile as a 

gene expression signatures data. A similar dataset was constructed for diseases. 
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The author calculated a drug similarity score to build a model that predicts the 

relationship between drugs and diseases. After normalization from (0 - 100), he 

selected the weighted Kolmogorov–Smirnov-like statistic for his analysis. The 

reported results showed a few cases with prediction above 70% correct. 

 
One of the limitations to this approach is the necessity of having an expertise to domain 

knowledge personnel for validation. In addition, the cost of computation for the 

proposed methodology is considered to be high compared to other in silico techniques. 

In one approach, gene expression signatures could be used alone as a source of 

information to build a representative drug profile. Another approach is to combine 

multiple sources of information to build a more accurate drug profile. Example of other 

sources includes chemical structure database. 

 
(Azuaje 2012) emphasized on the significant contribution of Drug-Target 

Interactions (DTIs) network as well as Drug-Drug interactions (DDIs) network in 

the drug discovery process. Analysis of both DTIs and DDIs networks provides 

a remarkable enhancement in clinical practice. The author provided an example 

of improving the quality of care for patients with cardiovascular diseases in 

particular. 

(Brown et al. 2016) developed a model to predict new drug therapies. The author 

combined information from two databases. One database contains gene 

interactions data, the other database includes chemical exposure drug data. The 

model successfully predicted five prostate cancer therapies from over 7000 

compounds. 

(Keane et al. 2015) proposed a model to predict drug targets based on PPIN. The 

author reported a case of Parkinson’s disease, the model successfully identified 4 

proteins related to neurological toxicity. The logic behind the proposed model is 
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that, if the drug (D1) interacts with protein (P1) and (D2) interacts with protein 

(P2) then, (P1) and (P2) are similar as long as (D1) and (D2) are similar. In 

another word, similar drugs interact with similar proteins. Drug interactions 

network was used as a similarity measure between drugs to predict protein targets 

(Mei et al. 2012). 

 

In a related article by (Peng et al. 2015), the author applied chemical similarity 

measures between drugs in order to provide the most promising drug prospect 

that can fit on specific protein sites. The author assumed that drugs with similar 

chemical structure will fit on the same protein receptors. This prediction model 

showed a competitive performance measure (AUC = 0.94). 

In a similar work by (Caniza, Galeano & Paccanaro 2017), the author utilized the 

chemical similarity alone in one model and compared it with a combination 

between the chemical similarity and the ontology annotations in another model. 

Prediction models were designed to predict novel drug targets. The assumption 

in this study was that drugs with similar chemical structures interact with similar 

targets. Results in both models were AUC 0.59 and AUC 0.69 respectively. The 

findings supported the significant role of the ontology annotation in enhancing 

model performance when combined with the chemical similarity. However, the 

overall model performance is not satisfactory compared to other models 

performance. 

In this paper by (Jin et al. 2017), the author developed a prediction model using 

the proximal gradient method to solve a regression problem, where each possible 

DDIs combination between 2 drugs is treated as a task. He used the reported 
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adverse drug reactions (ADRs) to the FDA as a training dataset for his model. 

The author claims superior performance over the standard matrix completion 

methods. The main advantage of this model is the possibility of predicting drug 

interactions of newly discovered drugs. The author evaluated the effectiveness of 

his proposed model against a real world database. 

According to (Hao, Bryant & Wang 2017), drugs having similar features may 

enhance the prediction accuracy of their neighbors. In his work, the author 

integrated network regularization along with the logistic function in order to 

predict the interactions between drugs and their targets such as (enzymes and 

receptors). The author highlighted the significance of drug repurposing, he also 

provided an example of a drug called (Celecoxib) which was initially approved 

to treat a condition related to bone diseases called (osteoarthritis). However, it 

was recently approved to be used in the prevention of particular cases of colon 

cancer. 

Gene expression combined with chemical structure data was utilized by (Sawada 

et al. 2018). The author predicted new drug indications with performance 

measures reported as (AUC = 0.75). 

Similarly, (Raja et al. 2017) predicted adverse drug reactions (ADRs) using drug-

gene interactions data. The author selected DDIs features and applied random 

forest technique as a classifier. He reported F-score of 0.87 as a performance 

measure of his prediction model. 

A semi-supervised model developed by (Peng et al. 2015) to predict drug-protein 
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interaction using the chemical similarity measures between drugs. The author 

used (Tanimoto coefficient) as a distance measure in the chemical structure space. 

He reported competitive results with AUC performance measure equals (0.94) 

(Hattori et al. 2003). 

In (Yoo et al. 2018), the author designed a unique algorithm to predict drug 

interaction by investigating molecular and phenotypic drug networks. The author 

introduced a novel method to create an accurate and representative drug profile 

based on systemic effects data. This profile was used to build a model to predict 

drug interactions. The author constructed 5,441 profiles of approved and 

investigational drugs. Those 5,411 drugs are connected to 3,833 phenotypes. He 

observed a strong possibility of interactions between drug pairs that are highly 

connected at phenotypes profile. The author reported a successful identification 

of therapeutic and adverse effects of drugs with high performance measures.  

He affirmed the significant role of tracing drug interaction in understanding the 

mechanism of action in molecular and phenotypic networks. Results reported by 

the author as scores for therapeutic effect: Area Under the Receiver Operating 

Characteristic (AUROC) = 0.731 ± 0.021, Area Under the Precision-Recall curve 

(AUPR) = 0.624 ± 0.003) and adverse effect (AUROC = 0.734 ± 0.033, AUPR = 

0.817 ± 0.015) predictions. In addition, when the genetic information associated 

with the phenotypes was sufficient, the author were able to predict therapeutic 

(AUROC = 0.731 ± 0.021, AUPR = 0.624 ± 0.003) and adverse effects (AUROC 

= 0.734 ± 0.033, AUPR = 0.817 ± 0.015) with higher performance. 
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Drug properties based on Lipinski’s rule of five can be utilized in drug 

repurposing and new DDIs discoveries (Munir, Elahi & Masood 2018). The 

author collected data related to 2062 drugs, he selected only 1052 of those drugs 

which fulfill Lipinski’s rule of five. The author applied clustering technique and 

reported 12 clusters formation. He developed DDIs in each cluster using the 

chemical structure as a measure of similarity between drugs. K-means was 

applied as a clustering algorithm. 

(Liu et al. 2016) extracted DDIs features from DrugBank and combined features 

related to target pathways from the KEGG database. The proposed model by the 

author was designed to predict new drug combinations and to avoid potential 

ADRs. In order to validate the performance accuracy of his model, he argued that 

DDIs were associated with the predicted pathways. 

In a recent work done by (Zhao & So 2018), the author conceded the significant 

role of machine learning in enhancing the drug repurposing process. He proposed 

a model to predict drug indication as an output utilizing drug expression as an 

input data that acquire transcriptomic information from a specific three cell lines 

(HL60, PC3, MCF7) were treated with a particular drug. The authors selected two 

groups of drugs called antipsychotics and antidepressants based on the 

Anatomical Therapeutic Chemical (ATC) classification system. The author 

compared the performance of more than one machine learning technique 

including deep neural networks (DNN), support vector machine (SVM), random 

forest (RF) in order to predict drug indications with binary classifier models. The 

author used nested three-fold cross-validation to evaluate the model performance 
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in order to avoid any biased estimation in prediction accuracy. External validation 

of the reported results was done by comparing the drug list included in the 

published clinical trials of the predicted indications to the drug list provided by 

the model. The author argues that, the top drug candidates as a psychiatric drug 

were considered in ongoing clinical trials, and that many other top hits were 

verified by already existing studies. 

(Zhang et al. 2018) applied a machine learning technique on data related to 

patients with coronary heart disease. The author provided a set of 

recommendations to improve the medical practice in terms of prevention and 

diagnosis for treating this group of patients based on a specific ML algorithm 

called association rules. In this work, the author proved that ML could provide a 

high-quality patient care based on a significant decision support system. 

(Liu et al. 2013) suggested that DDIs information alone could be utilized to 

predict physiological properties of drugs. The predicted features could be of much 

significant value to recommend a new indication for already existing drugs (drug 

repositioning). 

In a previous work performed by (Zhang & Huan 2010), The author proposed ten 

topological properties extracted from protein interaction networks. Three main 

groups of protein were identified: drug targets, genes related to disease, and 

essential genes. The author applied support vector machine and K-nearest 

neighbor to predict drug-protein targets based on topological properties. The 

author reported 80% prediction accuracy using 10-fold cross-validation. The 
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author mentioned the use of logistic regression as a technique for feature 

selection. However, most similar targets were identified using the k-nearest 

neighbor method. 

Application of network modularity was used by (Yu et al. 2016) to predict novel 

drug indications for already known drugs (drug repositioning). The author 

proposed an approach in which he considered the gene relations between drugs 

and diseases taking the network modularity architecture in his consideration. In 

his work, the author constructed two networks. The first network represented the 

relationship between drugs and their side effects. The second network represented 

the relationship between diseases and their symptoms. The principal logic behind 

the author’s work is the assumption that, similar drugs entail similar diseases. The 

author identified the distinct cluster modules in both (drugs and diseases) 

networks. Then, he connected all possible pairs of drugs and diseases. The model 

was based on known the associations between drugs and diseases, these drugs-

diseases relationships were extracted from the Comparative Toxicogenomics 

Database (CTD) database. One more factor the model relied on, is the local 

connectivity of each module in both (drugs and diseases) networks. The author 

predicted potential drug-disease relationships. He validated the results by 

extensive literature surveys and CTD database. A network connecting drugs with 

their corresponding side effects was constructed based on a similarity score 

between drugs. The cosine similarity was used to measure the distance between 

each pair of drugs. The cosine similarity values start from [0 to 1], where [0] 

means no common side effects are shared between the selected drug pair. 
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However, cosine similarity of value equals [1] means exactly the same side effects 

profile in both drug profiles. 

More concerns about drug repurposing in general and drug repurposing for 

cancer treatment in particular. Researchers reported successful cases of proven 

activity of drugs against cancer cell proliferation. For instance, tricyclic anti-

depressants are a group of drugs that were primarily indicated to treat psychiatric 

conditions such as depression mood. However, (Cardelli et al. 2018) affirmed 

that tricyclic anti-depressant-like drugs have the potential to be repositioned for 

cancer treatment. The discovered properties of such group of medicines provide 

more options for treatment combinations. Similarly, Nicardipine and Sulindac 

showed an anti-neoplastic effect against the proliferation of lung cancer cells as 

reported by (Shi & Zhijian 2018a) (Shi & Zhijian 2018b). 

 

(Hanusova et al. 2015) emphasized on the significance of repurposing drugs for 

cancer treatment. He mentioned a list of drugs showing a high potential activity 

against cancer cell proliferation. The list included a drug called Mebendazole, 

one of the predicted drugs by the proposed DDIs model with remarkable 

confidence. 

In a previous study by (Jamal et al. 2017), the authors investigated the 

neurological ADRs and have combined multiple drug features including the 

biological properties such as (enzymes, transporters, and targets). The chemical 

properties for each drug were also collected as the substructure fingerprints. In 
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addition, the phenotypic drug properties such as side effects (SE) and therapeutic 

indications were added to the set of features. In this study, the authors applied a 

feature selection technique called (relief-based) to identify the most relevant drug 

properties to the desired predictable target feature which is in this case (ADRs). 

The authors applied machine learning techniques to build a model in order to 

predict the neurological adverse drug reactions before the clinical trials testing 

begins on humans. In addition, in order to demonstrate the efficiency and 

relevancy of the models, the authors applied to model on anti-Alzheimer drugs to 

predict their adverse drug reactions. The side effects data were extracted from an 

open resource (SIDER) database. The models that were based on chemical 

properties showed accuracy 93.20%. While those models relied on phenotypic 

properties demonstrated accuracy equals 92.41%. Finally, biological properties 

succeeded to predict neurological adverse drug reactions with an overall accuracy 

of 82.11%. However, the authors confirmed that biological-based model was 

more informative than chemical and phenotypic based models. The authors 

reported an accuracy enhancement up to 94.18% in model performance due to 

combining all of the three properties (biological, chemical and phenotypic). 

Moreover, to prove the predictive ability and to validate the accuracy of the 

developed models, the models were tested on anti-Alzheimer drugs and on drugs 

without side effect information recorded in the database (SIDER). The authors 

believed that the proposed models were highly accurate as well as highly 

predictive. The authors extracted only those approved drugs from the DrugBank 

database. They mapped 1991 drugs from DrugBank to the side effect database 



25 

 

 

(SIDER) using the common and unique drug identifier between the two databases 

(PubChem CIDs). All the related side-effects and therapeutic indications were 

accordingly acquired. The constructed dataset included 933 drugs, 5462 side 

effects, and 3046 therapeutic indications. In this dataset, 933 drugs represented 

the example set. While all the 5462 side effects and 3046 therapeutic indications 

represented the feature set. The predictable attribute was the neurological adverse 

drug reactions. Each drug was represented as a binary matrix of value [0, 1] 

encoding the absence or presence of each of the corresponding features. 

In a dataset studied by (Yamanishi et al. 2008), the author utilized the chemical 

and the genetic drug information network to predict Drug-Target Interactions 

(DTIs). The dataset is considered the gold standard for later research work. The 

author predicted drug targets including enzymes, proteins, and receptors. 

Precise identification of drug-target interactions (DTIs) cases in the dataset is 

essential for machine learning models to generate accurate predictions especially 

in the field of drug repositioning. In the work done by (Peng et al. 2017), the 

authors mentioned that only cases experimentally approved as positive cases 

registered in DTIs databases. Whereas, all undiscovered or even unreported 

positive cases considered experimentally validated negative values. This problem 

has a significant effect on model prediction accuracy. The authors proposed a 

method to screen strongly reported samples of negative drug-target interactions 

cases in a deposited DTIs database. He calculated the probabilities for all negative 

samples for being true negatives or true positives. Then he applied support vector 

machine-based model for optimization. The authors tested the effectiveness of the 
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proposed method on four different classes of DTIs datasets. They validated the 

predicted results against unbiased drug database and extensive literature reviews. 

The authors emphasized that the reported AUC for the proposed method was the 

highest compared to 6 other states-of-the-art techniques. 

The application of computational techniques in the prediction of DTIs has 

become an essential step in the drug repositioning process. In a recent work by 

(Luo et al. 2017), the author concluded that the integration between multiple drug-

related networks could significantly improve the prediction performance 

compared to any individual single networks. 

Table 2.1Review Summary Review Summary showing machine learning information in the 

related work. In this table, the key database used in each study is listed as well as 

the predicted feature. 

 



 

 

 

 

 

 

 

 

Study Key Database Selected Features Predicted Features & Comments 

(Udrescu et al., 2016) DrugBank ID (Drug-Drug Interactions) Bipartite network drug interaction Pharmacological properties and drug behavior 

(Setoain et al., 2015) DrugBank,OMIM, KEGG and PGDB Gene expression Network Prediction > 70% drugs-diseases relationships 

(Brown et al., 2016) CTD, GEO Gene Network Plus Chemical attributes Predicted 5 Prostate Cancer Therapies 

(Keane et al., 2015) KEGG, OMIM, and PPIN The bipartite network between drugs and proteins Predict protein targets for drugs 

(Peng et al., 2015) DrugBank, KEGG, ChEMBL, Matador Chemical attributes and ADRs Predict protein targets for drugs. AUC = 0.94 

(Caniza et al., 2017) DrugBank, MeSH Chemical attributes and Ontology annotations Predict drug targets. AUC = 0.59-0.69 

(Jin et al., 2017) ADR, DDIs, FAERS Adverse drug reactions network (ADRs) Predict DDIs, ADRs 

(Sawada et al., 2018) LINCS, ChEMBL Gene expression combined with chemical structure data Predict drug indications. AUC = 0.75 

(Raja et al., 2017) DrugBank, CTD Gene interactions and DDIs ADRs. F-score = 0.87 

(Yoo et al., 2018) DrugBank, MeSH, OMIM, CTD Molecular and Phenotypic drug networks Predict Therapeutic and ADRs, AUROC = 0.731, AUPR = 0.817 

(Munir et al., 2018) ZINC Chemical attributes Predict DDIs 

(Liu et al., 2016) KEGG DDIs, Target Pathways ADRs 

(Zhao & So, 2018) CTD Gene expression Predict drug indications 

(Zhang & Huan, 2010) PPIN Protein interactions network Predict protein targets for drugs. 80% prediction accuracy 

(Yu et al., 2016) CTD Gene-drug, Gene-disease Predict drug indications 

(Jamal et al., 2017) DrugBank, SIDER, PubChem CIDs Biological, chemical, phenotypic Predict neurological ADRs 

 

Table 2.1Review Summary Review Summary showing machine learning information in the related work 
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2.3 Clinical Support of Predicted Properties. 

 
In 2012, (Fond, G and Macgregor, A and Attal, J and Larue, A and Brittner, M 

and Ducasse, D and Capdevielle, D 2012) reviewed 93 studies related to the 

effect of antipsychotic drugs on cancer development. The author expressed his 

ideas and concerns towards the possibility of antipsychotic drugs to function as 

anti-cancer drugs. 

 

(Singh & Sharma 2018) confirmed the cytotoxic properties of two substances 

called (berberine and sanguinarine) alkaloids. The authors reported a decrease 

in the activity of an enzyme called benzphetamine n-demethylase as a result of 

using berberine and sanguinarine alkaloids. These findings do not have a direct 

mechanism to explain the role of benzphetamine activity against cancer cells. 

However, it indirectly correlates benzphetamine level to the anti-cancer 

properties of the tested alkaloid substances. 

(Yin et al. 2018) mentioned the genetic correlation between alosetron and 

bladder cancer. 

(Bruno et al. 2018) acknowledge the preventive role of anti-thrombotic agents 

in cancer cell development as well as their role in reducing metastatic 

infiltration and overall mortality. 

Suramin used in the treatment for the African type of trypanosomiasis. However, 

it is considered as an investigational drug, clinical trials are currently testing 

anti-cancer properties. (Su et al. 2018)argues that the mechanism of action of 

suramin is not clear, and it might be due to its inhibitory effect on the DNA. 

Nevertheless, he supports future research to investigate the anti-cancer 
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properties of suramin. 

Tetracycline and doxycycline belong to Tetracycline’s drug group. (Lokeshwar, 

Escatel & Zhu 2001) affirmed the activity of doxycycline as a significant anti-

cancer cell agent. In addition, tetracycline was investigated in clinical trials for 

its anti-cancer properties against lung and breast cancer. 

Geldanamycin shows activity against colorectal and pancreatic cancers as 

reported by (Mayor-López et al. 2014) (Mohammadian et al. 2017). One 

reported clinical trial investigated the effectiveness of geldanamycin against 

hematological malignancy. 

Mebendazole belongs to anthelmintic drug group. It was approved for the 

treatment of different types of worms. However, (Rubin et al. 2018) supported 

the anti-cancer properties of Mebendazole. The author said that Mebendazole 

potentiated the immune system in the body which could be related to its anti-

cancer activity. 

In 1963, ethyl carbamate (urethan / urethane) was removed from the markets in 

Canada, USA, and the UK due to carcinogenic effects. However, in 2018, (Soni 

& Soman 2018) investigated the anti-cancer properties of aminocoumarin 

derivatives. One of the screened derivatives included ethyl carbamate moiety. 

Sirolimus belongs to a group of drugs called macrolides. It has potent 

immunosuppressant activities and its primary indication is the prophylaxis 

against organ rejection. Sirolimus is an investigational drug for bladder cancer 

treatment in the current clinical trials pipeline. In a recent work by (Jung et al. 
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2017), the author confirmed the anti-cancer properties of sirolimus. 

A recent review by (Lian et al. 2018) concluded that all published work by 

researchers who investigated the anti-cancer properties of gemfibrozil provided 

evidence of its activity against cancer cells in human. 

(Garcia-Quiroz & Camacho 2011) argued that histamine supports cell 

proliferation of both normal as well as cancer types. In addition, the role of 

histamine and inflammation in cancer progression was confirmed by (Coussens 

& Werb 2002). However, the reason why histamine was classified as anti-cancer 

might be due to the fact that some anti-cancer drugs have carcinogenic activity as 

well as reported in (Lien, E. J. and Ou, Xing-chang 1985). 

An invention registered by (Shi & Zhijian 2018c) demonstrated the efficacy of 

Desogestrel against colon cancer as well as breast cancer cells. These findings 

confirm the predicted results by the proposed computational model in this thesis. 

As mentioned in (Hanusova et al. 2015), metformin and pioglitazone primarily 

indicated for the treatment of diabetes (a disease characterized by high blood 

glucose level). However, clinical experimentation showed a high potential 

activity against cancer cells. These findings support the idea of repositioning 

metformin and pioglitazone for cancer treatment. Albendazole and mebendazole 

are another examples provided by the authors as a suggestion for drug 

repositioning. Albendazole and mebendazole belong to a drug group called 

(anthelmintic) which primarily indicated for the eradication of worm infection. 

Nevertheless, clinical evidence confirmed the anti-cancer properties for 
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Albendazole as well as Mebendazole. This clinical evidence confirms the 

predicted properties of the proposed model. 

In a previous study done by (Cohen, Dembling & Schorling 2002), the authors 

observed lower rates of cancer cases in patients with schizophrenia. The authors 

believe that antipsychotic drugs might possess anti-cancer properties. Clinical 

and computational studies proved the anti-cancer activity of members belong to 

this group. For instance, Phenothiazine inhibited the proliferation of various 

cancer cells at concentrations similar to those found in psychotic patients 

(Nordenberg et al. 1999). In addition, phenothiazine showed anti-cancer activity 

against glioma cells (Gil-Ad et al. 2004). Moreover, (Qi & Ding 2013) applied 

computational methods to analyze protein interactions network against the 

mechanism of action of phenothiazine. The authors confirmed the potential anti-

cancer mechanism by phenothiazine. A similar work done by (Yde et al. 2009) 

mentioned that the anti-cancer effects of Tamoxifen on breast cancer cells 

enhanced by chlorpromazine when given in combinations. 

(Barron et al. 2011) observed reduced rates in both mortality as well as the 

progression of breast cancer in patients receiving nonspecific β-blocker 

(propranolol) compared to those patients receiving specific β-blocker (atenolol). 

The authors concluded that preclinical observations provided associations 

between the inhibition of β2-adrenergic signaling pathway and the reduced rates 

in breast cancer progression and mortality. 

(Lee et al. 2007) mentioned that chlorpromazine inhibits proliferation of tumor 
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cells via the inhibition of mitotic kinesin. The authors added that the combination 

of chlorpromazine and pentamidine resulted in a more potent inhibitory action on 

cancer cells. This additional benefit could be due to the observed synergistic 

action between the two drugs on mitotic inhibition. 

Fluoxetine is a drug belongs to the anti-depressant class. However, (Peer & 

Margalit 2006) reported that fluoxetine could potentiate the cancer cell response 

to anti-cancer drugs via the possible chemo-sensitization mechanism. 

The association between metformin and risk reduction cancer-related mortality 

in diabetic patients had been reviewed and confirmed by (Franciosi et al. 2013). 

However, the authors emphasized the necessity of performing randomized 

clinical trials to investigate the efficacy of metformin on cancer cells. 

(Hosono et al. 2010) conducted a clinical trial to evaluate metformin activity on 

cancer cells. The authors administered metformin daily for 1 month to non- 

diabetic patients with a confirmed cancer diagnosis. The study confirmed a 

decline in proliferation rates of colorectal epithelial cells. Activity against breast 

cancer was also associated with metformin according to (Oliveras-Ferraros et al. 

2011), (Taylor et al. 2013). These clinical findings confirm the predicted anti-

cancer properties of metformin. 

Pioglitazone is another drug indicated for the treatment of diabetes. However, 

animal studies showed activity against liver and lung cancer as mentioned in 

(Hanusova et al. 2015). 

FDA initially approved Leflunomide for treatment of rheumatoid arthritis 
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disease. However, recent researches recognized it as a potent anti-cancer drug. 

(Zhang & Chu 2018) discussed the results of leflunomide’s effectiveness as well 

as the possible mechanisms of action of this drug to be an anti-cancer agent. 

 

2.4 Current Limitations 

 
The prediction performance of network-based models is limited compared to 

knowledge-based and statistical models. The binary matrix properties of the developed 

DDIs network are not greatly supporting the use of such network-based models. In a 

binary matrix of values [0, 1], [0] means absence of interactions, and [1] means presence 

of interactions. In other words, [0] value represents both cases where no interactions are 

reported and those cases where undiscovered (unreported) interactions occur. 

In addition, newly discovered drugs and drugs with limited use (orphan drugs) do 

not have the average number of reported interactions in their profile compared to 

relatively old drugs. This leads to inaccurate profile information and negatively affects 

the prediction model performance. 
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3    Research Material and Methods 

 
3.1   Overview 

 
The methodology steps in this dissertation are illustrated in (Figure 03.1 Methodology Steps 

Illustrated). The initial processing step extracts the Drug-Drug Interactions (DDIs) in the 

form of nodes and edges. Then, it creates a network graph representation. Next, it 

analyzes the DDIs network to investigate the unique cluster architecture. Afterward, it 

constructs a binary matrix that describes each drug profile as a set of features. Finally, 

it builds a model to predict drug indications using the binary matrix and a predictable 

class as a label attribute based on ATC classification. 
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Figure 03.1 Methodology Steps Illustrated 
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Figure 3.2. Modeling Process 

 

 
 

 
 

Figure 3.3 Classification Model Training and Testing Steps 

 
 

Figure 3.2. Modeling Process), Figure 3.3 Classification Model Training and Testing Steps) 

represents the classifications model steps. Training and testing steps are sub 

processes included inside the cross validation block. DT and NB are applied each 

one at a time.  
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3.2 Data Acquisition and Dataset Construction 

 
DrugBank is an open source database contains information related to drugs and 

describes its features. DrugBank lists drug interactions as a text format and it has regular 

updates. DrugBank (Law et al. 2013) Database Version 5.1.1 — recently released on 

July 3rd, 2018 was used in this work. Drug interactions are processed using Python 

(programming language) to extract drugs as nodes and the connection between each 

interacting drug pair as an edge. In this dissertation, 1991 unique drugs were identified 

as nodes. Each node has at least one interaction reported with another drug node. A total 

of 210,850 DDIs are reported as edges between nodes. 
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The first step in this work is a knowledge representation in the form of a network 

visualization to illustrate the connections between interacting drugs. Drug clusters were 

identified by running the modularity-based algorithm and Force Atlas II layout 

algorithm. 

The Modularity-based algorithm in our work identifies distinct communities (clusters) 

within a network. Each community has concentrated edges between their nodes. In 

other words, the nodes within any module tend to have more edges between themselves 

than edges with other nodes in different modules. Modularity analysis is used as an 

indicator of community detection in a network. Each modularity detected were 

identified by distinct color. Gephi v (0.9.2) (Bastian et al. 2009) is a visualization tool 

based on the Java platform. 

The Force Atlas II layout algorithm in our work is used to allow nodes to be in close 

position to all nodes they have a connection with. In addition, it allows nodes without 

edges to be far away from each other. 

The second step in dataset construction is to build a binary matrix from nodes and edges. 

The interactions network between drugs is extracted from the database in a text format. 

A list of each pair of interacting drugs is extracted using Python. Drug profile binary 

matrix with dimensions (1991*1991) is constructed in which rows represent a list of 

drugs, columns represent a list of features. 

The list of features are those drugs involved in interactions with the example set. 

Where, the binary value (v = [0, 1]) indicates whether or not there is an interaction. 

Decision Tree and Naive Bayes classifiers were applied using (RapidMiner Studio 

Version 9.0). The 10-folds cross-validation evaluation technique was used to validate 

the results. In this thesis, we performed 3 experiments. In each experiment, two different 

drug groups were compared at a time. 
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3.2.1 Experiment (1): Anti-hypertensive drugs VS Anti Allergic rhinitis drugs 

 
In this experiment, two groups of drugs were selected based on the highest number of 

population affected and the maximum number of DDIs their members have with other 

drugs. The first group is listed in Table (Table 03.1 List of Anti-Hypertensive drugs), this group 

includes 69 drugs and is indicated for the treatment of hypertension disease. The second 

group includes 48 drugs and is listed in Table (Table 3.2 List of Allergic Rhinitis drugs). 

First, the study visualizes the node location of the two groups under investigation 

on the DDIs network graph using Gephi v (0.9.2). Graph analysis is performed to 

calculate the number of clusters and node degree. 

Then, the DDIs data is used to build a binary matrix and apply classification 

algorithms (Decision Tree and Naive Bayes) to confirm the visual graph analysis with 

a measurable performance measure. The binary matrix includes 1991 feature attributes, 

two class labels, and a total of 117 example set. RapidMiner Studio V 9.0 is utilized to 

build, train, and validate the classification model. RapidMiner is a leading data mining 

tool. It is a graphical user interface based on Java platform. 
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No. Drug Name No. Drug Name No. Drug Name 

1 Acebutolol 31 Isradipine 61 Telmisartan 

2 Amiloride 32 Labetalol 62 Terazosin 

3 Amlodipine 33 Lisinopril 63 Timolol 

4 Atenolol 34 Losartan 64 Torasemide 

5 Bendroflumethiazide 35 Methyclothiazide 65 Trandolapril 

6 Betaxolol 36 Methyldopa 66 Triamterene 

7 Bisoprolol 37 Metolazone 67 Trichlormethiazide 

8 Captopril 38 Metoprolol 68 Valsartan 

9 Carteolol 39 Minoxidil 69 Verapamil 

10 Carvedilol 40 Moexipril  

11 Chlorothiazide 41 Nadolol 

12 Chlorthalidone 42 Nebivolol 

13 Cilazapril 43 Nicardipine 

14 Clonidine 44 Nifedipine 

15 Diltiazem 45 Nisoldipine 

16 Doxazosin 46 Nitroprusside 

17 Enalapril 47 Olmesartan 

18 Eplerenone 48 Oxprenolol 

19 Eprosartan 49 Pargyline 

20 Felodipine 50 Penbutolol 

21 Fosinopril 51 Perindopril 

22 Furosemide 52 Pindolol 

23 Guanabenz 53 Polythiazide 

24 Guanethidine 54 Prazosin 

25 Guanfacine 55 Propranolol 

26 Hydralazine 56 Quinapril 

27 Hydrochlorothiazide 57 Ramipril 

28 Hydroflumethiazide 58 Reserpine 

29 Indapamide 59 Spirapril 

30 Irbesartan 60 Spironolactone 

 

Table 03.1 List of Anti-Hypertensive drugs 
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No. Drug Name No. Drug Name 

1 Acetaminophen 25 Fexofenadine 

2 Alimemazine 26 Flunisolide 

3 Astemizole 27 Fluticasone propionate 

4 Azatadine 28 Hydrocodone 

5 Azelastine 29 Hydrocortisone 

6 Betamethasone 30 Hydroxyzine 

7 Brompheniramine 31 Loratadine 

8 Budesonide 32 Methdilazine 

9 Caffeine 33 Methylprednisolone 

10 Carbinoxamine 34 Methylscopolamine bromide 

11 Chlorphenamine 35 Montelukast 

12 Ciclesonide 36 Olopatadine 

13 Clemastine 37 Phenindamine 

14 Codeine 38 Pheniramine 

15 Cortisone acetate 39 Phenylephrine 

16 Cyclizine 40 Phenylpropanolamine 

17 Cyproheptadine 41 Prednisolone 

18 Desloratadine 42 Prednisone 

19 Dexamethasone 43 Promazine 

20 Dexbrompheniramine 44 Pseudoephedrine 

21 Dextromethorphan 45 Scopolamine 

22 Diphenylpyraline 46 Triamcinolone 

23 Doxylamine 47 Tripelennamine 

24 Ephedrine 48 Triprolidine 

 

Table 3.2 List of Allergic Rhinitis drugs 
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3.2.2 Experiment (2): Advanced breast cancer drugs VS NSAIDs 

 
Similarly, this experiment compares another two different groups of drugs. The first 

group is listed in Table (Table 3.0.3 List of Advanced Breast Cancer drugs investigated.), this 

group contains 25 drugs which are indicated for the treatment of advanced stage breast 

cancer disease. The second group includes 40 drugs, which belongs to a drug group 

labeled as (non-steroidal anti-inflammatory drugs), listed in Table (Table 3.0.4 List of 

NSAID drugs investigated.). 

The study followed the exact steps followed in Experiment (1). First visualization 

of nodes position in the DDIs network graph. Then, apply classification technique on 

the DDIs binary matrix using the corresponding predictable class attributes of 

Experiment (2). 
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No. Drug Name 

1 Paclitaxel 

2 Trastuzumab 

3 Afatinib 

4 Anastrozole 

5 Goserelin 

6 Capecitabine 

7 Fulvestrant 

8 Megestrol acetate 

9 Cisplatin 

10 Enzalutamide 

11 Gemcitabine 

12 Lapatinib 

13 Trastuzumab emtansine 

14 Vandetanib 

15 Cediranib 

16 Dasatinib 

17 Decitabine 

18 Docetaxel 

19 Everolimus 

20 Letrozole 

21 Vorinostat 

22 Bosutinib 

23 Exemestane 

24 Eribulin 

25 Sunitinib 

 

Table 3.0.3 List of Advanced Breast Cancer drugs investigated. 
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No. Drug Name No. Drug Name 

1 Aceclofenac 21 Fenbufen 

2 Flurbiprofen 22 Kebuzone 

3 Mefenamic acid 23 Meclofenamic acid 

4 Nabumetone 24 Benoxaprofen 

5 Suprofen 25 Naproxen 

6 Diclofenac 26 Parecoxib 

7 Misoprostol 27 Zomepirac 

8 Oxyphenbutazone 28 Etoricoxib 

9 Phenylbutazone 29 Ibuproxam 

10 Lumiracoxib 30 Indoprofen 

11 Oxaprozin 31 Niflumic Acid 

12 Tenoxicam 32 Valdecoxib 

13 Indomethacin 33 Etodolac 

14 Ketorolac 34 Ketoprofen 

15 Lornoxicam 35 Nimesulide 

16 Piroxicam 36 Tolmetin 

17 Azapropazone 37 Fenoprofen 

18 Meloxicam 38 Ibuprofen 

19 Tiaprofenic acid 39 Rofecoxib 

20 Celecoxib 40 Sulindac 

 

Table 3.0.4 List of NSAID drugs investigated. 
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3.2.3 Case Study: Anti-Cancer Drug Prediction. 

 
This case study seeks to draw the classification boundary between the groups of drugs 

showing anti-cancer properties against all other drugs using DDIs binary matrix dataset. 

The experiment selected 250 drugs listed in DrugBank v 5.1.1 and is classified as an 

anti-cancer group according to the ATC system. All remaining drugs in the DrugBank 

are labeled as a test group, this group contains 1741 drugs (1991-250). 

In this case study, we evaluate the classification performance of the model as well 

as investigate the model predictions for repurposing. In another word, we need to 

identify the drugs having the potential to be classified as an anti-cancer group. 

 

3.3 Prediction Algorithms 

 

3.3.1   Decision Tree (DT) 

 
A decision tree is a known classification technique. It splits the data into smaller 

subsets based on certain criteria. The end result is in the form of a tree representation 

with its root node at the top while decision nodes have one or more arms based on the 

split feature. The terminal part is called the leaf node which represents the class 

decision. ID3 (Quinlan 1986) is the most common algorithm that we used to build the 

decision tree based on two parameters (entropy and information gain). 

Entropy. The ID3 algorithm uses entropy to calculate the homogeneity of a sample. If 

the sample is completely homogeneous the entropy equals to zero. However, entropy 

equals one whenever the sample is equally divided. 

Information gain. The information gain is dependent on the decline in entropy value 

after each split on the dataset over an attribute. Building a decision tree is basically 

concerned with identifying the split attribute that returns the maximum information 

gain score. In other words, the most consistent branches are associated with information 

gain value. 
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3.3.2 Naive Bayes (NB) 

 
Naive Bayes is one of the supervised ML algorithms. It is based on a basic assumption 

in which the features are independent of each other. Each feature is assumed to have 

an independent distribution. Therefore, the covariance in features is not considered as 

a factor that might affect the performance. 

 

3.3.3 Deep Learning (DL) 

Recently, Deep Learning techniques are designed for scientific domains which store 

and process big data, such as the area of bioinformatics (Bacciu et al. 2018). Deep 

learning is basically adding multiple hidden layers in the neural network architecture. 

Each hidden layer is getting trained for optimum feature selection technique. The 

number of nodes in each hidden layer is decreasing towards the direction of the output 

layer (prediction layer). 
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3.4 Model Performance Evaluation Measures 

 
A total of 3 ML models were generated for DDIs, which were evaluated using multiple 

statistical measures, such as Accuracy, Precision, Recall, and F-measure. 

Accuracy (A) is the ratio of correctly identified examples either positive or 

negative in relation to the entire example set. 

 

Accuracy = 
  TP + TN  

TP + TN + FP + FN 

 

(9) 
 
 

Where: TP = True positive; FP = False positive; TN = True negative; FN = False negative 

 

Precision (P) is the ratio of correctly identified positive examples in relation to all 

predicted positive examples. 

 

Precision = 
  TP   

TP + FP 

 

(10) 

 

Recall (R) is the ratio of correctly identified positive examples in relation to all 

true positive examples. Recall measure could be referred to as (True Positive 

Rate). 

 

Recall = 
  TP   

TP + FN 

 

(11) 

 

False Positive Rate (FPR) is the ratio of incorrectly predicted positive examples 

in relation to all true negative examples. FPR expresses the correctly identified 

negative examples. 

 

False Positive Rate = 
  FP  

FP + TN 

 

(12) 
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F-measure is the harmonic mean of precision and recall. 

 
 

 Precision ∗Recall  
F= 2 *     

Precision +Recall
(13) 
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4 Results and Discussion 

 
4.1   Overview 

 
This chapter illustrates the visual positioning of each drug node and their relative 

distance compared to other nodes of the same class. In addition, it presents the 

Confusion Matrix for each classifier in Experiment (1), Experiment (2), and the case 

study. 

Each drug group is identified by a distinguishable color to visually spot their 

location on the constructed DDIs network. The classification model provides a 

quantifiable measure of the visually drawn boundary between each drug pair. The 

visual graph analysis provides interpretation of the model prediction candidates for 

repurposing. 

 

 
Figure 4.1 Overall DDIs network visualization 
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The visual representation of the DDIs complex network is illustrated in Figure (Figure 

4.1 Overall DDIs network visualization). It represents a number of isolated nodes with 

distinct colors from their corresponding neighbors. This indicates that the node has 

been classified as a member of one group but yet, it also shows some affinity to a 

different group of drugs. For example, Azelastine is initially classified as an 

antihistamine (a drug used for the treatment of allergic conditions) but its location on 

the complex network shows affinity to a different community that is characterized by 

increased bleeding tendency. Clinical practice confirms that nose bleeding is a 

commonly reported side effect of Azelastine. This finding could provide a clue about 

the association between the drug node position on the DDIs network graph and its 

uncovered pharmacological features. 
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4.1.1 Experiment (1): Anti-Hypertensive Drugs VS Anti Allergic Rhinitis Drugs 

 
Figure 4.2 Anti-Hypertension VS Anti Allergic Rhinitis) shows the node clustering of two drug groups in the 

DDIs network. Red nodes represent (Anti- Hypertensive group), blue nodes represent (Anti-Allergic 

Rhinitis group). Red nodes show a relatively distinct boundary compared to the sporadic distribution of 

blue nodes. The degree distribution for each drug group over each modularity cluster is reported in  

Table 4.2 Degree Distribution Experiment (1). It confirms the localization of red nodes in 

modularity number (0). 61 drugs belong to Anti-Hypertensive Group are clustered in 

modularity number (0) which contains a total of 301 drugs. However, blue nodes are 

scattered over 5 modularity clusters. Further analysis of the graph shows 4 blue dots are 

located in modularity number (0) where the majority of red dots are. 

 

 

 

 

 

Accuracy: accuracy: 100% +/- 0% (micro average: 100%) 

 True Anti HTN Class True Allergic rhinitis Class Class Precision 

Predicted Anti HTN Class 69 0 100.00% 

Predicted Allergic rhinitis Class 0 48 100.00% 

Class Recall 100.00% 100.00%  

 

Table 4.1 DT Performance Metrics (Anti-Hypertensive VS Anti Allergic rhinitis) 

 
 

Table (Table 4.1 DT Performance Metrics (Anti-Hypertensive VS Anti Allergic rhinitis)) reports 

the Confusion Matrix of the Decision Tree (DT) classification algorithm applied over 

the Anti-Hypertensive and Anti-Allergic Rhinitis group. It shows a perfect 

classification measures with a reported 100% for all performance indicators (Accuracy, 

Precision, Recall). The DT model demonstrates the capability of perfectly identifying 

each member of the two investigated groups based on the DDIs binary matrix features. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Modularity No. Anti-Allergic Rhinitis 

Group 

Relative 

% 

Anti-Hypertensive 

Group 

Relative 

% 

Other Drugs Grand 

Total 

0 4 1.33% 61 20.27% 236 301 

1 0 0.00% 0 0.00% 222 222 

2 1 1.18% 0 0.00% 84 85 

3 25 6.83% 3 0.82% 338 366 

4 14 2.92% 4 0.84% 461 479 

5 5 0.93% 3 0.56% 529 537 

6 0 0.00% 0 0.00% 2 2 

 

 

Table 4.2 Degree Distribution Experiment (1) 

 

 

5
0
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Figure 4.2 Anti-Hypertension VS Anti Allergic Rhinitis 
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Figure 4.3 Decision Tree Result Experiment (1) 

 

 

 

 

 
Figure (Figure 4.3 Decision Tree Result Experiment (1)) demonstrates the DT results of 

Experiment (1). The results summarize the logic of the classification concluded by the 

DDIs dataset provided. DT concludes that the Amifostine node is a key determiner to 

be considered in order to differentiate between the Anti-Hypertensive group and Anti-

Allergic Rhinitis group. No reported DDIs between members of Anti-Allergic Rhinitis 

group and Amifostine. However, all members of the Anti-Hypertensive group have a 

documented DDIs with Amifostine. 

Figure (Figure 4.4 Amifostine Drug Interactions Network) depicts the Amifostine edges in 

the DDIs network graph, where Amifostine is the central node. The graph confirms the 

presence of connections between Amifostine with all members of the Anti-

Hypertensive group (red nodes). However, no connection between Amifostine with any 

member of the Anti-Allergic Rhinitis group (blue nodes) was observed. 
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Figure 4.4 Amifostine Drug Interactions Network 

 

 

 

 
Accuracy: 99.17% +/- 2.50% (micro average: 99.15%) 

. True Anti HTN Class True Allergic rhinitis Class Class Precision 

Predicted Anti HTN Class 69 1 98.57% 

Predicted Allergic rhinitis Class 0 47 100.00% 

Class Recall 100.00% 97.92%  

 

Table 4.3 NB Performance Metrics (Anti-Hypertensive VS Anti Allergic rhinitis) 

Table (Table 4.3 NB Performance Metrics (Anti-Hypertensive VS Anti Allergic rhinitis)) presents the 

performance measures of Naive Bayes (NB) classifier. 
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Figure 4.5 Clemastine Position 

 

NB shows 100% Recall of all Anti-Hypertensive group. However, Precision for the same 

group was reported as 98.57%. One drug (Clemastine) belongs to the Anti-Allergic group 

was classified as Anti-Hypertensive by NB. The position of Clemastine in the DDIs graph 

network as illustrated in figure (  

Figure 4.5 Clemastine Position) do not fully agree with the predicted feature. 
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Drug Name Modularity No. Node Degree Drug_Group 

Verapamil 5 838 Anti-Hypertensive class 

Diltiazem 5 807 Anti-Hypertensive class 

Isradipine 5 749 Anti-Hypertensive class 

Clemastine 5 715 Allergic rhinitis class 

Caffeine 5 317 Allergic rhinitis class 

Dextromethorphan 5 275 Allergic rhinitis class 

Astemizole 5 163 Allergic rhinitis class 

Montelukast 5 104 Allergic rhinitis class 
 

Table 4.4 Modularity Number (5) Degree Distribution 

 

Table (Table 4.4 Modularity Number (5) Degree Distribution) displays the drug nodes 

within modularity number (5). The total nodes are 8, 3 of them belong to an Anti-

Hypertensive group, and the remaining 5 belong to the Anti-Allergic group. 

Clemastine has a node degree value equals 715. This value is significantly higher than 

the degree of other nodes of the same group. 
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4.1.2 Experiment (2): NSAIDs VS Advanced Breast Cancer Drugs (ABCD) 

 
The result in this section presents the relative node position of two different drug groups. 

Figure ( 

Figure 4.6 Advanced Breast Cancer Drugs VS NSAIDs) illustrates the clustering pattern of the 

NSAIDs group (blue nodes) and ABCD group (red nodes). The two groups have almost 

clear defined boundaries without overlapping areas. The nodes of the same group are 

located relatively close to other nodes of the same group than to nodes of the different 

group. Unlike all red nodes, Cisplatin shows a tendency towards the area of blue nodes. 

Table ( 

Table 4.5 Naive Bayes Performance metrics (NSAIDs VS Advanced Breast Cancer)) reports the 

performance results of NB classifier, the prediction agrees with the graph visualization 

analysis. NB successfully identified 24 out of 25 nodes of the ABCD Group (A), 1 node 

(Misoprostol) was predicted as a member of Group (A), whereas, it belongs to Group (B). 

Table (Table 4.6 Node Distribution Experiment (2)) displays the degree distribution of all nodes 

overall modularity clusters. It is obvious that modularity number (4) contains all Group 

(B) members plus one member of Group (A). 

 

Accuracy: 97.14% +/- 5.71% (Micro Average: 96.92%) 

 True A True B Class Precision 

Predicted Group A (Advanced Breast Cancer) 24 1 96.00% 

Predicted Group B (NSAIDs) 1 39 97.50% 

Class Recall 96.00% 97.50% . 

 

Table 4.5 Naive Bayes Performance metrics (NSAIDs VS Advanced Breast Cancer) 
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NB classifier predicted Misoprostol instead of Cisplatin to be a member of the 

ABCD Group (A). Cisplatin is the only member of Group (A) that is located in 

modularity number (4). However, all 40 members of Group (B) are exclusively 

localized in this particular modularity. Further graph analysis to modularity number (4) 

is presented in table (Table 4.7 Modularity (4) Graph analysis).  Node degree and eigenvector 

centrality measures are listed and sorted in a decreasing order. 
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Figure 4.6 Advanced Breast Cancer Drugs VS NSAIDs 

 

 

 

 

 

 
Modularity No. ABCD Group (A) Relative % NSAIDs Group (B) Relative % Other Drugs Grand Total 

0 0 0.00% 0 0.00% 301 301 

1 7 3.15% 0 0.00% 215 222 

2 0 0.00% 0 0.00% 85 85 

3 0 0.00% 0 0.00% 366 366 

4 1 0.21% 40 8.35% 438 479 

5 17 3.17% 0 0.00% 520 537 

6 0 0.00% 0 0.00% 2 2 
 

Table 4.6 Node Distribution Experiment (2) 
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Drug Name Modularity No. Node Degree Eigenvector Centrality Drug Group 

Celecoxib 4 694 0.73 NSAID 

Etoricoxib 4 530 0.57 NSAID 

Diclofenac 4 514 0.54 NSAID 

Rofecoxib 4 492 0.52 NSAID 

Meloxicam 4 482 0.50 NSAID 

Valdecoxib 4 478 0.50 NSAID 

Lumiracoxib 4 455 0.45 NSAID 

Indomethacin 4 460 0.45 NSAID 

Ibuprofen 4 453 0.45 NSAID 

Naproxen 4 449 0.45 NSAID 

Mefenamic acid 4 439 0.43 NSAID 

Piroxicam 4 439 0.43 NSAID 

Phenylbutazone 4 433 0.43 NSAID 

Oxaprozin 4 430 0.42 NSAID 

Suprofen 4 430 0.42 NSAID 

Tenoxicam 4 430 0.42 NSAID 

Etodolac 4 430 0.42 NSAID 

Ketoprofen 4 430 0.42 NSAID 

Flurbiprofen 4 429 0.42 NSAID 

Nimesulide 4 402 0.42 NSAID 

Parecoxib 4 345 0.40 NSAID 

Nabumetone 4 401 0.38 NSAID 

Zomepirac 4 311 0.35 NSAID 

Ketorolac 4 388 0.35 NSAID 

Tiaprofenic acid 4 386 0.35 NSAID 

Meclofenamic acid 4 384 0.35 NSAID 

Tolmetin 4 384 0.35 NSAID 

Fenoprofen 4 383 0.35 NSAID 

Sulindac 4 389 0.35 NSAID 

Lornoxicam 4 311 0.34 NSAID 

Aceclofenac 4 310 0.34 NSAID 

Oxyphenbutazone 4 359 0.32 NSAID 

Niflumic Acid 4 272 0.28 NSAID 

Fenbufen 4 255 0.25 NSAID 

Ibuproxam 4 255 0.25 NSAID 

Indoprofen 4 255 0.25 NSAID 

Kebuzone 4 255 0.25 NSAID 

Azapropazone 4 254 0.25 NSAID 

Benoxaprofen 4 254 0.25 NSAID 

Cisplatin 4 244 0.22 Advanced Breast Cancer 

Misoprostol 4 101 0.10 NSAID 
 

Table 4.7 Modularity (4) Graph analysis 
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Cisplatin shows node degree and eigenvector centrality values much closer to the 

members of the NSAIDs group. In addition, Misoprostol records significantly extreme 

low values compared to other members of the NSAIDs group. 

 

 

Accuracy: 94.29% +/- 7.00% (Micro Average: 93.85%) 

 True A True B Class Precision 

Predicted Group A (Advanced Breast Cancer) 22 1 95.65% 

Predicted Group B (NSAIDs) 3 39 92.86% 

Class Recall 88.00% 97.50%  

 

Table 4.8 Decision Tree Performance metrics (NSAIDs VS Advanced Breast Cancer) 

 

Table (Table 4.8 Decision Tree Performance metrics (NSAIDs VS Advanced Breast Cancer)) 

reports the DT classifier results. Both NB and DT predicted Misoprostol as Group (A) 

member. Unlike NB, DT predicted two more drugs (Dasatinib and Paclitaxel) in 

addition to Cisplatin as Group (B) members. 
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Figure 4.7 Decision Tree Result Experiment (2) 
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Figure (Figure 4.7 Decision Tree Result Experiment (2)) displays the Decision Tree results 

of the experiment (2). In this figure, the root node selected by the DT based on the 

maximum homogeneity in each leaf generated is located at the top (Alendronic acid). 

All nodes reported an interaction with Alendronic acid is classified as NSAIDs Group 

(B). The left arm of the tree further classifies the drugs based on another attribute (4R)-

limonene. True or false indicates whether or not a drug has an interaction reported to 

the selected attribute. The line thickness infers the relative number of examples in each 

leaf compared to the overall examples. 

 

 
 

 
 
 

Figure 4.8 Misoprostol Position 

 

Figure (Figure 4.8 Misoprostol Position) illustrates a close view to the position of Misoprostol and 

Cisplatin on the DDIs network graph compared to the high-level view in figure ( 

Figure 4.6 Advanced Breast Cancer Drugs VS NSAIDs). 
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No. Drug Name Label Naive Bayes Prediction Confidence Supporting Evidence 

1 Misoprostol NSAID Advanced Breast Cancer 1 (Lawson et al., 1994) 

2 Cisplatin Advanced Breast Cancer NSAID 1  
Table 4.9  NB Predictions of Misoprostol Anti-Cancer Properties. 

 

 
 

No. Drug Name Label Decision Tree Prediction Confidence Supporting Evidence 

1 Misoprostol NSAID Advanced Breast Cancer 1 (Lawson et al., 1994) 

2 Cisplatin Advanced Breast Cancer NSAID 1  

3 Dasatinib Advanced Breast Cancer NSAID 1  

4 Paclitaxel Advanced Breast Cancer NSAID 1  
Table 4.10 Table 4.9 DT Predictions of Misoprostol Anti-Cancer Properties. 

 
 

A summary in (Table 4.9 and Table 4.10) represents the classification results of both 

NB and DT between NSAIDs and Advanced Breast Cancer Group. (Lawson et al., 

1994) mentioned a clinical evidence from the literature that confirms the anti-cancer 

properties of Misoprostol. 
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Figure 4.9 Anti-Cancer Drugs 

 
4.1.3 Case Study: Anti-Cancer Drug Prediction. 

 
This study tests the classification model on 2 drug groups. The first group includes 250 

drugs approved for cancer treatment with clinically confirmed anti-cancer properties. 

All drug names and drug-drug interactions data are extracted from DrugBank (version 

5.1.1) database. Figure (Figure 4.9 Anti-Cancer Drugs) displays the clustering of anti-cancer 

drugs in the DDIs network. 

Anti-Cancer drug group is spread over the entire DDIs network. However, a 

significant number of this group is localized in a particular location in the graph. Table 

(Table 4.11 Anti-Cancer Drugs Node Distribution Case Study) displays the number of total nodes 

in each modularity and the component percentage within each modularity from each 

group. Modularity (1) contains the highest number of Anti-cancer drug group. 
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Modularity No. Anti-cancer Relative % Other Drugs Relative % Grand Total 

0 18 5.98% 283 94.02% 301 

1 116 52.25% 106 47.75% 222 

2 0 0.00% 85 100% 85 

3 18 4.92% 348 95.08% 366 

4 37 7.72% 442 92.28% 479 

5 106 19.74% 431 80.26% 537 

6 0 0.00% 2 100% 2 

 

Table 4.11 Anti-Cancer Drugs Node Distribution Case Study 

 
A total number of drugs within modularity (1) is 222 drugs, 52.25% of them belong to 

the Anti-Cancer group. Modularity (5) contains 106 Anti-Cancer drugs out of total 537 

drugs. No Anti-Cancer drugs are present in modularity number (6, 2). 

 

 

Accuracy: 92.02% +/- 27.10% (Micro Average: 92.02%) 

 True Test Class True Anti-Cancer Class Precision 

Predicted. Test Class 1665 82 95.31% 

Predicted. Anti-Cancer 76 168 68.57% 

Class Recall 95.58% 67.20%  

 

Table 4.12 Decision Tree Performance Measures (Anti-Cancer VS Others) 
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Accuracy: 92.92% +/- 25.65% (Micro Average: 92.92%) 

 True Test Class True Anti-Cancer Class Precision 

Predicted. Test Class 1662 62 96.41% 

Predicted. Anti-Cancer 79 188 70.41% 

Class Recall 95.46% 75.20%  

 

Table 4.13 Deep Learning Performance Measures (Anti-Cancer VS Others) 

The confusion matrix of DT is presented in (Table 4.12 Decision Tree Performance Measures (Anti-

Cancer VS Others)). DL shows a minor improvement of the precision and recall values of the 

Anti-Cancer group compared to DT’s.  

 

(Table 4.14, Table 4.15) provide a list of drugs with predicted anti-cancer properties. 

Each drug prediction is supported by clinical evidence from the literature that affirms 

the computational predictions. The reported clinical evidence along the prediction 

results could provide a guidance towards bringing more attention to those drugs, initiate 

controlled clinical trials to affirm its efficacy against cancer cell development. 
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No. Drug Name Prediction Supporting Evidence 

1 Clozapine Anti-Cancer (Fond, G and Macgregor, A and Attal, J and Larue, A and Brittner, M and Ducasse, D and Capdevielle, D, 2012) 

2 Azathioprine Anti-Cancer (Rossi et al., 2018) 

3 Inotuzumab ozogamicin Anti-Cancer (Dan et al., 2018) 

4 Podofilox Anti-Cancer (Hu et al., 2018) 

5 Albendazole Anti-Cancer (Cheong et al., 2018) 

6 Cyproterone acetate Anti-Cancer (SIA, 2018) 

7 Puromycin Anti-Cancer (Ueki & Hayman, 2018) 

8 Sparsomycin Anti-Cancer (Moschetta et al., 2018)(Huang et al., 2018) 

9 Interferon alfa-n1 Anti-Cancer (Moschetta et al., 2018) 

10 Lithium Anti-Cancer (Ozerdem et al., 2018) (Luo et al., 2018) 

11 Benzphetamine Anti-Cancer (Singh & Sharma, 2018) 

12 Anakinra Anti-Cancer (Wu et al., 2018) (Castaigne et al., 2018)(Tulotta & Ottewell, 2018) 

13 Luliconazole Anti-Cancer (Ahmad et al., 2018) 

14 Alosetron Anti-Cancer (Yin et al., 2018) 

15 Resveratrol Anti-Cancer (Rauf et al., 2018) (Huminieck & Horbańczuk, 2018) 

16 Cabergoline Anti-Cancer (Huang et al., 2018) 

17 Colchicine Anti-Cancer (Rossi et al., 2018) (Ueki & Hayman, 2018) 

18 Prasugrel Anti-Cancer (Bruno et al., 2018) 

19 Hexestrol Anti-Cancer (Iwase et al., 2018) 

20 Mycophenolic acid Anti-Cancer (Shah & Kharkar, 2018) (Fernández-Ramos et al., 2017) 

21 Exisulind Anti-Cancer (Iwase et al., 2018) (Shi & Zhijian, 2018b) (Horinaka et al., 2014) 

22 Metamizole Anti-Cancer (Malsy et al., 2017) 

23 Pirfenidone Anti-Cancer (Li et al., 2018) 

24 Ranibizumab Anti-Cancer (Castaigne et al., 2018) (Rossi et al., 2018) 

25 Sulindac Anti-Cancer (Iwase et al., 2018) (Shi & Zhijian, 2018b) (Horinaka et al., 2014) 

 

Table 4.14 Drugs with predicted Anti-Cancer Properties (a) 
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No. Drug Name Prediction Supporting Evidence 

26 Filgrastim Anti-Cancer (Norenberg, 2017) (Castaigne et al., 2018) 

27 Daidzin Anti-Cancer (Graziani et al., 2018) (Huang et al., 2016) 

28 Celecoxib Anti-Cancer (Hao et al., 2017) 

29 Capsaicin Anti-Cancer (Clark & Lee, 2016) (Kang et al., 2016) (Granato et al., 

2015) 30 Misoprostol Anti-Cancer (Lawson et al., 1994) 

31 Ethyl carbamate Anti-Cancer (Soni & Soman, 2018) 

32 Suramin Anti-Cancer (Su et al., 2018) 

33 Tetracycline Anti-Cancer (Lokeshwar et al., 2001) 

34 Geldanamycin Anti-Cancer (Mayor-López et al., 2014) 

35 Histamine Anti-Cancer (Garcia-Quiroz & Camacho, 2011) 

35 Gemfibrozil Anti-Cancer (Lian et al., 2018) 

36 Doxycycline Anti-Cancer (Lokeshwar et al., 2001) 

37 Sirolimus Anti-Cancer (Jung et al., 2017) 

38 Mebendazole Anti-Cancer (Rubin et al., 2018) 

 

Table 4.15 Drugs with predicted Anti-Cancer Properties (b) 
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5 Conclusions and Future Work 

 
Drug-Drug Interactions (DDIs) data could be utilized to build reliable drug profiles. In 

which, each drug profile is represented as a vector of features in a binary matrix of 

values [0, 1]. The binary matrix could be further analyzed by a Machine Learning 

classification model for drug repurposing to predict new drug indications. 

This thesis addresses the significance of Machine Learning techniques in drug 

repositioning. The study investigates the role of DDIs information network as predictor 

features for novel drug properties. The study confirms that DDIs network clusters 

visualization provides significant information about drug features. In addition, network 

analysis supports the interpretation of unexplained drug behavior and suggest clues for 

drug repositioning. Furthermore, ML models successfully predicted drug properties 

based on DDIs information. 

A case study about the prediction of anti-cancer drug properties successfully 

identified 76 drugs as potential drug repositioning candidates for cancer treatment. In 

this study, we selected the cutoff point of prediction significance as ≥ 95%. The 

candidates with confidence below the cutoff threshold were not mentioned. Extensive 

clinical literature survey supports the predicted features of selected drug candidates. In 

conclusion, applications of ML concepts and techniques provide the necessary tools to 

advance novel drugs discovery process.  

Suggested ideas for future work continuation and improvement should be targeting 

the negative values in databases in order to distinguish the true absence of interactions 

from missing (not reported) or hidden (not yet discovered) cases. The negative values 

are considered a huge challenge for supervised machine learning techniques. We 

recommend investigating the role of applying association rules algorithm as a matrix 

completion technique for missing data, and evaluate its role on prediction algorithm 

performance measures. 
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In addition, the data type in DDIs database should be continuous or at least ordinal 

instead of binary [0, 1].  The binary data type is not accurately describing the 

interaction severity in the biological system. 
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