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Abstract 
 

Cooperative Multi-Agent systems, where agents work together as one team to achieve a 
common goal, form the majority of real-life multi-agent applications. Therefore, it is 
important to find a suitable multi-agent reinforcement learning algorithm to help agents 
to achieve their goal through finding the optimal joint policy that maximizes the team’s 
total reward. Since the last decade, several multi-agent learning algorithms have been 
proposed and applied to cooperative multi-agent settings. However, most of these 
learning algorithms do not allow agents to communicate with each other during the 
execution time, making it hard for agents to coordinate their actions especially in large-
scale and partially observable domains. Thus, several coordinated learning algorithms 
which allow agents to communicate during the execution time have been applied to 
large cooperative multi-agent domains and proved to be efficient and effective in such 
domains. 

Nonetheless, to the best of our knowledge, there is no work that studied the 
characteristics of such learning algorithms under different network structures. The work 
done in this thesis aims to study and analyze the characteristics of one of the recent 
coordinated multi-agent learning approaches, the coordinated Q-learning algorithm, in 
two-player two-action cooperative and semi-cooperative games under random and scale-
free network structures. Also, this thesis conducts a comparison between the original Q-
learning algorithm and the coordinated Q-learning algorithm to better understand the 
difference between both of these algorithms. A simulator has been built in order to 
conduct experimental analyses.  

Experimental results verify the robustness, effectiveness and efficiency of the coordinated 
Q-learning algorithm. The coordinated Q-learning algorithm converges faster and 
performs better than the original Q-learning algorithm due to its distributive nature and 
its communication feature which do not exist in the original Q-learning algorithm. Also, 
the performance of the coordinated Q-learning is not affected by the network structures 
of random and scale-free networks. Such characteristics can be utilized in future works 
to further improve the performance of different coordinated learning algorithms in 
different cooperative multi-agent domains. 



 خُلاصة

 

 كفريق معاً  لعملحيث يقوم جميع العملاء با ،)أو متعددة المستخدم�( نظمة التعاونية متعددة العملاءتشكل الأ 

 تعزيزل مناسبة خوارزمية إيجاد يعتبر لذلك،. متعددة العملاء الواقعية تطبيقاتالمعظم  مشترك، هدف لتحقيق واحد

 فإنها في النظام إذا طبُِّقت يالت الأمثل شتركةالم سياسةال إيجاد خلال من هدفهم تحقيقفي  لمساعدتهم م العملاءتعل

منذ  التعلملتعزيز  خوارزمياتال من العديد و تطبيق اقتراح تم. للفريق كتسبةالم مكافأةلل الكلية قيمةالمن  رفعت

 وقت أثناء البعض بعضهم مع لتواصلبا للعملاء تسمح لا الخوارزميات هذه معظم فإن ذلك ومع ،العقد الماضي

التي  و النطاق واسعة جالاتالم في خصوصا ،حركتهم و أع�لهم تنسيق العملاء على الصعب من يجعل م� التنفيذ،

 للعملاء سمحو ت سقالمن علمي تحفز التالت جديدة خوارزميات عدة تطبيق تم بالتالي، و. فقط جزئياً  معاينتها �كن

 .المجالات هذه فيهذه الخوارزميات  فعالية و كفاءة تم إثبات و ،مجالات في عدة التنفيذ فترة خلال بالتواصل

في عدة شبكات  هاقيتطبيتم عندما  خوارزمياتهذه ال مثل خصائص ةسادر ل عمل بحثي أي يوجد لا ،علمنا حد إلى

 التي تنسق الخوارزميات أحدث من واحدة خصائص تحليل و دراسة إلى هدفي هذه الرسالة في المنجز العمل .ختلفةم

ه يتم تطبيق هذ.  ”Coordinated Q-learning“، و تعرف هذه الخوارزمية باسم في الأنظمة متعددة العملاء تعلمال

 Q-learning  الأصلية خوارزميةال أداء مقارنة يتم و في عدة ألعاب تعاونية و شبه تعاونية الرسالة هذه الخوارزمية في

 جهاز بناء تم قد و. الخوارزميات هذه ب� الفروقات لتحديد Coordinated Q-learning و الخوارزمية المنسقة

المنسقة  الخوارزمية كفاءة و فعالية و متانة التجريبية النتائجت ثبِ تُ  .اربالتج تنفيذ و تحليل أجل من محاكاة

Coordinated Q-learning التي تؤدي أفضل من الخوارزمية الأصلية  ّ ب�  الاتصال ميزة و يةالتوزيع لطبيعتها نظرا

باختلاف  يتأثرالمنسقة لا أن أداء الخوارزمية  تم ملاحظة .Q-learningلا توجد في الخوارزمية الأصلية  التيالعملاء 

 مختلف في ختلفةالم خوارزمياتال أداء تحس�ل المستقبلية الأع�ل في الخصائص هذه استخدام �كنو ، نوع الشبكة

 .متعددة العملاء المجالات



 

Acknowledgements 
 

I would like to thank Allah for providing me the enough strength to finish 

this important work and to thank my parents for their continuous support 

and encouragement and for providing the best environment for me to do 

the best I can. Also, I would like to thank my thesis supervisor Dr. Sherief 

Abdallah for his support and guidance throughout the thesis and for always 

being there whenever I needed help. Finally, I would like to thank my 

brother for always reminding me that there is a time when the person must 

take a break and enjoy life! 



i 
 

Contents 

List of Figures                                                                                                                    iii 

List of Tables                                                                                                                      v 

Chapter 1   Introduction                                                                                                     1 

        1.1    General Overview    …………………………………………………………..   1 

        1.2    Motivations and Objectives of the Thesis    …………………………………..   2 

        1.3    The Thesis Research Questions    …………………………………………….   3 

        1.4    Organization of the Thesis     ………………………………………………...   3 

Chapter 2   Background                                                                                                      4 

        2.1    Multi-Agent Reinforcement Learning    ……………………………………...   4 

   2.1.1    Problem Definition    ………………………………………………….   6 

   2.1.2    General Representative Models    ……………………………………...   7 

        2.2    Game Theory    ……………………………………………………………...  11 

   2.2.1    Game Representations    ………………………………………………. 11 

   2.2.2    Types of Games    …………………………………………………..… 14 

   2.2.3    Nash-Equilibrium    …………………………………………………..  17 

        2.3    Multi-Agent Learning Algorithms    …………………………………………  18 

   2.3.1    MARL Algorithms Classification    …………………………………...  18  

   2.3.2    Q-Learning Algorithm   ………………………………………………  19 

        2.4    Coordinated Multi-Agent Reinforcement Learning    ………………………..  21 

   2.4.1    Problem Definition    …………………………………………………  21 

   2.4.2    Related Work    ……………………………………………………….  22 

        2.5    Summary    …………………………………………………………………..  23 



ii 
 

Chapter 3   Methodology                                                                                                   24 

        3.1    Coordinated Q-Learning Approach    ………………………………………..  24 

   3.1.1    The Approach Framework and Assumptions    ………………………..  25 

   3.1.2    The Coordinated Q-learning Process    ……………………………….  27 

   3.1.3    Choosing the Optimal Joint Action    ………………………………… 28 

        3.2    Agents Grouping Mechanism    ……………………………………………...  31  

        3.3    Our Problem Domain and Network Structures    ……………………………  34   

   3.3.1    Cooperative and Semi-Cooperative Games    ………………………….  34 

   3.3.2    Network Structures    …………………………………………………  36 

Chapter 4   Experimental Analysis                                                                                      38 

        4.1    Experimental Setup    ……………………………………………………….    38 

       4.2    Experimental Results and Evaluation    ……………………………………..    39 

  4.2.1    Coordination Game Results    ………………………………………..    39 

  4.2.2    Iterated Prisoner’s Dilemma Results    ……………………………….    42 

  4.2.3    Further Investigations on the Coordinated Q-learning algorithm .……   44 

  4.2.4    Illustrative comparison between learning algorithms   …………………  45 

       4.3    Experiments Summary    …………………………………………………….   48 

      4.4    Generalizing the Coordination Approach   ……………………………………  49 

Chapter 5   Conclusion and Future Work                                                                          51 

       5.1    Conclusion    …………………………………………………………………  51 

       5.2    Future Work    ………………………………………………..……………...  53 

 

 

References                                                                   54        



iii 
 

List of Figures 

 

2.1   An illustration of a SARL setting  …………………………………………......…….….  5 

2.2  An illustration of a MARL setting with two agents  ………………...…………..…….…  5 

2.3  An illustration of an extensive form game  …………………………………………..…..  12 

 

3.1  An example of the adopted coordination approach framework  …………….…..…….…  26 

3.2  An example of a factor graph  ………………………………………………..….……....  29 

3.3  An example of an acyclic factor graph  ………………………………………………......  31 

3.4  Examples of using the grouping technique to distribute 10 agents among 2 groups  …….  32 

3.5  Examples of using the grouping technique to distribute 10 agents among 3 groups  ….…  32 

3.6  Examples of using the grouping technique to distribute 10 agents among 4 groups  …….  33 

3.7  Examples of using the grouping technique to distribute 10 agents among 5 groups  …….  33 

3.8  Examples of Random Networks  …………………………………………………..……  36 

3.9  Examples of Scale-Free Networks  ………………………………………….……….…..  37 

 

4.1  An example of  the tested network structures  ………………………………………..…   39 

4.2  The Average Payoff of the original Q-learning algorithm when playing the Coordination game 
in random and scale-free networks  ……………………………………………………….….  40 

4.3  The Average Payoff of the coordinated Q-learning algorithm when playing the Coordination 
game in random and scale-free networks  …………………………………………….………  41 

4.4  The Average Payoff of the original Q-learning algorithm when playing the Iterated Prisoner’s 
Dilemma game in random and scale-free networks  …………………………………….……  43 



iv 
 

4.5  The Average Payoff of the coordinated Q-learning algorithm when playing the Iterated 
Prisoner’s Dilemma game in random and scale-free networks  …………………………….…  44 

4.6  The Average Payoff against the number of delegate agents in the Coordinated Q-learning 
algorithm when playing the iterated prisoner’s dilemma  ……………………………….……  45 

4.7  A comparison of the performance of the original and coordinated Q-learning algorithms when 
playing the coordination game with exploration rate ℇ = 0.1  ………………………….….....  46 

4.8  A comparison of the performance of the original and coordinated Q-learning algorithms when 
playing the coordination game with exploration rate ℇ = 0.01  …………………….…...……  47 

4.9  A comparison of the performance of the original and coordinated Q-learning algorithms when 
playing the coordination game with exploration rate ℇ = 0.001  …………………….…….....  47 

4.10  A comparison of the performance of the original and coordinated Q-learning algorithms when 
playing the iterated prisoner’s dilemma with exploration rate ℇ = 0.1  ………………….……  48 

4.11  A Generalized form of the Coordination Approach  ……………………………...……  50 

 

 

 

 

 

 

 

 

 



v 
 

List of Tables 

 

2.1  The payoff matrix of a normal form game  ……………………………..…………….….  13 

2.2  The payoff matrix of the Battle of the Sexes game  ……………………………...……….  14 

2.3  The payoff matrix of an example of a Coordination Game  …………………..…..……...  15  

2.4  The payoff matrix of the Matching Pennies game  ……………………………..………..  16 

2.5  The payoff matrix of the prisoner’s dilemma game  …………………………..………….  17 

 

3.1  The Payoff matrix of the tested coordination game  ………………………..…………….  34 

3.2  The Payoff matrix of the tested iterated prisoner’s dilemma game  ……………..………...  35 

 

 

 



P a g e  |1 
 

Chapter 1  

Introduction 
 

This chapter provides a general overview about cooperative multi-agent systems, their importance 

and how to solve the potential problems presented in them through using coordinated multi-agent 

reinforcement learning. In addition, this chapter presents the motivations of this thesis, its main 

contributions to the current knowledge and the research questions it aims to answer.  

1.1 General Overview 

Cooperative multi-agent systems form the majority of real-life multi-agent systems where agents 

act as one team and try to jointly solve a common problem and maximize the team total reward 

(Panait & Luke, 2005). Several multi-agent reinforcement learning frameworks have been 

proposed to model cooperative systems to help agents achieve their common goal by finding the 

best joint action that maximizes the team total reward through applying a multi-agent learning 

algorithm. However, as the number of agents increases, the complexity of the agents’ joint 

interactions gets higher resulting in a poor modeling of the cooperative system. Learning 

algorithms applied to poor models achieve poor solution and agents may not able to reach their 

goal. Networked Distributed Partially Observable Markov Decision Process (ND-POMDP) model 

has been proposed to solve this complexity problem (Nair et al., 2005). However, most of the 

learning algorithms applied to ND-POMDPs are offline algorithms (i.e. does not learn during 

execution time) and need a very accurate model which is very expensive and hard to be obtained in 

large-scale, partially observable domains.  

Coordinated multi-agent reinforcement learning is a new multi-agent reinforcement learning 

approach that has been proposed to coordinate the interactions between agents in cooperative 

systems by allowing online communication between agents during the execution time. In a recent 

work carried out by Zhang and Lesser (2011) a model-free and scalable coordinated multi-agent 

learning approach (will be known from now on as the Coordinated Q-learning approach) has been 
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proposed and applied to ND-POMDPs to compute the optimal joint action that maximizes the 

group total reward. Experimental results, achieved in the same work, verify the effectiveness and 

efficiency of the proposed approach when applied in the distributed sensor networks domain. 

1.2 Motivations and Objectives of the Thesis 

Since many multi-agent applications in real life are based on cooperative multi-agent systems, 

that can be solved using coordinated multi-agent reinforcement learning approaches, and as the 

coordinated Q-learning approach does not need a specific model to be applied in and requires low 

communication and computation complexity compared to other coordinated approaches, it is 

important to study agents’ interactions in such systems and to solve the potential problems which 

can be faced when searching for the optimal joint action for agents deployed in these cooperative 

systems in order to improve the performance of real-life multi-agent systems that are built based on 

cooperative multi-agent systems. Therefore, this thesis aims to study and analyze the performance 

of the coordinated Q-learning approach in two-player two-action cooperative and semi-cooperative 

games, which are commonly used as a framework to best represent agents’ interactions in a 

cooperative domain, under different network structures such as random and scale-free networks. 

The main contribution of this thesis to the current knowledge is to specify and understand the 

characteristics of the coordinated Q-learning approach in order to improve its performance in 

different cooperative multi-agent systems and to state under what situations and networks the 

coordinated Q-learning approach performs better. A simulator of the tested games, networks and 

learning algorithms has been built to conduct several experiments in order to accomplish the 

objectives of the thesis. While the original work of the coordinated Q-learning algorithm (Zhang 

& Lesser, 2011) tests the performance of the algorithm in the sensor network domain and focuses 

on regular grids, here we study the performance of the coordinated Q-learning algorithm under 

random and scale-free networks when applied in games which, due to its simplicity, enable us to 

get more insights about the algorithm performance. Also, this thesis provides a comparison 

between the coordinated Q-learning algorithm and the original Q-learning algorithm to 

understand the main difference between both algorithms. Finally, since the coordinated Q-learning 

approach depends on distributing the learning agents among a number of groups, the original work 
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of the coordinated Q-learning algorithm used a hand-coded grouping of agents, while a simple 

grouping algorithm has been proposed in this thesis to perform the grouping process and to ensure 

cycle-free grouping. 

1.3 The Thesis Research Questions  

This thesis aims to achieve its main contribution, mentioned in the above section, by answering 
the following research questions: 

• Does the coordinated Q-learning approach help in improving the performance of 
multi-agent learning algorithms in networks when applied in two-player two-action 
cooperative/semi-cooperative games?  
 

•  Is the performance of the coordinated Q-learning approach affected by different 
network structures such as random and scale-free networks?  

 

• Is there a simple grouping methodology to cluster agents in a network automatically? 
Can such methodology ensure cycle-free clustering? 
 

•  Is the performance of the coordinated Q-learning approach affected by some of its 
parameters? 

1.4 Organization of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 provides a comprehensive review about 

Multi-Agent Reinforcement Learning (MARL), Game Theory and Coordinated MARL. Chapter 3 

presents a detailed description of the adopted coordination approach, the coordinated Q-learning 

approach, by presenting the main assumptions of the approach, how the learning process is carried 

out, how the global joint policy is computed and how we adjust this approach to work in different 

domain than the one it was designed for. The settings of the experiments conducted to evaluate and 

compare the performance of both the original Q-learning and the Coordinated Q-learning 

algorithms in two-player two-action games under different network structures are provided in 

Chapter 4. Chapter 4 also presents the experimental results, investigates the possible impact of 

modifying some parameters on the performance of the coordinated Q-learning algorithm and 

answers the thesis research questions. Finally, Chapter 5 concludes the work done in this thesis and 

provides a set of possible works to be done in the future. 
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Chapter 2  

Background 
 

This chapter provides a comprehensive review about Multi-Agent Reinforcement Learning 

(MARL), its problem definition, the proposed models for representing these problems and some 

examples of the learning algorithms used to solve these models. It also reviews the main concepts of 

Game Theory, its main types and several examples of each. Finally, this chapter defines Coordinated 

MARL, its importance and reviews several related works about it. 

2.1 Multi-Agent Reinforcement Learning 

Reinforcement Learning (RL) has been an interesting and challenging research topic to be studied 

and investigated in Machine Learning field for many years. Unlike “supervised learning”, training 

examples for learning systems in RL are not provided in the shape of input-output pairs. Instead, 

learning systems must explore and search for the most suitable output for every input in which, for 

each input, there is a set of possible outputs each has a value for being chosen and the output with 

the highest value is considered to be the best output for that input. The goal of RL is to reinforce 

outputs which result in high values and to weaken outputs with small values (Sandholm & Crites, 

1995; Sandholm & Crites, 1996). RL is carried out as follows: each learning system/agent observes 

the environment and identifies its current state in this environment, selects an action to perform on 

the environment (making it transition to a new state) and then receives a reward of performing that 

action at the previous state and then repeat from observing the new current state. 

Machine Learning studies two settings of RL, Single-Agent RL (SARL) and Multi-Agent RL 

(MARL). In SARL settings, learning systems are agents who, consecutively and separately, interact 

with the environment they are deployed in and aim to learn the best action that affects the 

environment in a way which maximizes their utility function. While in MARL settings, learning 

systems are agents who, simultaneously, interact with both the environment they are deployed in 
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and other agents and aim to learn the best action which maximizes their utility function. See 

figures 2.1 and 2.2 for an illustration example of SARL and MARL respectively.  

                                              Action 

                                             Reward 

 

Figure 2.1: An illustration of a SARL setting. Each Agent, separately, executes an action that 

changes the state of the environment and receives a reward value for executing the action. 

 

                        

 

                                      Action                                                              Action 

                                     Reward                                                             Reward 

 

 

 

 

Figure 2.2: An illustration of a MARL setting with two agents. Both agents execute an action that 

affects the state of the environment and the other agent and receive a reward for executing the action 

The main difference between SARL and MARL is that in the former, each agent learns separately 

from the other and its action has nothing to do with other agents, while in the latter, agents learn 

at the same time and the action of an agent affects the environment, limiting the possible set of 

actions of other agents, and can directly affect other agents (Shoham & Powers, 2010). Since in 

this thesis we are interested in MARL, the following sub-sections define the problem faced in 

MARL, its general representative models and provide several examples of learning algorithms 

which solve these models. 

 

Environment 

 Agent 

 

Environment 

 Agent Agent 

Performs an action and 
Receives a reward 

Performs an action and 
Receives a reward 
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2.1.1 Problem Definition 

The problem of MARL can be described as a decision problem where a multiple number of 

agents need to choose the best action that maximizes their utility function. The environment, 

where the agents are deployed, has a set of states in which each agent has a set of possible actions to 

choose from in each of these states. After executing actions, agents receive an immediate reward 

value for executing each action at each state. The challenge faced in MARL settings is that, since 

agents are learning simultaneously in the same environment causing it to be non-stationary and in 

realistic situations agents usually suffer from partial observability in which no agent has a full 

observation of the world states, each agent must take into its considerations the states and actions 

of other agents in order to learn effectively and efficiently (Abdallah & Lesser, 2007). However, in 

real-life situations agents suffer from limited communication during execution time in that they 

cannot communicate their states and actions to all other agents. The goal of MARL can be one for 

all agents (i.e. all agents aim to find the best joint actions to maximize their total expected reward) 

or one for each agent (i.e. each agent aims to maximize its own expected reward). Agents with the 

same goal are called cooperative agents, while agents with different goals are called self-interested 

agents (Mostafa, 2011).  

There are two types of MARL decision problems: non-sequential decision making problems, 

where agents only care about finding the best policy (i.e. mapping states to actions) in order to 

maximize the immediate payoff (i.e. reward value), and sequential decision making problems, 

where agents are interested in finding the best policy that maximizes the future payoff. Sequential 

decision making problems are more difficult than non-sequential decision making problems in that 

agents interact with the environment for a longer period of time and each executed action in a state 

affects the set of possible actions for next states (Sandholm & Crites, 1995). Sequential decision 

making problems are used in most of MARL applications. MARL sequential decision problems can 

be formalized through using several representative models that simplify the underlying problem 

and provide an optimal solution to such problems. The following sub-section defines several 
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Since the main contribution of this thesis is to study and analyze the performance of the 

coordinated Q-learning algorithm in cooperative/semi-cooperative two-player two-action games 

under different network structures, and games involve having self-interest agents, ND-POMDPs 

model is used to formalize our problem domain and is emerged with game theory concept to 

model the interactions between self-interest agents in this domain. Game The next section defines 

the concept of game theory, its problem definition and main types of games, and several examples 

of games from each type. 

2.2 Game Theory 

Game Theory is considered to be a very powerful framework that studies and represents the 

interactions between two or more learning agents when playing a game. An agent playing a game 

cares only about maximizing its expected reward which depends on the actions of other agents it is 

interacted with. Each agent has a strategy which is defined as a plan that tells the agent which action 

to choose at every possible situation faced when playing the game.  

An agent’s strategy can be either pure or mixed. Pure strategy states that the agent will choose this 

strategy with probability 1, while Mixed strategy states that the agent will choose this strategy with 

probability value that is less than 1 and larger than 0. If there are n agents playing a game where each 

agent has m actions to choose from at each game stage, then the possible combination of joint 

actions is mn. The main object of game theory is the Stage Game. Stage Game is defined by a set of 

agents {1,2,…, n} where for each agent i there is a finite set of actions  𝐀𝐢 and a reward function 

𝐑𝐢 ∶  A1  ×  A2 × … × An  →  ℜ  that depends on all agents’ actions. 

2.2.1 Game Representations 

There are two representations of games in Game Theory, extensive form representation and 

normal form representation. Note that we use the terms agents and players interchangeably.  
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• Extensive Form Representation 

Extensive form represents sequential games where agents do not play the game at the same time 

(i.e. play one after the other) and later agents know the actions of previously played agents 

(Shoham & Leyton-Brown, 2009). Games represented using this model are viewed as a decision 

tree, where nodes represents the agent’s choice of actions and the player index (or name) is placed 

on top of the each node that represents its actions choice. The last numbers are defined as the 

payoffs (i.e. rewards) of the players. Figure 2.3 illustrates an example of a game, where two players, 

each with possibility of selecting from two actions, modeled using extensive form. 

 

 

 

 

Figure 2.3: An illustration of an extensive form game 

In the above example, player1 starts playing by choosing either of action “A” or Action “B”. Then 

player2 observes the action played by player1 and depending on this action it selects either of 

action “a” or action “b”. If player1 selects action “A” then player2 selects action “a”, then player1 

will receive a reward value of 3 and player2 will receive a reward value of 1, but if player2 selects 

action “b” then player1 will receive a reward value of 0 and player2 will receive a reward of 2. Same 

scenario works when player1 selects action “B” and player2 selects either of “a” or “b”. 

• Normal Form Representation 

Unlike extensive form, that represents the game as a tree, normal form represents a game, where 

agents play simultaneously without knowing the action choice of each other or play consecutively 

but no agent knows the action(s) of previously played agents (Shoham & Leyton-Brown, 2009), as 

1,2 

a 

3,1 0,2  3, 1 

A B 

a b b 

Player 1 

Player 2 Player 2 
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a payoff matrix in which the players, their strategies and the reward value of each possible 

combination of actions (i.e. joint actions) are included. Table 2.1 illustrates an example of a game 

where two players, each with possibility of choosing one out of two actions, represented using 

normal form model. 

Player 1/ Player 2 Left Right 

Up (1,2) (0,0) 

Down (0,0) (4,3) 

Table 2.1: An illustration of the payoff matrix of a normal form game 

In the above example, player1 can choose either to move Up or move Down and player2 can 

choose wither to move to the Left or to move to the Right. The first number in every cell in the 

payoff matrix represents the reward value of the row player (i.e. player1) and the second number in 

every cell represents the reward value of the column player (i.e. player2). In this example if player1 

chooses to move Up and player2 chooses to move to the left then player1 receives a reward value of 

1 and player2 receives a reward value of 2, but if player1 chooses to move Down and player2 

chooses to move to the Left, then both players will get a reward value of 0 (i.e. no reward). 

Extensive form games can be transformed into normal form games but usually this conversion 

suffers from a high computational complexity in the representation (Leyton-Brown & Shoham, 

2008). The work in this thesis focuses on using two-player two-action normal form repeated games 

where two agents play simultaneously with the goal of finding the best action to maximize their 

reward function value, with each agent has two actions to choose from.  

A Repeated Game is defined as the repetition of the stage game for a number of times in which 

the current action of each agent affects the set of future possible actions of other agents (Conitzer 

& Sandholm, 2007). The games used in this thesis are the Coordination game and the iterated 

prisoner’s Dilemma game which are discussed in the next section. 
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2.2.2 Types of Games 

In game theory, games can be classified into three types: Cooperative, Competitive and Semi-

Cooperative or Semi-Competitive Games. 

• Cooperative Games 

Agents playing cooperative games act like one group with a common goal, for each agent in the 

group, which is maximizing the expected payoff of the whole group by coordinating agents’ 

strategies (Hoen et al., 2006). Agents in this type of games prefer the group-interest over self-

interest. A good example to illustrates cooperative games is the Battle of the Sexes game, a two-

player two-action game where a couple prefer to spend the weekend together than spending it 

alone in one of two places: the cinema or a football match. However, the wife prefers to go to the 

cinema while the husband prefers to go to the football match. Table 2.2 demonstrates the payoff 

matrix of the Battle of the Sexes game where the wife is the row player (player1) and the husband is 

the column player (player2). 

Player 1/ Player 2 Cinema  Football Match 

Cinema (3,2) (0,0) 

Football Match (0,0) (2,3) 

Table 2.2: An illustration of the payoff matrix of the Battle of the Sexes game 

 

Although each player gets a better payoff by choosing the opposite action of the other (i.e. player1 

gets better payoff when choosing Cinema and player 2 gets a better payoff by choosing Football 

Match), they still prefer to choose the same action together than choosing their preferred actions. 

There are two pure Nash-Equilibrium strategies in this game: both players choose to go to the 

Cinema and both players choose to go to the Football Match. 
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Another good example of cooperative games is the Coordination game where 2 players must 

choose the same action in order to get the best joint reward. Table 2.3 illustrates the payoff matrix 

of a coordination game where two robots are trying to pass each other in a narrow pathway. If both 

robots choose the same action, then they will manage to pass each other successfully. But if each 

agent chooses a different action than the other agent, both agents will bump into each other (i.e. 

from each agent’s perspective, if both agent chooses to move to their right hand side or both choose 

to move to their left hand side, then they will pass each other. Otherwise, a collision will occur.). 

Therefore, both agents must coordinate their actions in order to maximize their total payoff. 

Usually, this type of games requires communication between agents in order to coordinate their 

actions more efficiently. In this thesis, a similar Coordination game to this example is used and 

discussed in detail in the next Chapter.  

Player 1/ Player 2 Left  Right 

Left (5,5) (0,0) 

Right (0,0) (5,5) 

Table 2.3: An illustration of the payoff matrix of an example of a Coordination Game 

• Competitive or Non-Cooperative Games 

Agents play this type of games as individuals, each aims to maximize its own expected payoff. In 

competitive games, agents prefer self-interest to group-interest and each agents chooses the action 

that maximizes its reward regardless of how this action may affect the agent’s partner (Hoen et al., 

2006). A good example of competitive games is the matching pennies game, a two-player two-

action game, where each agent can choose either to play Head or Tail. In this game, if both agents 

play the same action (i.e. either both agents choose Head or both agents choose Tail) then the row 

player receives a reward of 1 and the column player receives a negative reward (i.e. punishment) of 

1 (i.e. -1). But if both players choose different actions (i.e. one agent chooses Head and the other 

chooses Tail) then the row player receives a punishment of 1 and the column player receives a 

reward of 1. Table 2.4 illustrates the payoff matrix of the matching pennies game. 
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Player 1/ Player 2 Head Tail 

Head (1,-1) (-1,1) 

Tail (-1,1) (1,-1) 

Table 2.4: An illustration of the payoff matrix of the Matching Pennies game 

In the above example, each agent chooses its action without taking into consideration how this 

action affects its partner’s reward. There is no pure Nash-Equilibrium strategy in this game in 

which agents choose actions with probability 1 to maximize their own reward. Instead, there is a 

mixed Nash-Equilibrium strategy in which agents choose any of their possible actions with the 

same probability value (i.e. both agents choose any action with probability 1
2
 ) (Abdallah & Lesser, 

2006). Therefore, the mixed Nash-Equilibrium of this game is (0.5, 0.5). It is clearly observed that 

the value of the gain of an agent is exactly the value of the loss of another agent. Games with such 

property are called Zero-Sum Games in which the sum of total rewards of each agent playing such 

games is equal to zero (Shoham & Leyton-Brown, 2009). 

• Semi-Cooperative or Semi-Competitive Games 

In some cases, agents in competitive games exhibit a cooperative behavior in order to maximize 

their own payoff. Competitive games with cooperative behavior and cooperative games with 

competitive behavior are called Semi-Cooperative or Semi-Competitive games. A very good 

example of this type is the prisoner’s dilemma game. As observed in table 2.5 which illustrates the 

prisoner’s dilemma payoff matrix, it is clearly shown that by comparing the possible combinations 

of agents’ actions, a player receives a better reward when choosing to “Defect”, regardless of the 

action of the other player, than to choose “Cooperate” which is a more risky action in which if and 

only if both players choose to “Cooperate” they will get the best joint possible reward, but if only 

one player chooses to “Cooperate” then it will receive no reward and the other player with “Defect” 

as an action will receive the highest reward a single player can get.  
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Player 1/ Player 2 Defect  Cooperate  

Defect  (1,1) (5,0) 

Cooperate  (0,5) (3,3) 

Table 2.5: An illustration of the payoff matrix of the prisoner’s dilemma game 

This comparison demonstrates that the action “Cooperate” is dominated by the action “Defect” 

and should not be used by agents when playing the prisoner’s dilemma game and that the joint 

action (Defect, Defect) is the only Nash Equilibrium of this game (Osborne & Rubinstein, 1994; 

de Groot, 2008). However, although (Defect, Defect) is the only Nash Equilibrium of this game, it 

is clearly observed that it is not the optimal joint action that maximizes the reward value of agents 

in this game. On the contrary, the joint action (Cooperate, Cooperate) is the optimal joint action 

of this game as it maximizes the reward value of each player.  

In this game, it is notable that both players suffer from a low reward value if they choose different 

actions from each other. A solution to this problem is to coordinate the agents’ actions in a way 

that will avoid confliction in their action choice. Therefore, agents will have 2 possible strategies to 

play, which are (Cooperate, Cooperate) and (Defect, Defect). In this thesis, we are interested in 

studying the performance of a learning algorithm in cooperative and semi-cooperative (or semi-

competitive) games. The next sub-section defines the best response and Nash-Equilibrium.  

2.2.3 Nash-Equilibrium 

Given the strategies of other agents, a strategy that selects the action which results in the highest 

payoff of an agent is called the best response of that agent. Nash-Equilibrium is the joint strategy 

where each agent plays a best response to the strategies of its opponent(s) (Babes, Wunder & 

Littman 2009).  According to John Nash (1950), each game has at least one Nash-Equilibrium. A 

competitive game is considered to be solved once the Nash-Equilibrium is found since no agent 

can get better payoff by changing its strategy unilaterally. However, in cooperative games there is 

usually more than one Nash-Equilibrium. In this case, and when agents do not communicate with 
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each other, it is unclear which Nash-Equilibrium strategy is chosen by each agent. Nash-

Equilibrium can be classified into two types: Pure Nash-Equilibrium, where all agents play pure 

strategies, and Mixed Nash-Equilibrium, where there is at least one agent playing a mixed strategy 

(de Groot, 2008). 

Multi-Agent learning algorithms are used to help agents, when playing a game, to find their 

actions which maximize their payoff (i.e. helps solving the game by reaching Nash-Equilibrium). 

The next section defines MARL algorithms and provides several examples of their types.  

2.3 Multi-Agent Learning Algorithms 

Several MARL algorithms have been proposed and applied to many multi-agent domains 

(including games) to help agents learn their optimal action that will maximize their expected reward. 

In this section, MARL algorithms are classified into a number of families to simplify the discussion 

and comparison between each of them and the Q-learning algorithm is defined and discussed in 

detail.  

2.3.1 MARL Algorithms Classification  

In this thesis, MARL algorithms are classified in to three families: Q-learners, Equilibrium learners 

and Gradient Ascent learners.  

• Q-learners 

Algorithms of this class are designed based on the Q-learning algorithm which is the focus in this 

thesis and is discussed later in this section. Therefore, they can only learn deterministic policies. This 

property makes this class of MARL algorithms suffer from limitations when applied to competitive 

domains, where stochastic policies exist. Also, algorithms of this class require observing the actions of 

other agents which is impractical in large domains with partial observability. Independent Learners 

(ILs) and Joint Action Learners (JALs) are good example of algorithms of this class (Claus & 

Boutilier, 1998). 
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• Equilibrium Learners 

Unlike previous class, algorithms of this class can learn stochastic policies. Examples of algorithms 

of this class are Nash-Q (Hu & Wellman, 2003), which assumes that both actions and rewards of 

other agents are observable, and AWESOME (Conitzer & Sandholm, 2007) that besides requiring 

each agent to know the actions of other agents assumes that the underlying game structure is 

known. After observing the actions of agents, each agent tries to compute the Nash-Equilibrium. 

These algorithms converge to Nash-Equilibrium in self-play (i.e. when all agents play using the 

same learning algorithm).  

• Gradient Ascent Learners 

Learning algorithms of this class learns a stochastic policy though following the gradient of the 

expected reward. The expected reward gradient is defined as a vector that points towards the 

highest value of the increase of the expected reward. Examples of algorithms of this class are: 

Infinitesimal Gradient Ascent (IGA) algorithm (Singh, Kearns & Mansour, 2000), Generalized 

IGA (GIGA) algorithm (Zinkevich, 2003), IGA-WoLF Algorithm (Bowling & Veloso, 2002), 

GIGA-WoLF algorithm (Bowling, 2005) and Weighted Policy Learner (WPL) algorithm 

(Abdallah & Lesser, 2008). While IGA and GIGA only converge to pure Nash-Equilibrium, 

GIGA-WoLF and WPL converge to both pure and mixed Nash-Equilibrium with WPL 

outperforms GIGA-WoLF in large-scale partially observable domains (Abdallah & Lesser, 2008). 

2.3.2 Q-Learning Algorithm  

Q-learning (Watkins & Dayan, 1992) is originally defined as a single-agent learning algorithms 

which helps agents to accomplish their goal, that is finding an optimal policy that maximizes their 

reward, in MDPs. However, Q-learning is proved to be working in Multi-agent settings too. In this 

algorithm, each agent has a Q-table where Q-values of each state action pair are stored.  For each 

agent, each Q-value or state action value represents the expected payoff that the agent receives when 

choosing that action at that state. Let us consider a two-player two-action game where Q-learning 
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algorithm is used to find the optimal actions of each agent. The size of the Q-table of each agent is 

equal to the number of possible action combination for that agent. In case of two-player two-action 

games, the Q-table of each agent has 22 = 4 Q-values. In repeated games, at the end of each stage the 

Q-value of the executed joint action is updated for each agent using the following Q-function: 

Q(s, a) = (1 − 𝛼)Q(s, a) +  𝛼[𝑟 +  𝛾 𝑚𝑎𝑥a′Q(s′, a′)]                 (1) 

Where 𝑠  is the current state, a is the action chosen by the agent at state 𝑠 and 𝛼 is the learning rate 

whose value ranges from 0 to 1 in which as the value of 𝛼 increases, the more important the learned 

information is. 𝛾 is the discount factor whose value ranges from 0 to 1 and as the value increases, the 

agent ignores the immediate high reward and focuses on the long-term high reward. If  𝛾 ≥ 1 then 

there is a high possibility of a divergence in the learning algorithm performance. 𝑟 is immediate 

reward received by the agent once choosing action a at state 𝑠. 𝑠′ is the new state resulted after 

executing action a at state 𝑠 and 𝑚𝑎𝑥a′Q(s′, a′) is the maximum future expected reward value 

where a′ is the best action that maximizes the expected reward value of the next state 𝑠′.  

Let us consider the example of two-player two-action game where Q-learning algorithm is used, the 

learning process is carried out by each agent as follows 

1) Initialize the Q-table randomly (e.g. (0, 0, 0, 0)) 

2) Let s  represents the current state 

3) Choose an action for the current state using an exploration method. (e.g. ԑ–greedy exploration): 

a ← argmaxaQ(s,a) with probability (1- ԑ) and 

a ← random action with probability ԑ 

4) Execute the action a 

5) observe reward r and next state s’ 

6) Learn and update the Q-value of the executed action using rule (1) 

7) Repeat 2-7 
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As it can be noted from the above process, an exploration method is used to explore possible 

actions to execute in the next state s’. In this thesis we use the ԑ–greedy exploration algorithm, where 

ԑ represents the exploration rate which is usually set to 0.1. Using this exploration algorithm, the 

agent will explore more than one action to execute and, for each new state, it will choose to execute 

the best action with the highest reward value 90% of the time and a random action 10% of the time. 

It is worthy to mention that Q-learning algorithm can only learn a deterministic policy which 

chooses an action at a state with a probability of 1 (i.e. Always chooses a particular action at a 

particular state). 

2.4 Coordinated Multi-Agent Reinforcement Learning 

2.4.1 Problem Definition  

Cooperative Multi-Agent Systems are considered to be one of the most interesting perspectives in 

MARL field that received a lot of attention recently from many Artificial Intelligence (AI) 

researchers due to the fact that most real-world multi-agent applications behave as cooperative 

systems where all agents share common goal (Panait & Luke, 2005). To achieve the goal of such 

systems, several agents have to coordinate their actions in order to compute their optimal joint 

action which maximizes their global total reward. Several approaches have been proposed and 

applied to help coordinating agents’ actions (e.g. MDP and DEC-POMDP). However, such 

approaches suffer from a very high communication and computation complexity, when trying to 

compute the exact optimal joint policy of agents, due to the large action space that scales 

exponentially with the number of agents. 

 Coordinating the actions of agents in cooperative multi-agent systems has been a common concept 

used by many researchers to reduce the computational complexity of computing the optimal 

solution (Weib, 1993; Boutilier, 1999). Using this concept, several coordination approaches are 

developed to allow agents to communicate with each other during execution time. Therefore, it 

solves the limited observability problem faced by agents in large-scale domains. The following works 

develop different coordination approaches using the coordination concept and apply these 
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approaches in several real-life domains and verify the effectiveness of their usage and show that they 

outperforms other multi-agent reinforcement learning approaches which do not use the coordination 

concept. 

2.4.2 Related Work  
 

Guestrin, Lagoudakis and Parr (2002) proposed a new approach, the Coordinated Reinforcement 

Learning, which computes an approximation of the joint policy as a linear combination of local 

policies through using a coordination graph as a message passing scheme that helps agents in 

choosing the optimal joint policy. Experimental evaluation shows that the proposed approach 

achieves policies of high quality and greatly reduces the computation and communication 

complexity unlike other reinforcement learning approaches. 

Yagan and Tham (2007) have used the concept of Coordinated Reinforcement learning to propose 

a novel online model-free reinforcement learning approach that computes the approximation of the 

optimal joint policy to reduce time complexity, communication and computation resources in ND-

POMDPs. In addition, this work proposes a distributed coordination technique which is based on 

exploiting interactions among neighboring agents to optimize the global system performance. 

Experimental results verify the effectiveness of the proposed approach and show that unlike other 

approaches, the proposed approach saves computational and communication time and cost. 

Another work (Stranders et al., 2009) uses the concept of coordinated reinforcement learning 

approach to propose an on-line decentralized coordination approach for addressing the limitations 

presented by previous off-line algorithms proposed to find the optimal joint action in Disaster 

Response domains. The proposed approach uses the Max-Sum algorithm, a DCOP algorithm, as a 

negotiation mechanism among agents so that an optimal joint action can be achieved. In Addition, 

it uses a powerful Bayesian tool, Gaussian Processes, to model the spatial phenomena dynamics. 

Furthermore, the paper proposes two pruning techniques to speed up the Max-Sum algorithm and 

experimental evaluation verifies the effectiveness of the proposed algorithm by illustrating a 

reduction up to 50% in the root mean squared error compared to other approaches, and the 
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efficiency of the pruning techniques, which saved computational cost by pruning up to 95% of the 

joint actions in Max-Sum algorithm, resulting in speeding up the algorithm. 

Zhang, Abdallah and Lesser (2010) proposed a decentralized self-organization approach that forms 

a hierarchically organizational control which evolves dynamically during the learning process. This 

proposed approach is based on the “nearly decomposable systems” concept, which states that 

interactions between sub-systems are weaker than interactions within sub-systems. Furthermore, this 

work proposes a new type of interactions, i.e. joint-event-driven interactions, and a measure of 

identifying the strength of these interactions. Based on these interactions, the proposed approach can 

dynamically form the supervisory organization by grouping strongly interacting agents together in 

one cluster/group. Experimental Evaluations show that the proposed approach is efficient and 

outperforms the pre-defined, fixed frameworks. 

2.5 Summary 

In this chapter, a comprehensive review about Multi-Agent Reinforcement Learning (its general 

representative models and algorithms), Game Theory (its problem definition, representations, types 

and several examples of each type) and Coordinated Multi-Agent Reinforcement Learning, which is 

the main focus in this thesis, have been provided. The main contribution in this thesis is to analyze 

and study the performance of a coordinated multi-agent reinforcement learning approach in 

cooperative and semi-cooperative two-player two-action games. This thesis adopts the coordination 

approach of (Zhang & Lesser, 2011) and applies it in the Coordination and Iterated Prisoner’s 

Dilemma games. The adopted coordination approach is presented and discussed in more detail in 

the first section of the following Chapter (i.e. Section 3.1).  
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Chapter 3  

Methodology 
 

This chapter provides a detailed description of the adopted coordination approach, the coordinated 

Q-learning approach, which is proposed in one of the recent paper about coordinated multi-agent 

reinforcement learning (Zhang & Lesser, 2011) by presenting the main assumptions of the approach, 

how the learning process is carried out, how the global joint policy is computed and how we adjust 

this approach to work in different domain than the one it is designed for. It also defines several key 

elements that are important to the main contribution of the thesis, which is studying and analyzing 

the characteristics and performance of the coordinated Q-learning approach when applied in 

cooperative/semi-cooperative two-player two-action games under different network structures then 

compare the performance with that of the original Q-learning algorithm. 

3.1 Coordinated Q-Learning Approach  

Unlike most of the proposed coordination approaches (presented in the previous chapter) that need 

accurate, expensive to be obtained, models of the environment they are applied to and do not scale 

to large domains, Zhang and Lesser (2011) presented an online model-free coordinated multi-agent 

learning approach, the coordinated Q-learning approach, to solve ND-POMDPs more efficiently by 

utilizing both Multi-Agent Reinforcement Learning (MARL) and Distributed Constraint 

Optimization (DCOP).  

This approach aims to maximize an approximation of the global expected reward function through 

optimizing a decomposable reward function that helps in distributing the learning of the optimal 

global joint policy among agents by exploiting their locality of interactions. This approximation is 

exact for ND-POMDPs with a special property called “Groupwise Observability”. Then, using a 

DCOP technique (i.e. the Max-Sum algorithm), the optimal (or near-optimal) joint action which 

maximizes the global reward function is computed. This technique coordinates the distributed 
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learning to ensure the optimality (for ND-POMDPs with groupwise observability property) or near-

optimality of the global learning performance. Experimental Results, carried out in the original work 

of the approach (Zhang & Lesser, 2011), verify the effectiveness of the proposed coordinated 

learning approach in solving ND-POMDP problems and show that the proposed approach 

significantly outperforms offline nearly-optimal with no-communication policies of other approaches. 

Therefore, the coordinated Q-learning approach is adopted in this thesis as the coordinated 

reinforcement learning approach to be studied and analyzed in two-player two-action 

cooperative/semi-cooperative games and compared later to the original learning algorithm without 

the coordination property. The following sub-sections provide a detailed description of the 

coordinated Q-learning approach, the coordinated learning process and how to compute the global 

optimal joint action. 

3.1.1 The Approach Framework and Assumptions 

A Q-function Q(ℎ�⃗ ,𝑎) is used to represent the expected reward when executing joint action a at 

history of observations h�⃗ . The adopted coordination approach aims to optimize an approximation 

of the global reward function Q(ℎ�⃗ ,𝑎). This approximation  Q� (ℎ�⃗ ,𝑎) is defined as a decomposable 

reward function that is expressed as the sum of local reward functions of group(s) on hyperlinks in 

the interaction hypergraph constructed from the global reward function in ND-POMDPs (see 

equation 1): 

Q��ℎ�⃗ 𝑡,𝑎𝑡� =  � Q𝑙�ℎ�⃗ 𝑙
𝑡, 𝑎𝑙𝑡�              (2) 

𝑙 ∈ 𝐸

 

 Where Q𝑙�ℎ�⃗ 𝑙
𝑡, 𝑎𝑙𝑡� represents the expected reward for agents in group(s) defined on hyperlink l 

when executing joint action 𝑎𝑙𝑡 at joint observation history ℎ�⃗ 𝑙𝑡 . Optimizing the approximated 

reward function Q� (ℎ�⃗ ,𝑎) can be considered as maximizing the global reward function 

Q(ℎ�⃗ ,𝑎)  since the latter depends on the former to be computed in ND-POMDPs. However, this 

approximation turns to be exact when ND-POMDPs have a special property called “Groupwise 

Observability”. This property indicates that, the local belief of agent 𝑖 in group l can be stated 
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depending only on the initial local state of agent 𝑖 and the joint observations and actions of other 

agents in group l (i.e. the group of agent𝑖) and that the local belief of agent 𝑖 is totally independent 

of the history of joint observations and actions of agents in other groups. The adopted approach is 

verified theoretically to learn the global optimal policy for ND-POMDPs with groupwise 

observability. Nevertheless, experimental results verify that, even when the groupwise observability 

property does not exist in the examined ND-POMDPs, the coordination approach learns a policy 

that optimizes the global reward function.  

The adopted coordination approach assumes that agents are distributed among a predefined 

number of groups in which each group has a delegate agent that learns the group optimal policy on 

behalf of the group members. In this framework, each delegate agent has a local Q-function of the 

group it is in charge of. Figure 3.1 illustrates an example of the adopted approach framework when 

distributing 8 agents among 3 groups. While red nodes represent delegate agents, blue nodes 

represent normal agents (i.e. agents in the 1st level of the supervisory framework) and edges 

represent membership of different groups (where each delegate agent represents a group). Note that 

the number of delegate agents is equal to the number of learning groups and that an agent can 

belong to more than one group. 

 

 

 

 

 

 

 

Figure 3.1: An example of the adopted coordination approach supervisory framework when having 

three groups of agents 

 

Delegate Agents 

Agents 

Group 1 Group 2 Group 3 
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3.1.2 The Coordinated Q-learning Process 

The coordinated Q-learning approach learns the optimal Q� (ℎ�⃗ ,𝑎) that maximizes the global 

reward and distributes this learning among groups through updating the Q-function of each 

delegate agent using the following update rule: 

Q𝑙�ℎ�⃗ 𝑙
𝑡 , 𝑎𝑙𝑡� = (1 − 𝛼)Q𝑙�ℎ�⃗ 𝑙

𝑡, 𝑎𝑙𝑡� +  𝛼�𝑟𝑙𝑡 +  𝛾Q𝑙�ℎ�⃗ 𝑙
𝑡+1, 𝑎𝑙∗��                 (3) 

Where t is a learning cycle and 𝛼 is the learning rate whose value ranges from 0 to 1 in which as 

the value of 𝛼 increases, the more important the learned information is. 𝛾 is the discount factor 

whose value ranges from 0 to 1 and as the value increases, the agent ignores the immediate high 

reward and looks for the long-term high reward. If  𝛾 ≥ 1 then there is a high possibility of a 

divergence in the learning algorithm performance. 𝑟𝑙𝑡 is the total reward of group 𝑙 that is defined 

as the sum of local rewards of each member in the group l. Q𝑙�ℎ�⃗ 𝑙
𝑡+1, 𝑎𝑙∗� is the expected reward for 

agents in group 𝑙 when executing the joint optimal action 𝑎𝑙∗ at the updated observations history 

ℎ�⃗ 𝑙𝑡+1.  

The following is a description of the learning process of the coordinated Q-learning approach. In 

each learning cycle t, each agent in group 𝑙 executes its action 𝑎𝑡 and receives a reward 𝑟𝑡 of 

executing that action. Agents send their observations to their delegate agent whose action and 

observation history are the set of joint actions 𝑎𝑙𝑡 and joint observations history ℎ�⃗ 𝑙𝑡 of agents in 

group 𝑙 and its reward is the group total reward 𝑟𝑙𝑡 (i.e. the sum of local rewards of all agents in 

group 𝑙). Then, using a DCOP algorithm, the group optimal action 𝑎𝑙∗ for the updated history of 

observations ℎ�⃗ 𝑙𝑡+1 is computed. The delegate then updates its Q-function Q𝑙�ℎ�⃗ 𝑙
𝑡, 𝑎𝑙𝑡� using rule (3) 

and distributes the next actions (that can be either the best actions 𝑎𝑙∗ or exploration actions) to 

each agent in the group. 
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3.1.3 Choosing the Optimal Joint Action  

• Problem Definition 

The optimal joint action 𝑎∗ maximizes the global reward function Q(ℎ�⃗ ,𝑎), that is the sum of all 

local reward functions Q𝑙�ℎ�⃗ 𝑙 , 𝑎𝑙� in which: 

 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎�Q𝑙�ℎ�⃗ 𝑙 , 𝑎𝑙�
𝑙 ∈𝐸

                   (4) 

Where 𝑎∗ is used for updating local reward functions Q𝑙�ℎ�⃗ 𝑙 , 𝑎𝑙� and as a possible action to be 

executed by agents during execution time. The adopted approach represents the problem of 

computing the optimal joint action as a Distributed Constraint Optimization Problem (Nair et al., 

2005). DCOP is a multi-agent paradigm where agents try to find the optimal joint action that 

maximizes the total reward obtained by them. It is expressed as a set of variables 𝑥 = {𝑥1, … , 𝑥𝑛} , 

where  𝑥𝑖  represents a possible action for agent i, and a set of functions Q =  �Q𝑙�𝑙 ∈ 𝐸� , where 

Q𝑙 is the reward function for group(s) defined on hyperlink 𝑙.  

• Max-Sum Message Passing Algorithm 

DCOP is solved through applying message-passing algorithms which help agents to communicate 

with each other during execution time, enabling them to get better observability of the world state 

and other agents’ actions. Despite the fact that a lot of message-passing algorithms have been 

proposed to solve DCOP, most of these algorithms either suffer from high computational 

complexity even though it computes/finds the optimal solution or compute an approximate 

solution with less complexity. Generalized Distributive Law (Aji & McEliece, 2000) contains a 

class of algorithms which require much less communication and computation complexity and 

compute a very good approximation of the optimal solution.  The Adopted coordination approach 

uses the Max-Sum message passing algorithm (Stranders et al., 2009) which is considered to be one 

of the pretty good algorithms in that class to compute the optimal joint action and can be directly 

used to coordinate interactions of more than two agents.  
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The Max-Sum algorithm operates on a factor graph which is an undirected bipartite graph, in 

which there is a node created for each variable 𝑥 and for each function Q in the DCOP. Each 

variable node is connected to a function node if and only if the corresponding function depends on 

the corresponding variable. Figure 3.2 illustrates an example of a factor graph where 7 agents (i.e. 

variable nodes) are distributed among 3 groups in which each delegate agent has the Q function of 

the group it is in charge of (i.e. function nodes).  

 

 

 

 

 

 

 

         Group 1                                              Group 2                                                 Group 3 

Figure 3.2: An example of a factor graph with 7 agents and 3 groups 

In the above figure, the reward function of group 1 (Q1) depends on the action of each of agent1, 

agent2 and agent3 (x1 , x2 and x3  respectively). The reward function of group 2 (Q2) depends on 

the action of each of agent2, agent3, agent4 and agent5 (x2, x3, x4 and x5  respectively). Finally, the 

reward function of group 3 (Q3) depends on the action of each of agent4, agent5, agent6 and 

agent7 (x4, x5, x6 and x7  respectively). The Max-Sum algorithm provides a way for agents to 

communicate in the factor graph with each other during execution time by identifying the 

messages passed from variable nodes to function nodes and the messages passed from function 

nodes to variable nodes. The following are the rules for computing the mentioned messages. 

 

𝑥1 𝑥2 

Q1 

𝑥3 𝑥4 

Q2 

𝑥5 𝑥7 

Q3 

𝑥6 
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- Message from variable node i to function node 𝑙: 

                                       𝑞𝑖→𝑙(𝑥𝑖) = ∑ 𝑟𝑔→𝑖(𝑥𝑖) +  𝑐𝑖𝑙𝑔∈𝐹𝑖\𝑙                                 (5) 

Where 𝐹𝑖 is a vector of function indices that specifies which function nodes are connected to the 

variable node i and 𝑐𝑖𝑙  is a normalizing constant which prevent messages from increasing 

continuously in cyclic factor graphs. Using the above rule, each agent who belongs to more than 

one group sends to each of its delegate agents the sum of messages it received from other delegate 

agents it is connected to when performing action 𝑥. However, 𝑞𝑖→𝑙(𝑥𝑖) = zero if agent i does not 

belong to more than one group. 

- Message from function node 𝑙 to variable node i: 

 

𝑟𝑙→𝑖(𝑥𝑖) = max𝑎𝑙\𝑥𝑖  [Q𝑙(ℎ�⃗ ,𝑎𝑙)  + � 𝑞𝑔→𝑙�𝑥𝑔�
𝑔∈𝑉𝑙\𝑖

]                 (6) 

Where 𝑉𝑙 is a vector of variable indices that specifies which variable nodes are connected to the 

function node 𝑙 and 𝑎𝑙\𝑥𝑖 = {𝑥𝑔 ∶ 𝑔 ∈ 𝑉𝑙\𝑖}. Using the above rule, the delegate agent of group 𝑙 

computes the reward function of the group when the group members/agents execute joint action 

 𝑎𝑙 at the joint history of observations ℎ���⃗ . Then, for agent 𝑖 in group 𝑙, the delegate agent sends a 

message to agent 𝑖 which contains the value of the group Q-function when agent 𝑖 chooses action 

𝑥 added to the sum of the messages sent to the delegate agent from other agents in the same 

group 𝑙 (except agent 𝑖) when they execute the same action 𝑥 as agent 𝑖. 

The Max-Sum algorithm computes the optimal action 𝑎𝑖∗ of each agent 𝑖 using rule (7) only 

when the factor graph is acyclic. Otherwise, the algorithm is not guaranteed to compute the 

optimal action of each agent although previous experimental analyses verify that the max-sum 

algorithm provides pretty good solution quality even when the factor graph is cyclic. 

     𝑎𝑖∗ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑖  ∑ 𝑟𝑔→𝑖(𝑥𝑖)𝑔∈𝐹𝑖             (7) 
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In our work we ensure the optimality of the joint action computed using the Max-Sum algorithm 

by ensuring that all factor graphs induced from DCOP are acyclic. This feature is ensured using a 

grouping technique which distributes agents over a number of groups. Figure 3.3 provides an 

acyclic version of figure 3.2 using our grouping technique. 

 

 

 

 

 

 

             Group1                                             Group2                                                 Group3 

Figure 3: An example of an acyclic factor graph with 7 agents and 3 groups 

 

3.2 Agents Grouping Mechanism 

Since the work on the coordinated Q-learning approach (Zhang & Lesser, 2011) did not state a 

technique to group agents (they assumed that the grouping is given using a hand-crafted grouping), 

we propose our own grouping mechanism that is used to distribute agents among a pre-defined 

number of groups and to ensure that the induced factor graph is acyclic. The agents grouping 

process is carried out over two distributions as follows: the number of agents is divided by the 

number of groups and then the Floor of the resulted number represents the number of agents per 

group. After the first distribution process takes place, all agents that got no group will be added to 

the latest group (e.g. if there are 5 agents and 2 groups then group1 will take 2 agents and group2 

will take 3 agents). For the second distribution, if an agent x has a neighbor y which is in different 

group than agent x group, then the set of groups agent x belongs to will be extended to have the 

group of agent y too. 

𝑥1 𝑥2 

Q1 

𝑥5 𝑥7 

Q3 

𝑥6 

𝑥3 
𝑥4 

Q2 
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Our grouping mechanism is designed in a way that forbids having two or more agents influencing 

the group of each other (i.e. if the group of agent 𝑖 depends on action of agent 𝑗, then it is forbidden 

for the group of agent 𝑗 to depend on any agent that belongs to the group of agent 𝑖). This 

prohibition ensures having acyclic factor graphs which ensure the optimality of the computed joint 

action using the Max-Sum algorithm. The following figures illustrate examples of the induced 

network of agents which are distributed among a number of groups. Note that label on each 

node/agent indicates the group of this node/agent. For example, nodes with a label of [0] means that 

these nodes/agents belong to group 0, while nodes with a label of [0,1] states that these agents 

belong to both group 0 and 1. 

 

 

                

 

 

Figure 3.4: Two examples of using the grouping technique to distribute 10 agents among 2 groups 

                         

Figure 3.5: Two examples of using the grouping technique to distribute 10 agents among 3 groups 
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Figure 3.6: Two examples of using the grouping technique to distribute 10 agents among 4 groups 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Two examples using the grouping technique to distribute 10 agents among 5 groups 
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3.3 Our Problem Domain and Network Structures 

3.3.1 Cooperative and Semi-Cooperative Games 

Unlike the domain used in (Zhang & Lesser, 2011) which is the distributed sensor networks 

domain, we are interested in cooperative/semi-cooperative two-player two-action games. In such 

games, agents maximize their reward function by coordinating their joint actions. We choose to 

study the performance of the adopted coordination approach in one of the most famous cooperative 

games, the Coordination Game, where two agents get the same high reward if both choose the same 

action and get the same negative or no reward otherwise. Table 3.1 illustrates the payoff matrix of 

both players in the coordination game where each player chooses one of two colors (i.e. Red or Blue). 

After choosing their action, each player receives a reward value, if both players choose the same color 

then each will get a reward of 1, otherwise both gets 0. One can note that this coordination game has 

two pure Nash Equilibriums: both agents choose red and both agents choose blue.  

 

Player 1/ Player 2 Red (R) Blue (B) 

Red (R) (1,1) (0,0) 

Blue (B) (0,0) (1,1) 

Table 3.1: Payoff matrix of both players when playing the tested coordination game 

We also study and analyze the performance of the Coordinated Q-learning Algorithm in one of the 

most famous semi-cooperative games, the Iterated Prisoner’s Dilemma (IPD). This game illustrates a 

situation where it is hard for two players to coordinate their actions due to the imbalanced reward 

value received by agents if one chose a different action than its partner. As mentioned in chapter 2, 

semi-cooperative/semi-competitive games present a challenge for reinforcement learning algorithms 

because an agent’s self-interest feature rises above the mutual interest. The following is a good 

example to simplify and illustrate the IPD: 
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Two men got caught while trying to rob a bank. However, the police have no evidence to 

convict the two men with the robbing crime and they can only prison them for a month for 

carrying guns. Therefore, the police separate each of those men and put them in different rooms 

then offer them the same deal: if one testifies against the other and betrays him (i.e. Defect) 

while the other remains silent (i.e. Cooperate), then the betrayer will go free while the other is 

sentenced to a one-year in jail. If both remain silent then both are sentenced to a one-month in 

jail for carrying guns with them, and if both testify against the other then both are sentenced to 

three-months in jail. Neither of the prisoners knows what the other chooses to do. 

Each player is supposed to choose the action that lessens its prison time (represented as a high-

reward action). Table 3.2 illustrates the payoff matrix of both players when playing IPD.  Although 

it is clearly obvious that both players must choose to “Cooperate” as their optimal joint action that 

will maximize their reward function, they may not choose to do so since the cooperator is not 

rewarded if the other player chooses to defect (in some other payoff matrices of the IPD the 

cooperator receives a punishment, negative reward value, if the other player chooses to defect). As 

mentioned in Chapter 2, Defecting is a dominant action in game theory in which that agent is 

rewarded if it chooses to defect regardless of its partner action. Therefore, there is only one Nash 

Equilibrium presented in this game, that is, both players choose to Defect (Sandholm & Crites, 

1995). 

 

Player 1/ Player 2 Defect (D) Cooperate (C) 

Defect (D) (1,1) (5,0) 

Cooperate (C) (0,5) (3,3) 

Table 3.2: Payoff matrix of both players when playing the tested iterated prisoner’s dilemma game 
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3.3.2 Network Structures 

The main contribution of this thesis is to study and analyze the performance of the coordinated Q-

learning approach in cooperative/semi-cooperative two-player two-action games under different 

network structures. Therefore, we choose to test the coordinated Q-learning approach in two 

different network structures, that is, Random and Scale-Free network structures. Erdos and Renyi 

(1959) are the first to define random networks. There assumption is that, in random networks, 

nodes are connected to another node(s) using random placement of edges/links and most nodes have 

approximately the same number of connected nodes (i.e. the same number number of edges/links), a 

unique characteristic of random networks in which it is considered to be very rare to find a node 

with extremely more or less number of edges/links than the average.  

Unlike random networks, the distribution of links/edges connecting nodes in scale-free networks 

follows a power law in that most nodes have a low number of connecting edges/links and few nodes, 

called hubs, have an extremely large number of edges/links (Barabasi and Bonabea, 2003). Scale-free 

networks are strong and robust against random and accidental failures in which if a random failure 

occurred to some of the nodes with small degree, then the probability that a hub is affected by this 

failure is so low. Even if the failure happened to a hub-node, then the network will remain 

connected due to the rest of existing hubs. However, scale-free networks are weak against 

coordinated attacks that target hub-nodes. Figures 3.8 and 3.9 illustrate several examples of random 

networks and scale-free networks respectively. 

 

 

 

 

 

Figure 3.8: Examples of Random Networks 
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Figure 3.9: Examples of Scale-Free Networks 

 

In the following chapter we apply the adopted coordinated Q-learning approach in both of 

the coordination game and the iterated prisoner’s dilemma, each with its payoff matrix 

presented in this chapter (see table 3.1 and table 3.2). Both games are modeled using ND-

POMDP model without the groupwise observability property. Our grouping mechanism 

which was discussed in this chapter is used to distribute agents among groups and to ensure 

that the induced factor graph of the DCOP is acyclic (which will ensure the optimality of the 

joint action computed by the Max-Sum algorithm). It is worthy to mention that we ignore 

the use of states in the original Q-learning algorithm in the following experiments to 

minimize the computational complexity (i.e. Q(a) is used instead of Q(s,a)). 
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Chapter 4  

Experimental Analysis 
 

This chapter presents the settings of the experiments conducted to evaluate and compare the 

performance of both the original Q-learning and the Coordinated Q-learning Algorithm in the 

Coordination and the Iterated Prisoner’s Dilemma games under different network structures and 

settings. It provides the results achieved by conducting the experiments and investigates the possible 

effect of increasing the number of delegate agents and the horizon on the performance of the 

coordinated Q-learning algorithm. Finally, it presents a reasonable justification of the achieved 

results and answers the thesis research questions. 

4.1 Experimental Setup  

 A simulator of the tested games, network structures and algorithms is built using NetLogo 

(Wilensky, 1999), an agent-based modeling environment and programming language, to evaluate 

the performance of the Coordinated Q-learning algorithm and compare it with that of the original 

Q-learning algorithm. The process of evaluating the performance of each algorithm for each tested 

game is carried out as follows. For each network structure, the average payoff is computed over 

30000 simulation time steps and the results are averaged over 15 simulation runs. For the 

coordinated Q-learning, different number of learning groups of agents is used and the evaluation 

process is repeated for each horizon H, which ranges from 1 to 3, to measure the effect of both the 

number of learning groups and horizon on the performance of the algorithm (i.e. results are averaged 

over 45 simulation runs).  

The learning rate α of both algorithms is set to 0.1, the exploration rate ε is set to 0.1(the ε-greedy 

exploration is used as the exploration algorithm) and the discount factor γ is set to 0.9 which are 

commonly used values for these learning parameters. As mentioned in the 3rd section of chapter 3, 

both original Q-learning and coordinated Q-learning are tested in 2 multi-agent games, the 
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coordination game and the iterated prisoner’s dilemma game under two different network structures, 

random and scale-free networks. The scale-free network is created using the preferential attachment 

generative model. Section 3 in the previous chapter contains figures which illustrate some examples 

of the network structures generated by our simulator. Figure 4.1 presents an example of each 

network structure with a demonstration of each node degree. 

 

 
 
 
 

 
 

Figure 4.1: An example of the tested Random Network (A) and the tested Scale-Free Network (B). 
The node size represents the node degree (the higher the node degree, the larger the node size) 

 

4.2 Experimental Results and Evaluation 

4.2.1 Coordination Game Results 

The following presents the results of implementing the tested algorithms in the Coordination 

game under two different network structures. As mentioned in the sub-section 4.1, the average 

payoff is computed over 30000 simulation time steps and then, for each network structure, the 

results are averaged over 15 and 45 simulation runs for the original Q-learning algorithm and the 

coordinated Q-learning algorithm respectively. 

• Original Q-learning Algorithm 

The algorithm converges to Nash Equilibrium in both network structures. However, it is noted 

that while the algorithm converges faster in scale-free networks, it performs better in random 

networks (see Figure 4.2). A reasonable justification is that, in POMDPs each agent has limited 

A B 
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observability of the state and actions of other agents in the same network. Agents are only aware of 

the actions and states of their connected neighbors and unlike random networks, the degree 

distribution of nodes in scale-free networks follows a power law in which a network of nodes with 

extremely high degree (i.e. hubs) followed by and connected to relatively smaller degree is created 

(see Figure 4.1 in the above sub-section). When the coordination game is played in scale-free 

networks, the network structure forces most of the learning agents to be connected to only one 

agent (i.e. most likely a hub). Therefore, agents that have a hub agent as their only possible partner 

(i.e. only connected to a hub agent) choose their action only based on the action of this hub agent 

even if this action is not globally optimal (i.e. sub-optimal) causing the average payoff to be lower 

than that of random networks, where most agents have more than one possible partner giving them 

more action choices than in scale-free networks, and resulting in a better performance.  

 
Figure 4.2: The Average Payoff of the original Q-learning algorithm when playing the 

Coordination game in random and scale-free networks  

 

• Coordinated Q-learning Algorithm 

The coordinated algorithm converges to a Nash Equilibrium (i.e. all learning agents execute the 

same action of their partners). The coordinated Q-learning algorithm converges faster in scale-free 

networks due to the same reason mentioned in the original Q-learning algorithm performance. 

However, there is no difference in the average payoff achieved in both network structures when 
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playing the coordination game using the coordinated Q-learning algorithm (see Figure 4.3). A 

reasonable justification of this is that the agents learning using the coordinated algorithm are not 

affected by the observability limitation because there is a communication during the execution time 

in which agents exchange their observations and choose their best action based on the joint 

observations through their delegate agent(s).  

Also, it is observed that the coordinated Q-learning algorithm converges faster and performs 

slightly better than the original Q-learning algorithm. This is mainly because, besides the fact that 

there is no communication in the original Q-learning algorithm which prevents each agent from 

accessing some needed information of other agents except its connected neighbors, the coordinated 

Q-learning approach is distributed (since it distributes the learning of the global optimal policy 

among the groups of agents) resulting in a large computational savings of the policy space and 

making the algorithm scale to large domains and reducing the time required for the algorithm to 

converge.  

 

 

Figure 4.3: The Average Payoff of the coordinated Q-learning algorithm when playing the 
Coordination game in random and scale-free networks  
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4.2.2 Iterated Prisoner’s Dilemma Results 

The following presents the results of implementing the tested algorithms in the Coordination 

game under two different network structures. As mentioned in the sub-section 4.1, the average 

payoff is computed over 30000 simulation runs and the results are then averaged over 15 

experiments per network structure for the original Q-learning algorithm and 45 experiments per 

network structure for the coordinated Q-learning algorithm. 

 

• Original Q-learning Algorithm 

The Q-learning algorithm converges to a Nash Equilibrium in which all agents choose “Defect” 

as their optimal joint action in both network structures. However, it is observed that the algorithm 

converges faster and performs better in scale-free networks than in random networks (see Figure 

4.4). A reasonable justification is that, as mentioned in the coordination game results sub-section, 

each learning agent suffers from observability limitation in that it might not be able to access some 

needed information about agents other than its partners (such as their states and actions). Due to 

its structure, scale-free networks will converge faster than random networks but will suffer from the 

observability limitation more than them as this limitation increases when the number of agents’ 

partners decreases (the case in scale-free networks).  

Therefore, when the iterated prisoner’s dilemma game is played in scale-free networks, learning 

agents that have a hub agent as their only possible partner will choose their action only based on 

the action of this hub agent even if this action is sub-optimal causing the average payoff to be 

higher than that of a random network since if some agents cooperated, instead of defecting which 

is the global optimal action, then their partners will get a higher payoff (i.e. 5 instead of 1) that 

increases the total average payoff more than if all agents were to defect (as in random networks).  
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Figure 4.4: The Average Payoff of the original Q-learning algorithm when playing the Iterated 

Prisoner’s Dilemma game in random and scale-free networks  

 

• Coordinated Q-learning Algorithm 

The coordinated algorithm converges to the optimal joint action in which, unlike the original Q-

learning, all agents choose to “Cooperate” with converging faster in random networks and 

approximately no difference in the average payoff achieved in both network structures (see Figure 

4.5). A reasonable justification of this is that the original Q-learning algorithm computes the global 

optimal joint action based on the local optimal action of each agent whereas the coordination 

approach computes the optimal action based on the global optimal policy of each group of learning 

agents and then it distributes the learning of the global optimal policy among groups and 

coordinates the distributed learning through using the Max-Sum algorithm as a message passing 

mechanism that enable agents to communicate and share their observations during the execution 

time.  Therefore, and since choosing “Cooperate” by all agents will maximize the global Q-value 

function way better than choosing “Defect” (which is a local optimal action), the global optimal 

policy of the coordinated Q-learning is to make all agents “Cooperate”. As a result, the coordinated 

Q-learning performs significantly better than the original Q-learning algorithm and due to its 

distributed nature it converges faster than the original algorithm. The following sub-section 
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provides an investigation of the effect of changing the value of some parameters in the coordinated 

learning algorithm. 

 

Figure 4.5: The Average Payoff of the coordinated Q-learning algorithm when playing the Iterated 
Prisoner’s Dilemma game in random and scale-free networks 

 

4.2.3 Further Investigations on the Coordinated Q-learning algorithm 

Two essential parameters are investigated to evaluate the effect of changing their values on the 

performance of the coordinated. These parameters are: The Horizon H and The number of 

learning groups of agents (since each learning group has only one delegate agent that learns on 

behalf of its group as mentioned in the 1st section of chapter 3, the number of learning groups is 

equal to the number of delegate agents). The value of the Horizon ranges from 1 to 3 and the 

number of learning delegates ranges from 1 to 5 delegates. The average payoff is computed over 

30000 simulation time steps and the results are then averaged over 45 simulation runs per network 

structure (i.e. conduct 3 experiments per learning group value for each horizon value (3*(3*5))).  

Figure 4.6 illustrates the average payoff of each learning group per horizon value when playing 

the iterated prisoner’s dilemma using the Coordinated Q-learning algorithm. It is obviously 
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observed that as the value of the horizon increases the average payoff increases (i.e. the algorithm 

performs better in both network structures and tested games). This is mainly because, as the 

horizon increase, each agent will have access to more information (i.e. previous actions and rewards) 

about other agents which will greatly help in the learning process leading to better performance. 

Also, it is observed that as the number of learning groups increases the coordinated Q-learning 

algorithm converges faster in both network structures and in both tested games. A reasonable 

justification is that the distribution property leads to a large saving of the computation complexity 

of the policy space which results in decreasing the time required for both agents to learn and 

algorithm to converge. The following sub-section demonstrates an illustrative comparison between 

the performance of both Original and Coordinated Q-learning algorithms. Also, the standard 

deviation is computed for each case and its value is so small (under 0.03) to be illustrated. 

 
Figure 4.6: The Average Payoff against the number of delegate agents in the Coordinated Q-

learning algorithm when playing the iterated prisoner’s dilemma 

 

4.2.4 Illustrative comparison between learning algorithms 

Figure 4.7 illustrates a comparison of the global performance of both learning algorithms when 

playing the coordination game. It is clearly observed that the coordinated Q-learning algorithm 

outperforms the original Q-learning algorithm slightly in the coordination game. In order to 
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investigate if this result is affected by the exploration rate value ℇ, smaller values of the exploration 

rate are used. Figure 4.8 and 4.9 represent the global performance of both algorithms when the 

exploration rate ℇ is set to 0.01 and 0.001 respectively. It is clear that as the exploration rate 

decreases the difference in the performance between both learning algorithm increases in which the 

coordinated Q-learning outperforms the original Q-learning algorithm. Figure 4.10 illustrates a 

comparison of the global performance between both algorithms when playing the iterated 

prisoner’s dilemma. It is clearly shown that the coordinated Q-learning algorithm outperforms the 

original Q-learning algorithm significantly even when the exploration rate is set to 0.1 and the 

distance between the values of the performance of both algorithms will keep on increasing as the 

exploration rate decreases. 

 

 

Figure 4.7: A comparison of the performance of the original and coordinated Q-learning algorithms 
when playing the coordination game with exploration rate ℇ = 0.1 
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Figure 4.8: A comparison of the performance of the original and coordinated Q-learning algorithms 
when playing the coordination game with exploration rate ℇ = 0.01 

 

 

Figure 4.9: A comparison of the performance of the original and coordinated Q-learning algorithms 
when playing the coordination game with exploration rate ℇ = 0.001 
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Figure 4.10: A comparison of the performance of the original and coordinated Q-learning 
algorithms when playing the iterated prisoner’s dilemma with exploration rate ℇ = 0.1  

 

4.3 Experiments Summary  

Several critical characteristics of the coordinated Q-learning algorithm have been discovered. Firstly, 

we found that, unlike the original Q-learning algorithm, the performance of the coordinated 

algorithm is not affected by both random and scale-free network structures (i.e. the coordination 

approach is robust against the tested network structures). Secondly, the coordinated Q-learning 

algorithm outperforms the original Q-learning algorithm slightly in the coordination game and 

significantly in the iterated prisoner’s dilemma game and, as the exploration rate value decreases, the 

difference of the performance between both algorithms increases in which the coordinated Q-

learning algorithm converges faster and outperforms the original algorithm. This is mainly due to 

the distribution and communication property of the coordinated Q-learning algorithm. Thirdly, the 

number of delegate agents and the horizon are found to be very important parameters that can affect 

the speed of convergence and the global performance of the coordinated algorithm respectively. 

When the value of the horizon increases, the coordinated algorithm performs better and when the 

number of delegate agents increases, the coordinated algorithm converges faster. Finally, we can 

answer the thesis research questions now that we achieved the previous results: 
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- Does the coordinated Q-learning approach help in improving the performance of multi-
agent learning algorithms in networks when applied in two-player two-action 
cooperative/semi-cooperative games?  

Based on the conducted experiments, the coordinated Q-learning approach demonstrates a 
superior performance in cooperative and semi-cooperative two-player two-action games in 
networks. 

- Is the performance of the coordinated Q-learning approach affected by different network 
structures such as random and scale-free networks? 

 Based on the experimental results, the performance of the coordination approach is not affected by 
random and scale-free networks. 

- Is there a simple grouping methodology to cluster agents in a network automatically? Can 
such methodology ensure cycle-free clustering? 

 Yes, the proposed grouping methodology in this thesis automatically clusters agents in both 
random and scale-free networks and ensures cycle-free grouping. 

- Is the performance of the coordinated Q-learning approach affected by some of its 
parameters?  

Based on the conducted experiments, the performance of the coordination approach is affected by 
both horizon value and the number of learning groups of agents.  

 

4.4 Generalizing the Coordination Approach 

We thought of generalizing the coordinated approach by adding one more level of a new delegate 

agent, called super delegate agent, to be placed on top of other delegate agents and learn on behalf of 

them in the same manner delegate agents used to learn on behalf of agents in their group (see Figure 

4.11). However, in this generalization there are two ways to use the super delegate agent: it will 

either learn on behalf of delegate agents who learn on behalf of agents in their groups only when it is 

needed, or it will learn on behalf of delegate agents and give them instructions about what to send to 

their agents. In the second way, the super delegate agent is the only one who has a Q-table since 

both agents and delegate agents will not learn.   
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We realized that in either ways the convergence will be slower than in the current coordination 

approach since the distribution property is reduced and both of the time needed to converge and the 

computational complexity of the policy space are increased. Therefore, it is better not to generalize 

the coordination approach by adding a super delegate agent who will learn on behalf of both 

delegate agents and normal agents. We are currently investigating other possible ways to further 

enhance the performance of the coordination approach. 

 

 

 
Figure 4.11: A Generalized form of the Coordination Approach 

Agents 

Delegate Agents 

Super Delegate Agent 
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Chapter 5  

Conclusion and Future Work 
 

This chapter concludes the work done in this thesis and discusses a set of possible works that can be 

carried out in the future.  

5.1 Conclusion 

This thesis attempts to study and analyze the performance of one of the recent coordinated multi-

agent reinforcement learning approaches, the coordinated Q-learning approach, in cooperative and 

semi-cooperative two-player two-action games under different network structures (i.e. random and 

scale-free networks) to better understand its characteristics, strength and weakness points. Since the 

adopted coordination approach is based on distributing learning agents among a number of groups 

in which there is a delegate agent for each group that will learn in behalf of the group members and 

then using the Max-Sum algorithm, a DCOP technique, agents are allowed to communicate with 

each other during the execution time and the optimal joint action is computed, we have proposed a 

novel grouping mechanism to perform the grouping process in a way that will ensure cyclic-free 

grouping which will in turn ensure the optimality of the solution computed using the Max-Sum 

algorithm. In addition, a simulator of the tested learning algorithm, tested games and networks has 

been built using NetLogo to carry out the experiments which will evaluate the performance of the 

coordinated Q-learning algorithm and compare it with that of the original Q-learning algorithm.  

After conducting several experiments, the research questions of this thesis have been answered. 

For the first question, the coordination approach is proved to significantly enhance the 

performance of multi-agent learning algorithms when applied in two-player two-action 

cooperative/semi-cooperative games in networks. Experimental results show that the 

coordinated Q-learning algorithm significantly outperforms the original Q-learning algorithm in 

all tested games and networks in which the original Q-learning algorithm converges to Nash-
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Equilibrium, while the coordinated Q-learning algorithm converges to Pareto Optimal. This is 

mainly due to the fact that the coordinated Q-learning algorithm allows the communication 

between agents during the execution time and, unlike the original Q-learning algorithms which 

computes the local optimal joint action, computes the global optimal joint action. For the second 

research question, results show that the performance of the coordinated Q-learning algorithm, 

unlike the original Q-learning algorithm, is unaffected by the difference presented in 

random and scale-free network structures (i.e. the coordinated Q-learning algorithm is robust 

against random and scale-free networks).  

As for the third research question, a simple, yet effective, grouping methodology has been 

proposed in this thesis in which agents are automatically distributed among groups and a 

cycle-free grouping is ensured. This grouping technique ensures the optimality of the policy 

computed using the Max-Sum algorithm. Furthermore, a set of experiments have been conducted 

to check if there is any parameter that affects the performance of the coordinated Q-learning 

algorithm to answer the last question, and results show that there are two parameters which 

affect the performance of the coordinated Q-learning algorithm, the number of delegate (i.e. 

the number of groups) and the horizon value. While the number of groups affects the speed of 

convergence (in which coordinated Q-learning algorithm converges faster as the number of groups 

increases), the horizon value affects the global performance of the coordinated Q-learning 

algorithm in which the coordinated Q-learning performs better as the value of the horizon 

increases.  

Finally, an attempt to generalize the coordinated Q-learning approach by adding one more level 

of a new agent (called the super delegate agent) which learns on behalf of delegate agents is shown 

to be unnecessary. In contrast, adding such a level can be considered as an inefficient step since it 

removes the distributive feature in the current coordinated Q-learning and therefore, slows down 

the convergence of the coordination algorithm due to increasing the state space and computational 

complexity.  
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5.2 Future Work 

After achieving the previously mentioned results, several ideas can be rendered as possible works 

to be carried out in the future as an extension of this thesis. This thesis has tested the coordinated 

Q-learning algorithm in two-player two-action games; therefore, a worthwhile work to be 

conducted in the future is to test the same coordination approach in n-player n-action games. 

Another possible work to be done in the future is to apply the adopted coordination approach 

using different multi-agent learning algorithm other than the Q-learning algorithm such as one of 

the gradient ascent algorithms (e.g. IGA, GIGA-WoLF and WPL algorithms) in the same domain 

and network structures applied in this thesis and check how the coordination approach affects the 

performance of such algorithms.  

 

Furthermore, since the adopted coordination approach assumes that there is only one delegate 

agent per a group of agents, it will be interesting to carry out a work which studies and analyzes the 

effect of increasing the number of delegates per group of agents on the performance of the 

coordination algorithm. Another possible work to be carried out in the future is to study the effect 

of modifying the learning parameter values (i.e. the learning rate and the discount factor values) 

during the learning process on the performance of the coordinated Q-learning algorithm. Finally, a 

good work to be done in the future is to test the coordination approach under different network 

structures other than the ones tested in this thesis to ensure the robustness of the coordinated 

learning algorithm. 
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