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Abstract

Cooperative Multi-Agent systems, where agents work together as one team to achieve a
common goal, form the majority of real-life multi-agent applications. Therefore, it is
important to find a suitable multi-agent reinforcement learning algorithm to help agents
to achieve their goal through finding the optimal joint policy that maximizes the team’s
total reward. Since the last decade, several multi-agent learning algorithms have been
proposed and applied to cooperative multi-agent settings. However, most of these
learning algorithms do not allow agents to communicate with each other during the
execution time, making it hard for agents to coordinate their actions especially in large-
scale and partially observable domains. Thus, several coordinated learning algorithms
which allow agents to communicate during the execution time have been applied to
large cooperative multi-agent domains and proved to be efficient and effective in such

domains.

Nonetheless, to the best of our knowledge, there is no work that studied the
characteristics of such learning algorithms under different network structures. The work
done in this thesis aims to study and analyze the characteristics of one of the recent
coordinated multi-agent learning approaches, the coordinated Q-learning algorithm, in
two-player two-action cooperative and semi-cooperative games under random and scale-
free network structures. Also, this thesis conducts a comparison between the original Q-
learning algorithm and the coordinated Q-learning algorithm to better understand the
difference between both of these algorithms. A simulator has been built in order to

conduct experimental analyses.

Experimental results verify the robustness, effectiveness and efficiency of the coordinated
Q-learning algorithm. The coordinated Q-learning algorithm converges faster and
performs better than the original Q-learning algorithm due to its distributive nature and
its communication feature which do not exist in the original Q-learning algorithm. Also,
the performance of the coordinated Q-learning is not affected by the network structures
of random and scale-free networks. Such characteristics can be utilized in future works
to further improve the performance of different coordinated learning algorithms in

different cooperative multi-agent domains.
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Chapter 1

Introduction

This chapter provides a general overview about cooperative multi-agent systems, their importance
and how to solve the potential problems presented in them through using coordinated multi-agent
reinforcement learning. In addition, this chapter presents the motivations of this thesis, its main

contributions to the current knowledge and the research questions it aims to answer.

1.1 General Overview

Cooperative multi-agent systems form the majority of real-life multi-agent systems where agents
act as one team and try to jointly solve a common problem and maximize the team total reward
(Panait & Luke, 2005). Several multi-agent reinforcement learning frameworks have been
proposed to model cooperative systems to help agents achieve their common goal by finding the
best joint action that maximizes the team total reward through applying a multi-agent learning
algorithm. However, as the number of agents increases, the complexity of the agents’ joint
interactions gets higher resulting in a poor modeling of the cooperative system. Learning
algorithms applied to poor models achieve poor solution and agents may not able to reach their
goal. Networked Distributed Partially Observable Markov Decision Process (ND-POMDP) model
has been proposed to solve this complexity problem (Nair ez al., 2005). However, most of the
learning algorithms applied to ND-POMDDPs are offline algorithms (i.e. does not learn during
execution time) and need a very accurate model which is very expensive and hard to be obtained in

large-scale, partially observable domains.

Coordinated multi-agent reinforcement learning is a new multi-agent reinforcement learning
approach that has been proposed to coordinate the interactions between agents in cooperative
systems by allowing online communication between agents during the execution time. In a recent
work carried out by Zhang and Lesser (2011) a model-free and scalable coordinated multi-agent

learning approach (will be known from now on as the Coordinated Q-learning approach) has been
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proposed and applied to ND-POMDPs to compute the optimal joint action that maximizes the
group total reward. Experimental results, achieved in the same work, verify the effectiveness and

efficiency of the proposed approach when applied in the distributed sensor networks domain.

1.2 Motivations and Objectives of the Thesis

Since many multi-agent applications in real life are based on cooperative multi-agent systems,
that can be solved using coordinated multi-agent reinforcement learning approaches, and as the
coordinated Q-learning approach does not need a specific model to be applied in and requires low
communication and computation complexity compared to other coordinated approaches, it is
important to study agents’ interactions in such systems and to solve the potential problems which
can be faced when searching for the optimal joint action for agents deployed in these cooperative
systems in order to improve the performance of real-life multi-agent systems that are built based on
cooperative multi-agent systems. Therefore, this thesis aims to study and analyze the performance
of the coordinated Q-learning approach in two-player two-action cooperative and semi-cooperative
games, which are commonly used as a framework to best represent agents’ interactions in a

cooperative domain, under different network structures such as random and scale-free networks.

The main contribution of this thesis to the current knowledge is to specify and understand the
characteristics of the coordinated Q-learning approach in order to improve its performance in
different cooperative multi-agent systems and to state under what situations and networks the
coordinated QQ-learning approach performs better. A simulator of the tested games, networks and
learning algorithms has been built to conduct several experiments in order to accomplish the
objectives of the thesis. While the original work of the coordinated Q-learning algorithm (Zhang
& Lesser, 2011) tests the performance of the algorithm in the sensor network domain and focuses
on regular grids, here we study the performance of the coordinated Q-learning algorithm under
random and scale-free networks when applied in games which, due to its simplicity, enable us to
get more insights about the algorithm performance. Also, this thesis provides a comparison
between the coordinated Q-learning algorithm and the original Q-learning algorithm to
understand the main difference between both algorithms. Finally, since the coordinated Q-learning

approach depends on distributing the learning agents among a number of groups, the original work
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of the coordinated Q-learning algorithm used a hand-coded grouping of agents, while a simple
grouping algorithm has been proposed in this thesis to perform the grouping process and to ensure

cycle-free grouping.

1.3 The Thesis Research Questions

This thesis aims to achieve its main contribution, mentioned in the above section, by answering

the following research questions:

e Does the coordinated Q-learning approach help in improving the performance of
multi-agent learning algorithms in networks when applied in two-player two-action

cooperative/semi-cooperative games?

e Is the performance of the coordinated Q-learning approach affected by different

network structures such as random and scale-free networks?

o Is there a simple grouping methodology to cluster agents in a network automatically?

Can such methodology ensure cycle-free clustering?

o Is the performance of the coordinated Q-learning approach affected by some of its

parameters?

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 provides a comprehensive review about
Multi-Agent Reinforcement Learning (MARL), Game Theory and Coordinated MARL. Chapter 3
presents a detailed description of the adopted coordination approach, the coordinated Q-learning
approach, by presenting the main assumptions of the approach, how the learning process is carried
out, how the global joint policy is computed and how we adjust this approach to work in different
domain than the one it was designed for. The settings of the experiments conducted to evaluate and
compare the performance of both the original Q-learning and the Coordinated Q-learning
algorithms in two-player two-action games under different network structures are provided in
Chapter 4. Chapter 4 also presents the experimental results, investigates the possible impact of
modifying some parameters on the performance of the coordinated Q-learning algorithm and
answers the thesis research questions. Finally, Chapter 5 concludes the work done in this thesis and

provides a set of possible works to be done in the future.
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Chapter 2
Background

This chapter provides a comprehensive review about Multi-Agent Reinforcement Learning
(MARL), its problem definition, the proposed models for representing these problems and some
examples of the learning algorithms used to solve these models. It also reviews the main concepts of
Game Theory, its main types and several examples of each. Finally, this chapter defines Coordinated

MARL, its importance and reviews several related works about it.
2.1 Multi-Agent Reinforcement Learning

Reinforcement Learning (RL) has been an interesting and challenging research topic to be studied
and investigated in Machine Learning field for many years. Unlike “supervised learning”, training
examples for learning systems in RL are not provided in the shape of input-output pairs. Instead,
learning systems must explore and search for the most suitable output for every input in which, for
each input, there is a set of possible outputs each has a value for being chosen and the output with
the highest value is considered to be the best output for that input. The goal of RL is to reinforce
outputs which result in high values and to weaken outputs with small values (Sandholm & Cirites,
1995; Sandholm & Crites, 1996). RL is carried out as follows: each learning system/agent observes
the environment and identifies its current state in this environment, selects an action to perform on
the environment (making it transition to a new state) and then receives a reward of performing that

action at the previous state and then repeat from observing the new current state.

Machine Learning studies two settings of RL, Single-Agent RL (SARL) and Multi-Agent RL
(MARL). In SARL settings, learning systems are agents who, consecutively and separately, interact
with the environment they are deployed in and aim to learn the best action that affects the
environment in a way which maximizes their utility function. While in MARL settings, learning

systems are agents who, simultaneously, interact with both the environment they are deployed in
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and other agents and aim to learn the best action which maximizes their utility function. See

figures 2.1 and 2.2 for an illustration example of SARL and MARL respectively.
/

Action

A\ 4

Reward Environment

A

Agent \_

Figure 2.1: An illustration of a SARL setting. Each Agent, separately, executes an action that

changes the state of the environment and receives a reward value for executing the action.

Performs an action and

Receives a reward

4 N Action

Action
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Reward Environment Reward
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\_

Performs an action and

Receives a reward

Figure 2.2: An illustration of a MARL setting with two agents. Both agents execute an action that

affects the state of the environment and the other agent and receive a reward for executing the action

The main difference between SARL and MARL is that in the former, each agent learns separately
from the other and its action has nothing to do with other agents, while in the latter, agents learn
at the same time and the action of an agent affects the environment, limiting the possible set of
actions of other agents, and can directly affect other agents (Shoham & Powers, 2010). Since in
this thesis we are interested in MARL, the following sub-sections define the problem faced in
MARL, its general representative models and provide several examples of learning algorithms

which solve these models.
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2.1.1 Problem Definition

The problem of MARL can be described as a decision problem where a multiple number of
agents need to choose the best action that maximizes their utility function. The environment,
where the agents are deployed, has a set of states in which each agent has a set of possible actions to
choose from in each of these states. After executing actions, agents receive an immediate reward
value for executing each action at each state. The challenge faced in MARL settings is that, since
agents are learning simultaneously in the same environment causing it to be non-stationary and in
realistic situations agents usually suffer from partial observability in which no agent has a full
observation of the world states, each agent must take into its considerations the states and actions
of other agents in order to learn effectively and efficiently (Abdallah & Lesser, 2007). However, in
real-life situations agents suffer from limited communication during execution time in that they
cannot communicate their states and actions to all other agents. The goal of MARL can be one for
all agents (i.e. all agents aim to find the best joint actions to maximize their total expected reward)
or one for each agent (i.e. each agent aims to maximize its own expected reward). Agents with the
same goal are called cooperative agents, while agents with different goals are called self-interested

agents (Mostafa, 2011).

There are two types of MARL decision problems: non-sequential decision making problems,
where agents only care about finding the best policy (i.e. mapping states to actions) in order to
maximize the immediate payoff (i.e. reward value), and sequential decision making problems,
where agents are interested in finding the best policy that maximizes the future payoff. Sequential
decision making problems are more difficult than non-sequential decision making problems in that
agents interact with the environment for a longer period of time and each executed action in a state
affects the set of possible actions for next states (Sandholm & Cirites, 1995). Sequential decision
making problems are used in most of MARL applications. MARL sequential decision problems can
be formalized through using several representative models that simplify the underlying problem

and provide an optimal solution to such problems. The following sub-section defines several
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commonly used representative models which are used to model the domain of MARL problems

where cooperative agents interact with each other.
2.1.2 General Representative Models

e Markov Decision Process

Several representative models have been designed to formalize the problem of sequential MARL.
Marcov Decision Process (MDP) model (Howard, 1960) is considered to be the most commonly
used model to represent the environment of RL problems in which it is originally designed for

formalizing SARL problems but can be extended to formalize MARL problems too.

Definition 1. In its original form, an MDP is defined by a 4-tuple (S, A, P, R) where

- S is a finite set of world states.
- A is a finite set of actions.

-P: S X A - [0,1] is the transition probability function, where P (s'| 4, s) is the probability of

moving to a new state s* when performing action # in state s

-R: S X A - R is the reward function and R(a, s) specifies the expected immediate reward of

choosing and executing action « in state s.

The above definition works only for SARL problems and does not suit MARL problems because
besides assuming that only one agent interacts with the environment at a time (i.e. the
environment is stationary), it assumes full observability of the world states and that each state has
all the information needed by the agent. All these assumptions are unrealistic and impractical in
Multi-Agent domains where the environment is non-stationary and suffer from uncertainty and
partial observability. Therefore, a number of generalized forms of MDP has been proposed and
successfully applied to MARL problems such as Multi-agent MDP (Boutilier, 1996), Partially
Observable MDP (Kaelbling, Littman & Cassandra, 1998) and Decentralized Partially Observable
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MDPs (Bernstein, Zilberstein & Immerman, 2000) . In this thesis, we are concerned about
Decentralized Partially Observable MDPs (DEC-POMDPs) model which is one of the commonly

used models for formalizing MARL domains.

e Decentralized Partially Observable MDP

DEC-POMDP is commonly used to reasonably and realistically model domains where
cooperative agents need to coordinate their actions under uncertainty and partial observability.
Unlike MDP, the environment modeled using DEC-POMDP is controlled by distributed multiple
agents where each agent does not have full observability of the world states but obtains observations
which help in forming a belief about the world states. However, the joint partial observations by all

agents at a state do not necessarily completely determine that state.

Definition 2. An n-agent DEC-POMDP is defined by the tuple (I, S, A, P, R, Q, 0, H) where
-1=10,...,n} is the set of agent indices.
- S is a finite set of world states with a unique initial state so

-A={A; X Aj; X ... X Ap} is a finite set of joint actions, where Aj is the set of possible actions for

agent i.

-P: S X A - [0,1] is the transition probability function, where P (s'| 4, s) is the probability of

moving to a new joint state s" when performing joint action « in joint state s.

-R: S X A > R is the reward function and R(@, s,s") represents the expected immediate

reward of choosing joint action « in joint state s and transitioning to joint state s’

-0 ={Q1 X Q; X ... X Q,} is a finite set of joint observations, where ) is the set of observations

for agent i.

-0:S X AxX Q - [0,1] is the observation function, where O(a, s,s’,0) is the probability of

all agents (from 1 to n) observing 0 when executing joint @ at state s and transitioning to state s'.

-Hisa positive integer that represents the horizon.

Page |8



Since DEC-POMDP is a very general model in that it does not limit the interactions between
agents in the model, it becomes very difficult and impractical to be solved and suffers from a very
high computational complexity and a serious limitation in which, even with the total joint partial
observations of all agents, the world state cannot be observed with certainty (Bernstein, Zilberstein

& Immerman, 2000).

e Networked Distributed POMDP

An effective method to deal with the complexity problem of DEC-POMDP is to identify a
specialization of the general model in a way that makes it easier to be solved. This can be carried
out by making assumptions about the number of agents each agent interacts with. In real life
situations, where there are large-scale domains, agents are organized into a network where an agent
does not interact with all agents but interacts with its directly connected neighbors of agents
(Abdallah & Lesser, 2007). This property is called Locality of Interactions. Networked Distributed
POMDP (ND-POMDP) (Nair e al., 2005) is a specialized model of DEC-POMDP that, besides
being inspired by domains such as distributed sensor networks, combines the concept of modeling
domains of MARL problems under uncertainty in DEC-POMDP with the concept of exploiting
locality of interactions in Distributed Constraint Optimization (DCOP) (Modi ez al., 2003) to
solve the complexity problem in DEC-POMDPs.

Definition 3. An ND-POMDP is defined for a group of n-agents with the tuple(, S, A, Q, P,
O,R, H, b) where

- I is the set of agent indices.

-§=5; XS, X ... XS, XSy is a finite set of world states (where S; is the local state of agent i and
Suis the uncontrollable state which is independent of agents’ actions).

-A={A; XA, X .. XA,}is a finite set of joint actions, where A; is the set of possible actions for
agent i.

-Q={Qy X Q, X ... XQy} is a finite set of joint observations where (); is the set of observations
for agent i.

-P: S X A - [01]is the transition probability function, where P (s'| 2, 5) = P (sy | 5,,) -
[T: e P (si | @i, 55, 5,) s the probability of moving to a new joint state s" = (sy,, 51, ..., S) when
performing joint action @ = {ay, ..., @) in joint state S = (Sy, Sq, ..., Sp) -
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-R: S X A > R is the reward function which is decomposable among sub-groups of agents,
R(a,s) = X Ri(ay, sy, Sy represents the total expected reward of agents in sub-group [ when
choosing joint action « in joint state s and transitioning to joint state s'.

-0:S X Ax Q - [0,1] is the observation function in which O(o[s, a) = [1; ¢; 0(o;ls;, Sy, a;)
where s is resulting state after performing action a and receiving joint observation o.

- H is a positive integer that represents the horizon and b = (b, b4, ..., by) is the initial belief for
joint state S =(Sy, S, .., Sp)-

ND-POMDPs assume the independency of observations and state transitions (i.e. the
observations and state transitions of an agent depend only on that agent actions and are
independent of other agents’ actions). The only dependent component in ND-POMDPs is the
joint reward function is defined as the sum of local rewards of different sub-groups of agents
R(a,s) = Yiee Ri(ay, 51, 5y) where Lis a sub-group of agents, s; represents the state of the sub-
group | and a; defines the joint actions of agents in the sub-group l. The reward of an agent
belongs to sub-group [ depends only on the actions of agents in the same sub-group. An
interaction hypergraph G = (I, E) is constructed based on the reward function where I represents
the vertices (agents) and E represents a set of hyperlinks that connect agents in the same sub-group

together. [ € E is a hyperlink that connects agents which form the reward function R; together.

All of the above models are designed for the case of having systems with cooperative agents where
the goal is to find the best set of policies (one for each agent) which maximizes the total reward of
all agents. However, for systems where self-interest agents exist in which each agent aims to
maximize its own reward, very similar models have been proposed and applied to solve the
problems of MARL with such agents. Markov Games (Littman, 1994), also called Stochastic
Games, and Partially Observable Stochastic Games (POSGs) (Hansen, 2004) are two models that
are defined exactly like MDPs and DEC-POMDPs respectively with the only difference in the
reward function in which each agent has a reward function instead of one reward function for the

whole set of agents (Mostafa, 2011).
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Since the main contribution of this thesis is to study and analyze the performance of the
coordinated Q-learning algorithm in cooperative/semi-cooperative two-player two-action games
under different network structures, and games involve having self-interest agents, ND-POMDPs
model is used to formalize our problem domain and is emerged with game theory concept to
model the interactions between self-interest agents in this domain. Game The next section defines
the concept of game theory, its problem definition and main types of games, and several examples

of games from each type.

2.2 Game Theory

Game Theory is considered to be a very powerful framework that studies and represents the
interactions between two or more learning agents when playing a game. An agent playing a game
cares only about maximizing its expected reward which depends on the actions of other agents it is
interacted with. Each agent has a strategy which is defined as a plan that tells the agent which action

to choose at every possible situation faced when playing the game.

An agent’s strategy can be either pure or mixed. Pure strategy states that the agent will choose this
strategy with probability 1, while Mixed strategy states that the agent will choose this strategy with
probability value that is less than 1 and larger than 0. If there are n agents playing a game where each
agent has m actions to choose from at each game stage, then the possible combination of joint
actions is m". The main object of game theory is the Stage Game. Stage Game is defined by a set of
agents {1,2,..., n} where for each agent i there is a finite set of actions Ajand a reward function

Ri: A; X A; X ... X A, » R that depends on all agents’ actions.

2.2.1 Game Representations

There are two representations of games in Game Theory, extensive form representation and

normal form representation. Note that we use the terms agents and players interchangeably.
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e Extensive Form Representation

Extensive form represents sequential games where agents do not play the game at the same time
(i.e. play one after the other) and later agents know the actions of previously played agents
(Shoham & Leyton-Brown, 2009). Games represented using this model are viewed as a decision
tree, where nodes represents the agent’s choice of actions and the player index (or name) is placed
on top of the each node that represents its actions choice. The last numbers are defined as the
payoffs (i.e. rewards) of the players. Figure 2.3 illustrates an example of a game, where two players,

each with possibility of selecting from two actions, modeled using extensive form.

Player 1

Player 2 Player 2

b

3,1 0,2 1,2 3,1

Figure 2.3: An illustration of an extensive form game

In the above example, player] starts playing by choosing either of action “A” or Action “B”. Then
player2 observes the action played by playerl and depending on this action it selects either of
action “a” or action “b”. If playerl selects action “A” then player2 selects action “a”, then playerl
will receive a reward value of 3 and player2 will receive a reward value of 1, but if player2 selects
action “b” then playerl will receive a reward value of 0 and player2 will receive a reward of 2. Same

scenario works when player] selects action “B” and player2 selects either of “a” or “b”.

e Normal Form Representation

Unlike extensive form, that represents the game as a tree, normal form represents a game, where
agents play simultaneously without knowing the action choice of each other or play consecutively

but no agent knows the action(s) of previously played agents (Shoham & Leyton-Brown, 2009), as
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a payoff matrix in which the players, their strategies and the reward value of each possible
combination of actions (i.e. joint actions) are included. Table 2.1 illustrates an example of a game
where two players, each with possibility of choosing one out of two actions, represented using

normal form model.

Player 1/ Player 2 Left Right
Down (0,0) (4,3)

Table 2.1: An illustration of the payoff matrix of a normal form game

In the above example, playerl can choose either to move Up or move Down and player2 can
choose wither to move to the Left or to move to the Right. The first number in every cell in the
payoff matrix represents the reward value of the row player (i.e. playerl) and the second number in
every cell represents the reward value of the column player (i.e. player2). In this example if playerl
chooses to move Up and player2 chooses to move to the left then player] receives a reward value of
1 and player2 receives a reward value of 2, but if playerl chooses to move Down and player2

chooses to move to the Left, then both players will get a reward value of 0 (i.e. no reward).

Extensive form games can be transformed into normal form games but usually this conversion
suffers from a high computational complexity in the representation (Leyton-Brown & Shoham,
2008). The work in this thesis focuses on using two-player two-action normal form repeated games
where two agents play simultaneously with the goal of finding the best action to maximize their

reward function value, with each agent has two actions to choose from.

A Repeated Game is defined as the repetition of the stage game for a number of times in which
the current action of each agent affects the set of future possible actions of other agents (Conitzer
& Sandholm, 2007). The games used in this thesis are the Coordination game and the iterated

prisoner’s Dilemma game which are discussed in the next section.
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2.2.2 Types of Games

In game theory, games can be classified into three types: Cooperative, Competitive and Semi-

Cooperative or Semi-Competitive Games.

e Cooperative Games

Agents playing cooperative games act like one group with a common goal, for each agent in the
group, which is maximizing the expected payoff of the whole group by coordinating agents’
strategies (Hoen er al., 2006). Agents in this type of games prefer the group-interest over self-
interest. A good example to illustrates cooperative games is the Battle of the Sexes game, a two-
player two-action game where a couple prefer to spend the weekend together than spending it
alone in one of two places: the cinema or a football match. However, the wife prefers to go to the
cinema while the husband prefers to go to the football match. Table 2.2 demonstrates the payoff
matrix of the Battle of the Sexes game where the wife is the row player (playerl) and the husband is

the column player (player2).

Player 1/ Player 2 Cinema Football Match

Cinema (3,2) (0,0)

Football Match (0,0) (2,3)

Table 2.2: An illustration of the payoff matrix of the Battle of the Sexes game

Although each player gets a better payoff by choosing the opposite action of the other (i.e. playerl
gets better payoff when choosing Cinema and player 2 gets a better payoff by choosing Football
Match), they still prefer to choose the same action together than choosing their preferred actions.
There are two pure Nash-Equilibrium strategies in this game: both players choose to go to the

Cinema and both players choose to go to the Football Match.
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Another good example of cooperative games is the Coordination game where 2 players must
choose the same action in order to get the best joint reward. Table 2.3 illustrates the payoff matrix
of a coordination game where two robots are trying to pass each other in a narrow pathway. If both
robots choose the same action, then they will manage to pass each other successfully. But if each
agent chooses a different action than the other agent, both agents will bump into each other (i.e.
from each agent’s perspective, if both agent chooses to move to their right hand side or both choose
to move to their left hand side, then they will pass each other. Otherwise, a collision will occur.).
Therefore, both agents must coordinate their actions in order to maximize their total payoff.
Usually, this type of games requires communication between agents in order to coordinate their
actions more efficiently. In this thesis, a similar Coordination game to this example is used and

discussed in detail in the next Chapter.

Player 1/ Player 2 Left Right
Left (5,5) (0,0)
Right (0,0) (5,5)

Table 2.3: An illustration of the payoff matrix of an example of a Coordination Game
e Competitive or Non-Cooperative Games

Agents play this type of games as individuals, each aims to maximize its own expected payoff. In
competitive games, agents prefer self-interest to group-interest and each agents chooses the action
that maximizes its reward regardless of how this action may affect the agent’s partner (Hoen ez al.,
20006). A good example of competitive games is the matching pennies game, a two-player two-
action game, where each agent can choose either to play Head or Tail. In this game, if both agents
play the same action (i.e. either both agents choose Head or both agents choose Tail) then the row
player receives a reward of 1 and the column player receives a negative reward (i.e. punishment) of
1 (i.e. -1). But if both players choose different actions (i.e. one agent chooses Head and the other
chooses Tail) then the row player receives a punishment of 1 and the column player receives a

reward of 1. Table 2.4 illustrates the payoff matrix of the matching pennies game.
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Player 1/ Player 2 Head Tail

Head (1,-1) (-1,1)

Tail (-1,1) (1,-1)

Table 2.4: An illustration of the payoff matrix of the Matching Pennies game

In the above example, each agent chooses its action without taking into consideration how this
action affects its partner’s reward. There is no pure Nash-Equilibrium strategy in this game in
which agents choose actions with probability 1 to maximize their own reward. Instead, there is a
mixed Nash-Equilibrium strategy in which agents choose any of their possible actions with the
same probability value (i.e. both agents choose any action with probability%) (Abdallah & Lesser,
2006). Therefore, the mixed Nash-Equilibrium of this game is (0.5, 0.5). It is clearly observed that
the value of the gain of an agent is exactly the value of the loss of another agent. Games with such

property are called Zero-Sum Games in which the sum of total rewards of each agent playing such

games is equal to zero (Shoham & Leyton-Brown, 2009).

e Semi-Cooperative or Semi-Competitive Games

In some cases, agents in competitive games exhibit a cooperative behavior in order to maximize
their own payoff. Competitive games with cooperative behavior and cooperative games with
competitive behavior are called Semi-Cooperative or Semi-Competitive games. A very good
example of this type is the prisoner’s dilemma game. As observed in table 2.5 which illustrates the
prisoner’s dilemma payoff matrix, it is clearly shown that by comparing the possible combinations
of agents’ actions, a player receives a better reward when choosing to “Defect”, regardless of the
action of the other player, than to choose “Cooperate” which is a more risky action in which if and
only if both players choose to “Cooperate” they will get the best joint possible reward, but if only
one player chooses to “Cooperate” then it will receive no reward and the other player with “Defect”

as an action will receive the highest reward a single player can get.
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Player 1/ Player 2 Defect Cooperate

Defect (1,1) (5,0)

Cooperate (0,5) (3,3)

Table 2.5: An illustration of the payoff matrix of the prisoner’s dilemma game

This comparison demonstrates that the action “Cooperate” is dominated by the action “Defect”
and should not be used by agents when playing the prisoner’s dilemma game and that the joint
action (Defect, Defect) is the only Nash Equilibrium of this game (Osborne & Rubinstein, 1994;
de Groot, 2008). However, although (Defect, Defect) is the only Nash Equilibrium of this game, it
is clearly observed that it is not the optimal joint action that maximizes the reward value of agents
in this game. On the contrary, the joint action (Cooperate, Cooperate) is the optimal joint action

of this game as it maximizes the reward value of each player.

In this game, it is notable that both players suffer from a low reward value if they choose different
actions from each other. A solution to this problem is to coordinate the agents’ actions in a way
that will avoid confliction in their action choice. Therefore, agents will have 2 possible strategies to
play, which are (Cooperate, Cooperate) and (Defect, Defect). In this thesis, we are interested in
studying the performance of a learning algorithm in cooperative and semi-cooperative (or semi-

competitive) games. The next sub-section defines the best response and Nash-Equilibrium.

2.2.3 Nash-Equilibrium

Given the strategies of other agents, a strategy that selects the action which results in the highest
payoff of an agent is called the best response of that agent. Nash-Equilibrium is the joint strategy
where each agent plays a best response to the strategies of its opponent(s) (Babes, Wunder &
Littman 2009). According to John Nash (1950), each game has at least one Nash-Equilibrium. A
competitive game is considered to be solved once the Nash-Equilibrium is found since no agent
can get better payoff by changing its strategy unilaterally. However, in cooperative games there is

usually more than one Nash-Equilibrium. In this case, and when agents do not communicate with
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each other, it is unclear which Nash-Equilibrium strategy is chosen by each agent. Nash-
Equilibrium can be classified into two types: Pure Nash-Equilibrium, where all agents play pure

strategies, and Mixed Nash-Equilibrium, where there is at least one agent playing a mixed strategy

(de Groot, 2008).

Multi-Agent learning algorithms are used to help agents, when playing a game, to find their
actions which maximize their payoff (i.e. helps solving the game by reaching Nash-Equilibrium).

The next section defines MARL algorithms and provides several examples of their types.

2.3 Multi-Agent Learning Algorithms

Several MARL algorithms have been proposed and applied to many multi-agent domains
(including games) to help agents learn their optimal action that will maximize their expected reward.
In this section, MARL algorithms are classified into a number of families to simplify the discussion
and comparison between each of them and the Q-learning algorithm is defined and discussed in

detail.

2.3.1 MARL Algorithms Classification

In this thesis, MARL algorithms are classified in to three families: Q-learners, Equilibrium learners

and Gradient Ascent learners.

e Q-learners

Algorithms of this class are designed based on the Q-learning algorithm which is the focus in this
thesis and is discussed later in this section. Therefore, they can only learn deterministic policies. This
property makes this class of MARL algorithms suffer from limitations when applied to competitive
domains, where stochastic policies exist. Also, algorithms of this class require observing the actions of
other agents which is impractical in large domains with partial observability. Independent Learners
(ILs) and Joint Action Learners (JALs) are good example of algorithms of this class (Claus &
Boutilier, 1998).
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e Equilibrium Learners

Unlike previous class, algorithms of this class can learn stochastic policies. Examples of algorithms
of this class are Nash-Q (Hu & Wellman, 2003), which assumes that both actions and rewards of
other agents are observable, and AWESOME (Conitzer & Sandholm, 2007) that besides requiring
each agent to know the actions of other agents assumes that the underlying game structure is
known. After observing the actions of agents, each agent tries to compute the Nash-Equilibrium.
These algorithms converge to Nash-Equilibrium in self-play (i.e. when all agents play using the

same learning algorithm).
e Gradient Ascent Learners

Learning algorithms of this class learns a stochastic policy though following the gradient of the
expected reward. The expected reward gradient is defined as a vector that points towards the
highest value of the increase of the expected reward. Examples of algorithms of this class are:
Infinitesimal Gradient Ascent (IGA) algorithm (Singh, Kearns & Mansour, 2000), Generalized
IGA (GIGA) algorithm (Zinkevich, 2003), IGA-WoLF Algorithm (Bowling & Veloso, 2002),
GIGA-WOoLF algorithm (Bowling, 2005) and Weighted Policy Learner (WPL) algorithm
(Abdallah & Lesser, 2008). While IGA and GIGA only converge to pure Nash-Equilibrium,
GIGA-WoLF and WPL converge to both pure and mixed Nash-Equilibrium with WPL
outperforms GIGA-WOoLF in large-scale partially observable domains (Abdallah & Lesser, 2008).

2.3.2 Q-Learning Algorithm

Q-learning (Watkins & Dayan, 1992) is originally defined as a single-agent learning algorithms
which helps agents to accomplish their goal, that is finding an optimal policy that maximizes their
reward, in MDPs. However, Q-learning is proved to be working in Multi-agent settings too. In this
algorithm, each agent has a Q-table where Q-values of each state action pair are stored. For each
agent, each Q-value or state action value represents the expected payoff that the agent receives when

choosing that action at that state. Let us consider a two-player two-action game where Q-learning
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algorithm is used to find the optimal actions of each agent. The size of the Q-table of each agent is
equal to the number of possible action combination for that agent. In case of two-player two-action
games, the Q-table of each agent has 2% = 4 Q-values. In repeated games, at the end of each stage the

Q-value of the executed joint action is updated for each agent using the following Q-function:

Q(s,a) =1 —a)Q(s,a) + a[r + y max,,Q(s', a")] (1)

Where s is the current state, a is the action chosen by the agent at state s and « is the learning rate
whose value ranges from 0 to 1 in which as the value of @ increases, the more important the learned
information is. ¥ is the discount factor whose value ranges from 0 to 1 and as the value increases, the
agent ignores the immediate high reward and focuses on the long-term high reward. If y > 1 then
there is a high possibility of a divergence in the learning algorithm performance. r is immediate
reward received by the agent once choosing action a at state 5. 5" is the new state resulted after
executing action a at state S and max,,Q(s’, ") is the maximum future expected reward value

where @’ is the best action that maximizes the expected reward value of the next state 5.

Let us consider the example of two-player two-action game where Q-learning algorithm is used, the

learning process is carried out by each agent as follows

1) Initialize the Q-table randomly (e.g. (0, 0, 0, 0))

2) Let s represents the current state

3) Choose an action for the current state using an exploration method. (e.g. e-greedy exploration):
a <« argmax,Q(s,a) with probability (1- €) and
a < random action with probability €

4) Execute the action a

5) observe reward r and next state s’

6) Learn and update the Q-value of the executed action using rule (1)

7) Repeat 2-7
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As it can be noted from the above process, an exploration method is used to explore possible
actions to execute in the next state s’. In this thesis we use the e-greedy exploration algorithm, where
€ represents the exploration rate which is usually set to 0.1. Using this exploration algorithm, the
agent will explore more than one action to execute and, for each new state, it will choose to execute
the best action with the highest reward value 90% of the time and a random action 10% of the time.
It is worthy to mention that Q-learning algorithm can only learn a deterministic policy which
chooses an action at a state with a probability of 1 (i.e. Always chooses a particular action at a

particular state).
2.4 Coordinated Multi-Agent Reinforcement Learning

2.4.1 Problem Definition

Cooperative Multi-Agent Systems are considered to be one of the most interesting perspectives in
MARL field that received a lot of attention recently from many Artificial Intelligence (AI)
researchers due to the fact that most real-world multi-agent applications behave as cooperative
systems where all agents share common goal (Panait & Luke, 2005). To achieve the goal of such
systems, several agents have to coordinate their actions in order to compute their optimal joint
action which maximizes their global total reward. Several approaches have been proposed and
applied to help coordinating agents’ actions (e.g. MDP and DEC-POMDP). However, such
approaches suffer from a very high communication and computation complexity, when trying to
compute the exact optimal joint policy of agents, due to the large action space that scales

exponentially with the number of agents.

Coordinating the actions of agents in cooperative multi-agent systems has been a common concept
used by many researchers to reduce the computational complexity of computing the optimal
solution (Weib, 1993; Boutilier, 1999). Using this concept, several coordination approaches are
developed to allow agents to communicate with each other during execution time. Therefore, it
solves the limited observability problem faced by agents in large-scale domains. The following works

develop different coordination approaches using the coordination concept and apply these
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approaches in several real-life domains and verify the effectiveness of their usage and show that they
outperforms other multi-agent reinforcement learning approaches which do not use the coordination

concept.

2.4.2 Related Work

Guestrin, Lagoudakis and Parr (2002) proposed a new approach, the Coordinated Reinforcement
Learning, which computes an approximation of the joint policy as a linear combination of local
policies through using a coordination graph as a message passing scheme that helps agents in
choosing the optimal joint policy. Experimental evaluation shows that the proposed approach
achieves policies of high quality and greatly reduces the computation and communication

complexity unlike other reinforcement learning approaches.

Yagan and Tham (2007) have used the concept of Coordinated Reinforcement learning to propose
a novel online model-free reinforcement learning approach that computes the approximation of the
optimal joint policy to reduce time complexity, communication and computation resources in ND-
POMDPs. In addition, this work proposes a distributed coordination technique which is based on
exploiting interactions among neighboring agents to optimize the global system performance.
Experimental results verify the effectiveness of the proposed approach and show that unlike other

approaches, the proposed approach saves computational and communication time and cost.

Another work (Stranders et al., 2009) uses the concept of coordinated reinforcement learning
approach to propose an on-line decentralized coordination approach for addressing the limitations
presented by previous off-line algorithms proposed to find the optimal joint action in Disaster
Response domains. The proposed approach uses the Max-Sum algorithm, a DCOP algorithm, as a
negotiation mechanism among agents so that an optimal joint action can be achieved. In Addition,
it uses a powerful Bayesian tool, Gaussian Processes, to model the spatial phenomena dynamics.
Furthermore, the paper proposes two pruning techniques to speed up the Max-Sum algorithm and
experimental evaluation verifies the effectiveness of the proposed algorithm by illustrating a

reduction up to 50% in the root mean squared error compared to other approaches, and the
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efficiency of the pruning techniques, which saved computational cost by pruning up to 95% of the

joint actions in Max-Sum algorithm, resulting in speeding up the algorithm.

Zhang, Abdallah and Lesser (2010) proposed a decentralized self-organization approach that forms
a hierarchically organizational control which evolves dynamically during the learning process. This
proposed approach is based on the “nearly decomposable systems” concept, which states that
interactions between sub-systems are weaker than interactions within sub-systems. Furthermore, this
work proposes a new type of interactions, i.e. joint-event-driven interactions, and a measure of
identifying the strength of these interactions. Based on these interactions, the proposed approach can
dynamically form the supervisory organization by grouping strongly interacting agents together in
one cluster/group. Experimental Evaluations show that the proposed approach is efficient and

outperforms the pre-defined, fixed frameworks.

2.5 Summary

In this chapter, a comprehensive review about Multi-Agent Reinforcement Learning (its general
representative models and algorithms), Game Theory (its problem definition, representations, types
and several examples of each type) and Coordinated Multi-Agent Reinforcement Learning, which is
the main focus in this thesis, have been provided. The main contribution in this thesis is to analyze
and study the performance of a coordinated multi-agent reinforcement learning approach in
cooperative and semi-cooperative two-player two-action games. This thesis adopts the coordination
approach of (Zhang & Lesser, 2011) and applies it in the Coordination and Iterated Prisoner’s
Dilemma games. The adopted coordination approach is presented and discussed in more detail in

the first section of the following Chapter (i.e. Section 3.1).
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Chapter 3
Methodology

This chapter provides a detailed description of the adopted coordination approach, the coordinated
Q-learning approach, which is proposed in one of the recent paper about coordinated multi-agent
reinforcement learning (Zhang & Lesser, 2011) by presenting the main assumptions of the approach,
how the learning process is carried out, how the global joint policy is computed and how we adjust
this approach to work in different domain than the one it is designed for. It also defines several key
elements that are important to the main contribution of the thesis, which is studying and analyzing
the characteristics and performance of the coordinated Q-learning approach when applied in
cooperative/semi-cooperative two-player two-action games under different network structures then

compare the performance with that of the original Q-learning algorithm.
3.1 Coordinated Q-Learning Approach

Unlike most of the proposed coordination approaches (presented in the previous chapter) that need
accurate, expensive to be obtained, models of the environment they are applied to and do not scale
to large domains, Zhang and Lesser (2011) presented an online model-free coordinated multi-agent
learning approach, the coordinated Q-learning approach, to solve ND-POMDPs more efficiently by
utilizing both Multi-Agent Reinforcement Learning (MARL) and Distributed Constraint
Optimization (DCOP).

This approach aims to maximize an approximation of the global expected reward function through
optimizing a decomposable reward function that helps in distributing the learning of the optimal
global joint policy among agents by exploiting their locality of interactions. This approximation is
exact for ND-POMDPs with a special property called “Groupwise Observability”. Then, using a
DCOP technique (i.e. the Max-Sum algorithm), the optimal (or near-optimal) joint action which

maximizes the global reward function is computed. This technique coordinates the distributed
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learning to ensure the optimality (for ND-POMDPs with groupwise observability property) or near-
optimality of the global learning performance. Experimental Results, carried out in the original work
of the approach (Zhang & Lesser, 2011), verify the effectiveness of the proposed coordinated
learning approach in solving ND-POMDP problems and show that the proposed approach
significantly outperforms offline nearly-optimal with no-communication policies of other approaches.
Therefore, the coordinated Q-learning approach is adopted in this thesis as the coordinated
reinforcement learning approach to be studied and analyzed in two-player two-action
cooperative/semi-cooperative games and compared later to the original learning algorithm without
the coordination property. The following sub-sections provide a detailed description of the
coordinated Q-learning approach, the coordinated learning process and how to compute the global

optimal joint action.
3.1.1 The Approach Framework and Assumptions

-
A Q-function Q(h, a) is used to represent the expected reward when executing joint action « at
. . ' . . . . . . .

history of observations h. The adopted coordination approach aims to optimize an approximation

of the global reward function Q(l_{, a). This approximation Q(E, a) is defined as a decomposable
reward function that is expressed as the sum of local reward functions of group(s) on hyperlinks in
the interaction hypergraph constructed from the global reward function in ND-POMDPs (sce

equation 1):

Qta)= Y QLa) @

leE

Where Q{(ﬁf, af) represents the expected reward for agents in group(s) defined on hyperlink /
when executing joint action af at joint observation history ht. Optimizing the approximated

e
reward function Q(h,a) can be considered as maximizing the global reward function

Q(ﬁ, a) since the latter depends on the former to be computed in ND-POMDPs. However, this
approximation turns to be exact when ND-POMDPs have a special property called “Groupwise
Observability”. This property indicates that, the local belief of agenti in group I can be stated
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depending only on the initial local state of agent i and the joint observations and actions of other
agents in group [ (i.e. the group of agenti) and that the local belief of agent i is totally independent
of the history of joint observations and actions of agents in other groups. The adopted approach is
verified theoretically to learn the global optimal policy for ND-POMDPs with groupwise
observability. Nevertheless, experimental results verify that, even when the groupwise observability
property does not exist in the examined ND-POMDPs, the coordination approach learns a policy

that optimizes the global reward function.

The adopted coordination approach assumes that agents are distributed among a predefined
number of groups in which each group has a delegate agent that learns the group optimal policy on
behalf of the group members. In this framework, each delegate agent has a local Q-function of the
group it is in charge of. Figure 3.1 illustrates an example of the adopted approach framework when
distributing 8 agents among 3 groups. While red nodes represent delegate agents, blue nodes
represent normal agents (i.e. agents in the 1% level of the supervisory framework) and edges
represent membership of different groups (where each delegate agent represents a group). Note that
the number of delegate agents is equal to the number of learning groups and that an agent can

belong to more than one group.

Delegate Agents

Agents

Group 1 Group 2 Group 3

Figure 3.1: An example of the adopted coordination approach supervisory framework when having

three groups of agents
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3.1.2 The Coordinated Q-learning Process

The coordinated Q-learning approach learns the optimal Q(E, a) that maximizes the global
reward and distributes this learning among groups through updating the Q-function of each

delegate agent using the following update rule:

Ql(ﬁt, af)=(01- a)Q(E{, af) + alrf + ]/Ql(rlltﬂ, a;)] (3)

Where t is a learning cycle and « is the learning rate whose value ranges from 0 to 1 in which as
the value of @ increases, the more important the learned information is. y is the discount factor
whose value ranges from 0 to 1 and as the value increases, the agent ignores the immediate high
reward and looks for the long-term high reward. If y > 1 then there is a high possibility of a

divergence in the learning algorithm performance. 7" is the total reward of group [ that is defined

as the sum of local rewards of each member in the group L. Q(ﬁf“, a;) is the expected reward for

agents in group [ when executing the joint optimal action a; at the updated observations history

.
t+1
it

The following is a description of the learning process of the coordinated Q-learning approach. In
each learning cycle t, each agent in group [ executes its action a’ and receives a reward rt of
executing that action. Agents send their observations to their delegate agent whose action and
observation history are the set of joint actions al and joint observations history ﬁf of agents in
group [ and its reward is the group total reward 7 (i.e. the sum of local rewards of all agents in
group l). Then, using a DCOP algorithm, the group optimal action a; for the updated history of
observations ﬁltﬂ is computed. The delegate then updates its Q-function Ql(i_l)lt, af) using rule (3)
and distributes the next actions (that can be either the best actions a; or exploration actions) to

each agent in the group.
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3.1.3 Choosing the Optimal Joint Action
e Problem Definition

The optimal joint action a* maximizes the global reward function Q(ﬁ, a), that is the sum of all

local reward functions Q{(E, al) in which:

a* = argmax, z Ql(ﬁl, al) (4)

lEE

Where a* is used for updating local reward functions Ql(i_l)l, al) and as a possible action to be
executed by agents during execution time. The adopted approach represents the problem of
computing the optimal joint action as a Distributed Constraint Optimization Problem (Nair ez 4l.,
2005). DCOP is a multi-agent paradigm where agents try to find the optimal joint action that
maximizes the total reward obtained by them. It is expressed as a set of variables x = {xy, ..., x,},
where x; represents a possible action for agent I, and a set of functions Q = {Qzll €EE } , where

Q, is the reward function for group(s) defined on hyperlink L.

® Max-Sum Message Passing Algorithm

DCOP is solved through applying message-passing algorithms which help agents to communicate
with each other during execution time, enabling them to get better observability of the world state
and other agents’ actions. Despite the fact that a lot of message-passing algorithms have been
proposed to solve DCOP, most of these algorithms either suffer from high computational
complexity even though it computes/finds the optimal solution or compute an approximate
solution with less complexity. Generalized Distributive Law (Aji & McEliece, 2000) contains a
class of algorithms which require much less communication and computation complexity and
compute a very good approximation of the optimal solution. The Adopted coordination approach
uses the Max-Sum message passing algorithm (Stranders ez /., 2009) which is considered to be one
of the pretty good algorithms in that class to compute the optimal joint action and can be directly

used to coordinate interactions of more than two agents.
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The Max-Sum algorithm operates on a factor graph which is an undirected bipartite graph, in
which there is a node created for each variable x and for each function Q in the DCOP. Each
variable node is connected to a function node if and only if the corresponding function depends on
the corresponding variable. Figure 3.2 illustrates an example of a factor graph where 7 agents (i.e.
variable nodes) are distributed among 3 groups in which each delegate agent has the Q function of

the group it is in charge of (i.e. function nodes).

Group 1 Group 2 Group 3

Figure 3.2: An example of a factor graph with 7 agents and 3 groups

In the above figure, the reward function of group 1 (Q:) depends on the action of each of agentl,
agent2 and agent3 (x, , x, and x5 respectively). The reward function of group 2 (Q.) depends on
the action of each of agent2, agent3, agent4 and agent5 (x,, x3, x4 and xs respectively). Finally, the
reward function of group 3 (Qs) depends on the action of each of agent4, agent5, agent6 and
agent? (x,, Xs, Xg and x; respectively). The Max-Sum algorithm provides a way for agents to
communicate in the factor graph with each other during execution time by identifying the
messages passed from variable nodes to function nodes and the messages passed from function

nodes to variable nodes. The following are the rules for computing the mentioned messages.
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- Message from variable node i to function node [:

Qi1 (x;) = XgeriTg—i(x) + ¢y (5)

Where F; is a vector of function indices that specifies which function nodes are connected to the
variable node 7 and ¢;; is a normalizing constant which prevent messages from increasing
continuously in cyclic factor graphs. Using the above rule, each agent who belongs to more than
one group sends to each of its delegate agents the sum of messages it received from other delegate
agents it is connected to when performing action x. However, q;_,; (x;) = zero if agent i does not

belong to more than one group.

- Message from function node [ to variable node i:

oG = maxgy, [QR @) + ) qgu(xy)] ©®
geV\i
Where V; is a vector of variable indices that specifies which variable nodes are connected to the
function node [ and a;\x; = {x,; : g € V}\i}. Using the above rule, the delegate agent of group [

computes the reward function of the group when the group members/agents execute joint action

a; at the joint history of observations h. Then, for agent i in group [, the delegate agent sends a
message to agent { which contains the value of the group Q-function when agent i chooses action
x added to the sum of the messages sent to the delegate agent from other agents in the same

group | (except agent i) when they execute the same action x as agent i.

The Max-Sum algorithm computes the optimal action a; of each agent i using rule (7) only
when the factor graph is acyclic. Otherwise, the algorithm is not guaranteed to compute the
optimal action of each agent although previous experimental analyses verify that the max-sum

algorithm provides pretty good solution quality even when the factor graph is cyclic.

*

a; = argmaxai ZgEFi rg—)i(xi) (7)

Page |30



In our work we ensure the optimality of the joint action computed using the Max-Sum algorithm
by ensuring that all factor graphs induced from DCOP are acyclic. This feature is ensured using a
grouping technique which distributes agents over a number of groups. Figure 3.3 provides an

acyclic version of figure 3.2 using our grouping technique.

® ® ©
O e‘@ oo

Groupl Group2 Group3

Figure 3: An example of an acyclic factor graph with 7 agents and 3 groups

3.2 Agents Grouping Mechanism

Since the work on the coordinated Q-learning approach (Zhang & Lesser, 2011) did not state a
technique to group agents (they assumed that the grouping is given using a hand-crafted grouping),
we propose our own grouping mechanism that is used to distribute agents among a pre-defined
number of groups and to ensure that the induced factor graph is acyclic. The agents grouping
process is carried out over two distributions as follows: the number of agents is divided by the
number of groups and then the Floor of the resulted number represents the number of agents per
group. After the first distribution process takes place, all agents that got no group will be added to
the latest group (e.g. if there are 5 agents and 2 groups then groupl will take 2 agents and group2
will take 3 agents). For the second distribution, if an agent x has a neighbor y which is in different
group than agent x group, then the set of groups agent x belongs to will be extended to have the

group of agent y too.
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Our grouping mechanism is designed in a way that forbids having two or more agents influencing
the group of each other (i.e. if the group of agent i depends on action of agent j, then it is forbidden
for the group of agentj to depend on any agent that belongs to the group of agenti). This
prohibition ensures having acyclic factor graphs which ensure the optimality of the computed joint
action using the Max-Sum algorithm. The following figures illustrate examples of the induced
network of agents which are distributed among a number of groups. Note that label on each
node/agent indicates the group of this node/agent. For example, nodes with a label of [0] means that
these nodes/agents belong to group 0, while nodes with a label of [0,1] states that these agents

belong to both group 0 and 1.
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Figure 3.4: Two examples of using the grouping technique to distribute 10 agents among 2 groups
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Figure 3.5: Two examples of using the grouping technique to distribute 10 agents among 3 groups
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Figure 3.6: Two examples of using the grouping technique to distribute 10 agents among 4 groups
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Figure 3.7: Two examples using the grouping technique to distribute 10 agents among 5 groups
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3.3 Our Problem Domain and Network Structures
3.3.1 Cooperative and Semi-Cooperative Games

Unlike the domain used in (Zhang & Lesser, 2011) which is the distributed sensor networks
domain, we are interested in cooperative/semi-cooperative two-player two-action games. In such
games, agents maximize their reward function by coordinating their joint actions. We choose to
study the performance of the adopted coordination approach in one of the most famous cooperative
games, the Coordination Game, where two agents get the same high reward if both choose the same
action and get the same negative or no reward otherwise. Table 3.1 illustrates the payoff matrix of
both players in the coordination game where each player chooses one of two colors (i.e. Red or Blue).
After choosing their action, each player receives a reward value, if both players choose the same color
then each will get a reward of 1, otherwise both gets 0. One can note that this coordination game has

two pure Nash Equilibriums: both agents choose red and both agents choose blue.

Player 1/ Player 2 Red (R) Blue (B)
Red (R) (1,1) (0,0)
Blue (B) (0,0) (1,1)

Table 3.1: Payoff matrix of both players when playing the tested coordination game

We also study and analyze the performance of the Coordinated Q-learning Algorithm in one of the
most famous semi-cooperative games, the Iterated Prisoner’s Dilemma (IPD). This game illustrates a
situation where it is hard for two players to coordinate their actions due to the imbalanced reward
value received by agents if one chose a different action than its partner. As mentioned in chapter 2,
semi-cooperative/semi-competitive games present a challenge for reinforcement learning algorithms
because an agent’s self-interest feature rises above the mutual interest. The following is a good

example to simplify and illustrate the IPD:
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Two men got caught while trying to rob a bank. However, the police have no evidence to
convict the two men with the robbing crime and they can only prison them for a month for
carrying guns. Therefore, the police separate each of those men and put them in different rooms
then offer them the same deal: if one testifies against the other and betrays him (i.e. Defect)
while the other remains silent (i.e. Cooperate), then the betrayer will go free while the other is
sentenced to a one-year in jail. If both remain silent then both are sentenced to a one-month in
jail for carrying guns with them, and if both testify against the other then both are sentenced to

three-months in jail. Neither of the prisoners knows what the other chooses to do.

Each player is supposed to choose the action that lessens its prison time (represented as a high-
reward action). Table 3.2 illustrates the payoff matrix of both players when playing IPD. Although
it is clearly obvious that both players must choose to “Cooperate” as their optimal joint action that
will maximize their reward function, they may not choose to do so since the cooperator is not
rewarded if the other player chooses to defect (in some other payoff matrices of the IPD the
cooperator receives a punishment, negative reward value, if the other player chooses to defect). As
mentioned in Chapter 2, Defecting is a dominant action in game theory in which that agent is
rewarded if it chooses to defect regardless of its partner action. Therefore, there is only one Nash
Equilibrium presented in this game, that is, both players choose to Defect (Sandholm & Cirites,

1995).

Player 1/ Player 2 Defect (D) | Cooperate (C)

Defect (D) (1,1) (5,0)

Cooperate (C) (0,5) (3,3)

Table 3.2: Payoff matrix of both players when playing the tested iterated prisoner’s dilemma game
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3.3.2 Network Structures

The main contribution of this thesis is to study and analyze the performance of the coordinated Q-
learning approach in cooperative/semi-cooperative two-player two-action games under different
network structures. Therefore, we choose to test the coordinated Q-learning approach in two
different network structures, that is, Random and Scale-Free network structures. Erdos and Renyi
(1959) are the first to define random networks. There assumption is that, in random networks,
nodes are connected to another node(s) using random placement of edges/links and most nodes have
approximately the same number of connected nodes (i.e. the same number number of edges/links), a
unique characteristic of random networks in which it is considered to be very rare to find a node

with extremely more or less number of edges/links than the average.

Unlike random networks, the distribution of links/edges connecting nodes in scale-free networks
follows a power law in that most nodes have a low number of connecting edges/links and few nodes,
called hubs, have an extremely large number of edges/links (Barabasi and Bonabea, 2003). Scale-free
networks are strong and robust against random and accidental failures in which if a random failure
occurred to some of the nodes with small degree, then the probability that a hub is affected by this
failure is so low. Even if the failure happened to a hub-node, then the network will remain
connected due to the rest of existing hubs. However, scale-free networks are weak against
coordinated attacks that target hub-nodes. Figures 3.8 and 3.9 illustrate several examples of random

networks and scale-free networks respectively.
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Figure 3.8: Examples of Random Networks
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Figure 3.9: Examples of Scale-Free Networks

In the following chapter we apply the adopted coordinated Q-learning approach in both of
the coordination game and the iterated prisoner’s dilemma, each with its payoff matrix
presented in this chapter (see table 3.1 and table 3.2). Both games are modeled using ND-
POMDP model without the groupwise observability property. Our grouping mechanism
which was discussed in this chapter is used to distribute agents among groups and to ensure
that the induced factor graph of the DCOP is acyclic (which will ensure the optimality of the
joint action computed by the Max-Sum algorithm). It is worthy to mention that we ignore
the use of states in the original Q-learning algorithm in the following experiments to

minimize the computational complexity (i.e. Q(a) is used instead of Q(s,a)).
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Chapter 4

Experimental Analysis

This chapter presents the settings of the experiments conducted to evaluate and compare the
performance of both the original Q-learning and the Coordinated Q-learning Algorithm in the
Coordination and the Iterated Prisoner’s Dilemma games under different network structures and
settings. It provides the results achieved by conducting the experiments and investigates the possible
effect of increasing the number of delegate agents and the horizon on the performance of the
coordinated Q-learning algorithm. Finally, it presents a reasonable justification of the achieved

results and answers the thesis research questions.

4.1 Experimental Setup

A simulator of the tested games, network structures and algorithms is built using NetLogo
(Wilensky, 1999), an agent-based modeling environment and programming language, to evaluate
the performance of the Coordinated Q-learning algorithm and compare it with that of the original
Q-learning algorithm. The process of evaluating the performance of each algorithm for each tested
game is carried out as follows. For each network structure, the average payoff is computed over
30000 simulation time steps and the results are averaged over 15 simulation runs. For the
coordinated Q-learning, different number of learning groups of agents is used and the evaluation
process is repeated for each horizon H, which ranges from 1 to 3, to measure the effect of both the
number of learning groups and horizon on the performance of the algorithm (i.e. results are averaged

over 45 simulation runs).

The learning rate o of both algorithms is set to 0.1, the exploration rate € is set to 0.1(the e-greedy
exploration is used as the exploration algorithm) and the discount factor y is set to 0.9 which are
commonly used values for these learning parameters. As mentioned in the 3" section of chapter 3,

both original Q-learning and coordinated Q-learning are tested in 2 multi-agent games, the
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coordination game and the iterated prisoner’s dilemma game under two different network structures,
random and scale-free networks. The scale-free network is created using the preferential attachment
generative model. Section 3 in the previous chapter contains figures which illustrate some examples
of the network structures generated by our simulator. Figure 4.1 presents an example of each

network structure with a demonstration of each node degree.

...
A e B !. L]
... ; y
. t] 9
® 8 .
® .. ., i .
[ ] -.‘ .l
. .
L ] @ .
..
& .

Figure 4.1: An example of the tested Random Network (A) and the tested Scale-Free Network (B).
The node size represents the node degree (the higher the node degree, the larger the node size)

4.2 Experimental Results and Evaluation

4.2.1 Coordination Game Results

The following presents the results of implementing the tested algorithms in the Coordination
game under two different network structures. As mentioned in the sub-section 4.1, the average
payoff is computed over 30000 simulation time steps and then, for each network structure, the
results are averaged over 15 and 45 simulation runs for the original Q-learning algorithm and the

coordinated Q-learning algorithm respectively.
e Original Q-learning Algorithm

The algorithm converges to Nash Equilibrium in both network structures. However, it is noted
that while the algorithm converges faster in scale-free networks, it performs better in random

networks (see Figure 4.2). A reasonable justification is that, in POMDPs each agent has limited
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observability of the state and actions of other agents in the same network. Agents are only aware of
the actions and states of their connected neighbors and unlike random networks, the degree
distribution of nodes in scale-free networks follows a power law in which a network of nodes with
extremely high degree (i.e. hubs) followed by and connected to relatively smaller degree is created
(see Figure 4.1 in the above sub-section). When the coordination game is played in scale-free
networks, the network structure forces most of the learning agents to be connected to only one
agent (i.e. most likely a hub). Therefore, agents that have a hub agent as their only possible partner
(i.e. only connected to a hub agent) choose their action only based on the action of this hub agent
even if this action is not globally optimal (i.e. sub-optimal) causing the average payoff to be lower
than that of random networks, where most agents have more than one possible partner giving them

more action choices than in scale-free networks, and resulting in a better performance.

Average Payoff
0.9
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0.4 Time Steps
0 5000 10000 15000 20000 25000 30000

e Average Payoff in Random Networks = Average Payoff in Scale-Free Networks

Figure 4.2: The Average Payoff of the original Q-learning algorithm when playing the

Coordination game in random and scale-free networks

e Coordinated Q-learning Algorithm

The coordinated algorithm converges to a Nash Equilibrium (i.e. all learning agents execute the
same action of their partners). The coordinated Q-learning algorithm converges faster in scale-free
networks due to the same reason mentioned in the original Q-learning algorithm performance.

However, there is no difference in the average payoff achieved in both network structures when
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playing the coordination game using the coordinated Q-learning algorithm (see Figure 4.3). A
reasonable justification of this is that the agents learning using the coordinated algorithm are not
affected by the observability limitation because there is a communication during the execution time
in which agents exchange their observations and choose their best action based on the joint

observations through their delegate agent(s).

Also, it is observed that the coordinated Q-learning algorithm converges faster and performs
slightly better than the original Q-learning algorithm. This is mainly because, besides the fact that
there is no communication in the original Q-learning algorithm which prevents each agent from
accessing some needed information of other agents except its connected neighbors, the coordinated
Q-learning approach is distributed (since it distributes the learning of the global optimal policy
among the groups of agents) resulting in a large computational savings of the policy space and
making the algorithm scale to large domains and reducing the time required for the algorithm to

converge.

Average Payoff
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0.4 Time Steps
0 5000 10000 15000 20000 25000 30000

e Average Payoff in Random Networks == Average Payoff in Scale-Free Networks

Figure 4.3: The Average Payoff of the coordinated Q-learning algorithm when playing the

Coordination game in random and scale-free networks
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4.2.2 Tterated Prisoner’s Dilemma Results

The following presents the results of implementing the tested algorithms in the Coordination
game under two different network structures. As mentioned in the sub-section 4.1, the average
payoff is computed over 30000 simulation runs and the results are then averaged over 15
experiments per network structure for the original Q-learning algorithm and 45 experiments per

network structure for the coordinated Q-learning algorithm.

e Original Q-learning Algorithm

The Q-learning algorithm converges to a Nash Equilibrium in which all agents choose “Defect”
as their optimal joint action in both network structures. However, it is observed that the algorithm
converges faster and performs better in scale-free networks than in random networks (see Figure
4.4). A reasonable justification is that, as mentioned in the coordination game results sub-section,
each learning agent suffers from observability limitation in that it might not be able to access some
needed information about agents other than its partners (such as their states and actions). Due to
its structure, scale-free networks will converge faster than random networks but will suffer from the
observability limitation more than them as this limitation increases when the number of agents’

partners decreases (the case in scale-free networks).

Therefore, when the iterated prisoner’s dilemma game is played in scale-free networks, learning
agents that have a hub agent as their only possible partner will choose their action only based on
the action of this hub agent even if this action is sub-optimal causing the average payoff to be
higher than that of a random network since if some agents cooperated, instead of defecting which
is the global optimal action, then their partners will get a higher payoff (i.e. 5 instead of 1) that

increases the total average payoff more than if all agents were to defect (as in random networks).
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Figure 4.4: The Average Payoff of the original Q-learning algorithm when playing the Iterated

Prisoner’s Dilemma game in random and scale-free networks

¢ Coordinated Q-learning Algorithm

The coordinated algorithm converges to the optimal joint action in which, unlike the original Q-
learning, all agents choose to “Cooperate” with converging faster in random networks and
approximately no difference in the average payoff achieved in both network structures (see Figure
4.5). A reasonable justification of this is that the original Q-learning algorithm computes the global
optimal joint action based on the local optimal action of each agent whereas the coordination
approach computes the optimal action based on the global optimal policy of each group of learning
agents and then it distributes the learning of the global optimal policy among groups and
coordinates the distributed learning through using the Max-Sum algorithm as a message passing
mechanism that enable agents to communicate and share their observations during the execution
time. Therefore, and since choosing “Cooperate” by all agents will maximize the global Q-value
function way better than choosing “Defect” (which is a local optimal action), the global optimal
policy of the coordinated Q-learning is to make all agents “Cooperate”. As a result, the coordinated
Q-learning performs significantly better than the original Q-learning algorithm and due to its

distributed nature it converges faster than the original algorithm. The following sub-section

Page|43



provides an investigation of the effect of changing the value of some parameters in the coordinated

learning algorithm.

Average Payoff
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Figure 4.5: The Average Payoff of the coordinated Q-learning algorithm when playing the Iterated
Prisoner’s Dilemma game in random and scale-free networks

4.2.3 Further Investigations on the Coordinated Q-learning algorithm

Two essential parameters are investigated to evaluate the effect of changing their values on the
performance of the coordinated. These parameters are: The Horizon H and The number of
learning groups of agents (since each learning group has only one delegate agent that learns on
behalf of its group as mentioned in the 1 section of chapter 3, the number of learning groups is
equal to the number of delegate agents). The value of the Horizon ranges from 1 to 3 and the
number of learning delegates ranges from 1 to 5 delegates. The average payoff is computed over
30000 simulation time steps and the results are then averaged over 45 simulation runs per network

structure (i.e. conduct 3 experiments per learning group value for each horizon value (3*(3*5))).

Figure 4.6 illustrates the average payoff of each learning group per horizon value when playing

the iterated prisoner’s dilemma using the Coordinated Q-learning algorithm. It is obviously
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observed that as the value of the horizon increases the average payoff increases (i.e. the algorithm
performs better in both network structures and tested games). This is mainly because, as the
horizon increase, each agent will have access to more information (i.e. previous actions and rewards)
about other agents which will greatly help in the learning process leading to better performance.
Also, it is observed that as the number of learning groups increases the coordinated Q-learning
algorithm converges faster in both network structures and in both tested games. A reasonable
justification is that the distribution property leads to a large saving of the computation complexity
of the policy space which results in decreasing the time required for both agents to learn and
algorithm to converge. The following sub-section demonstrates an illustrative comparison between
the performance of both Original and Coordinated Q-learning algorithms. Also, the standard

deviation is computed for each case and its value is so small (under 0.03) to be illustrated.
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Figure 4.6: The Average Payoff against the number of delegate agents in the Coordinated Q-
learning algorithm when playing the iterated prisoner’s dilemma

4.2.4 Illustrative comparison between learning algorithms

Figure 4.7 illustrates a comparison of the global performance of both learning algorithms when
playing the coordination game. It is clearly observed that the coordinated Q-learning algorithm

outperforms the original Q-learning algorithm slightly in the coordination game. In order to
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investigate if this result is affected by the exploration rate value €, smaller values of the exploration
rate are used. Figure 4.8 and 4.9 represent the global performance of both algorithms when the
exploration rate € is set to 0.01 and 0.001 respectively. It is clear that as the exploration rate
decreases the difference in the performance between both learning algorithm increases in which the
coordinated Q-learning outperforms the original Q-learning algorithm. Figure 4.10 illustrates a
comparison of the global performance between both algorithms when playing the iterated
prisoner’s dilemma. It is clearly shown that the coordinated Q-learning algorithm outperforms the
original Q-learning algorithm significantly even when the exploration rate is set to 0.1 and the
distance between the values of the performance of both algorithms will keep on increasing as the

exploration rate decreases.
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Figure 4.7: A comparison of the performance of the original and coordinated Q-learning algorithms
when playing the coordination game with exploration rate € = 0.1
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Figure 4.8: A comparison of the performance of the original and coordinated Q-learning algorithms

when playing the coordination game with exploration rate € = 0.01
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Figure 4.9: A comparison of the performance of the original and coordinated Q-learning algorithms
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Figure 4.10: A comparison of the performance of the original and coordinated Q-learning
algorithms when playing the iterated prisoner’s dilemma with exploration rate € = 0.1

4.3 Experiments Summary

Several critical characteristics of the coordinated Q-learning algorithm have been discovered. Firstly,
we found that, unlike the original Q-learning algorithm, the performance of the coordinated
algorithm is not affected by both random and scale-free network structures (i.e. the coordination
approach is robust against the tested network structures). Secondly, the coordinated Q-learning
algorithm outperforms the original Q-learning algorithm slightly in the coordination game and
significantly in the iterated prisoner’s dilemma game and, as the exploration rate value decreases, the
difference of the performance between both algorithms increases in which the coordinated Q-
learning algorithm converges faster and outperforms the original algorithm. This is mainly due to
the distribution and communication property of the coordinated Q-learning algorithm. Thirdly, the
number of delegate agents and the horizon are found to be very important parameters that can affect
the speed of convergence and the global performance of the coordinated algorithm respectively.
When the value of the horizon increases, the coordinated algorithm performs better and when the
number of delegate agents increases, the coordinated algorithm converges faster. Finally, we can

answer the thesis research questions now that we achieved the previous results:
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- Does the coordinated Q-learning approach help in improving the performance of multi-
agent learning algorithms in networks when applied in two-player two-action

cooperative/semi-cooperative games?

Based on the conducted experiments, the coordinated Q-learning approach demonstrates a
superior performance in cooperative and semi-cooperative two-player two-action games in

networks.

- Is the performance of the coordinated Q-learning approach affected by different network

structures such as random and scale-free networks?

Based on the experimental results, the performance of the coordination approach is not affected by

random and scale-free networks.

- Is there a simple grouping methodology to cluster agents in a network automatically? Can

such methodology ensure cycle-free clustering?

Yes, the proposed grouping methodology in this thesis automatically clusters agents in both

random and scale-free networks and ensures cycle-free grouping.

- Is the performance of the coordinated Q-learning approach affected by some of its

parameters?

Based on the conducted experiments, the performance of the coordination approach is affected by

both horizon value and the number of learning groups of agents.

4.4 Generalizing the Coordination Approach

We thought of generalizing the coordinated approach by adding one more level of a new delegate
agent, called super delegate agent, to be placed on top of other delegate agents and learn on behalf of
them in the same manner delegate agents used to learn on behalf of agents in their group (see Figure
4.11). However, in this generalization there are two ways to use the super delegate agent: it will
either learn on behalf of delegate agents who learn on behalf of agents in their groups only when it is
needed, or it will learn on behalf of delegate agents and give them instructions about what to send to
their agents. In the second way, the super delegate agent is the only one who has a Q-table since

both agents and delegate agents will not learn.

Page|49



We realized that in either ways the convergence will be slower than in the current coordination
approach since the distribution property is reduced and both of the time needed to converge and the
computational complexity of the policy space are increased. Therefore, it is better not to generalize
the coordination approach by adding a super delegate agent who will learn on behalf of both
delegate agents and normal agents. We are currently investigating other possible ways to further

enhance the performance of the coordination approach.

Super Delegate Agent

Delegate Agents

Agents

Figure 4.11: A Generalized form of the Coordination Approach
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Chapter 5

Conclusion and Future Work

This chapter concludes the work done in this thesis and discusses a set of possible works that can be

carried out in the future.
5.1 Conclusion

This thesis attempts to study and analyze the performance of one of the recent coordinated multi-
agent reinforcement learning approaches, the coordinated Q-learning approach, in cooperative and
semi-cooperative two-player two-action games under different network structures (i.e. random and
scale-free networks) to better understand its characteristics, strength and weakness points. Since the
adopted coordination approach is based on distributing learning agents among a number of groups
in which there is a delegate agent for each group that will learn in behalf of the group members and
then using the Max-Sum algorithm, a DCOP technique, agents are allowed to communicate with
each other during the execution time and the optimal joint action is computed, we have proposed a
novel grouping mechanism to perform the grouping process in a way that will ensure cyclic-free
grouping which will in turn ensure the optimality of the solution computed using the Max-Sum
algorithm. In addition, a simulator of the tested learning algorithm, tested games and networks has
been built using NetLogo to carry out the experiments which will evaluate the performance of the

coordinated Q-learning algorithm and compare it with that of the original Q-learning algorithm.

After conducting several experiments, the research questions of this thesis have been answered.
For the first question, the coordination approach is proved to significantly enhance the
performance of multi-agent learning algorithms when applied in two-player two-action
cooperative/semi-cooperative games in networks. Experimental results show that the
coordinated Q-learning algorithm significantly outperforms the original Q-learning algorithm in

all tested games and networks in which the original Q-learning algorithm converges to Nash-
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Equilibrium, while the coordinated Q-learning algorithm converges to Pareto Optimal. This is
mainly due to the fact that the coordinated Q-learning algorithm allows the communication
between agents during the execution time and, unlike the original Q-learning algorithms which
computes the local optimal joint action, computes the global optimal joint action. For the second
research question, results show that the performance of the coordinated Q-learning algorithm,
unlike the original Q-learning algorithm, is unaffected by the difference presented in
random and scale-free network structures (i.e. the coordinated Q-learning algorithm is robust

against random and scale-free networks).

As for the third research question, a simple, yet effective, grouping methodology has been
proposed in this thesis in which agents are automatically distributed among groups and a
cycle-free grouping is ensured. This grouping technique ensures the optimality of the policy
computed using the Max-Sum algorithm. Furthermore, a set of experiments have been conducted
to check if there is any parameter that affects the performance of the coordinated Q-learning
algorithm to answer the last question, and results show that there are two parameters which
affect the performance of the coordinated Q-learning algorithm, the number of delegate (i.e.
the number of groups) and the horizon value. While the number of groups affects the speed of
convergence (in which coordinated Q-learning algorithm converges faster as the number of groups
increases), the horizon value affects the global performance of the coordinated Q-learning
algorithm in which the coordinated Q-learning performs better as the value of the horizon

increases.

Finally, an attempt to generalize the coordinated Q-learning approach by adding one more level
of a new agent (called the super delegate agent) which learns on behalf of delegate agents is shown
to be unnecessary. In contrast, adding such a level can be considered as an inefficient step since it
removes the distributive feature in the current coordinated Q-learning and therefore, slows down
the convergence of the coordination algorithm due to increasing the state space and computational

complexity.
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5.2 Future Work

After achieving the previously mentioned results, several ideas can be rendered as possible works
to be carried out in the future as an extension of this thesis. This thesis has tested the coordinated
Q-learning algorithm in two-player two-action games; therefore, a worthwhile work to be
conducted in the future is to test the same coordination approach in n-player n-action games.
Another possible work to be done in the future is to apply the adopted coordination approach
using different multi-agent learning algorithm other than the Q-learning algorithm such as one of
the gradient ascent algorithms (e.g. IGA, GIGA-WoLF and WPL algorithms) in the same domain
and network structures applied in this thesis and check how the coordination approach affects the

performance of such algorithms.

Furthermore, since the adopted coordination approach assumes that there is only one delegate
agent per a group of agents, it will be interesting to carry out a work which studies and analyzes the
effect of increasing the number of delegates per group of agents on the performance of the
coordination algorithm. Another possible work to be carried out in the future is to study the effect
of modifying the learning parameter values (i.e. the learning rate and the discount factor values)
during the learning process on the performance of the coordinated Q-learning algorithm. Finally, a
good work to be done in the future is to test the coordination approach under different network
structures other than the ones tested in this thesis to ensure the robustness of the coordinated

learning algorithm.
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