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Abstract

Currently, malware continues to represent one of the main computer security threats. It is
difficult to have efficient detection systems to precisely separate normal behavior from
malicious behavior, based on the analysis of network traffic. This is due to the
characteristics of malicious and normal traffic, since normal traffic is very complex,
diverse and changing; and malware is also changeable, migrates and hides itself

pretending to be normal traffic.

In addition, there is a large amount of data to analyze and the detection is required in real
time to be useful. It is therefore necessary to have an effective mechanism to detect
malware and attacks on the network. In order to benefit from multiple different
classifiers, and exploit their strengths, the use of ensembling algorithms arises, which
combine the results of the individual classifiers into a final result to achieve greater
precision and thus a better result. This can also be applied to cybersecurity problems, in
particular to the detection of malware and attacks through the analysis of network traffic,

a challenge that we have raised in this thesis.

The research work carried out, in relation to attack detection ensemble learning, mainly
aims to increase the performance of machine learning algorithms by combining their
results. Most of the studies propose the use of some technique, existing ensemble
learning or created by the authors, to detect some type of attack in particular and not
attacks in general. So far none addresses the use of Threat Intelligence (IT) data in
Ensemble Learning algorithms to improve the detection process, nor does it work as a
function of time, that is, taking into account what happens on the network in a limited
time interval. The objective of this thesis is to propose a methodology to apply

ensembling in the detection of infected hosts considering these two aspects.

As a function of the proposed objective, ensembling algorithms applicable to network
security have been investigated and evaluated, and a methodology for detecting infected

hosts using ensembling has been developed, based on experiments designed and tested



with real datasets. This methodology proposes to carry out the process of detecting

infected hosts in three phases. These phases are carried out each a certain amount of time.

Each of them applies ensembling with different objectives. The first phase is done to
classify each network flow belonging to the time window, as malware or normal. The
second phase applies it to classify the traffic between an origin and a destination, as
malicious or normal, indicating whether it is part of an infection. And finally, the third
phase, in order to classify each host as infected or not infected, considering the hosts that

originate the communications.

The implementation in phases allows us to solve, in each one of them, one aspect of the
problem, and in turn take the predictions of the previous phase, which are combined with
the analysis of the phase itself to achieve better results. In addition, it implies carrying out
the training and testing process in each phase. Since the best model is obtained from
training, each time it is performed for a given phase, the model is adjusted to detect new
attacks. This represents an advantage over tools based on firm rules or static rules, where

you have to know the behavior to add new rules.
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Chapter One: Introduction

1. 1. Introduction and Background

In the cybersecurity field, professionals and researchers have designed a variety of cyber
defense systems over the years in order to protect organizations from malicious attackers.
These systems face threats such as viruses, Trojans, worms and botnets among others.
Existing solutions based on Intrusion Detection Systems (IDS) include proactive
approaches to anticipate vulnerabilities in computer systems and thus be able to carry out
mitigation actions. However, over the years the number of threats has increased
enormously, especially due to the appearance of malware development environments
capable of almost automatically generating different versions of the same virus, making it
possible for any hobbyist to produce your own variation. This proliferation of malware
makes the rule databases used by IDS larger and larger, thus increasing the computation

time required for such detection.

In particular, these detection systems currently have three weak points that are worth
highlighting:

e The necessary balance between the effectiveness of threat detection and the speed
at which the data can be examined collected in modern data networks;

e The need to be able to detect such threats even when the data travels encrypted.

e The difficulty of detecting new versions of malware even if they are variations of

an already known family.

The first is motivated by the transfer speeds that communication networks are reaching
(above 10 Gbps), with increasing data exchange volumes. To this must be added the new
fifth generation (5G) mobile technology, which promises to provide latency and transfer
speed never seen before in wireless networks, allowing unprecedented expansion of the
Internet of Things (1oT). All this will make it really difficult to capture and analyze every

packet that circulates on the network, causing the current detection procedures to become



obsolete if we are not able to adapt them properly. Precisely because of the ubiquity of
Internet access, partly thanks to wireless technologies, and the enormous growth of the

10T, there are millions of devices with vulnerabilities that can be used to form botnets.

A botnet is a set of devices connected to the Internet that an attacker previously infected
with software that allows him to manage them remotely to carry out all kinds of actions,
such as distributed denial of service attacks, information theft. Sensitive or critical such
as bank accounts and personal data, or even theft of CPU cycles to mine
cryptocurrencies. Botnets have become one of the great current and future security
problems in data networks; Suffice it to mention that, according to the recent Nokia
Threat Intelligence Report, in 2018 loT-based botnets accounted for 78% of detected

malware attacks and 16% of infected lIoT devices [1].

Therefore, in the context of 5G and IoT communications, the detection of malware
becomes a challenge due to the increasing diversity of said malware, the rules of which
must be applied to each packet, since the transfer rates so high along with the great
volume of data that moves, they leave little time to examine each packet that circulates on
the network. When we evaluate the volume of packets that current deep packet inspection
tools can handle, we find that the well-known Snort supports wired networks of up to 1
Gbps, starting to discard packets due to overload from 1.5 Gbps [ 2]. This has led to the
appearance of hardware solutions based on programmable gate arrays [3] or specific
purpose integrated circuits, which allow working with speeds of up to 7.2 Gbps [4] . Even
S0, these speeds are far from those expected in the near future. Due in part to this, IDS-
based detection solutions have had to evolve from analyzing network packets to
analyzing network traffic flows using new techniques based on artificial intelligence [5] .
For example, a block-based neural network model used in a stream anomaly-based IDS
was able to handle 22 Gbps traffic using programmable gate arrays FPGAs [6]. A
complete review of solutions to quickly classify network flows and detect attacks or
malicious code can be found in [7].

With regard to the second weak point, an increasing number of malware encrypts its
communications [8], making deep examination of packets impossible and common

detection tools ineffective. To this must be added the progressive increase in the amount



of encrypted traffic in everyday communications, and the obligation to use such
encryption in environments where privacy is critical, such as for example medical
environments. These environments are still incorporating in their projects for the
evolution of the hospital of the future, a growing number of interoperable medical
devices in order to be able to implement closed cycle processes (monitoring, analysis,
decision-making and reaction or application of a treatment), while at the same time they
have been suffering in recent years an increasing number of successful malware attacks,
demonstrating that the systems current detection systems are not very effective. A
particularly problematic malware has been the so-called ransomware, which consists of
infecting one of the devices on a network thanks to a vulnerability or human failure, and
reaching the rest of the devices by means of a horizontal spread, usually based on
vulnerabilities. System, after which it encrypts all the data on your hard drives and shared
folders and requires an amount of money to provide the decryption key. To appreciate the
potential danger posed by ransomware, suffice it to mention the attacks suffered by UK
health service hospitals in 2017, which ended up having to shut down entire services,
send patients to other hospitals and even postpone surgical interventions.

In this context of encryption traffic, solutions based on deep inspection are also not
applicable, and most IDS-focused solutions that handle encryption traffic are based on in
identifying certain basic patterns such as port scanning or brute force attacks [9]. There
are proposals based on machine learning that use data calculated from a flow [10], and
even offer imaginative proposals that use convolutional networks to treat the flow as if it
were an image [11]. However, if we cannot access the payload because it is encrypted, a

single stream does not provide enough information to get an accurate detection.

Finally, the third weak point of our interest is motivated by the proliferation of new
malware, generally derived from existing versions to which characteristics such as the
architecture on which they are executed or the model are changed encryption method
[12]. IDS have difficulty in identifying these variations by working normally by
examining the traffic by means of rules, which makes their early detection impossible. In
the case of botnets and ransomware, both allow the generation of new versions easily. As

proof of this, in [13] they conclude that nine of the ten most dangerous filtering botnets



are variations of the Zeus botnet. Similarly, in ransomware we find a great diversity of
members of the same family, for example, Petya ransomware is derived from NotPetya,

ExPetr or PetrWrap, among others.

Botnets and ransomware have in common that they generate network traffic following
characteristic patterns. In the case of botnets, they usually have a command and control
mechanism, Command and Control (C&C) whereby each infected device communicates
with the attacker's computer periodically to receive orders. In the case of ransomware, its
trafficking patterns stem from its desire to spread horizontally to maximize the damage
and thereby increase the probability of payment of the ransom, from communicating with
a central server for the obtaining the encryption keys and the traffic necessary for
encrypting shared folders on the network of infected computers. These patterns can be

interpreted as anomalies in normal network traffic.

1.1.1. Detection of Anomalies in Data Networks

An anomaly can be defined as a pattern that does not conform to the expected behavior or
normal, which implies that it appears very infrequently. Precisely because it is based on
the concept of normality, which in itself is not easy to define, the problem is far from

being simple, there are mainly three large categories of anomalies [14]:

e Punctual. It is the simplest form of anomaly and is where most of the research in
this field is focused. A sample of a group of data that is considered anomalous
with respect to the rest is an example of this type.

e Contextual. An instance is abnormal in one context, but not in another. for
example, a temperature of 5 degrees is abnormal or not depending on the season.

e Collective. A collection of instances can be considered an anomaly with respect to
a set of data if, although each of the instances does not suppose an anomaly, the
appearance of all of them as a collection s it is. A slight elongation of part of the
wave of an electrocardiogram can be an example of this type of anomaly. The
values belong to the normal range, but the sequence of values itself constitutes the

anomaly.



The techniques for detecting anomalies based on machine learning act as classifiers
capable of distinguishing abnormal and normal instances, it was possible to find
approaches based on supervised, semi-supervised and unsupervised learning. Within
these categories, it is to be expected that, if there is a properly labeled data set, the
supervised approach will give the best results by having more complete information.
However, this approach has as its main challenges the difficulty of obtaining a
representative data set and the fact that anomalies are usually orders of magnitude less
numerous than normal cases, with the consequent imbalance of the data set that

complicates the classification task.

Anomalies in network traffic can belong to any of the three previous types. To give an
example of each one, a specific anomaly could be directing a packet to a suspicious port;
in the traffic between two devices that exchange small packets, a contextual anomaly will
be the appearance of a large packet, since it will not be considered an anomaly. If the
devices involved were others on the same network that would use that packet size;
finally, in a context in which packets are emitted in bursts of a certain known duration, a
change in that duration can be considered a collective anomaly. In this research, the
aggregation of owes over time is used to be able to apply methods for detecting specific

anomalies to contextual and collective anomalies.

1.1.2. Use of Network Flows in Anomaly Detection

Using the flows to detect these anomalies has multiple advantages, among which are the
following: it is not necessary to access the payload of the packet, so it is applicable to
encrypted traffic; reduces the volume of data to be analyzed by orders of magnitude, so it
can be applied to environments with high-speed networks; finally, they respect the
privacy of the user. The issue of privacy is crucial when it comes to obtaining permission
from organizations to capture the massive amount of traffic that some of the newer
machine learning algorithms require for their training. Working with owes makes it easier
to ensure user anonymity and privacy, since administrators know that only packet headers

will still be required. These reasons make them attractive for this research. Of course,



working with flow has drawbacks as well. The main one is the loss of information that
involves losing the content of the packets and limiting oneself to obtaining aggregate
information about the sequence of packets. However, this research aims to show that
although a single flow may not be sufficient to extract complex information on the traffic
pattern, a sequence of flows, properly treated, may contain enough information for a
machine learning algorithm to differentiate abnormal from normal patterns. In this way,
we comply with the restrictions of the proposed scenarios, by performing the detection
without having to examine a high volume of data or worry about the fact that the data

travels encrypted.

Detecting malware and attacks by analyzing network traffic remains a challenge for those
responsible for monitoring network security and managing security incidents [11].
Although there are several well-known detection mechanisms to precisely separate
malicious behaviors than normal, it is still extremely difficult to have efficient detection

systems.

There are four main obstacles to a good detection of malware and attacks by analyzing
network traffic. The first, that normal traffic is extremely complex, diverse and changing.
Second, malicious actions are continually changing, adapting, migrating, and hiding like

normal traffic.

Third, the amount of data to analyze is enormous, forcing analysts to lose data in favor of
speed. And fourth, detection must occur in near real time to be of any use. For some years
now, intrusion detection systems have incorporated intelligent paradigms such as
machine learning techniques to solve these difficulties. Today there are also some
proposals to implement Ensemble Learning or Ensembling algorithms, in order to
combine multiple classifiers to achieve better detection precision. Ensemble Learning
algorithms implement techniques to use, aggregate, and summarize information provided
by several different detectors in a single final decision [24]. These allow security analysts
to use serial weak detectors, vote to determine if a domain is malicious, and better decide

the blocking action based on conflicting data. among other functionalities.



While there have been some good proposals for teaching techniques applied to network
security [51], it is a topic that is currently under development. In particular, there are two
aspects of the Ensembling algorithms that were not fully studied. One of them is the use
in Ensemble Learning algorithms of threat intelligence data (Known also as TI), for
example, VirusTotal [53]. And the second aspect is that there are no Ensemble Learning
algorithms that work as a function of time in detection, that is, they take into account

what happens on the network in a given time interval.

1.2. Proposal Aims and Objectives

The main objective of this proposal is to investigate how to apply machine learning
methods to the detection of anomalies in data networks with restrictions. In the first case,
the restriction is imposed by the impossibility of analyzing the payload of all packages by
the volume of circulating traffic; and in a second case, the restriction consists of having to
work with encrypted traffic and the short time for detection and mitigation. The
hypothesis that this thesis raises after analyzing the proposals to classify network traffic
based on existing flows in the literature, is that one flow by itself, without access to the
payload of the packets, does not provide enough information; and it is proposed to study
whether a context for this flow, formed by the flows previously received during a period
of time, allows a more precise detection of anomalies in complex traffic patterns, in order
to which will be necessary to use automatic learning methods for detecting anomalies,
both classic and deep. To achieve this objective, a series of specific actions detailed

below have been carried out:

1. Investigate and evaluate ensembling algorithms applicable to network security.

2. Develop and implement a method of detecting infected hosts, based on
ensembling, that takes into account the detection results of different classifiers,
using machine learning techniques and data from Threat Intelligence; and can

work with time windows and detection over time.



1.3. Thesis Contribution

The contributions of this thesis are:

e The design of a methodology to detect infected hosts on the network using
Ensemble Learning.
e The establishment of a procedure to test the methodology through experiments

using real datasets and their results.

1.4. Proposal Scope

The working with data security is not that simple task, supposing that an important data
has been transferred using a specific network. The data as to be secured against other
connected process on the same network. From this concept many techniques suppose to
hash the values then translate it into the correct form such in inscription and decryption
case. From this importance our study aimed to be implemented in networks. In order to

secure that transmitted data from attacks from other devices in the same network.

Other possible scope for our proposal is to use it in data connectivity network to work as

data defender wall in data control layer for both the transmitter and the receiver.

1.5. Required Resources

The resource for our project divides into two main parts, Software and Hardware

requirements:

1.5.1. Software Requirements

Tool Specification

Python IDE v. 3.8

Windows OS Win10, 64-hit

Table 1. 1: Proposed Methodology Software Requirements.




1.5.2. Hardware Requirements

Resource

Specification

CPU Intel Corei7 (8 CPUs) 10™ Generation,
~2.3GHz

GPU NVIDIA GeForce, 8GB

RAM 12GB

Hard Disk SSD primary storage

Table 1. 2: Proposed Methodology Hardware Requirements.




Chapter Two: Literature Review

2.1. Network Flows

In order to facilitate network traffic analysis, packets are grouped into network traffic
flows, or connections. A flow is defined as a set of IP packets that pass an observation
point on the network during a certain time interval. All packages that belong to a certain
flow have a set of common properties (packet attributes), known as "flow keys" which
are: source IP address, destination IP address, source port, destination port and protocol.
There are several protocols for the flow of network [34], including NetFlow, sFlow and
IPFIX [15]. The flows are generated by different tools, including Argus [54], Zeek [44]
and NFDUMP [47]. The difference between them is that Zeek generates owes when the
capture ends, while Argus (like other network flow sensors) allows to report the flow
every a certain amount of time, which configurable. This is called flow-report-time and it
is important because it "cuts" the flow each time a time interval ends. Working with flow
allows you to have less data and scale better. Although data is lost, it provides the ability

to summarize the characteristics of the connection.

2.2. Threat Intelligence

It is called Threat Intelligence (TI) or threat intelligence to knowledge based on evidence,
which includes context, mechanisms, indicators, implications and recommendations
oriented to action on an existing threat or danger or emerging for assets. This knowledge
can be used to make decisions related to the response that each organization gives to a
given threat [42].

Today's threats evolve and become more complex at an accelerating rate and are
continually confronted by many organizations. This is why Threat Intelligence has

become a hot topic. In order to counter the increase in attacks, many organizations are
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trying to incorporate sources of threat data into their network (better known as

information feeds).

Beyond the relevance of Threat Intelligence information, a real understanding of it is
important so that its use is appropriate and profitable. However, organizations lack that
understanding and don't know what to do with all that extra data. This increases the
burden on analysts who may not have the tools to decide what to prioritize and what to

ignore [21].

In addition, threat intelligence is required to be actionable. In other words, it must be
timely and arrive in a format that can be understood by whoever is consuming it. One
way to achieve this is when Threat Intelligence information is easily integrated with all
the security solutions already present in your environment. There are three categories of

IT sources: internal, external, and community [5].

e Internal sources collect threat information within the organization, specifically
from logs provided by some internal network services or applications (email log,
alerts, incident response report, event logs, DNS logs, firewall logs, etc.) and the
SIEM systems (Security Information and Event Management) that are
implemented in them.

e External sources are organizations that provide threat information and have
extensive data coverage. This information needs to be analyzed in each
organization to determine its relevance (based on knowledge of the organization's
services and the impact of threats on them). There are external sources that
provide the data at no cost and others that are paid.

e Community sources are those that share threat information through a trusted

channel between members with the same interest.

VirusTotal is an information feed that provides the results of scanning for suspicious files
and URLs. VirusTotal inspects these items with a host of antivirus and domain and URL
blocklist services. In addition, it uses a set of tools to extract signals from the analyzed
content [53].
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The analysis of suspicious files and URLs can be done through the WEB page, the
browser extensions or the API that VirusTotal provides. By submitting a file or URL, the
results are shared with the requester, as well as among examining partners, that is, other
VirusTotal users. The latter use the results to improve their own systems. Consequently,
when sending files, URLs, domains, etc. At VirusTotal, you contribute to the VirusTotal

Community and global Internet security.

VirusTotal can be useful for detecting malicious content and also for identifying false
positives: normal and harmless items detected as malicious by one or more antivirus
engines. The APl (Application Programming Interface) allows access to the information
generated by VirusTotal without the need to use the interface of the HTML website.

It has two versions: a public API and a private API. These differ in the maximum number
of requests that can be made per minute and the priority these queries have for the
VirusTotal engine. Currently the public API allows up to 4 queries per minute and
provides minimal access priority. Whereas in the private API, the request rate and the
total number of allowed queries are still limited only by the user's terms of service.

In particular, VirusTotal provides the following information for an IP address or for a
domain [52]:

e Autonomous System (AS) and location country for IP addresses. The country
information is given in the country code.

e Passive DNS Replication Information - All IP domain name mappings that
VirusTotal has seen for the item it queried for.

e Whois searches: registration information for the resource for which it is consulted,
such as the domain name, the IP block or the autonomous system.

e Observed subdomains: domains viewed hierarchically under another domain
stored in VirusTotal.

e Sibling domains: domains at the same hierarchical level as the domain being
analyzed.

e URLs: the last URLSs seen under the domain or IP address that is being analyzed.
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e Downloaded files: last files that have been downloaded from the URLSs located in
the domain or the IP address in analysis.

e Communication files: more recent files that, through their execution in an isolated
virtual environment, perform some type of communication with the IP address or
domain in question. .

e File references: VirusTotal inspects the strings contained in the files sent to the
service and applies certain regular expressions to them to identify domains and IP
addresses. It then registers the files that have made reference to the domain or the

IP address in question.

2.3. Ensembling Techniques

Ensemble Learning is a paradigm of Machine Learning where multiple agents (called
base learners or base algorithms) are combined and trained to solve the same problem.
Unlike classical Machine Learning techniques which try to learn a model (hypothesis)
from training data, Ensemble Learning techniques try to build a set of models and

combine them to use them in prediction [56].

Ensemble Learning can be: Homogeneous: when it uses a single learning algorithm, that
is, it combines base algorithms of the same type (homogeneous). Heterogeneous: when it
uses multiple learning algorithms, that is, it combines base algorithms of different types

(heterogeneous).

The Ensemble Learning methods imply an improvement in generalizability and the
predictive power of learning. Often the level of precision of the base algorithms is
slightly higher than chance because they have high bias or too much variation. Ensemble
Learning tries to reduce both variables by combining the base learners as shown in Figure
2.1. The three most popular methods for combining predictions from different models are
[56]:
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Figure 2. 1: Ensemble learning general architecture. Predictions are the result of applying some teaching technique to combine
different models.

e Bagging: build multiple models (typically of the same type) from different
subsamples of the training data set.

e Boosting: build multiple models (typically of the same type), each of which learns
to correct the prediction errors of the previous model in the sequence of models.

e Voting: build multiple models (typically of different types) and use simple
statistics (such as calculating the mean) to combine predictions.

e Another Ensemble Learning technique, which some authors also consider
popular, is Stacking or Stacked Generalization. It uses a meta-learning algorithm
to learn how to best combine the predictions of two or more Machine Learning

algorithms.
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2.3.1. Bagging Ensemble

Bagging or Boostrap Aggregation takes multiple samples from the training data set (with

replacement) and trains a model for each sample. Figure 2.2 shows the architecture of this

technique. It uses what is known as a boostrap sample. A bootstrap sample

(nonparametric) is a random selection of several elements from the data set with

replacement. That is, a bootstrap sample can contain multiple copies of one of the

original data [4].

The final prediction is obtained by averaging the predictions of all the sub-models, in the

regression problems. Whereas in classification problems, the final prediction can be

obtained both by averaging the predictions and by using probabilities based on the

percentages of the different classes.
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Figure 2. 2: Architecture of the Ensemble Learning Bagging technique.
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2.3.2. Boosting Ensemble

Boosting creates a sequence of models that tries to correct the errors of the models before
them in the previous sequence, as shown in Figure 2.3. Once created, the models make
predictions that can be weighted for their demonstrated accuracy, and the results are

combined to create a final prediction [4].

In a first step, the algorithm is trained on the entire data set. Subsequent models are built
by fitting the residuals from the previous algorithm. This is done by giving more weight
to the observations that the previous model incorrectly predicted. It is based on the
creation of a series of weak algorithms, each of which may not be appropriate for the
entire data set, but is appropriate for a part of it. Therefore, each model increases the

performance of the whole.
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Figure 2. 3: An illustration presenting the intuition behind the boosting algorithm, consisting of the parallel learners
and weighted dataset.
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2.3.3. Voting Ensemble

Voting is one of the simplest ways to combine the predictions of multiple machine
learning algorithms, its operation can be observed in Figure 2.4. It works by creating two
or more independent (heterogeneous) models from your training data set. A voting
method is then used to make predictions [56]. Within this technique there are variants,

such as Majority Voting or Hard Voting, Soft Voting and Weighted Voting.

In Majority Voting, several models are trained with the same data. When predicting, a
prediction is obtained from each model. Each model will have a vote associated with it.

Then the final prediction will be determined by what the largest of the models vote [26].

In Soft Voting, soft vote is used. "In this variant, more importance is given to the results
in which some model is very sure. That is, when the probability of the prediction is at
very close to 1, more weight is given to the prediction of this model [26].

Weighted Voting is used when individual classifiers have uneven performance. Giving
more power to the strongest classifiers in voting, a weighted voting is carried out. Sub
model predictions can be weighted, but it is difficult to specify classifier weights
manually or even heuristically. The more advanced methods learn how to better weight

the predictions of the sub-models.
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Figure 2. 4: Majority Voting Techniques.

2.3.4. Stacking Ensemble

Stacking or Stacking consists of training a model to perform the aggregation or
combination of the predictions of all the sub-models, instead of doing it using trivial
functions (such as Hard Voting). In a first step, the sample is divided into a subsample for
training and a subsample for testing. Then a set of base algorithms is trained with the
training sample. And the resulting models are evaluated using the test sample. Each of the
sub-models predicts a different value and finally the ensemble learner (also called meta-
learner) takes these predictions as inputs and makes the final prediction. Its architecture
can be seen in Figure 2.5. When Stacking is implemented, the ensembling can be
homogeneous or heterogeneous. As described earlier in this section, homogeneous
ensembling combines base algorithms of the same type while heterogeneous ensembling

combines base algorithms of different types.
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Figure 2. 5: Stacking Ensembling.

2.4. Slips

Slips (Stratosphere Linux IPS) is a modular intrusion prevention system developed in
Python. It is based on machine learning techniques to detect malicious behavior in
network traffic [31]. Slips was designed to target targeted attacks, such as Command and
Control channel detection, to provide a good view for the security analyst From network
traffic, create profiles for each address on IP, and then divide the traffic into time
windows. For each time window, Slips extracts characteristics of the traffic and then

analyzes them in different ways in order to detect malicious behavior [33].

At the time of writing this thesis, the last published version of Slips is 0.6.8. It detects
horizontal and vertical port scans, as well as the existence of various command and
control connections. A slip is free software and is available on the Stratosphere page [32].
Slips can be run on Debian and MacOS based Linux systems (10.9.5, 10.10.x, 10.12.x).
In its current version, Slips provides the facility to run inside a Docker container [40], to
analyze files from network streams or pcap files. However, to perform network traffic

analysis in real time, the only option is to perform the traditional installation of the tool.
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2.4.1. Slips Architecture

Slips works at the network flow level, rather than packet inspection, obtaining a high-
level view of behaviors. Slips create traffic profiles for each IP address that appears in the
traffic. A profile contains the behavior complete of each one of them. Each profile is
divided into time windows. Each time window is 1 hour long by default (can be set by
con guration) and contains dozens of calculated functions for all connections starting in
that time window. Detections are made in each time window, allowing the profile to be

marked as not infected in the next time window.

Slips can read streams from different sources such as pcap files or outputs from Zeek,
Bro, Nfdump, among others. Once it is done, the data is processed and inserted into the
profile of each source IP address. For each IP address analyzed, Slips creates this Pro le
structure that represents the pro le for that address and contains three types of logs: Time
Windows Files, Timeline le and Pro le File. In addition to the profile information, Slips
creates some files with information about the entire capture, such as Blocked.txt. This file
has information about all the IP addresses that were detected and blocked.

2.4.2. Slips Main Modules

Slips have modules, which are files written in Python. They allow any developer to
expand its functionality [27]. They process and analyze data, perform additional
detections, and store data in the Redis database for other modules to consume. Currently,

Slips has the following modules:

1. ASN module: allows you to load and find the Autonomous System Number
(ASN) of each IP.

2. Geoip IP module: its function is to find the country and geolocation information
of each IP.

3. Https module: allows you to train or test a RandomForest classifier to detect
malicious HTTPS streams.
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4. Port Scan Detector module: its function is to detect horizontal and vertical port
scans.

5. Threat Intelligence module: used to check if each IP address is on a list of
malicious IPs.

6. Timeline module: allows you to create a timeline of what happened on the
network, based on all the flows and types of data available.

7. VirusTotal module: its function is to look up the IP address in VirusTotal.

8. Kalipso [1]: it is the graphical user interface to show the traffic analyzed by Slips.

The core of Slips is not only constituted by the machine learning algorithms, but also by
the behavioral models that are used to describe the flows as a function of duration, size
and periodicity. Thereof, this is very important because the models are still selected to

maximize detection.

Finally, a characteristic that makes Slips attractive is that it implements an API, from
which a new detection algorithm can be easily incorporated that any developer
implements, thus giving the possibility that the tool grows from the contributions of the

community.

2.5. Related Studies

Network intrusion detection is an important research area, as cyberattacks are increasing
daily [11]. There are numerous studies to propose approaches to detect them. However,
as cyberattacks become more complex, existing approaches fail to tackle the problem
effectively.

That is why the detection of intrusions in the network continues to be a challenge in
decision-making, which can be addressed through the application of classification
algorithms [22]. These algorithms use machine learning techniques to detect network

attacks and malware. This offers the following advantages:

e The ability of machine learning to generalize and thus detect new types of
intrusions.

e Attack signatures can be automatically extracted from tagged traffic data.
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e The ability to adapt to new attacks.

In order to benefit from multiple different classifiers, and exploit their strengths, the use
of ensembling algorithms [56] [55] arises, which combine the results of the individual
classifiers into a final result to achieve a best result. From this combination of results, the
performance of individual algorithms can be improved. Some studies have shown that the
application of the Ensemble Learning paradigm in intrusion detection systems can be
versatile and undoubtedly improve the accuracy of the prediction and the speed of
detection. [12] [13]. In particular, the highest speed in the detection using ensembling can

be achieved from the use of parallel architectures.

On the other hand, cyberattacks have different types of characteristics: general,
trafficking or associated with the connection, content or associated with data. The
selection of characteristics is essential, so it is important to continue investigating the
respect. It is also essential to evaluate which base classifiers to use and how they should
be combined in order to design architectures where multiple classifiers collaborate with

each other rather than compete.

Proposals based on the stacking technique have also been developed to detect network
intrusions (Probe, DoS, UR2 and R2L) [38]. In this work the models are generated using
samples from the random selection of characteristics of the dataset. It is proposed to
select the best models according to a nest criterion (such as precision, rate of true
positives, among others) and combine them with Stacking as an Ensemble Learning

technique.

Other works focus on botnet detection based on the classification of network traffic flows
[18] [35]. In [18] they propose to carry out the detection in two stages. In the first stage,
they apply a clustering algorithm to generate clusters that group network flows with
similar characteristics. And in the second stage, classification algorithms are applied to

each cluster to separate botnet flows and normal flows.

Given the instability of the clustering algorithms, these methods have shortcomings,
which try to be improved with some variants as proposed in [35] through the use of link-
based algorithms to group the network flows in stage 1 instead of clustering algorithms.
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Beyond the mechanisms and tools, to implement an effective defense, the organization
needs to have information about possible adversaries, as well as such as its techniques,
tactics, and procedures. This so-called threat intelligence helps the organization better
understand its threat profile [14]. Threat Intelligence (IT) feeds or threat intelligence
sources allow organizations to obtain indicators that are used by their firewalls and their

systems.

Intrusion detection system for a timely reaction to emerging threats. Intelligence sources
are usually made up of simple indicators. They can provide information on suspicious
domains, lists of known malware hashes, or IP addresses associated with malicious
activity, among other things. With the information provided by these intelligence sources,
organizations they often choose to blacklist communications and connection requests that

originate from malicious sources, for example [28]).

While intelligence sources can be easy to understand and use, they are not a complete
solution. They do not provide context or prioritize threats, so it is necessary to have
procedures and mechanisms to extract value from them and use them properly. In
addition, although they are widely used in the industry as a useful tool to mitigate attacks,
there are studies that affirm that their quality is not as high as expected, nor is their

specificity and its completeness [50] [9] [29].

Consequently, it can be thought that a good use of the information provided by
intelligence sources is to integrate and combine it with the mechanisms for detecting
malware and attacks on the network that the organization has. However, none of the
proposals previously described in this chapter includes the information provided by IT

sources in the classification process.

In this context, it is proposed to contribute to the cybersecurity field, and to the detection
of infected hosts in particular, taking advantage of ensembling techniques [10] [33],

including information on the IT sources in the detection process.
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Chapter Three: Ensembling Techniques to Discover Hosts Infected
on the Network

The proposed methodology aims to improve the process of detecting infected hosts on the
network. The hosts to analyze are those that initiate network connections. The detection
is done through the implementation of Ensemble Learning. The decisions to be made
during the process are based on different data provided by Slips [31].

It works with all the flows provided by a device that generates flows for the target
network. To determine if a host is infected within a time window, the following

information is considered:

e The different predictions for each network flow, one for each classifier.

e The set of malicious behavior alerts associated with the given IP (originating from
this IP).

e The data provided by different Threat Intelligence sources that inform whether the
destinations of the analyzed flows are malicious or show signs of being (with

some percentage of confidence).

Based on the above, it is proposed to apply Ensemble Learning to make different
decisions. First, to determine if each flow is malicious or normal. Second, to determine if
the set of flows that go from an origin to a destination are part of an infection. And third,
to decide if each source IP address is infected or not. The work has been carried out in
phases, in order to modularize the analysis, carry out experimental tests for each one,
obtain results for a part of the problem in particular and be able to adjust the solution

based on it.

3.1. Phase 1: Ensemble Learning to Classify Network Flow

The objective of this first phase is to assign a label for each network flow. The value will
be malicious or normal. This value is the result of applying Ensemble Learning, on the
predictions given by the different classificator of Slips, as shown in each network flow
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has a set of n labels from the predictions of the n classifiers in Slips operation. These

predictions will be combined in such a way as to obtain a single decision for each flow.

The labels assigned by the Slips classifiers are the result of applying base machine
learning algorithms to classify flow. To combine those labels in order to make a decision
is that Ensemble Learning is applied. To determine the most appropriate Ensemble
Learning technique to implement in this phase, different experiments were carried out
and the results were evaluated, described in the next chapter. From them it was decided to

use Weighted Voting in this instance.

As a result of this phase there is then a label for flow: malicious (for malicious) or
normal. The output of this phase is a dataset with the same fields as the incoming dataset,

replacing the n labels with a single label, resulting from the ensembling applied.

3.2. Phase 2: Ensemble Learning to Classify Sets of Flows from Source to
Destination

The objective of this second phase is to decide the label assignment for each set of
network flows that represents all the connections between an origin and a destination.
Said label will be malicious if the set of owes is part of an infection, and normal

otherwise. As a result of this phase there is a set network streams labeled.
Ensembling is carried out as follows:

e For the set of flows that go from a source IP (SrcAddr) to a destination IP
(DstAddr), the established TCP connections, the non-established TCP
connections, the established UDP connections and the non-established UDP
connections are analyzed (considered UDP connections established to the UDP
streams that received a response and UDP connections not established to those
that did not received it).

e For each of the groups (TCP connections established, TCP connections not
established, UDP connections established and UDP connections not established),
the percentage and quantity of flows labeled as malware in Phase 1 is calculated.

then 2 values: FIOW percentage = Malware and Amount riows = Malware.
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In this phase there are 2 levels of decision:

e First level of decision: you have to label each group of flow’s (TCP Connections
Established, TCP Connections Not Established, UDP Connections Established,
and UDP Connections Not Established) as malicious or non-malicious.

e Second level of decision: its purpose is to label the total set of network flows that
represents all the connections between the origin and the destination, as malicious

or non-malicious. It is the final decision of Phase 2.

As a result of this first-level decision process, an intermediate dataset is built, which
includes for each source IP-destination IP pair, the label for each group. The labels for
each group are:

e TCPELabel: label assigned to the group of established TCP flows that go from the
source IP address SrcAddr to the destination IP address DstAddr.

e TCPNELabel: label assigned to the group of non-established TCP flows that go
from the source IP address SrcAddr to the destination IP address DstAddr.

e UDPELabel: label assigned to the group of established UDP flows that go from
the source IP address SrcAddr to the destination IP address DstAddr.

e UDPNELabel: label assigned to the group of unestablished UDP flows that go
from the source IP address SrcAddr to the destination IP address DstAddr.

The decision to take into account the amount of malicious flows by type of connection, in
addition to the percentage, is to rule out cases where a single flow can represent 100% of

the connections of that type, and treat only from an attempted attack.

3.3.Second Level of Decision
At this level, the label must be decided for the set of all the flow that go from origin to
destination. For this, an ensembling technique similar to stacking is proposed. We are

considered to have 4 labels for each set of owes. Each of them is obtained by analyzing a
subset of different characteristics of the set of flow going from an origin to a destination:
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e TCPELabel: is the label that is assigned to a set of flows that go from a source to
a destination based on the established TCP flows. It takes into account the
decision made at the first level regarding this group of owes.

e TCPNELabel: is the label that is assigned to a set of flow that go from an origin to
a destination depending on the TCP streams not established. It takes into account
the decision made at the first level regarding this group of owes.

e UDPELabel: is the label that is assigned to a set of flows that go from an origin to
a destination based on the established UDP flows. It takes into account the
decision made at the first level regarding this group of owes.

e UDPNELabel: is the label that is assigned to a set of flows that go from an origin
to a destination based on the non-established UDP flows. It takes into account the

decision made at the first level regarding this group of owes.

To decide the label for the entire set of owes, these 4 labels are combined. In this way, if
any of the groups is classified as malicious, then the whole group will be classified as
malicious. The output of this phase is a dataset resulting from adding, to the intermediate
dataset, a column with the prediction of Phase 2, called PredictLabel. This column
indicates whether the set of flows exchanged between the source IP SrcAddr and the
destination IP DstAddr are part of an infection. In this case the value of PredictLabel be

malicious, and normal otherwise.

3.4. Phase 3: Ensemble Learning to Classify Hosts

In this phase the objective is to decide if each source IP is infected or not. For this,
ensembling is applied from the information related to the destinations with which that
host connects. This information includes the Phase 2 prediction and Threat Intelligence
(TI) data.

For each destination IP address, the following is taken into account: The result of
combining the information provided by different Threat Intelligence (TI) sources, such as
VirusTotal. The Phase 2 Ensemble Learning decision, which tells us if the connections
from the source to that destination are part of an infection.
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It is necessary to consult the Threat Intelligence information for each destination IP
address of the flows to be analyzed. For each Threat Intelligence source (feed), the
criteria to be applied to use the data it provides are defined. This criterion is in
accordance with the level of trust you have for that IT source.

This is done for all IT sources considered to be included. In this case, the IT modules that
Slips implements are used. The logic defined here allows new IT sources to be easily
brought into the process. In this model, VirusTotal is incorporated as a feed, Slips

features a

module called VirusTotal Module that communicates with said feed. From the
information obtained from it, the module calculates the url ratio, download ratio,
communicating ratio referrer ratio. These 4 values are used by this phase in the

classification process.

For each IP, the VirusTtotal API returns data on 4 categories: URLSs that resolved to the
IP, samples (files) downloaded from the IP, samples (files) containing the given IP, and

samples (programs) that they contact the IP.

The data structure is the same for the 4 categories. For each sample in a category,
VirusTotal queries the antivirus engines and counts how many of them find the malicious
sample. The answer has two fields for each category. These are the "detected category"
field, which contains a list of samples that were found malicious by at least one engine,
and the "undetected category"” field, which contains all samples that none of the engines
found or malicious. The answer has two scoring fields (detected and not detected) for

each of the 4 categories.

From this response from the VirusTotal API, the VirusTotal Slips module calculates the
ratio of each category. To calculate the proportion of a category, the global number of
detections is calculated (sum of all positive detections (detected) from the list of all
samples) and the global number of tests (sum of all positive and non-positive detections
(detected and undetected) from the list of all samples). For the IP consulted, we then have

the total of positive detections and total of tests for each category.
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Chapter Four: Adopted Dataset

Datasets from the Stratosphere Laboratory [48] and "adhoc™ datasets were used to carry
out the experiments. The latter were generated in the different phases, to be used for data
processing (intermediate) or as an interface with the next phase (resulting). The
Stratosphere datasets are created from actual captures of normal, malicious and mixed
traffic. The latter category includes captures of both normal and malicious network traffic

simultaneously.

The malware captures were carried out within the framework of the Malware Capture
Facility Project [30], in which the threat landscape is continuously monitored to detect
new emerging threats, retrieve malicious samples, and execute them on its premises in
order to capture the threat scenarios are created both infected and uninfected machines
participate, and network traffic is captured using different tools. From the captures,
datasets are generated that are published for the community. Each scenario has an

associated distinguishing identifier within the Stratosphere dataset repository.

The performance of machine learning algorithms must be verified with real data.
Especially in cybersecurity, it is really important to have data representative of the
network traffic, which includes normal activity and malicious activity, which includes

different types of attacks and the different phases of them.

To do a good check, we need three types of traffic: malware, normal and "background".
Malware traffic includes everything you want to detect, especially command and control
connections. "Normal traffic is very important to discover the real performance of our
algorithms by calculating false positives and true negatives. Background "traffic is non-
malicious traffic that is transmitted at the same time as the malicious traffic.

The same is necessary to saturate the algorithms, check their memory performance and
speed, and also test if the algorithm is confused with the data. Mixed shots provide a
realistic scenario where a machine is not at infected, then it gets infected and after a while

it stops being infected. This type of scenario makes it easy to test machine learning
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algorithms and models. To carry out the training and testing, the first dataset provided by

Stratosphere [48] was used.

e Dir: sense of connection.

e Dport: destination port.

e DstAddr: destination IP address.

e Dur: duration of the connection.

e Proto: transport layer protocol used by the connection.

e Sport: port of origin.

e SrcAddr: source IP address.

e SrcBytes: number of bytes sent to the source.

e SrcPkts: number of packets sent to the origin.

e StartTime: timestamp corresponding to the start of the connection.
e State: connection status. The possible values for this field are detailed in [43].
e TotBytes: number of bytes transmitted through that connection.

e TotPkts: number of packets transmitted through that connection.

e dTos: type of service of the destination.

e sTos: type of service of the origin.

e Label: label indicating malware or normal.
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Chapter Five: Adopted Methodology

The main part in our methodology is to performed classification on the adopted dataset in
order to estimate the following algorithms behavior on our adopted pipeline firewall

methodology:

e Logistic Regression (LR)

¢ Random Forest (RF)

e Naive Bayes (NB)

e K Nearest Neighbor (KNN)
e Decision Tree (DT)

Each one of these algorithms will extract a classification model with classification
accuracy that measures its validity on such classification case. On the other hand, the
using of these algorithms will help us in apply the ensembling model in order to
determine the best classification algorithm between these algorithms.

The pipeline will work with the following pseudo code:

PROCESURE PIPELINE (PROCESS P):

LR= Logistic Regression (P)

RF= Random Forest (P)

NB= Naive Bayes (P)

KNN= K Nearest Neighbor (P)

DT= Decision Tree (P)

ENs= ensembling (LR,RF,NB,KNN,DT)

IF LR>60 AND RF>60 AND NB>60 AND KNN>60 AND DT>60 THEN
BEST_ALGORTHIM= ENs[0]
FLAG_PIPELINE=FALSE (DON’T ALLOW PASS)
LOG (‘detect intrusion using’, BEST ALGORTHIM)
LOG (‘with accuracy’, ENs[1])

LOG (‘at time’, Time_Now())
LOG (‘process details’, P.info())
14 ELSE
15 FLAG_PIPELINE=TRUE (ALLOW PASS)

o 00 ~NOoO O b WON -

o 2
W NP O

Figure 5. 1: Adopted Methodology Pseudo Code.
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From the pseudo code above we can see that the using of ensemble is to determine the
best algorithm to adopt it accuracy in case all of algorithms agree that a process is 60 and

above of percentage that it is an intrusion.

The process of build the system will be divided into two main sections, the first one is to
train the algorithms one by one on the dataset where each algorithm needs training subset
and testing subset. The training subset is used in order to train the algorithm functions on
the data while the testing is used to validate the behavior of the algorithm during the

training phase. Our dataset has been divided 80% training and 20% testing.

Logistic -Nearest Decision

egression Neighbor Tree

- - Y \ ( )

= Train ] = Train ] = Train = Train = Train

\ \ —

- Test - Test - Test } - Test } = Test

s r ! SR

1 Extract 1 Extract 1 Extract | Extract | Extract
Model Model Model Model | Model |

Figure 5. 2: Algorithms Training and Testing Processes.

While the 2" section is to use the extracted models in real case with the ensembling

model.
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models
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Figure 5. 3: Methodology Pipeline with Ensembling Testing.
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Chapter Six: Result and Discussion

In order to validate the nest model, experiments were carried out that allow testing its
different phases with real datasets, obtaining conclusions from the results, and adjusting
the classification criteria for each phase. Experiments are the core of this work. Based on
its results, the advantages of applying ensembling are analyzed in order to improve the
detection of infected hosts. This is done as a stage prior to the implementation of a

module that integrates the 3 phases.

In our model, each phase consists of two stages: a training stage and a testing stage (that
is, results verification tests). In the training stage, the designed algorithms are trained in
order to establish the best model for each of the phases. In each phase there are different

variables that are part of the classification criteria, on whose values the results depend.

To establish them, the training is carried out, using different values, and the results are
analyzed. To determine the best model, metrics are used. They can be calculated from the
resulting confusion matrix. A confusion matrix is a representation of the performance of
the classification models [39]. The matrix shows the number of cases classified correctly

and incorrectly, compared to real labels, known as Ground Truth).

One of the advantages of using the confusion matrix as an evaluation tool is that it allows
a detailed analysis from which different metrics are obtained. From this set of metrics,

which should be chosen when used for the comparison of the models.

The performance of a binary classifier is summarized in a confusion matrix. The same
cross-tabulates predicted (prediction) and observed (known truth or Ground Truth) cases

in four options:

1. True Positive (TP): a positive label is correctly predicted.

2. True negative (TN): a negative label is correctly predicted.

3. False positive (FP): a positive label is predicted, and it was false.
4

False negative (FN): a negative label is predicted, and it was true.

The metrics used, which are obtained from each confusion matrix, are:
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TP+TN

Accuracy = TP+ FP+ TN+ FN
1 B 2«TP
e T TP+ FP+FN

Fal iti te (FPR) = ——
alse positive rate (FPR) P T TN

TP

True positive rate (TPR) = TP-I-—FN

In the testing stage, the chosen model is validated, with another data sample. The
classifiers implemented in this thesis are binary classifiers. In each phase the criteria is

the following:

e In Phase 1 the labels malicious and normal are used. In it, a detection is
considered positive when an flow is classified as malicious.

e In Phase 2 the labels malicious and normal are used. At this stage, a detection is
considered positive when the set of flows that go from an origin to a destination is
classified as malicious.

e In Phase 3 the labels infected and normal are used. In it, a detection is considered

positive when a source IP is classified as infected.

The following sections describe for each phase: the experiments carried out, detailing

their objective, the training and testing stages, and the results obtained.

6.1. Phase 1 Testing: Malicious or Normal Based on Flow itself

As the first stage of this project, performance tests of the Ensemble Learning algorithms
are performed to detect malicious flows, and its accuracy was compared with that of a set
of core learning algorithms. To carry out the tests it is a mixed data set with labels
corresponding to normal traffic and malicious traffic, from a botnet known as Rbot. The
following ML algorithms are tested: LR, NB, RF, KNN and DT [3]. And the teaching
techniques used were: Hard Voting or Majority VVoting, Soft VVoting (using the sum of the
predicted probabilities), Weighted Voting or Weighted Voting, Bagging and Boosting.
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Tests are implemented with the Scikit-learn library [16] and Accuracy or precision,
obtained by applying the cross val score function to the model, is used as a metric. This
function performs a simple division of the dataset data into a subset for training and a

subset for testing [10].

Logistic Regression: Accuracy 99,45%
Random Forest: Accuracy 99,999%
Naive Bayes: Accuracy 98,989%
K-Nearest Neighbor: Accuracy 99,999%
Decision Tree: Accuracy 99,99%

The results above shows the precision obtained for the following automatic learning
algorithms: Logistic Regression, Random Forest, Naive Bayes, K Nearest Neighbor and
Decision Tree. These values are then compared with those resulting from applying
different Ensemble Learning techniques to combine them.

Majority Voting 99,731%

Soft Voting 99,753%

Weighted Voting (LR=1, RF=3 y NB=1) 99,993%

Weighted Voting (LR=1, RF=3 y NB=2) 99,991%
Weighted Voting (LR=2, RF=3y NB=1)  99,988%

Results of the Experiments using Logistic Regression, Random Forest and Naive
Bayes as base algorithms and applying different variants of voting techniques as
Ensemble Learning. The first is shown by the value of Accuracy when applying
Majority Voting. The second sample shows the Accuracy value when applying Soft
Voting. The following show the Accuracy value for Weighted Voting with different
weights assigned to Logistic Regression, Random Forest, and Naive Bayes. These
correspond to the weights for which the best Accuracy values were obtained

From the results above we can conclude that applying Majority Voting and Soft Voting
obtain similar results. They both improve Logistic Regression and Naive Bayes but not
Random Forest. This happens because, when Random Forest is combined that gives good
results with two other algorithms that are worse, when applying Majority Voting goes
wrong. While applying Weighted Voting there are no improvements for Random Forest,
although it does show improvements compared to the other proven voting techniques.
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However the precision is closer to Random Forest without teaching techniques. The best
results in the classification are obtained by giving the highest weight to Random Forest

and the least weight to the other two algorithms.

Weighted Voting (LR=1, KNN=2 y NB=1) 99.975%
Weighted Voting (LR=1, KNN=3 y NB=1) 99.975%
Weighted Voting (LR=2, KNN=3 y NB=1) 99.974%

Results of the experiments using Logistic Regression, K-Nearest Neighbor and
Naive Bayes as base algorithms, and applying Weighted Voting as the Ensembling
technique. In these experiments, the Random Forest algorithm was replaced by K
Nearest Neighbor.

From the above results experiments are done with Weighted Voting replacing Random
Forest by K Nearest Neighbor and Decision Tree.

Logistic Regression, Decision Tree, and Naive Bayes are shown in the results below. In
both cases, improvements can be observed when applying Ensemble Learning compared
to not applying it. Although the improvements when applying Weighted Voting are not

significant, there are improvements for all the algorithms involved.

Weighted Voting (LR=1, DT=3y NB=1) 99.993%
Weighted Voting (LR=1, DT=3 y NB=2) 99.991%
Weighted Voting (LR=2, DT=3y NB=1) 99.993%

Results of the experiments using Logistic Regression, Decision Tree and Naive Bayes
as base algorithms and applying Weighted Voting as an Ensembling technique. In
these experiments, the Random Forest algorithm was replaced by Decision Tree.

Applying Bagging results in minor improvements for Random Forest, KNN, and DT, and
no improvement for Logistic Regression and Naive Bayes. The results are shown below
in table 6.1.
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Algorithm With Bagging Without Bagging

LR 99.225% 99.125%
RF 99.15% 99.125%
NB 97.97% 97.75%
KNN 99.85% 98.99%
DT 96.10% 95.81%

Table 6. 1: Experiments using Logistic Regression, Random Forest, Naive Bayes, K Nearest Neighbor and Decision
Tree as base algorithms and applying Bagging as Ensembling technique.

6.2. Phase 1 Testing

The first stage of testing allows carrying out the first experiments with automatic learning
algorithms, in particular from Ensemble Learning, with the aim of detecting malicious
owes. With these results and in order to advance in the process, other experiments are
carried out with a larger dataset. It is built from the adopted dataset. This allows for a
greater quantity and heterogeneity of data, in order to obtain better results. This dataset
constitutes the input for the experiments of the whole ensembling process implemented in
this thesis. In the experiments described in this section, the cross validation function is
used. It is mainly used in machine learning applied to estimate the ability of a model in
unseen data [7]. It is a popular method because it is simple to understand and generally
results in a less biased estimate than other methods, such as the simple division of
training and testing.

First, new experiments are carried out with the Weigthed Voting algorithm, to determine
the weights to assign to each classifier. To do this, a process is run testing different

weights for each of the classifiers. The results were compared to choose the best model.

In Table 6.2 it can be seen that the best results, as in the previous stage, are given by
assigning the weights as follows: 1 to Logistic Regression, 3 to Random Forest and 1 to
Naive Bayes, when using Weighted Voting as the Ensemble Learnig algorithm.
Therefore, this is the model chosen to perform the Phase 1 ensembling.
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Table 6. 2:Experiments using Logistic Regression (LR), Random Forest (RF) and Naive Bayes (NB) as base algorithms
and applying Weighted Voting as Ensembling techniques. All possible combinations of weights are tested with
values 1, 2 and 3. The best value of accuracy.

In the next two phases we will list the results as we did in this section (Phase 1).
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6.3. Phase 2 Testing: Malicious or Normal Based on Flow from Origin to
a Destination

Logistic Regression: Accuracy 99,69%
Random Forest: Accuracy 98.3%
Naive Bayes: Accuracy 98.145%
K-Nearest Neighbor: Accuracy 99.23%
Decision Tree: Accuracy 97.125%

The results above shows the precision obtained for the following automatic learning
algorithms: Logistic Regression, Random Forest, Naive Bayes, K Nearest Neighbor and
Decision Tree. These values are then compared with those resulting from applying

different Ensemble Learning techniques to combine them.

Majority Voting 99,584%
Soft Voting 97,129%
Weighted Voting (LR=1, RF=3 y NB=1) 98,97%
Weighted Voting (LR=1, RF=3 y NB=2) 99.215%
Weighted Voting (LR=2, RF=3y NB=1)  99.97%

Results of the Experiments using Logistic Regression, Random Forest and Naive
Bayes as base algorithms and applying different variants of voting techniques as
Ensemble Learning. The first is shown by the value of Accuracy when applying
Majority Voting. The second sample shows the Accuracy value when applying Soft
Voting. The following show the Accuracy value for Weighted Voting with different
weights assigned to Logistic Regression, Random Forest, and Naive Bayes. These
correspond to the weights for which the best Accuracy values were obtained

Weighted Voting (LR=1, KNN=2 y NB=1) 91,784%
Weighted Voting (LR=1, KNN=3 y NB=1) 96,458%
Weighted Voting (LR=2, KNN=3 y NB=1) 98,945%

Results of the experiments using Logistic Regression, K-Nearest Neighbor and
Naive Bayes as base algorithms, and applying Weighted Voting as the Ensembling
technique. In these experiments, the Random Forest algorithm was replaced by K
Nearest Neighbor.
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Weighted Voting (LR=1, DT=3y NB=1) 98.361%
Weighted Voting (LR=1, DT=3 y NB=2) 98.115%
Weighted Voting (LR=2, DT=3 y NB=1) 99.321%

Results of the experiments using Logistic Regression, Decision Tree and Naive Bayes
as base algorithms and applying Weighted Voting as an Ensembling technique. In
these experiments, the Random Forest algorithm was replaced by Decision Tree.

Applying Bagging results in minor improvements for Random Forest, KNN, and DT, and

no improvement for Logistic Regression and Naive Bayes. The results are shown below

in table 6.3.

Algorithm With Bagging Without Bagging
LR 96,015% 99,898%

RF 98,785% 98,215%

NB 95,547% 96,257%

KNN 98.964% 91,917%

DT 97.152% 94,158%

Table 6. 3: Experiments using Logistic Regression, Random Forest, Naive Bayes, K Nearest Neighbor and Decision
Tree as base algorithms and applying Bagging as Ensembling technique.

6.4. Phase 2 Testing

LR RF NB Accuracy
1 1 2 99.8%

1 1 3 45.4%

1 2 1 65.21%

1 2 2 96.31%

1 3 1 92.15%

1 2 2 78.54%

2 1 1 78.23%
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2 1 3 98.78%
2 2 2 96.89%
2 3 3 98.25%

Table 6. 4: Experiments using Logistic Regression (LR), Random Forest (RF) and Naive Bayes (NB) as base algorithms
and applying Weighted Voting as Ensembling techniques. All possible combinations of weights are tested with
values 1, 1 and 2. The best value of accuracy.

6.5. Phase 2 Testing: Malicious or Normal Based source IP is Infected

Logistic Regression:
Random Forest:
Naive Bayes:

K-Nearest Neighbor:

Accuracy 91,21%
Accuracy 90.5%
Accuracy 93.12%

Accuracy 96.189%

Decision Tree: Accuracy 97.25%

The results above shows the precision obtained for the following automatic learning
algorithms: Logistic Regression, Random Forest, Naive Bayes, K Nearest Neighbor and
Decision Tree. These values are then compared with those resulting from applying

different Ensemble Learning techniques to combine them.

Majority Voting 98.25%

Soft Voting 98.712%
Weighted Voting (LR=1, RF=3 y NB=1) 98.962%
Weighted Voting (LR=1, RF=3 y NB=2) 96.897%
Weighted Voting (LR=2, RF=3y NB=1) 94.551%

Results of the Experiments using Logistic Regression, Random Forest and Naive
Bayes as base algorithms and applying different variants of voting techniques as
Ensemble Learning. The first is shown by the value of Accuracy when applying
Majority Voting. The second sample shows the Accuracy value when applying Soft
Voting. The following show the Accuracy value for Weighted Voting with different
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weights assigned to Logistic Regression, Random Forest, and Naive Bayes. These
correspond to the weights for which the best Accuracy values were obtained

Weighted Voting (LR=1, KNN=2 y NB=1) 96.125%
Weighted Voting (LR=1, KNN=3 y NB=1) 98.025%
Weighted Voting (LR=2, KNN=3 y NB=1) 98.969%

Results of the experiments using Logistic Regression, K-Nearest Neighbor and
Naive Bayes as base algorithms, and applying Weighted Voting as the Ensembling
technique. In these experiments, the Random Forest algorithm was replaced by K
Nearest Neighbor.

Weighted Voting (LR=1, DT=3y NB=1) 98.628%
Weighted Voting (LR=1, DT=3 y NB=2) 97.854%
Weighted Voting (LR=2, DT=3 y NB=1) 98.785%

Results of the experiments using Logistic Regression, Decision Tree and Naive Bayes
as base algorithms and applying Weighted Voting as an Ensembling technique. In
these experiments, the Random Forest algorithm was replaced by Decision Tree.

Applying Bagging results in minor improvements for Random Forest, KNN, and DT, and

no improvement for Logistic Regression and Naive Bayes. The results are shown below

in table 6.5.

Algorithm With Bagging Without Bagging
LR 96.115% 99.785%

RF 98.545% 96.25%

NB 92.521% 98.45%

KNN 98.905% 97.12%

DT 98.21% 98.63%

Table 6. 5: Experiments using Logistic Regression, Random Forest, Naive Bayes, K Nearest Neighbor and Decision
Tree as base algorithms and applying Bagging as Ensembling technique.
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6.6. Phase 3 testing

LR = NB Accuracy
1 1 2 90.2%

1 1 3 69.884%
1 2 1 96.35%
1 2 2 87.25%
1 3 1 77.95%
1 2 2 99.1%

2 1 1 96.2%

2 1 3 98.21%
2 2 2 96.47%
2 3 3 99.58%

Table 6. 6: Experiments using Logistic Regression (LR), Random Forest (RF) and Naive Bayes (NB) as base algorithms
and applying Weighted Voting as Ensembling techniques. All possible combinations of weights are tested with
values 2, 3 and 3. The best value of accuracy.
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Chapter Seven: Conclusion and Future Works

At the end of the thesis, the objectives set at the beginning have been met, from the
creation of a methodology to detect infected hosts on the network, which Ensemble
Learning applies in the different phases of the process. And its implementation in a

module integrated into Slips that provides the tool with the benefits of Ensembling.

The method defined in this work was validated through experiments using datasets with
real traffic data, provided by Stratosphere [48] and available to the community. This
allows you to adjust the process taking into account flows that represent the real behavior

of a set of hosts and learn from it.

This proposal for the implementation of ensembling in phases allows us to solve an
aspect of the problem in each of them, and in turn take the predictions of the previous

phase, which are combined with the analysis of the phase itself to achieve better results.

The training that is carried out in each phase to choose the best model allows the model
to be adjusted to detect new attacks. This puts it at an advantage over static rule-based or

signature-based tools.

Said mechanism is novel when combining: the information provided by the datasets
generated from the traffic of infected machines and non-infected machines (Phase 1), the
information provided by the analysis of the TCP connections established, TCP not
established, UDP established and UDP not established with each destination with which a
host communicates (Phase 2), and the information that the different IT sources provide in

relation to the destinations with which the host communicates. a host connects (Phase 3).

This combination, which is done to make the final decision of whether a host is infected
or not, is to apply Ensembling itself. It is decided taking into account the results of the 3

phases.

There are advantages of each phase. In Phase 1, when using ensembling to classify the

owes, a decision is implemented that combines the findings of the base classifiers
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implemented in Slips. In particular the selected technique of voting with weight, choose

for this case the decision of the base algorithm that best classificatiom.

In Phase 2, the ensembling is done by grouping flows by destination, and in each of these
groups, by protocol and state. This allows malicious connections to be detected based on
the characteristics of the connections between the source and the destination. In turn, that
the decision is by destination, leads to adding in Phase 3 the information from Threat

Intelligence for each of them.

Applying ensembling in Phase 3 with IT information enriches the knowledge of the
origin host's behavior, as reported by the Threat Intelligence feeds regarding the
destinations with which it connects. By dividing the problem into phases, the model
becomes adaptable because it is possible to improve the technique of ensembling in one

of the phases without affecting the others. The

The training of each phase is independent, with which the model of a phase can be
changed to improve detection without affecting the definition of the other phases,

although it is improving, improving its results as a consequence.

Regarding my professional development, this work motivates me to continue this line of
work, related to data intelligence and cybersecurity. Within this framework, a set of

possible future lines of research and development are proposed:

e Include other sources of threat intelligence in Phase 3 of the methodology, in
order to improve the detection of infected hosts.

e Integrate Slips and the ensembling module as feed, based on the proposal made in
this thesis.

e Analyze the effectiveness of the teaching methodology proposed as a line of
research to train human resources.

e Analyze the applicability of the proposed mechanism for IoT trafficking, in order
to detect infected devices.

e Generate datasets from information provided by different network monitoring
tools, which can be used to apply machine learning techniques and ensemble

learning in particular, in order to detect infected hosts.
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e Study the applicability of ensembling learning to detect different network security

attacks.

47



References

[1] Agarwal., R. (2019). "The 5 classification evaluation metrics every data scientist must
know. and when exactly to use them,". IEEE, 1(52), pp 150-163.

[2] Babayeva., K. (2020). "Introducing kalipso: the new interactive GUI of the
stratosphere linux IPS," Stratosphere Technological Research, 1(10), pp 78-95.

[3] Bonoro., G. (2018). "Machine Learning Algorithms,” Packeter Publishing Agency,
20(95), pp 100-695.

[4] Bowles, B. and Neiyr.,, K. (2015). "Machine Learning in Python: Essential
Techniques for Predictive Analytics,". wiley.

[5] Groeey., I. (2019). "Threat intelligence (TI): What it is, and how to use it effectively,”
Springer.

[6] Brolee., J. (2015). "Machine Learning Mastery with Python," Google Books.
[7] Brolee., J. (2019). "an introduction to scikit-learnk-fold cross-validation.
[8] Ngen., C. (2018). "incident report system,".

[9] Ramach., A. et al. (2006). "Filtering spam with behavioral blacklisting,". -ACM
conference on Computer and communications security, pp 25-34.

[10] Neale., C. "Cross-validation," towards data science hub.

[11] Vasilomanolakis., E. (2015). "Taxonomy and survey of collaborative intrusion
detection,” ACM Computing Surveys, 15(1).

[12] Bahri, E. et al. (2011). "Approach-based ensemble methods for better and faster
intrusion detection,” Intelligence in Security for Information and Security, pp 52-59.

[13] Bahri, E. et al. (2017). "A survey of intrusion detection systems based on ensemble
and hybrid classifiers,” Computers Security Journal IDRS.

48



[14] Grion, H. et al. (2020). "Quality evaluation of cyber threat intelligence feeds,".
International Conference on Applied Cryptography and Network Security (ACNS).

[15] Quittek., J. et al. (2008). "Requirements for ip flow information export (ipx)," rfc
3917 (informational).

[16] Buitinck., L. et al. (2013). "Design for machine learning software: experiences from
the scikit-learn project,”. ECML Workshop: Languages for Data Mining and Machine
Learning, pp 65-98.

[17] Didaci., L. et al. (2000). "Ensemble learning for intrusion detection in computer

networks,".

[18] Aljarrah, O. et al. (2015). "Data randomization and cluster-based partitioning for
botnet intrusion detection,” IEEE Trans CyberNET, 2(22), pp 10-16.

[19] Venosa., P. et al. (2019). "Ensembling to improve infected hosts detection,” CACIC
2019, pp 1251-1260.

[20] Venosa., P. et al. (2020). "A better-infected hosts detection combining ensemble
learning and threat intelligence,"” Springer, pp 229-236.

[21] Abu., S. et al. (2018). "Cyber threat intelligence: issue and challenges,”. Journal of
Electrical Engineering and Computer Science.

[22] Ganapathy., S. et al. (2013). "Intelligent feature selection and classification
techniques for intrusion detection in networks: a survey,” EURASIP Journal on Wireless

Communications and Networking, pp 271-282.

[23] Chih-Fong., T. et al. (2009). "Intrusion detection by machine learning: A review,"
Expert Systems with Applications.

[24] Sabatino., G. (2016). "Review ensemble-based collaborative and distributed
intrusion detection systems: A survey," Journal of Network and Computer Applications.

Elsevier Journal, pp 61-72.

[25] Shadow Server Foundation.

49



[26] Heras., J. (2020). "Ensembles: voting, bagging, boosting, stacking,"
[27] Hollmannov., D. (2020). "Writing slips module. Stratosphere Research Blog,".
[28] Humphries., S. (2020). "Threat intelligence feeds: Keeping ahead of the attacker,".

[29] Ponemon Institute. (2020). "The second annual study on exchanging cyber threat

intelligence: There has to be a better way,".

[30] Stratosphere Lab. "Malware Capture Facility Project,".

[31] Stratosphere Lab. "Stratosphere IPS,".

[32] Stratosphere Lab. (2019). "Stratosphere Linux IPS (Slips) version 0.6.8,".
[33] Stratosphere Lab. (2019). "Stratosphere research laboratory,".

[34] Listvan., R. (2020). "Introducing flow formats and their differences,".
[35] Noh., L. (2017). "Cluster ensemble with a link-based approach for
botnet detection,” Journal of Network and Systems Management, pp 550-562.
[36] Earle., S. (2017). "Multi-perspective machine learning

a classifier ensemble method for intrusion detection,".

[37] Earle., S. (2017). "Multi-perspective machine learning (mpml) a machine learning

model for multi-faceted learning problems. pp 363-368.

[38] Okhan., D. (2018). "Modi

50



ed stacking ensemble approach to detect

network intrusion,” Turkish Journal of Electrical Engineering & Computer Sciences, pp
418-433.

[39] online confusion matrix project. (2021). "confusion matrix CONCEPTS,".

[40] opensource.com project. (2020). "What is docker?,".

[41] Spamhaus Organization. (2020). "The Spamhaus Project,".

[42] Pokorny., Z. (2019). "The definition of is threat intelligence,".

[43] Zeek Project. Online Source, Last Access (Augest 2021).

[44] Zeek Project. (2019). "Zeek: an open-source network security monitoring tool,".

[45] Sirture., F. (2020). "lllustration of a boosting method for ensemble learning,” IEEE
Online conference, 14(20), pp 10-18.

[46] Sirture., F. (2020). "lllustration of a bootstrap aggregating

(bagging) method for ensemble learning,” IEEE Online conference, 14(20), pp 19-29.
[47] SOURCE FORGE. (2020).

[48] Stratosphere. (2019). "Stratosphere laboratory datasets,".

[49] Stunga., S. (2016). "stacking methods in machine learning models,” ACM,
technology, and research. pp 89-102.

[50] Rais., W. (2018). "A survey on technical threat intelligence in the age of
sophisticated cyber attacks,” Computers security, 72(212).

[51] Casas., J. (2017). "Ensemble-learning approaches for network security and anomaly
detection,” ACM In: Proceedings of the Workshop on Big Data Analytics and Machine

Learning for Data Communication Networks, 1(1), pp 1-16.

[52] VirusTotal. Reports. (2019).

51



[53] VirusTotal. Virustotal home page.
[54] Weisberg., J. (2019). "Argus- the all seeing,".
[55] Ma., C. (2012). "Ensemble Machine Learning: Methods and Applications,” Springer.

[56] Zhou., Z. (2012). "Ensemble Methods: Foundations and Algorithms,” Google
Books.

Appendix A: Python Code Functions

import tensorflow as tf

from tensorflow.keras.layers import Conv2D, Input, ZeroPadding2D, BatchNorm
alization, Activation, MaxPooling2D, Flatten, Dense

from tensorflow.keras.models import Model, load model

from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint
from sklearn.model selection import train test split

from sklearn.metrics import fl score

from sklearn.utils import shuffle

import cv2

import imutils

import numpy as np

import matplotlib.pyplot as plt

import time

from os import listdir

Smatplotlib inline

def evaluate algorithm(dataset, algorithm, n folds, *args):

folds = cross validation split(dataset, n_folds)
scores = list ()
for fold in folds:

train set = list (folds)

train_ set.remove (fold)
train set = sum(train set, [])
test set = list()
for row in fold:
row _copy = list (row)
test set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train set, test set, *args)
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actual = [row[-1] for row in fold]
accuracy = accuracy metric(actual, predicted)
scores.append (accuracy)

return scores

def predict (summaries, row):
probabilities = calculate class probabilities (summaries, row)
best label, best prob = None, -1
for class_value, probability in probabilities.items():
if best label is None or probability > best prob:

best prob = probability

best label = class value
return best label

def calculate class probabilities (summaries, row):
total rows = sum([summaries[label] [0][2] for label in summaries])
probabilities = dict ()
for class value, class summaries in summaries.items () :
probabilities[class_value] =
summaries[class_value] [0] [2]/float (total rows)
for i in range(len(class summaries)) :
mean, stdev, = class summaries[i]
probabilities[class _value] *=
calculate probability(row[i], mean, stdev)
return probabilities

def predict (summaries, row):
probabilities = calculate class probabilities (summaries, row)
best label, best prob = None, -1
for class value, probability in probabilities.items():
if best label is None or probability > best prob:

best prob = probability

best label = class value
return best label

def data percentage(y):
m=len (y)

n_positive = np.sum(y)
n _negative = m - n positive

pos prec = (n_positive* 100.0)/ m
neg prec = (n_negative* 100.0)/ m

print (£f"Number of examples: {m}")

print (f"Percentage of positive examples: {pos prec}%, number of pos exa
mples: {n_positive}")

print (f"Percentage of negative examples: {neg prec}%, number of neg exa
mples: {n_negative}")
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Appendix B: Train History for Naive Bayes Algorithm (as a sample)

Training Data:

Number of examples: 1445

Percentage of positive examples: 52
764

Percentage of negative examples: 47
681

Validation Data:

Number of examples: 310

Percentage of positive examples: 54
examples: 170

Percentage of negative examples: 45.
examples: 140

Testing Data:

Number of examples: 310

Percentage of positive examples: 48.
examples: 151

Percentage of negative examples: 51.
examples: 159

number of training examples = 1445
number of development examples = 31
number of test examples = 310

X train shape: (1445, 240, 240, 3)

Y train shape: (1445, 1)

X val (dev) shape: (310, 240, 240,

Y val (dev) shape: (310, 1)

X test shape: (310, 240, 240, 3)

Y test shape: (310, 1)

Validation set  Test set

Accuracy 91% 89%

F1 score 0.91 0.88

Train on 1445 samples,
Epoch 1/10
1445/1445 [=== R

validate on

.8719723183391%,

.1280276816609%,

.83870967741935%,

0

3)

16129032258065%,

70967741935484%,

29032258064516%,

number of pos examples:
number of neg examples:
number of pos
number of neg
number

of pos

number of neg

310 samples

- acc: 0.5945 - val loss: 0.6829

Epoch 2/10

]

val acc:

1445/1445 [
- acc: 0.7668 -
Epoch 3/10

val loss: 0.

]

val acc:

1445/1445
- acc: 0.8069 -
Epoch 4/10

val loss: 0.

]

val acc:

1445/1445 [

]

- acc: 0.8574 -
Epoch 5/10

val loss: 0.

val acc:

1445/1445
- acc: 0.8339 -
Epoch 6/10

]

val acc:
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- 434s 300ms/step - loss: 0.8331
0.4968

- 463s 320ms/step - loss: 0.4817
0.6742

- 471s 326ms/step - loss: 0.4361
0.8065

- 465s 322ms/step - loss: 0.3641
0.6323

- 457s 3l6ms/step - loss: 0.3940

0.7742



1445/1445 [=== ] - 452s 313ms/step
- acc: 0.8692 - val loss: 0.4448 - val acc: 0.7806

Epoch 7/10

1445/1445 [=== ] - 465s 322ms/step
- acc: 0.8872 - val loss: 0.4747 - val acc: 0.7323

Epoch 8/10

1445/1445 [ ] - 439s 304ms/step
- acc: 0.8519 - val loss: 0.3655 - val acc: 0.8516

Epoch 9/10

1445/1445 [=== ] - 435s 301lms/step
- acc: 0.9190 - val loss: 0.4557 - val acc: 0.8129

Epoch 10/10

1445/1445 [ ] - 438s 303ms/step
- acc: 0.9225 - val loss: 0.4038 - val acc: 0.8129

Elapsed time: 1:15:23.8

Train on 1445 samples, validate on

310 samples

Epoch 1/3

1445/1445 [============== ] - 431s 299ms/step
- acc: 0.9239 - val loss: 0.3357 - val acc: 0.8871

Epoch 2/3

1445/1445 [ ] - 432s 299ms/step
- acc: 0.9363 - val loss: 0.3529 - val acc: 0.8516

Epoch 3/3

1445/1445 [============== ] - 425s 294ms/step
- acc: 0.9287 - val loss: 0.4038 - val acc: 0.8323

Elapsed time: 0:21:29.4

Train on 1445 samples, validate on

310 samples

Epoch 1/3

1445/1445 [============== ] - 438s 303ms/step
- acc: 0.9612 - val loss: 0.3190 - val acc: 0.8903

Epoch 2/3

1445/1445 [ ] - 432s 299ms/step
- acc: 0.9564 - val loss: 0.3509 - val acc: 0.8613

Epoch 3/3

1445/1445 [=== ] - 429s 297ms/step
- acc: 0.9647 - val loss: 0.3358 - val acc: 0.8710

Elapsed time: 0:21:38.5

Train on 1445 samples, validate on

Epoch 1/3

310 samples

1445/1445 [

] - 536s 371ms/step

- acc: 0.9453 - val loss: 0.4005 - val acc: 0.8548

Epoch 2/3

1445/1445 [=== ] - 427s 296ms/step
- acc: 0.9647 - val loss: 0.3149 - val acc: 0.9000

Epoch 3/3

1445/1445 [ ] - 429s 297ms/step
- acc: 0.9668 - val loss: 0.3118 - val acc: 0.8935

Elapsed time: 0:23:11.9

Train on 1445 samples, validate on

Epoch 1/5

310 samples

1445/1445 [==============

] - 427s 296ms/step
val acc: 0.8935

==] - 426s 295ms/step

- acc: 0.9785 - val loss: 0.3310 -
Epoch 2/5

1445/1445 [

- acc: 0.9509 - val loss: 0.5169 -

val acc: 0.8258
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loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.3154

L2776

L3271

.2182

.2054

.2065

.1811

.1827

L1471

.1384

.1240

.1586

.1244

.1074

.0899

.1343



Epoch 3/5

1445/1445 |

- acc: 0.9626 - val loss: 0.6945 - val acc: 0.7516
Epoch 4/5
1445/1445 [=== ] - 430s 298ms/step - loss:
- acc: 0.9640 - val loss: 0.3210 - val acc: 0.9065
Epoch 5/5
1445/1445 [ ] - 434s 300ms/step - loss:
- acc: 0.9689 - val loss: 0.4250 - val acc: 0.8484
Elapsed time: 0:35:41.9
Loss
0.8 - = Training Loss
' Validation Loss
0.7 -
0.6 -
05 1
0.4 -
0.3 A
0.2 -
01 +
T T T T T
0 5 10 15 20
Accuracy
14
0.9 -
0.8 -
0.7 -
0.6 -
I|'I = Training Accuracy
o544 | Validation Accuracy
T T T T T
0 5 10 15 20
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] - 425s 294ms/step - loss:

0.1137

0.1018

0.0949



Test Loss = 0.33390871454631127
Test Accuracy = 0.8870967741935484



