
DISTRIBUTED AND FLEXIBLE WORKFLOW COORDINATION

USING DEFEASIBLE LOGIC PROGRAMMING

by

Sakeer P V

A thesis submitted in partial fulfillment

of the requirements for the degree of

Masters in Informatics

Supervised By : Dr. Iyad Rahwan

Co-Supervisor: Dr. Khaled Shaalan

The British University in Dubai

Dec 2007

Abstract

This is an exploration to foretell a future in which traditional approaches for

developing workflow management systems can be supplanted by new

techniques and emerging technologies. This thesis recommends sets of

methodologies for performing multiagent-based distributed and flexible

workflow systems. Its objective is to deal with some of the present issues in

the traditional workflow system from the business point of view. This thesis

proposes that the traditional design of workflow management systems (client-

server) could be replaced by a defeasible logic programming (DeLP) engine–

based multiagent platform that is more flexible and can better replicate

workflow’s distributed characteristics in the open environment. This thesis

presents sets of technologies for enacting multiagent-based distributed and

flexible workflow systems. Its purpose is to tackle some of the existing

problems in the traditional workflow system from the business point of view.

This thesis proposes that the conventional system architecture of workflow

management systems (client-server) could be replaced by a defeasible logic

programming (DeLP) engine–based multiagent platform that is more open and

collaborative, and can better reflect workflow’s distributed features in the open

environment. This system also eliminates the requirement for centralized

workflow coordination and proposes to build a flexible and distributed

workflow management system using a multiagent system on a java agent

development (JADE) framework, where the workflow semantics and business

logic are built using DeLP. The main outcome of this research is to provide

approaches for utilizing defeasible logic programming methodologies in

application development, especially in business applications, where DeLP can

contribute much for the automation of business logic. Moreover, a multiagent

system on a JADE framework helps to maximize the use of existing process

models and tools for automation of business processes. The model

implemented as part of this thesis confirms that a workflow framework using

DeLP improves the adaptability and decentralization of workflow

management.

 iv

Table of Contents

Abstract...ii

Acknowledgments... vii

Chapter 1: Introduction ..1

Motivation..2

Objectives...4

Methodology..5

Contributions..6

Overview of This Thesis ...7

Chapter 2: Background on Workflow, Distributed Workflow, and Defeasible

Logic Programming (DeLP) ..8

Workflow Management System (WMS) ..8

Agent-Based WMSs ..10

Adaptive Workflow Systems...11

Distributed Workflow..13

Agents and Distributed Workflow Coordination......................................17

Problem Space and Solutions ..19

Chapter 3: DeLP Framework for Flexible and Distributed Workflow

Coordination...22

An Overview of DeLP...22

Language of Defeasible Reasoning...24

 v

Notations -< and <- ...26

Defeasible Logic Program (d.e.l.p.)..26

Defeasible Derivation..28

Dialectical Tree ...28

Defeasible Argumentation ..28

Rebuttal or Counterarguments ..29

Dialectical Analysis of Defeasible Argumentation......................31

Argumentation Dialogue in Agent Communication31

JADE: The Tool Used for Realizing the Proposed Framework ..32

General Architecture of the Proposed Framework33

DeLP and WMS ..34

JADE and Distributed Agents...35

DeLP for Controlling Workflow Semantics.................................35

DeLP for Decision Making and Knowledge Sharing37

Agent Communication in DeLP Workflow39

Summary ..42

Chapter 4: Implementation ..43

General Architecture of the System ..43

DeLP Engine ...44

Workflow Semantic Queries...44

Decision-Making Queries ...44

 vi

Workflow Agents ..45

JADE Environment ...48

Communication Protocol...48

Case Study and Discussion..49

Discussion ..53

Conclusion ...57

Chapter 5: Conclusion and Future Work...58

Summary of This Thesis..58

Thesis Contributions..58

Future Work ...60

References ..61

 vii

Acknowledgments

I sincerely express my deepest gratitude to my supervisor, Dr. Iyad Rahwan,

and cosupervisor, Dr. Khaled Shaalan, who supervised, supported, and guided

me to the completion of this project. Without their consistent support, I would

not have been able to complete my thesis and this manuscript. I also express

my sincere gratitude to my informatics colleagues and friends, whose timely

and sincere guidance, during various phases, has indeed helped me to realize

this project. I thank the British University in Dubai for offering me facilities

during this endeavor. I am indebted to the Emirates Group for offering me a

scholarship to fund my master’s in informatics program.

1

Chapter 1: Introduction

In today’s competitive environment, to achieve operational efficiency

together with customer satisfaction, while improving consistency and

quality, organizations are forced to implement novel systems that enable

business processes that are responsive to the volatile nature of the business.

Here comes into play the significance of a workflow management system for

business process management. Nowadays, information technology is an

essential part of business that reduces integration friction between

applications and business functions. Workflow management systems

(WMSs) can be widely used to manage business processes for their

automation, coordination, and collaboration between entities. In other words,

WMSs are systems that identify, control, and run tasks through the execution

of specific software, the workflow of which is driven by a system

representation of the workflow logic (Workflow Management Coalition

[WfMC], 1999). While WMSs focus on managing process logic, they need

to integrate other technologies to fully control business processes such as

task assignments, resource allocation, and so on. In short, WMSs are

developed to improve the efficiency of business procedures by executing

tasks in an appropriate order, giving adequate access to the resources

essential for performing the given task, and overseeing all aspects of the

processes’ execution. Broadly, WMS functionalities can be classified into the

2

design-time function, dealing with identifying and representing the workflow

procedures and its tasks, and the executing-time function, related to

generating and managing the workflow instances in an operational

environment. To provide the preceding functionalities, the WMS has

components to store and execute definitions, generate and administer

workflow instances as they are executed, and manage their interfaces with

workflow members and applications (WfMC, 1999). As a result of the

advancements made in multiagent systems, workflow systems paved the way

for the development of the agent-based workflow management system,

which helps us in achieving the goal of integration of various technologies to

improve functionality. “An agent is a computer system situated in some

environments that is capable of autonomous action in this environment to

meet its design objectives” (Woolridge, 2001).

Motivation

The traditional approach of the existing WMS systems and the

unautomated agent coordination in the changing environment has always

been a challenge in workflow systems. Industrial experts always dreamt of

building a system that could respond to the changing environment, i.e., one

that was adaptive to the changing environment/beliefs. This is the first and

foremost motive behind this research.

3

It is found that the proper use of WMSs can make processes more

cost-effective and in turn reduce turnaround times for business processes and

improve productivity and service quality. Certainly WMSs have become an

essential part of any organization as they are capable of incorporating

different resources, such as various systems and applications, into the

organization and its human elements (Mohan, 1998; Schmidt, 1999). A

number of business workflow management systems are available such as

FlowMark, InConcert, METEOR, Visual WorkFlow, ActionWorkflow and

so on .

The main concerns of industrial experts concerning the current

system are adaptability limitations of the system, centralization bottleneck,

and runtime binding of the workflow semantics (P. George, Zurich Insurance

Dubai, personal communication, June 20, 2006). The task management

system (TMS) that is being developed and used by one of the international

insurance organizations is analyzed as part of the problem analysis. This

system is being used at the organization for distributing work among the

departments and for the coordination of the tasks assigned. This system

requires many manual interventions to reroute the task between the

departments in case of change in the workflow semantics. At times, due to

the lack of decentralization and context awareness, redundant tasks are

handled by various departments, despite a case not being taken up. Most of

4

the time, even though the knowledge is available to a department, in the case

of a re-query or an argument demand, manual intervention is required to

handle such specific situations. Also, the centralized nature of the system

demands that the various departments communicate back to the central desk

with feedback.

This thesis reviews the above discussed shortfalls and limitations of

conventional WMSs based on the client-server architecture and propose a

novel idea to overcome these limitations. This innovative approach for

building WMSs integrates multiagent architecture using JADE and

defeasible logic programming (DeLP). The motivations of this research and

an overview of the structure of this thesis are given in the following sections.

Objectives

After careful consideration of the present issues in traditional

workflow systems and evaluation of some of the existing methods for

workflow systems, it is found that resolving issues connected to flexible and

distributed workflow design has become important for the design of

forthcoming WMSs. In this research the main objective is to implement a

WMS that can act based on changing beliefs or knowledge (i.e., adaptability

using an argumentative approach). Also, it aims to form the semantics of

workflow structure using DeLP and the distributed mechanism to overcome

the other limitations of central coordination.

5

Methodology

Distributed and flexible workflow coordination using DeLP has been

influenced by a model of the argumentative approach of DeLP theorists

Garcia and Simari (2004). They have analyzed various aspects of the

argumentative approach on DeLP in their paper. “DeLP is a paradigm that

combines logic programming and defeasible argumentation. DeLP provides

the possibility of representing information in the form of weak rules in a

declarative manner and a defeasible argumentation inference mechanism for

warranting the entailed conclusion” (Garcia & Simari, 2004). Defeasible

reasoning adapts the rule-based reasoning methodology to arrive at a

conclusion even when incomplete and inconsistent facts are available. This

method is useful for system integration, where contradicting or incompatible

information may arise in real time/runtime, and for the representation of

business policies and rules where policies and rules with exceptions are often

used. This enables a workflow system to use DeLP for coordination and

forming well-defined workflow semantics. DeLP is simple to use, with strict

and defeasible rules and priorities, based on translation of logic programming

with declarative semantics that are flexible and adaptable to different

intuitions within defeasible reasoning. Integrating DeLP with a multiagent

system in a JADE environment brings a new approach toward the

development of flexible and distributed workflow coordination. With this

6

unique approach, limitations of the traditional workflow systems can be

overcome at a certain level. The main objective of this thesis is to develop a

prototype implementation for the new approach, where agents can respond

with common sense and react to changing beliefs.

Contributions

The significance of this research is that it introduces a new direction

for tackling some of the unsolved problems in traditional workflow and also

provides new methodologies for improving the adaptability of the workflow

system. The major results achieved by this research are using a distributed,

flexible, and multiagent design to deploy distributed workflow management

systems. The major contributions of this thesis are the following:

• introduction of the argumentative approach for workflow

management coordination

• identification of how adaptability of the workflow system can be best

improved using a DeLP approach

• analysis of a new approach to formalize workflow semantics and

runtime binding of workflow semantics

• implementation and demonstration of the new framework and

analysis of how it contributes toward flexibility and distributed

workflow coordination

7

Overview of This Thesis

In chapter 2, a background of the workflow system, limitations of the

conventional workflow systems, and some related work is analyzed and

discussed. In addition, problem space and methodology are also discussed at

the end of the chapter. Chapter 3 describes the proposed framework on

theoretical grounds and explores the main ideas behind the thesis. Chapter 4

focuses on implementation details specific to the insurance domain and

demonstrates the working methodology using case studies. The last chapter,

chapter 5, summarizes the ideas discussed in this thesis, the main

contributions of this research, and future research directions.

8

Chapter 2: Background on Workflow, Distributed Workflow, and

Defeasible Logic Programming (DeLP)

In today’s business environment, WMSs have a significant role as an

infrastructure for automating interorganizational interactions such as

interdepartmental coordination in a financial organization. In such an

environment, dynamic knowledge sharing and distributed workflow

coordination are crucial to the smooth functioning of the business processes,

whereas a traditional model may cause a performance bottleneck due to the

centralized processing structure. The main concepts discussed in this context

are WMS, multiagent-based WMS, adaptive workflow processes, and

distributed workflow processes. In this chapter, a detailed discussion of the

above concepts is handled. Additionally, a problem analysis and a proposed

solution are also discussed.

Workflow Management System (WMS)

The Workflow Management Coalition (WfMC) is an international

organization responsible for setting standards for workflow suppliers, user-

groups, programmers/analysts, and university/research groups. The WfMC

has been in charge of the formation of a workflow reference model and a

glossary of standard workflow vocabulary and terminologies. Several

fundamental terminologies are key to understanding the nature of workflow

9

and for a discussion of current trends in WMSs. The WfMC Terminology

and Glossary document provides the following definitions (WfMC, 1999):

“Workflow: the automation of a business process, in whole or part,

during which documents, information or tasks are passed from one

participant to another for action, according to a set of procedural

rules. “

“Business Process: a set of one or more linked procedures or

activities which collectively realize a business objective or policy

goal, normally within the context of an organizational structure

defining functional roles and relationships.”

“Process Definition: the representation of a business process in a

form which supports automated manipulation, such as modeling, or

enactment by a workflow management system. The process definition

consists of a network of activities and their relationships, criteria to

indicate the start and termination of the process, and information

about the individual activities, such as participants, associated IT

applications and data, etc. In summary, a process definition is an

abstract representation of a business process that can be consumed by

a workflow management system in order to enact the workflow.”

“Workflow Management System: a system that defines, creates and

manages the execution of workflows through the use of software,

10

running on one or more workflow engines, which is able to interpret

the process definition, interact with workflow participants and, where

required, invoke the use of IT tools and applications.”

Agent-Based WMSs

To introduce the agent-based WMS, it is worthwhile to start with an

overview of the agent and multiagent systems. Reactivity, adaptability,

autonomy, mobility, and collaborative behavior are some of the standard

characteristics of an agent explained by Bradshaw (1997). The most

significant characteristic is autonomy. Wooldridge (1999; see also Shoham,

1997) explained the differentiation between agents and objects. According to

these authors, the main three differences are all connected to the autonomy of

agents: Agents have control over their behavior; agents can behave reactively

or proactively, that is, flexibly; and agents mostly have their own threads of

control. According to Sycara (1998), there are lot of advantages to adopting a

multiagent methodology for developing software. For instance, a multiagent

methodology can provide encapsulation and abstraction. Additionally, as the

agents are autonomous, each agent can determine by itself the appropriate

approach for resolving its specific challenge. These agents can be developed

by various programmers, as long as they can communicate with each other.

In addition, the multiagent system offers distributed, flexible, and open

11

design. Thus agents can interface and interact with the dynamic system

without understanding all the elements in advance.

WfMSs using software agents have been developed with various

aspects. In some instances, the agents execute specific functions that are

required by other tasks in the workflow. In other situations, the present

workflow is used to align the coordination of these agents (Jennings, Faratin,

Norman, O’Brien, & Odgers, 2000; Joeris, 2000; Nissen, 2000). For

example, Nissen (2000) described an approach to developing a set of agents

to execute activities connected with the supply chain process in e-commerce.

In other cases, the agents have been used as part of the infrastructure linked

with the WfMS itself to create an agent-enhanced WfMS (Stormer, 2001;

Wang & Wang, 2002). These agents offer an open system with loosely

coupled elements that are more flexible compared to conventional methods.

Some researchers have come up with a combination of these methods (Chen,

Hsu, Dayal, & Griss, 2000), where an agent-based WfMS is used in

combination with specific and dedicated agents that offer apt system-related

services. In most cases, agents are working toward their own objectives, and

either whole knowledge is available to everyone or no knowledge is shared.

Adaptive Workflow Systems

Adaptive workflows have been explored by a number of researchers

for many years, and most have described what should be done. Only a few

12

researchers have presented methodologies to manage adaptability, and only a

few real implementation attempts have been made to resolve some aspects of

adaptability. Reassigning and handing over a task under process to a new

model is yet an issue to deal with. This is indicated in a study of different

WfMSs that was conducted by van der Aalst, Hofstede, Kiepuszewski, and

Barros (2002). The method explained in most of the studies is to predefine a

limited set of potential reassignments and relocations, such as adding an

additional task in the series, by passing a task without execution or

interchanging a task with a new one. In this approach, the semantics of the

workflow remain well defined. The drawback of this method is that the set of

potential reassignments and relocations is very limited and/or the expressive

power of the specification language is too restrictive, limiting the

possibilities for specifying a process. For instance, the method of van der

Aalst, Basten, Verbeck, Verkoulen, and Voorhoeve (1999) is based on

inheritance, but it requires that all workflow should be derived according to a

limited set of transitions from some basic workflow definition.

Adaptability in overseeing the tasks and responding to feedback

mechanisms of workflow systems has been discussed by many people for

many years. Few papers have discussed the problems connected with

monitoring and feedback (Cui, Odgers, & Schroeder, 1998; Muehlen &

Rosemann, 2000). When it comes to agent-based oversight of tasks, there has

13

been one presented solution (Wang & Wang, 2002), but this does not offer

response to feedback and also lacks distributed monitoring, which is vital to

any workflow system, as described by van der Aalst et al. (2002).

Distributed Workflow

The distributed workflow system is a hot topic in research related to

WMSs. Tremendous research efforts are carried out in this area. The

significance of integrating workflow management with distribution has been

dealt with by Weissenfels, Dittrich, Muth, Wodtke, and Weikum (1998),

Eder and Panagos (1999), and Jablonski et al. (1999). A number of basic

methods and prototypes have been presented and designed that attempt to

resolve these issues, which makes traditional distributed WMSs more

complicated.

One of the main research directions in distributed workflow is

Application Development Based on Encapsulated Premodeled Process

Templates (ADEPT). This venture was initiated at the University of Ulm in

1996, with the objective of developing a new workflow methodology for

commercial workflow management (Rinderle, Reichert, & Dadam, 2003).

The key purpose of the ADEPT program is to achieve distributed workflow

control to overcome the bottleneck of the workflow servers because of

overloading and the communication network. To resolve these issues,

ADEPT adapts the methodology of transferring the control of workflow

14

tasks from one server to another during execution time and reduces the load

by partitioning workflow definitions; that is, a workflow task may be

controlled by more than one server. When carrying out such a transfer and

migration, a report of the states of instance is communicated among various

servers. This report contains detailed data about activity stages and

workflow. To prevent unwanted communication among servers, the

execution of simultaneous workflow instances is controlled. ADEPT’s

message transfer functionalities can be further improved with changes in the

expressions used for the allocation of servers. These expressions could be

determined at the developmental stage, choosing an appropriate workflow

server to store most of its communication, and involve less extra effort at the

time of execution (Li, 2006). Also, ADEPT allows fixed and dynamic server

allocation (Bauer & Dadam, 1999). The fixed assignment allows suitable

workflow servers to be selected for different partitions of a workflow

definition. In dynamic allocation, different servers are allocated at runtime,

which makes the system perform better. However, this approach made the

system sophisticated and complex to use.

Another system in this area is METUFlow (Cingil et al., 1997),

which is a distributed WMS designed by researchers at Middle East

Technical University. METUFlow uses a methodology for distributed

workflow that requires a number of schedulers on various network nodes.

15

Every scheduler deals with different tasks in the process instances. Hence

such a workflow system is best suited for distributed environments to make

performance of systems better. METUFlow is founded on the study that

controlling event triggering enables better task coordination in the workflow;

that is, relationships among the tasks are presented by dependencies of

events. In METUFlow, every single event is in control of its execution time

and chooses the right time to occur to help the workflow’s distributed

execution. A temporal expression is set on an event as a guard, and event

occurrence is only allowed if this guard is set to true. In addition, a Common

Object Request Broker Architecture (CORBA) object is used to implement an

interface with a guard handler that sends and receives messages (Yang,

2000).

As Web services turn out to be well accepted and extensively utilized

as tools for enterprises, many methods have been presented to implement

distributed workflow systems using Web services, in which the client’s part

is handled by Web services and process flows are controlled by a centralized

engine that has interfaces among different Web services. Some examples of

systems using such a methodology are Business Process Execution

Languages for Web Services (BPEL4WS; Technical Report, 2003) and

OWL-S (OWL; Technical Report, 2001).

16

BPEL4WS (BPEL4WS; Technical Report, 2003) formalized a

method to properly specify business processes and interface protocols. This

developed the Web services interaction architecture and helps it to support

business transactions. BPEL4WS defines an interoperable integration model

that should allow the widening integration of the automated process in

business-to-business cases and intraenterprise situations. OWL-S is an

ontology Web language (OWL)–based Web service ontology that provides a

set of markup language constructs for describing the properties and

capabilities of their Web services in a clear, computer-understandable

format. OWL-S markup of Web services facilitates the computerization tasks

in Web services, which comprise discovery of Web services and their

integration, execution, and composition. After development of the layered

approach for markup languages, OWL-S built on the OWL (OWL; Technical

Report, 2001) recommendation created by the Web Ontology Working

Group at the World Wide Web Consortium.

The methodologies described previously helped the workflow system

to improve its performance and flexibility together with distributed features.

The challenge is that all these approaches were still based on client-server

architecture. Hence these methods either resolved the issues partially or

required the definition of complex algorithms and programming methods to

handle the situation. Additionally, the centralized services approach, such as

17

centralized assignment of tasks and process instantiation, made them useless

in some application domains. As a result, the problems that are associated

with centralized system architecture cannot be fully resolved if the workflow

management system is built on client-server architecture.

Agents and Distributed Workflow Coordination

The development of new technological strategies, such as multiagent

systems, has made available novel approaches to support process

management, while traditional distributed workflow methods fail to rightly

resolve some of the issues such as adaptability to changing environments,

flexible workflow semantics, and so on, and some limited research efforts

have explored using these collaborative and decentralized platforms to

support WMSs.

A language for programming the coordination of agents with a

graphical syntax and clearly defined with operational semantics is defined by

Little -JIL. This is founded on two key ideas: Coordination control structures

can be separated from other process programming language matters, and the

processes execution can be handled by agents who know to handle their

process but can benefit from support coordination. Hence, every step is

allocated to an execution agent, and agents are accountable for commencing

each steps and executing the task available with them. This method is more

18

efficient in defining and expressing the agent coordination feature of

workflow.

The preceding approach gives up traditional client-server architecture

and adopts a distributed methodology to develop a workflow management

system. These few strategies, which utilize a multiagent computing model

with current workflow management strategies, have introduced a novel

approach to workflow management and the process support area. The

flexibility of the multiagent computing method makes it appropriate to

handle issues associated with client-server architecture. However, from the

literature review of existing multiagent-based workflow models, it is obvious

that the multiagent method is still immature, with many issues addressed

inefficiently.

Additionally, the preceding approaches concentrate on decentralizing

the workflow management process at execution time to address performance

bottlenecks and offer more flexibility and openness to the system. On the

other hand, many features that are key to distributed workflow management

have not been tackled efficiently by these methods. For example, it is

difficult to understand how the data of process definition are controlled and

executed for distributed workflow agents to access task information at

execution time. Also, process initiation is not clearly defined and addressed

19

by these methods. In addition to the preceding problems, dynamic agent

selection is also not efficiently addressed by this method.

Problem Space and Solutions

After detailed examination and study of the current issues in the

traditional workflow management systems and evaluation of some of the

present methods for workflow processes, it is found that tackling the issues

related to flexible and distributed workflow management are key for the

improvement of current WMSs. In the agent-based WMSs, the unchanging

agent beliefs make them work based on rigid workflow semantics or a

workflow model. This limits the agents to thinking independently, and the

centralization approach causes system bottlenecks.

Also, according to Yang (Yang, 2002 & Li, 2006),

“industry trends such as virtual enterprises and flattening of

organizational structures indicate that the future image of business

will include distributed groups of collaborating teams that combine

talents and skill sets to create new methodologies and processes.

Therefore, there is growing need for the next generation of workflow

systems to be built in a truly distributed manner”

The emergence of multiagent architecture gives a good opportunity

for the distributed workflow management systems.

20

The above analysis points out that limited adaptability is the main

challenge in every workflow process, from semantics of workflow to

feedback and monitoring of the tasks. To overcome this limitation, the way

forward is to enable the agent to think independently based on changing

beliefs and to influence the knowledge of other dependent agents, making

them coordinate and work based on the new beliefs or knowledge. In this

project, the main objective is to implement a WMS that can act based on

changing beliefs or knowledge. Also, this thesis aims, to form the semantics

of workflow structure using DeLP and the distributed mechanism to

overcome the other limitations of central coordination.

For achieving the above, this thesis proposes a Flexible and

Distributed WMS using DeLP. This system enables the protection of the

individual agents’ private knowledge using distributed workflow

coordination and flexible and open architecture for integrating workflow

management process applications and communicating directly with other

participants to reduce the network traffic.

This thesis explores how to utilize the potential benefits of DeLP in

distributed agent–based WMSs. Generally, it discusses mechanisms that

allow software agents to loosely couple to behaviors they process. This loose

coupling takes the form of runtime binding to the task structure or workflow,

which defines individual behaviors. The long-term benefits of this approach

21

will be that an agent can use its autonomy to realign its behaviors by binding

to alternative workflow structures in response to environmental dynamics.

22

Chapter 3: DeLP Framework for Flexible and Distributed Workflow

Coordination

The proposed framework is a flexible and distributed workflow

coordination using DeLP, where each agent works in its own capacity using

available knowledge to achieve the predefined objective in a distributed

manner. Even though the agents are distributed in their work, they are built

in such a way that they can share knowledge and influence others to avoid

the execution of redundant tasks and to achieve the common goal in

minimum time. The system is built using the DeLP logical framework for

coordinating tasks, for forming workflow semantics, and for knowledge

updating and sharing.

This chapter explores the concept of DeLP and the proposed

framework for DeLP-based flexible and distributed workflows. To

understand the proposed framework, it is important to understand the

background of DeLP. The following section explains the DeLP framework

and methodology and how it is utilized for workflow management.

An Overview of DeLP

Current research in agent communication, argumentation, logic

programming, and nonmonotonic reasoning has offered challenging

developments in knowledge representation and common sense reasoning.

Evolution in these areas is leading to significant and useful results for other

23

technological advancements such as the development of intelligent agents

and multiagent system applications. DeLP is one of the up-and-coming

research areas in common sense reasoning. DeLP provides the possibility of

representing information in the form of weak rules in a declarative manner

and a defeasible argumentation inference mechanism for warranting the

entailed conclusion. In DeLP argumentation, formalism will be used for

deciding between contradictory goals. Queries will be supported by

arguments that could be defeated by other arguments. The DeLP approach

allows us to deal with incomplete and contradictory information in dynamic

domains. This approach is suitable for representing agents’ knowledge and

for providing an argumentation-based reasoning mechanism to agents.

Defeasible reasoning is a rule-based approach for efficient reasoning

with incomplete and inconsistent information. This kind of reasoning is

useful for system integration, where conflicting information arises naturally,

and for the modeling of business rules and policies, where rules with

exceptions are often used. This enables a workflow system to use DeLP for

the coordination and forming of well-defined workflow semantics. DeLP is

simple to use, with strict and defeasible rules and priorities, based on the

translation of logic programming with declarative semantics, and is flexible

and adaptable to different intuitions within defeasible reasoning.

24

Defeasible reasoning is a nonmonotonic reasoning approach in which

the gaps due to incomplete information are closed through the use of

defeasible rules that are usually appropriate. This logic performs defeasible

reasoning, where a conclusion supported by a rule might be overturned by

the effect of another rule.

Language of Defeasible Reasoning

A defeasible theory (a knowledge based in defeasible logic) consists

of five different kinds of knowledge: facts, strict rules, defeasible rules,

defeaters, and a superiority relation (Antoniou, Billington, Governatori, &

Maher, 2005; Garcia & Simari, 2004). For the purpose of discussion, these

concepts are explained in the following ,the concepts explained below are

take from “Embedding Defeasible Logic into Logic Programming”

(Antoniou, Billington, Governatori, & Maher, 2005)

• Facts are literals that are treated as known knowledge (given or

observed facts of a case).

• Strict rules are rules in the classical sense: Whenever the premises

are indisputable (e.g., facts), then so is the conclusion. An

example of a strict rule is “emus are birds,” written formally,

emu(X)-> bird(X).

• Defeasible rules are rules that can be defeated by contrary

evidence. An example of such a rule is “birds typically fly,”

25

written formally, bird(X) => flies(X). The idea is that if we know

that something is a bird, then we may conclude that it flies, unless

there is other, not inferior, evidence suggesting that it may not fly.

• Defeaters are rules that cannot be used to draw any conclusions.

Their only use is to prevent some conclusions. In other words,

they are used to defeat some defeasible rules by producing

evidence to the contrary. An example is “if an animal is heavy,

then it might not be able to fly,” written formally, heavy(X) ~>

¬flies(X). The main point is that the information that an animal is

heavy is not sufficient evidence to conclude that it does not fly. It is

only evidence against the conclusion that a heavy animal flies. In

other words, we do not wish to conclude ¬flies if heavy, we simply

want to prevent a conclusion flies.

• The superiority relation among rules is used to define priorities

among rules, i.e., where one rule may override the conclusion of

another rule. For example, given the defeasible rules

r : bird(X)) flies(X)

r0 : brokenWing(X)) ¬flies(X)

which contradict one another, no conclusive decision can be made

about whether a bird with broken wings can fly. But if we

introduce a superiority relation > with r0 > r, with the intended

26

meaning that r0 is strictly stronger than r, then we can indeed

conclude that the bird cannot fly.

The above discussed concepts in this thesis mainly deal with facts, strict

rules, and defeasible rules. For workflow coordination, the above concepts

are important from an argumentative approach. The paper “Defeasible Logic

Programming: An Argumentative Approach” by Garcia and Simari (2004)

developed a methodology to simplify programming of the defeasible

language using DeLP. According to their terminology, the programming is

simplified with more notation. Some of this terminology, which is used for

building the proposed framework, is explained in the following sections.

Notations -< and <-. The symbol -< distinguishes a defeasible rule

from a strict one. A strict rule is represented using the symbol <-.

Defeasible logic program (d.e.l.p.). A defeasible logic program P,

abbreviated d.e.l.p., is a possibly infinite set of facts, strict rules, and

defeasible rules. In a program P, we will distinguish the subset ∏ of fact and

strict rules and the subset ∆ of defeasible rules. When required, we will

denote P as (∏, ∆).

Example 3.1

The following example is from the underwriting department of an

insurance company. In this case, if the medical results are

satisfactory, then the underwriting of the case becomes successful.

27

However, if there is a bad medical history, the underwriting fails. But

there are some instances in which the medical officer can request a

new medical report, and in the light of new evidence, underwriting

can proceed with the case. Irrespective of all the above, the

management can decide on a rejection for a case, whatever the result

may be. Here the management’s decision gets priority and will be

treated as a strict rule. This example is given below as a DeLP

program:

∏ = ~uw_checkok(X) <-mangmentdecisionno(X) – rule 1
medical(1) <-true.
medicalbadhistory(1) <-tue.
medical(2) <-true.
medicalbadhistory(2) <-tue.
dmo_new_medicalrpt(2)<-true.
medical(3) <-true.
dmo_new_medicalrpt(3)<-true.
mangmentdecisionno(3)<-true.

∆= uw_checkok(X) -< medical(X). – rule 2
~uw_checkok(X) -< medicalbadhistory(X). rule 3
uw_checkok(X) -< medicalbadhistory(X),
dmo_new_medicalrpt(X). - rule 4

According to the above defeasible rules, the answer for the query

uw_check(1) is no (rule 3) and for uw_check(2) (rule 4) is yes.

However, the answer for uw_check(3) is no due to its strict rule (rule

1).

28

Defeasible derivation. In DeLP, a set of rules is contradictory if and

only if there exists a defeasible derivation for a pair of complementary literals

from this set. A derivation is called defeasible if there exists information in

contradiction with a literal L that will prevent acceptance of L as a valid

conclusion. From Example 3.1, uw_checkok(2) has defeasible derivation.

When contradictory goals can be defeasibly derived, a formalism for deciding

between them is needed. DeLP uses defeasible argumentation formalism to

perform such tasks. In DeLP, no priority relation is needed for deciding

between contradictory goals. This characteristic maintains the declarative

nature of the knowledge represented in DeLP; that is, the interaction among

the pieces of knowledge is expressed as a result of the influence of the whole

corpus of the agents’ knowledge and not because of the language alone.

Dialectical tree. A dialectical tree is a pictorial representation of the

argumentation line in a DeLP program. In a dialectical tree, every node

(except the root) represents a defeater of its parent, and leaves correspond to

nondefeated arguments. Each path from the root to a leaf corresponds to a

different acceptable argumentation line. A dialectical tree provides a

structure for considering all the possible acceptable argumentation lines that

can be generated for deciding whether an argument is defeated.

Defeasible argumentation. The main idea explored and utilized in

this thesis is defeasible argumentation. Informally, an argument is a minimal

29

and noncontradictory set of rules used to derive a conclusion. In DeLP,

answers to queries will be supported by an argument. Thus, although a

d.e.l.p. could be contradictory, answers to queries will be supported by a

noncontradictory set of rules. In DeLP, strict rules are not part of an

argument structure. Consider the defeasible logic program in Example 3.1:

The literal uwcheck(2) is supported by the argument structure shown in

Figure 3.1.

It is important to understand that in DeLP, the construction of an

argument structure is nonmonotonic; that is, adding facts or strict rules to the

program may cause some argument structure to be invalidated because it

becomes contradictory.

Rebuttal or counterarguments. In DeLP, an argument may be

defeated by other arguments. Usually, a query will succeed if the supporting

argument for it is not defeated. To establish whether an argument is a

nondefeated argument, argument rebuttals or counterargument defeaters for

the argument are considered. Since counterarguments are arguments, there

may exist defeaters for them, and so on.

Disagreement: Let P = (∏ U ∆) be a d.e.l.p. We say that two

literals h and h1 disagree if and only if the set ∏ {h,h1} is contradictory.

30

Figure 3.1. A dialectical tree.

Counterarguments: It is said that <A1,h1> counterargues, rebuts, or

attacks <A2,h2> at literal h if and only if there exist subarguments <a,h> of

<A2,h2> such that h and h1 disagree.

In Example 3.1 of the insurance case,{~uw_checkok(X)-<

medicalbadhistory(X)} is a counterargument for {uw_checkok(X)-<

medicalbadhistory(X), dmo_new_medicalrpt(X)} when an additional

knowledge of dmo_new_medicalrpt(X) is available.

31

Dialectical analysis of defeasible argumentation. In Example 3.1, there

are three defeasible rules representing tentative information about the

underwriting medical check of a case. It also has a strict rule expressing that if

management decides to reject the case, that case will never succeed in

underwriting. From the above example, it is possible to derive uw_check(2)

and ~uw_check(2). For the treatment of contradictory knowledge, DeLP

incorporates a defeasible argumentation formalism. This formalism allows the

identification of the pieces of knowledge that are in contradiction, and a

dialectical process is used for deciding which information prevails as

warranted. Figure 3.1 illustrates how the dialatical process works. This

dialectical process involves the construction and evaluation of arguments that

either support or infer with the query under analysis. Once the analysis is

done, the generated arguments will represent an explanation for the query.

Arguments that explain an answer for a given query will be shown in a

particular way using dialectical trees.

Argumentation dialogue in agent communication. One approach to

agent communication is to insist that an agent not only send messages, but

support them with reasons why those messages are appropriate. This is

argumentation-based communication. Apart from its naturalness, there are

two major advantages of this approach to agent communication. One is that it

ensures agents are rational to a certain degree. In other words, agents will

32

only accept things if they do not have a reason not to. The second advantage

of an argumentation-based dialogue system is that the reason supporting the

argument can be sought. Moreover, the reason may be accepted or rejected

and possibly challenged and argued against by other agents.

JADE: The tool used for realizing the proposed framework. JADE (

java agents development) is a popular Foundation for Intelligent Physical

Agents (FIPA)-compliant, Java-based agent development platform. FIPA is a

consortium that produces standards to enhance the interoperability of

heterogeneous agents (Foundation for Intelligent Physical Agents, 2001).

The target agents in the demonstration system were also constructed with

JADE; however, any FIPA-compliant agent tool kit would work. JADE

implements the FIPA reference model for agent platforms. JADE’s Remote

Agent Management utility provides facilities for interacting with agents and

managing the agent platform.

Figure 3.2 shows that one agent platform with two containers is

executing. The main container supplies basic services to the agent platform.

The directory facilitator (DF) provides yellow page services to the agents

running on the platform. The DF also provides the mechanism for agents to

advertise their services in the agent directory. The agent management system

(AMS) provides services to the agent platform that allow the creation,

deletion, and migration of agents.

33

Figure 3.2. A JADE platform (Buhler, 2004).

General Architecture of the Proposed Framework

Figure 3.3 provides an architectural block diagram of the proposed

framework.

Having explored the DeLP and its argumentative approach, we now

need to analyze how it can be utilized in the proposed framework of a

distributed WMS. The following sections illustrate how the integration is

achieved using DeLP.

Recall that DeLP considers two kinds of logical rules: (a) defeasible

rules used for representing weak or tentative information, like all birds can

fly, and (b) strict rules used for representing strict (sound) knowledge such as

that a penguin is a bird. So a defeasible rule is used to represent defeasible

34

Figure 3.3. General architecture of the framework.

knowledge, i.e., tentative information that may be used if nothing could be

posed against it.

DeLP and WMS. this proposal models workflow semantics and

business rules in terms of a DeLP program built on top of a traditional JADE

platform. Each agent is built on JADE and can be plugged into the JADE

framework. Additionally, the DeLP engine is built as a stand-alone server, and

agents can initiate DeLP queries on argumentation on the DeLP engine

whenever required.

35

JADE and distributed agents. In this proposed system, all the agents’

functionalities are distributed, and they are plugged into the JADE

framework. Depending on the tasks, specific logic is built into the agents.

However, additional agents can be plugged into the system, if required. This

architecture eliminates the requirement of central coordination and thus helps

to remove the bottleneck of the traditional systems due to its centralized

nature.

DeLP for controlling workflow semantics. In this proposed

framework, DeLP is used for controlling workflow semantics. With the

available knowledge and predefined business rules, each agent can query its

own workflow routing and route the task according to the business logic. For

example, it considers a vetting agent task-routing scenario. Vetting agents

receive and vet the case in an insurance company. On the basis of the

available information, a vetting agent can query the DeLP engine for the

workflow semantics of a case and should be in a position to route the case to

the participating agents. In case additional knowledge is available at a later

stage, other agents should be able to reroute the case directly to additional

participating agents that were not involved in the earlier stage. This will

eliminate the requirement for central coordination and make the workflow

semantics more adaptive to the business rules. This in turn helps for runtime

binding of the workflow semantics.

36

Example 3.3

The workflow modeling of a vetting agent in an insurance workflow

structure is explored below. A vetting agent validates each

application it receives and decides which department the case should

go through to. The following examples show how the workflow

semantics of the above case is represented in DeLP and how it is

queried by the vetting agent to decide which department the case

should be transferred to:

compliance_check(X)-<vetting(X).

uw_check(X) -< vetting(X).

system_input(X) -< vetting(X).

governance_check(X) -< vetting(X).

~uw_check(X) <- vetting(X), nilbenefit(X). % strict rules

Vetting(5) <-true.

Vetting(6) <-true.

Nilbenefit(6) <tue.

According to the above workflow semantics, a case will go through all the

agents in a normal case, but if the case is a nil benefit case, the case does not

require underwriting and has no need to go through this agent. There may be

other exceptions from time to time in the business, and the system can

change the workflow semantics simply by changing the rules. Here the

37

vetting agent decides that Case 6 does not require to be routed to an

underwriting agent.

DeLP for decision making and knowledge sharing. As explained

earlier, in the proposed framework, business rules are formulated as DeLP

programs for the purpose of making decision and workflow coordination.

Using the existing facts and available knowledge, each agent makes its own

decision and communicates to peer agents using an argumentative approach.

However, the peer agents have the option to accept or reject agents’

decisions based on its knowledge base. In any case, it provides feedback to

the originating agent. In the case of rejection, a reason is also communicated

for the awareness of the originating agent, and this will in turn initiate an

argumentation, if necessary. An agent can counterargue the situation based

on its knowledge. This process continues until both parties reach an

agreement.

Example 3.4

Consider the following business rules and facts available with two

different agents.

 uw_checkok(X) -< medical(X):

~uw_checkok(X) -< medical(X), medicalbadhistory(X).

~uw_checkok(X) -< medical(X),invaliddocuments(X).

38

~uw_checkok(X) -<

medical(X),invaliddocuments(X),medicalbadhistory(X).

uw_checkok(X) -< medical(X), dmo_new_medicalrpt(X).

~uw_checkok(X) <-

medical(X),dmo_new_medicalrpt(X),mngmtdecisionno(X)

Facts with underwriting agent Facts with governance agent

medical(2) <- true.
. medicalbadhistory(2) <-true.
dmo_new_medicalrpt(2) <- true.

medical(2) <- true

medicalbadhistory(2) <- true.

Mngmtdecsionno(2) <-true.

In Example 3.4, the governance agent gives the final decision for a

case on underwriting. Initially, the underwriting agent starts communication

with the governance agent, saying that this case is ready to get approved, but

when the governance agent checks it out, it has a fact that defeats the

argument of the underwriting agent and goes back with a reason, informing

of a bad medical history of the case. The underwriting agent replies back that

it knows this client has a bad medical history; however, the medical officer

has issued a clearance certificate for this case. But when the governance

agent checks its knowledge base, there is a further rule that defeats the

argument of the underwriting agent, saying that management has made a

decision that this client cannot go with the insurance policy. The governance

39

agent reveals to underwriting the new status of the case, and they both reach

an agreement.

Agent communication in DeLP workflow. JADE makes use of FIPA

ACL(Agent Communication Language) for communication purposes. It is

important to insist that such a system not only send messages, but support

them with reasons why those messages are appropriate. This is

argumentation-based communication. For the purpose of building this

system, the following types of dialogues are used:

• information-seeking dialogues. One participant seeks the answer to

some question from another participant who is believed by the first to

know the answer.

• inquiry dialogues. The participants collaborate to answer some

questions for which answers are not known to any single participant.

• persuasion dialogues. One party seeks to persuade another party to

adopt a belief or point of view the second party does not currently

hold.

• negotiation dialogue. The participant bargains over the division of

some scarce resources in a way acceptable to all, with each individual

party aiming to maximize its share.

The main issue in a workflow scenario is that an agent needs to be

communicated in a way so as to reach an agreement quickly to benefit both

40

agents; to achieve this, agents do not just exchange facts, but also exchange

additional information, if required. In persuasion dialogues, which are by far

the most studied type of argumentation-based dialogues (Parsons &

McBurney, 2003), these reasons are typically the reasons why the facts are

thought to be true. Thus if Agent A wants to persuade Agent B that P is true,

it does not just state the fact that P is true, but also gives the reason for it.

Using DeLP in this situation, Agent B can justify itself how it is true. If

Agent B is not justified on the reason, it can continue the argumentation with

reasons until they reach an agreement. To further elaborate on the

communication protocol, the communication strategy between the

underwriting agent and the governance agent is illustrated in Figure 3.4.

Figure 3.4. Communication protocol.

41

Table 3.1

Explanation of communication predicates and their natural language

equivalence

Predicate Natural language
Propose Whenever an agent is required to propose something to

another agent, e.g., when an agent wants to propose checks
for a case

Inform When an agent informs another agent about the status of the
case

Request If one agent requires additional information
Agree When an agent agrees with another agent’s argument
Refuse When an agent disagrees with another agent’s argument
Failure When an agent wants to inform others about a failure

Agents use the predicates given in Table 3.1 to achieve the

communication among them. The natural language equivalences of these

predicates are also given.

This system proposes dialogues and persuasion dialogues between

two agents using defeasible logic programs as a knowledge base, together

with an algorithm defining how this dialogue is managed (Figure 3.5).

 Agent A, involved in a dialogue with another Agent B, needs to

produce an argument to refute the last argument of the opponent. To do this,

Agent A must use its knowledge base KBa and be able to use some rules

shown in the dialogue by Agent B. The general outline of any dialoguing by

DeLP-based agents is shown in Figure 3.5. An agent may have an internal

42

representation of the dialogue that is being carried out. During this dialogue,

agents share their beliefs to convince each other.

Summary

This new approach gives significant importance to managing

adaptability in making decisions during workflow processes and to managing

workflow semantics. Adaptability is maintained by updating the knowledge

base and sharing the knowledge between agents. Its also has the provision to

broadcast important knowledge to all participants in case of a breakthrough.

This affects the workflow scenario at a greater level to improve efficiency. In

addition, the runtime binding of the workflow semantics also helps the

system to eliminate unwanted communication. The distributed nature of the

framework does not limit the communication path for any agents. Ultimately,

this approach should be the way forward for the new WMSs.

Figure 3.5. Dialoguing agents (Martinez & Garcia, 2002).

43

Chapter 4: Implementation

Nowadays, financial industries are one of the dominant fields where

workflow systems are being used, and the availability of industrial experts

gives us confidence to build the skeleton application for this domain.

General Architecture of the System

Figure 4.1 depicts the architecture of the implemented system. The

architecture of the system can be divided into three core elements.

Figure 4.1. Workflow coordination for insurance agent society.

44

DeLP engine. This is a critical component of the system that helps

the agent to query about knowledge and infer various beliefs about the

environment. This engine helps the agents process DeLP queries and

provides answers to the agents. The DeLP engine receives a set of rules and

facts as its input. Using the given facts and rules, the DeLP engine infers the

queries posted by the agent and updates the agents with the current status at

any given point in time.

Agents can issue two types of queries to the DeLP engine, as

explained subsequently.

Workflow semantic queries. In this schema, the agents can query

about the environment and decide with which agent to communicate next.

This makes the system flexible enough to communicate with different agents

based on an agent’s beliefs at that point in time. If it is not required that a

specific task be communicated to one agent, this can be avoided. This

enables the system not to follow a rigid structure of the workflow and in turn

helps the system to adapt to a flexible workflow structure. There are

predefined defeasible rules that enable the system to infer a flexible

workflow structure at runtime based on the facts available.

Decision-making queries. Knowledge and facts available to different

agents about a case in a workflow scenario are different. In all situations,

45

these facts and beliefs are not necessarily required to be shared. However, in

decision making, these facts play a critical role. In a distributed workflow

system, based on knowledge, agents can communicate, share, and convince

other agents of critical decision-making facts. One unique feature of this

processing model is that all the agents are not required to share all

information all the time; sharing is required only when there is a conflict of

interest while making a decision. There is predefined defeasible logic

available to each agent based on the business rules. In the light of the facts

available, an agent can infer the mismatching facts and communicate to

another agent regarding decision making.

Workflow agents. The core difference of this system is its distributed

processing model. In a WMS, each agent plays an individual role to

complete a common goal. In the traditional model, all the agents’ tasks are

coordinated and monitored by a central unit. This is a time-consuming and

inefficient way of getting things done as each agent is required to

communicate with the central unit, and this unit is responsible for rerouting

the task and getting any extra information required. This causes a bottleneck

in the centralized methodology and in turn makes the process slow and time

consuming. In a distributed model, each agent is responsible for its own

work, and it is the individual agent’s responsibility to get the information

required, reroute, and communicate with other agents involved in completing

46

the task. In this particular domain, the following agents are there for

demonstrating the capability of the system:

• vetting agent. This is the first agent to receive the case. The vetting

agent is responsible for checking and vetting the case. If the case is

qualified for acceptance, the vetting agent queries the DeLP engine

with the facts available to formulate the workflow semantics and

structure. On the basis of the workflow structure, the vetting agent

then communicates to other agents involved with the case. Once the

case is acknowledged by other agents, the vetting agent removes the

case from its queue.

• underwriting agent. This agent is responsible for underwriting

benefits for the client. On the basis of the available facts and its

understanding of the previous history of the client, the underwriting

agent accepts or rejects the case. Once the underwriting agent rejects

the case initially, it informs the governing agent so as to confirm the

process, and subsequently, after confirming the rejection status, the

underwriting agent communicates to the other agents involved about

the current status in order for them to be aware about the situation,

which in turn makes other agents stop working on a case that is

rejected by the underwriting agent. If the case is accepted, the

underwriting agent also communicates to the governing agent for

47

confirmation and then informs the issuing agent about the status. This

completes the underwriting process.

• system agent. This agent is responsible for inputting the details of the

system. On the basis of the availability of resources, this agent inputs

the details of the system and acknowledges to the issue agent the

completion status.

• compliance agent. This agent checks a case for compliance: whether

the case agrees with the terms of an insurance policy. This checking

involves anti–money laundering, proof of address, origin of wealth,

and so on. If a finding is doubtful, this agent refers the case to the

governance agent for a detailed analysis of the case. If accepted, the

agent acknowledges the issuing agent, and if rejected, it

acknowledges other agents.

• governance agent. This agent is the main monitoring agent. It

monitors all the cases referred to underwriting and compliance for

governance clearance. Governance has the authority to forfeit the

decision of any other agent and reject the proposal. This agent

acknowledges the status of the checks to all agents involved and

completes the process.

• issuance agent. This agent gets updated information from all the

agents involved, and once it receives an accepted status from all the

48

agents , this agent issues a policy document to the client; if any one

of the agents informs of a rejected status, it issues a reject letter to the

client.

JADE environment. In this system, all the above agents are running in

a JADE environment. JADE is the framework responsible for agent

communication. Java-based agents are plugged into the JADE environment

to get the required system agents up and running.

Communication Protocol

The communication protocol is considered as the core part of a

multiagent system. This models the interaction among the agents, i.e., what

to say to whom in a particular situation. Communication protocol defines

how the dialogue between the agents is controlled and managed. Especially

in a dialogue-based or argumentation-based agent communication strategy, it

is crucial that agents are capable of checking and confirming a particular

format for communication strategy with their peer agents. To comply with an

agent communication strategy, this system uses the FIPA communication

protocol, which is embedded in a JADE environment. To communicate with

other agents, this system uses the following strategies:

1. For controlling the workflow semantics, the system initially queries

the workflow semantics from the DeLP engine and informs the

participants involved.

49

2. For decision making and knowledge sharing, the new framework uses

the strategy shown in Figure 4.2.

Case Study and Discussion

For the purpose of demonstrating the implemented model, an

underwriting scenario is considered with the following rules:

uw_checkok(X) -< medical(X).
~uw_checkok(X) -< medical(X), medicalbadhistory(X).
~uw_checkok(X) -< medical(X),invaliddocuments(X).
~uw_checkok(X) -<

medical(X),invaliddocuments(X),medicalbadhistory(X).

Figure 4.2. Agent communication protocol.

50

uw_checkok(X) -< medical(X), dmo_new_medicalrpt(X).
~uw_checkok(X) <-

medical(X),dmo_new_medicalrpt(X),mngmtdecisionno(X).
cw_checkok(X)-< compliance(X).
uw_check(X) -<vetting(X).
~uw_check(X) <-vetting(X),nilbenefit(X).
medicalbadhistory(X)-<pastmedicalfailure(X).
~medicalbadhistory(X)-

<pastmedicalfailure(X),dmo_new_medicalrpt(X).

Consider the scenario of a policyholder whose case was rejected in the past

due to a bad medical history. This case was referred to the underwriting

department for verification, which produced a new medical report from the

medical officer.

However, the governance agent only knows of the past medical

failure and is not aware of the new developments. At this stage, the agents

are communicated the sequence in Figure 4.3 to keep the knowledge of each

agent updated.

First of all, the underwriting agent initiates the dialogue with the

governing agent to confirm that Case 20 has been completed successfully in

underwriting, but according to the governance agent’s beliefs, the case was

supposed to fail its underwriting. This causes initiation of an argumentation

dialogue between agents. The underwriting agent receives the reasons for the

governance agent’s finding, i.e., that this case failed its underwriting due to

51

Figure 4.3. Communication sequence.

the facts of a bad medical history. However, the underwriting agent questions

the governing agent about the given fact, as it is not aware of the situation.

52

The governance agent again updates the underwriting agent as to why

this fact is true; that is, medicalbadhistory is true because there is a given fact

of past medical failure. In this situation, the underwriting agent

acknowledges the given fact and updates its belief. It checks with this given

belief and, according to the business rule, whether medicalbadhistory is true

or false. But the underwriting agent realizes still that medicalbadhistory is

false and informs the governance agent. This initiates the second

argumentation dialogue between the agents. At this stage, the underwriting

agent provides its beliefs. Once the governance agent receives the given

dmo_new_medicalrpt fact, it updates its knowledge base and requeries the

case. Finally, both agents reach an agreement, and governance approves the

underwriting.

In the above communication, agents share their knowledge to ensure

that they meet their design objective. Finally, both agents will have a

common knowledge base on Policy 20. On the basis of this knowledge, they

agree on the proceedings of this case.

Using the same strategy, the compliance agent also communicates

with the governance agent and completes the process. Once all agents give

an OK to the issuance agent, this agent issues the case, and the case gets

closed. Figures 4.4 and 4.5 illustrate the actual communications between the

underwriting and governance agents.

53

Discussion

It has been well recognized that business process systems are

important and crucial in all organizations. Workflow management is an

important part of today’s business process systems, but many of the current

systems experience problems of poor performance, single-point failure,

limited openness, and lack of adaptiveness, in addition to other problems.

Furthermore, in a growing organization, interorganizational rules and

regulations change very frequently, and interdepartmental communication

becomes more and more complex; in such situations, it is important to have

systems that can respond to the changes and adapt by changing the rules of

the system. With traditional workflow management systems, it is difficult to

implement such features.

Figure 4.4.Underwriting agent.

54

Figure 4.5.Governing agent.

The methodologies discussed in this dissertation address all the above

described issues with a new approach. Many of the preceding issues are the

result of a disparity between features required by the system or business and

system implementation. Hence the centralized management method, which is

not appropriate for distributed workflow management systems, must be

replaced by a flexible and distributed system, while the existing business

grounds and basis for developing WMSs should not be affected by the

change in system architecture. On the basis of this study, the objective of this

thesis is to tackle these unresolved issues by exploring new aspects of

55

multiagent technology enhanced with DeLP that gives a distributed design to

support workflow management. Therefore a novel approach and

corresponding process coordination and controlling methods are presented.

The advantages of this approach are summarized in the following

paragraphs.

Three different computing paradigms, namely, DeLP, WMSs, and

multiagent systems, are linked. With this approach, existing multiagent-

based workflow management frameworks can be constructed and used for

achieving the novel framework, while increasing the efficiency of the

systems.

A centralized workflow coordination server is eliminated. By

eliminating the central server, single-point failures, lag time between

processes, and so on are eliminated. It is more suitable in the situation where

the whole system fails because some individual part of the system faulure..

The chances of single-point failure is reduced in this system since the

computation and communication are better coordinated and balanced

between all the agents. This approach also supports concurrent processing so

that the lag time between the processes can be eliminated.

In this system, a loosely coupled computing paradigm is used for

representing agents, and hence openness of the system is also improved. This

method also provides flexibility in terms of workflow participants. In this

56

system, workflow agents are autonomous, and with the necessary

information, agents are able to participate in workflow systems more

actively, and the centralized workflow server does not require updates to the

agents’ behavior, as compared to the traditional workflow system.

This approach utilizes novel techniques involving DeLP for updating

agents’ knowledge and executing multiagent workflow processes. With this

approach, agents are adaptive to the changing knowledge and rules. Rules

can be changed dynamically, and on the basis of the new rules, the whole

system process will be adaptive to the new processes. This further makes the

systems more flexible and open and supports service-oriented workflow l.

Shifting from a traditional workflow framework to a multiagent-

based system framework includes some trade-offs that show possible

disadvantages. Some of the trade-offs of these methods are summarized in

the following paragraphs.

Management and monitoring of workflow execution may become

more difficult in a multiagent-based workflow management system.

Additional agents (e.g., administration agents) are required for managing the

administration of agents and for collecting real-time agent-related

information (such as current agent state). In the case that an agent for

administration has to be developed for this requirement, this will create new

performance issues and introduce a new problem to tackle. However, if there

57

is a common workflow agent available for management and monitoring, the

complexity of an individual agent can be reduced.

The capability to manage errors and exceptions is difficult within a

multiagent-based workflow management system. Compared to traditional

workflow management systems, in which, when erroneous situations arise,

they can be proactively resolved by centralized servers, more sophisticated

procedures, such as mechanisms to handle unexpected exceptions, are

required. These will require future enhancement to the system.

In the future, more complex business scenarios should be taken into

account, and more complex dynamic rules should be adapted; that is, agents

that are adaptive and aware of context and environmental changes would be

very useful for controlling, performing, and monitoring workflow

management tasks.

Conclusion

In this chapter, we have explored the skeleton model developed for

demonstrating the system capabilities. This is a basic working model and

requires extensive modification to explore the other concept of the workflow

model. However, the theoretical model has been implemented as explained

and gives the expected output.

58

Chapter 5: Conclusion and Future Work

Summary of This Thesis

The main objective of this project is to develop an innovative

distributed WMS based on DeLP using the multiagent architecture and

process coordination methodologies. The thesis starts with an introduction to

workflow concepts and basics workflow architectures. It also describes the

motivation and outline of this thesis. Chapter 2 reviews the background of

and analyzes some of the current issues in the area of traditional workflow

systems in detail. On the basis of the problems analysis, it reviews a new

approach to tackle the existing problems. Chapter 3 proposes a framework

using DeLP and explains theoretical concepts of the proposed framework.

Chapter 4 discusses the implementation aspect of the system particular to a

specific domain and analyzes case studies to understand the working

methodologies of the implemented system.

Thesis Contributions

The significance of this research is that it introduces a new direction

for tackling some of the unsolved problems in traditional workflow and also

provides new methodologies for improving the adaptability of the workflow

system. On the basis of existing work from the multiagent world, this

research integrates multiagent-based WMS process coordination

technologies for deploying workflow systems with emerging DeLP

59

developments, which can be considered as an architectural change. This new

architecture and its related technologies explore new aspects provided by

multiagent technology to better reflect the distributed nature of current

workflow. This dissertation contributes to the challenging research area of

both DeLP and the multiagent system that explores a new methodology in

workflow management system research. The main result of this research is

using a distributed, open, and multiagent framework to implement

distributed workflow management systems. Therefore the novel system

framework proposed in this dissertation presents an alternate and efficient

method from conventional systems for defining business rules and workflow

semantics. The major contributions of this thesis follow:

• the introduction of an argumentative approach for workflow

management coordination

• the identification of how the adaptability of the workflow system can

best be improved using a DeLP approach

• an analysis of a new approach to formalize workflow semantics and

runtime binding of workflow semantics

• the implementation and demonstration of the new framework and

analysis of how it contributes to flexibility and distributed workflow

coordination

60

Future Work

This project highlights a new direction for the future of WMS

coordination. In the future, further investigation into DeLP-based multiagent

distributed workflow should be carried out. Future research could include

further exploration into the DeLP framework and adopting agents’

intelligence into the whole workflow system. In the present system, the

skeleton of the agents implemented and explained are single-task-oriented

agents that can only perform required tasks following the instruction in the

process model/interaction protocols. Even though these agents are adaptive ,

this requires the use of more functionalities of intelligent agents to become

more adaptive and aware of the changes in context, which will in turn help in

performing workflow management and monitoring tasks. The skeleton

application explained here should be utilized for developing real-world

applications by extending the features of the system. Thus a more

sophisticated comparison of different workflow systems can be performed.

Current systems do not concern task allocation, runtime verification of the

workflow instance, and other existing features in the work coordination. To

arrive at a full-fledged workflow solution, more research should be carried

out on all of the above issues.

61

References

Antoniou, G., Billington, D., Governatori, G., & Maher, M. J. (2005,

October 12). Embedding defeasible logic into logic programming.

Bauer, T., & Dadam, P. (1999). Efficient distributed control of enterprise-

wide and cross-enterprise work. Paper presented at the Workshop

Informatik99: Enterprisewide and Cross-enterprise Workflow

Management: Concepts, Systems, Applications,

BPE14WS. (2003, May). BPE14WS v1.1 specification. Technical report.

Bradshaw, J. (1997). An introduction to software agents. In J. Bradshaw

(Ed.), Software agents (pp. 3–46). Cambridge, MA: MIT Press.

Buhler, P. A. (2004). A software architecture for distributed workflow:

Enactment with agents and Web services. Unpublished research

paper.

Chen, Q., Hsu, M., Dayal, U., & Griss, M. L. (2000). Multiagent

cooperation, dynamic workflow and XML for ecommerce automation.

Paper presented at the 4th International Conference on Autonomous

Agents, Barcelona, Spain.

Cingil, R., Tatbul, E. N., Koksal, P., Gokkoca, E., Altinel, M., & Dogac, A.

(1997, June). Design and implementation of a distributed workflow

enactment service. Paper presented at the 2nd IFCIS Conference on

Cooperative Information Systems, .

62

Cui, B., Odgers, Z., & Schroeder, M. (1998). An in-service agent monitoring

and analysis system. Paper presented at the 11th IEEE International

Conference on Tools With Artificial Intelligence, Chicago, IL.

Eder, J., & Panagos, E. (1999, February). Towards distributed workflow

process management. Paper presented at the Workshop on Cross-

Organisational Workflow Management and Coordination.

Foundation for Intelligent Physical Agents. (2001, August 10).

Communicative act library specification (Tech. Rep. XC00037H). .

Retrieved May 5th, 2007, from http://www.fipa.org

Garcia, A. J., Rotstein, N. D., & Simari, G. R. (2007). Dialectical

explanations in defeasible argumentation, LNAI, 4724, 295–307.

Garcia, A. J., & Simari, G. R. (2004). Defeasible logic programming: An

argumentative approach. Theory and Practice of Logic

Programming, 4, 95–138.

Jablonski, S., Neeb, J., Stein, K., Heinl, P., Horn, S., & Teschke, M. (1999,

February). A comprehensive approach to flexibility in workflow

management systems. Paper presented at the International Joint

Conference on Work Activities Coordination and Collaboration.

Jennings, N. R., Faratin, P., Norman, T. J., O’Brien, P., & Odgers, B. (2000).

Autonomous agents for business process management. Applied

Artificial Intelligence, 14, 145–189.

63

Joeris, G. (2000). Decentralized and flexible workflow enactment based on

task coordination agents. In 2nd int’l. bi-conference workshop on

agent-oriented information systems (pp. 41–62). Berlin: iCue.

Lerner, B. S., McCall, E. K., Osterweil, L. J., Wise, A., Cass, A. G., &

Sutton, S. M. (2000, September). Using little-jil to coordinate agents

in software engineering. Paper presented at the Automated Software

Engineering Conference.

Li, G. (2006). Enacting a decentralized workflow management system on a

multi-agent platform. Unpublished research paper.

Martinez, D. C., & Garcia, A. (2002). Dialoguing DeLP-based agents. 8th

Argentina computation congress , 2002.

Mohan, C. (1998). Workflow management in the internet age, advances in

databases and information systems. Paper presented at the 2nd East-

European Symposium on Advances in Databases and Information

Systems.

Muehlen, M. Z., & Rosemann, M. (2000). Workflow-based process

monitoring and controlling—Technical and organizational issues.

Paper presented at the 33rd Hawaii International Conference on

System Sciences, Maui.

64

Nissen, M. E. (2000). Supply chain process and agent design for e-

commerce. Paper presented at the 33rd Hawaii International

Conference on System Sciences..

OWL. (2001). OWL-S 1.0 release. Technical report.

Parsons, S., & McBurney, P. (2003). Argumentation-based communication

between agents. Communication in Multiagent Systems, 2650.

Parsons, S., McBurney, P., & Wooldridge, M. (2003). The mechanics of

some formal inter-agent dialogue. .

Rinderle, S., Reichert, M., & Dadam, P. (2003). Adept workflow

management system: Flexible support for enterprise-wide business

processes (tool presentation). International Conference on Business

Process Management, 2678, 371–379.

Schmidt, M. T. (1999). The evolution of workflow standards. IEEE

Concurrency, 44–52.

Shoham, Y. (1997). An overview of agent-oriented programming. In J.

Bradshaw (Ed.), Software agents (pp. 271–290). Cambridge, MA:

MIT Press.

Stormer, H. (2001). AWA—A flexible agent-workflow system. Paper

presented at the Workshop on Agent-Based Approaches to B2B at the

5th International Conference on Autonomous Agents, Montreal,

Canada.

65

Sycara, K. P. (1998). Multiagent systems. AI Magazine, 19, 79–92.

van der Aalst, W. M. P., Basten, T., Verbeek, H. M. W., Verkoulen, P. A. C.,

& Voorhoeve, M. (1999). Adaptive work-flow: An approach based

on inheritance. In M. Ibrahim and B. Drabble (Eds.), IJCAI’99

workshop on intelligent workflow and process management: The new

frontier for AI in business (pp. 36–45)

van der Aalst, W. M. P., Hofstede, A. H. M. T., Kiepuszewski, B., & Barros,

A. P. (2002). Work-flow patterns (technical report). Queensland

University of Technology, Brisbane, Australia. Retrieved Dec 23rd

2006, from http://tmitwww.tm.tue.nl/research/patterns/

Wang, M., & Wang, H. (2002). Intelligent agent supported flexible workflow

monitoring system. Paper presented at the Advanced Information

Systems Engineering 14th International Conference, Toronto,

Canada.

Weissenfels, J., Dittrich, A. K., Muth, P., Wodtke, D., & Weikum, G. (1998).

From centralised workflow specification to distributed workflow

execution. Intelligent Information Systems, 159–184.

Wooldridge, M. J. (1999). Intelligent agents. In G. Weiss (Ed.), Multiagent

systems (pp. 27–77). Cambridge, MA: MIT Press.

Wooldridge, M. (2001). An introduction to multiagent systems. Hoboken,

NJ: John Wiley.

66

Workflow Management Coalition. (1999). Terminology and glossary (Doc.

no. WFMC-TC-1011). Retrieved May ,2007, from

http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

Yang, Y. (2000). An architecture and the related mechanisms for webbased

global cooperative teamwork support. Journal of Computing and

Informatics, 13–19.

Yang, Y. (2002). Enabling cost-effective light-weight disconnected

workflow for web-based teamwork support. Journal of Applied

Systems Studies, 3.

