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Abstract  

This dissertation proposes a novel approach to a generative system that produces reflected 

ceiling layouts in commercial spaces. Indoor lighting is a key element in interior design, it 

plays an important rule on spaces and occupants. The current lighting design process mostly 

depends on human’s perception and individual experience, performed manually based on 2D 

CAD drawings, which can be time consuming, especially in proposing alternatives in the early 

phase of design.  

Hence, this paper suggests a novel design approach that generates reflected ceiling layouts. 

Presenting an algorithmic system scripted Dynamo in the form of a BIM plug-in. The system 

employs various design approaches through transferring selected design concepts into 

mathematical scripts in Dynamo software, resulting in a production of two-dimensional 

lighting layouts in Dynamo.  

The structure had followed a proposed sustainable framework for generative systems. The 

system has three key approaches: (a) splitting the surface into smaller surfaces, (b) forming 

boundaries around the surface, (c) creating two types of grids. And various sub-approaches 

developed based on those three key approaches: (a) creating lighting patterns, (b) boundary 

lighting, (c) drop down ceilings. Every sub-approach is divided into different categories as 

well. The default status of the generative system combines all the several approaches and sub-

approaches into a single system that produces more than 500 different reflected ceiling layouts 

in a matter of minutes. 

In this paper, the system was assessed and validated on three-phases, as Phase 01 tested it on 

Conceptual and Actual case-studies. Results showcased 147 different ceiling designs for 

conceptual case-studies, and 218 generated designs for the actual case-studies. Exhibiting 

visible results that validated the system’s flexibility, diversity, innovative designs, and 

providing various novel design tools in the generative system. Phase 02 validated the system’s 

comprehensiveness through connecting two geometrical results - ceiling (a) and ceiling (b) - in 

Dynamo to lighting families in Autodesk Revit. Lighting calculations achieved proper 

outcomes that were suitable to each selected design. Sustainability was targeted through 

benefit-cost analyses established by conducting a cross-sectional study on a sample of 72 

interior designers and architects and comparing the outcomes to the performed case-studies. 

Results had reduced 99% of the design cost. As time was decreased around 98%, with an 

increasement of 96% in the generated design quantity.  



 
 

صخلم  

 ةیلخادلا ةءاضلإا ربتعت ثیح ،بتاكملا يف فقسلأا ةءاضلإ ةفلتخم ةیسدنھ تامیمصتركتبت ةدیدج ةینقت ةلاسرلا هذھ ضرعتست

 ىلع دمتعی ةءاضلإل يلاحلا میمصتلا نإ .دارفلأاو تاحاسملل ةبسنلابً امھم اًرود بعلتو ،يلخادلا میمصتلا يف ایًساسأ ارًصنع

 هرودب اذھ و ، ةفلتخملا ةیبوساحلا جماربلاً امدختسمً ایودی میمصتلا مسرب موقی ثیح ،ةیلمعلا ھتربخ و ةیصخشلا ممصملا ةرظن

 .ىلولأا میمصتلا لحارم يف ًةصاخ تقولا نم ریثكلا قرغتسی

 ھتباتك تمت يمزراوخ ماظن راكتبا للاخ نم ،فقسلأا ةءاضإ میمصتل يدیلوت ماظن نع ةرابع ةركتبم ًةینقت ةلاسرلا هذھ مدقت

 و ةیضایر تلاداعم ىلإ ةفلتخملا میمصتلا بیلاسأ لیوحتب يدیلوتلا ماظنلا موقی و (Dynamo)ومنیاد جمانرب مادختساب

 .ةفلتخم و ةددعتم هءاضإ میماصت جاتنإ ىلإ يدؤت ةیقطنم صوصن

 .ةیدیلوتلا مظنلا نم ةیعونلا هذھل حرتقملا مادتسملا لمعلا راطإ قبطت ةیجھنم ةقیرط ىلع ماظنلا اذھل يساسلأا لكیھلا دمتعا دقو

 لوح دودح لیكشت )ب( ،رغصأ حطسأ ىلإ حطسلا میسقت )أ( :فقسلا لكش دیدحتل ةیسیئر قرط ثلاث ىلع ماظنلا يوتحی

 :ةیسیئرلا ةثلاثلا بیلاسلأا هذھ ىلع ءًانب ةفلتخم ةیعرف جھانم ریوطت متو ،ةءاضلإا تاكبش نم نیعون ءاشنإ )ج( ،حطسلا

 میسقت و .فقسلل ةیسدنھ لاكشأ میمصت )ج( فقسلل ةیدودحلا ةءاضلإا عضاوم دیدحت )ب( ، ةفلتخم ةیئاضإ لاكشأ میمصت )أ(

 نم رثكأ جاتنلإ ةددعتملا ةیعرفلا بیلاسلأاو قرطلا عیمج نیب يدیلوتلا ماظنلا عمجی  مث .ةفلتخم عرفأ ىلإ يعرف جھن لك

 .قئاقد نوضغ يف فقسلأا ةءاضلإ فلتخم میمصت ةئمسمخ

 ھقیبطت للاخ نم ماظنلا  ىلولأا ةلحرملا تربتخا ثیح ،لحارم ثلاث ىلع ھتحص نم ققحتلاو ماظنلا مییقت مت ةلاسرلا هذھ يف

 جذامنل هراكتبا مت امًیمصت 218 و ،ةیرظنلا جذامنلل افًلتخم امًیمصت 147 جئاتنلا ترھظأ .ةیعقاو ىرخأ و ةیرظن جذامن ىلع

  .ةعونتم ةدیدج میمصت تاودلأ هریفوتو ةركتبملا ھتامیمصتو ھعونتو ماظنلا ةنورم تتبثأ امك ،ةیعقاولا تلااحلا

 فقسلا -  (Dynamo)ومنیاد يف نیجتنم نیمیمصت رایتخا للاخ نم ماظنلا ةیلومش ةحص مییقتلا نم ةیناثلا ةلحرملا تتبثأ

 ةءاضلإا تاباسح ذیفنت و (Autodesk Revit) تفیر كسیدوتأ يف ةءاضلإا تاعومجم  عم امھطبر و - )ب( فقسلاو )أ(

  .میمصت لك يف ةدوجوملا حیباصملا ةیعون و ددعل ةمئلام ةءاضلإل ةیباسحلا جئاتنلا تناك و ، امھل

 ایًلخاد امًمصم 72 نم ةنیع ىلع نایبتسا قیبطت ربع كلذ و ، ةعفنملاو ةفلكتلا لیلحت ءارجإ  للاخ نم ةمادتسلاا فادھتسا مت 

 ةبسنب اضًیفخت جئاتنلا تققح ثیح ) ةیعقاولاو ةیرظنلا تاساردلا ( ةیناثلا ةلحرملا جئاتنب نایبتسلاا جئاتن ةنراقمو ایًرامعمو

 .٪96 ھبسنب ةجتنملا میمصتلا ةیمك ةدایز و ،٪98 وحنب تقولا ریفوت عم ،میمصتلا ةفلكت نم 99٪
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1 Chapter 1: Introduction 

1.1 Background  

This dissertation dwells between the fields of interior design, lighting design, sustainability, 

and computation. A method is proposed to incorporate generative systems in the primary 

phases for lighting layout design process. Designed from the relationships between primary 

interior design approaches and the mathematical tactics to transform design concepts into 

algorithmic generative approaches. Throughout this dissertation, various design criteria were 

investigated to construct the most suitable approaches that generates a variety of options, while 

considering flexibility and user-machine interaction as key design pillar. The most important 

contribution for this dissertation is the method it proposes, with various specifications and 

different experiments that were developed and tested to validate it. 

Genetic Algorithms acted as a search engine for this Generative System. Genetic algorithms 

were chosen as the engine because of their ability to perform continuous random and organized 

mathematical for-loops and while-loops to deliver high quantity of diverse designs in a 

relatively short time. It also enabled the generative system to become an adaptive and flexible 

system, since most of the mathematical scripts relied on inserted variables from the end-user.  

Although generative systems had distinguished itself from the other available heuristic 

methods as one of the great utilized search engines due to their great ability to produce many 

results instead of one. The human mind of the end-user is ultimately the decision maker. As in 

some cases, the optimal result is selected based on a set of variables that might not be 

considered in the design process of the algorithm. Such as cost, client’s feedback and so on. 

Hence, human’s interaction with the computational system is critical to create an optimal 

generative system. 
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The illumination of interior spaces ranges far beyond merely technical executions and 

mathematical calculations. As interior design spaces are largely impacted by the selected type 

of lighting, aesthetical design, and functionality of it. 

Lighting is one of the key elements that impacts space, can highlight certain design elements. 

For example, artificial lighting in commercial spaces can diverse based on the functionality. 

As offices would largely require bright settings and glare-free lighting. Whereas commercial 

stores would target lighting temperature and colors, highlighting the presented product. Whilst 

cinemas or small cozy cafés would use pleasingly soft, warm lighting, creating a full experience 

for occupants. Hence, lighting planning is dictated by the various requirements of functionality, 

and expectations of the end user (Skowranek 2017).  

Most of functional-lighting systems can be in forms of uniform lighting, general lighting with 

local lighting, or fully localized lighting systems (Karlen, Benya & Spangler 2017). These 

systems are mostly designed for offices, schools and industrial environments, where the key 

aim in those spaces is to provide good visual conditions.  

That is why this dissertation had tested the created generative design system in commercial 

spaces. Due to the fact that a large amount of current constructed office towers employs 

functional-lighting systems and neglects the aesthetic side of those systems. Aiming for 

functionality only, since it is more efficient and less time consuming to apply direct lighting 

using simple approaches, than to place the time and effort on providing new designs for 

uniform functional-lighting systems. In addition, highlights generative design as one form of 

the recent utilized technologies in lighting design and showcasing a variety of previous 

researches that employed it mostly in lighting control systems. while indicating the gap in the 

current literature that merely addressed new approaches in generative design in creating 

functional systems with the aesthetic aspect in consideration.  
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1.2 Problem statement  

One of the key problems in most applications of mathematical lighting models and their 

implementations to lighting design layouts is the limitation to space settings. Neglecting the 

design matter and functionality to individual inputs.  Lighting generative applications roughly 

suggest uniform illumination for a predefined area, that adopts a typical categorical approach 

to light planning, overlooking the design and the aesthetic aspect of it and limiting a holistic 

solution that would address the design requirements and functionality at the same time. 

The generative design system created in this dissertation embraces an approach that links 

functionality to a number of flexible design approaches that can be practically implemented to 

achieve a targeted lighting design aim, contrarily to applications that only consider lighting 

uniformity, or optimizing lighting intensity or lighting systems and don’t consider the vital 

relationship between interior design and the aesthetical aspect of interior lighting.  

1.3 Goals and Objectives 

The main objectives for this dissertation can be summarized as the following: 

1- To propose a computational generative design in producing various solutions for 

reflected ceiling layouts designs. 

2- To exhibit a methodological framework that presents an outline for a comprehensive, 

interactive generative system that produces relatively high quantities of lighting layouts 

for interior ceilings. performing a full design cycle. Starting from generating various 

and diverse reflected ceiling designs, all the way to producing numerical data for 

lighting counts and artificial lighting calculations, all within the same software.  

3- Demonstrate different aspects in sustainability in generative systems, such as saving 

time, cutting cost, increasing diversity, providing flexibility, delivering innovative 

designs, creating various design tools and much more. 
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4- Targeting sustainability through cost reduction and benefits increasement, through 

statistically proving the usage of the software to produce results is more beneficial 

compared to a designer.  

5- To integrates generative lighting design with a BIM module. 

The aim of the discussed chapters is to create a generative system that can produce solutions 

that develops a certain aspect of interior design, namely in indoor artificial lighting design. It 

obtains six chapters, contents of each are discussed briefly in the following paragraphs.   

Chapter 1: Introduction; provides an introductory note that highlights the selection of 

generative design as the research engine for artificial indoor lighting and commercial spaces as 

the implementation space for the system. The chapter provides the problem statement along 

with the key goals and objectives of this paper.  

Chapter 2: literature review; discusses the published literature papers regarding algorithmic 

design. Highlighting its definition, its limitations, and advantages. It provides a review of the 

most influential work addressing the evolution of algorithmic systems throughout the years. 

And exhibits various approaches, previous applications, and optimization systems that were 

attained to achieve different means of sustainability for commercial artificial lighting through 

the usage of algorithmic design. Most importantly, this chapter identifies the literature gap that 

this dissertation aims to fulfill by creating the generative design system. 

Chapter 3: Methodology - The generative design outline; this chapter outlines the process of 

developing the generative system, it briefly discusses the structure of the system, identifying 

the design concept behind each design approach that created the generative system, along with 

highlighting the taken steps to arrange the algorithmic scripts, along with identifying the 

approaches taken to exhibit the generated results to be easier to use, alter and view.  
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Chapter 4: Development of the generative system; talks about the components of the 

algorithmic system in details, it explains the mathematical approaches and showcases the 

algorithmic scripts that create different design approaches and sub-approaches, it highlights the 

structure of the entire system and discusses in details the development of every approach, along 

with the shortfalls, the limitations, and the created solutions in every script. It also exhibits the 

created methods that allowed the overall results for all the design approaches to be produced 

at once and showcases the approach that created the proper flexibility to turn on and off 

algorithmic scripts.  

Chapter 5: Results and discussion - Testing the generative system; tests the scripted generative 

design system using different approaches that are identified in three phases: Phase 01, Phase 

02, and Phase 03. Ensuring that the generative algorithm presents feasible outputs in terms of 

the diversity in the mechanisms for selection, limitation and mutation of the outputs and 

sustainability implementation.  

Chapter 6: Conclusions and further work; summarizes the work presented in this dissertation, 

a comprehensive briefing for the generative system its structure, providing an overview for the 

different phases selected to test the system along with the presented results. Along with the 

contribution of the research in this field. Highlighting the faced limitations while scripting and 

testing the system and most importantly, it proposes further work that is founded based on this 

research.  
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2 Chapter 2: Literature review 

2.1 Introduction  

Various chapters in this dissertation includes brief literature review sections. Chapter 4, which 

discusses in detail the development of the generative design mentions previous studies that 

implemented the same proposed software in various fields. Chapter 5, that exhibits and 

evaluates the generated results through testing the generative design, employs sustainability 

within the system itself through literature.  

In this chapter, a review of the published literature papers regarding algorithmic design is 

conducted, providing a comprehensive definition of generative design, along with an 

explanation of its limitations and advantages.  

Followed by a review of the most influential work that highlights the evolution of algorithmic 

systems throughout the years. The chapter also addresses various approaches that were attained 

to achieve different means of sustainability for commercial artificial lighting through the usage 

of algorithmic design. Earlier applications found in literature that aimed to increase energy 

efficiency in artificial indoor lighting were discussed, whether through optimizing light 

uniformity or lighting control systems.  

In addition, the optimization of algorithmic systems found in generative designs that’s located 

in commercial spaces was discussed as most cases were conducted through optimizing space 

planning. Commercial ceiling designs that were formed through algorithmic systems were 

addressed, along with ceiling designs case-studies that were published in literature.  

The final section in this chapter highlights the different studies that were reviewed and 

identifies the literature gap that this dissertation aims to fulfill by creating the generative design.  
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2.2 Literature review  

2.2.1 Generative design overview 

Over the past years, the digital revolution and computational tools had allowed designers from 

various fields to be able to use groundbreaking form-finding techniques under various 

terminologies such as: Generative Design, Algorithmic Design, and Parametric Design.  

Various descriptions are published throughout the literature defining those terminologies based 

on different architectural theorist. It seemed that a single definition for each terminology cannot 

be pinned, due to the shared principles that are found in all the proposed definitions.  

(Caetano, Santos & Leitão 2020) were able to analyze the existing literature related to 

computational design to clarify the most used terms. They have identified Generative Design 

terminology as the utilization of an algorithm to generate a design. Which falls under the 

terminology of Algorithmic Design, which enables a correlated relationship between an 

algorithm and a generated design. While outlining Parametric Design as a design that relies on 

a set of parameters to define different sets of designs.  

A comprehensive terminology can be identified for Generative Design as a computational 

design tool that generates several designs and forms built from logical rules or algorithms, 

originating from scripting programs, such as: Processing, Rhinoceros and Grasshopper 

(Agkathidis 2015). It is a tool that backs up a generated design by an entire system, exposing 

designers to certain parameters that creates multiple variations in the produced design (Nagy 

et al. 2017).  

Algorithms can be presented differently according to the employed algorithmic medium.  They 

can be created using different digital tools such as: codes, graphics nodes or verbal scripts. 

Algorithms are key components in computers, since any program can be identified as an 

algorithmic system that uses a set of instructions written in a certain language such as: 



10 
 

numerical inputs, alphabets data or geometric elements to command the computer to perform 

a certain task in order to solve a problem (Fernandes 2013). 

(El-khaldi 2007) states that algorithmic approaches are designed through a rationalization 

process, leading the designers to mathematically convey their design concepts into tasks and 

sequences. They require practical, clear instructions that would usually be translated into 

mathematical scripts. These mathematical scripts can be defined as the engine that builds up 

the systems and generates outputs. Different forms of outputs are produced based on the 

inserted variables, which can be shapes, locations, numbers, sizes, etc. (Fernandes 2013).  

While (DİNO 2012) Defines it as systems that targets formation over form, using logic into 

designing and modeling, instead of the traditional approach which develops geometrical forms. 

It is an algorithmic system that offers a large area of adaptability in changing the design criteria, 

resulting in an instant adaptation in the final solution, making it ideal for complex designs 

(DİNO 2012; Henriques et al. 2019; Oxman 2017a). Algorithmic designs disregard the 

predictable human’s experience and creativity, in favor of delivering hundreds, if not thousands 

of complex, practical, and implementable solutions of designs. Furthermore, they are efficient 

in fabricating overly complex projects, as it would be difficult and time-consuming if they were 

produced manually without the help of computational designs (Caetano & Leitão 2018).  

Exploring computational abilities do not only provide unthinkable solutions in a short period 

of time but expands creativity as well.  Since the common concept of the human’s creativity 

aims to improve the product quality more than developing various possibilities during the 

creation process of solutions (Henriques et al. 2019). As designers would usually utilize their 

skills and experiences to create a single solution, leaving the optimization process to the end 

(Henriques et al. 2019; Nagy et al. 2017). Relying on the human’s intuition as a source of 
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creativity, while algorithmic systems relies on the logic to generate the computer’s creativity 

(Bukhari 2011).  

Furthermore, these computational design approaches had led to developing the normal means 

of thinking and modeled a new body of thoughts that is now called Design Parametric 

Thinking, producing its own line of terminologies under it (Oxman 2017a). And impacting the 

creation of forms and the creativity approach of parametric design thinking for designers 

(Oxman 2017b).  

However, (DİNO 2012; Gunagama 2018) argue that algorithmic designs are systems that are 

built solely on variables and parameters, which have a correlated relationship to limiting the 

generated designs based on the data input and the selected boundaries. In addition, algorithmic 

systems would produce limiting results if verbal ideas were not translated into mathematical 

ones. (Terzidis 2006) affirms the authors inputs, stating that the relationship between numbers 

and concepts are too deterministic. Adding that many designers are simply not interested in the 

mathematic of the design composition as much as the composition itself. 

While (Kolarevic 2003; Terzidis 2006) addresses the shortfall of algorithmic design systems 

from a different perspective, stating that the creative process of the generated design is 

developed in the human mind. Hence, computers are just methods to produce the design. And 

because of that, algorithmic results will go through evaluation metrics that refers to the human 

mind. As designers select the results not the algorithm.  

The use of Generative Design was adopted by architects widely in literature (Agkathidis 2015). 

As they have used generative algorithmic systems to create various parametric designs. It has 

been noticed in the preliminary design stages (Touloupaki & Theodosiou 2017). Which is 

considered one of the strengths of algorithmic design systems. As they’re mostly utilized in the 

primary stages that focus on the “process” over the “end-product” (DİNO 2012). 
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(Bukhari 2011; Terzidis 2006) state that Generative Design examples such as; genetic 

algorithms, evolutionary designs, stochastic search, cellular automata fall under the category 

of algorithmic designs. With (Barreto 2016; Caetano & Leitão 2018; Feist et al. 2016) affirming 

some algorithmic-tools such as Dynamo, Generative-Components, Rosetta-BIM, Rhino-BIM, 

Hummingbird, and Lyrebird, that transformed the static norms of the orthodox process in 

creating complex geometry into dynamic digital algorithmic systems (Feist et al. 2016; 

Kolarevic 2003). For example, (Gunagama 2018) had utilized Grasshopper -a digital 

algorithmic programming software- to model one story building on sloped land. While (Lee & 

Kim 2016) explored the spatial diversity of the traditional Korean house Han-ok, using an 

algorithmic system to modernize the house through using Cellular Automata (CA) as a 

generative design tool.  

Whereas (Caetano & Leitão 2018) had combined the algorithmic design with Building 

Information Modeling (BIM) through integrating algorithmic design in the design process of a 

simple design studio. While (Khan & Awan 2018) proposed a generative design technique 

under the name of Space-Filling-Generative Design Technique that generates all the possible 

shape variations for an inserted computer-aided design model.  

Furthermore, (Tsiamis, Oliva & Calvano 2017) had replicated the same configurations from 

the geometric rules that generate folded origami tessellations, to create a free-form folded 

tessellation structural system that supports surfaces on an architectural scale. While (Barreto 

2016; Caetano & Leitão 2016; Feist et al. 2016) had employed and evaluated RosettaBIM tool 

in supporting the development of generative design in Building Information Modeling. 
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2.2.2 The evolution of algorithmic design in architecture 

(Caetano, Santos & Leitão 2020) had proposed in Figure 1 a graph which proposes an 

approximate time-line for algorithmic design that appeared in scientific sources between 1978 

until 2018. The authors had only sampled 65 publications regarding algorithmic design, since 

generative design obtains a wider perspective that leads to an overlap in literature with 

algorithmic design and paramedic design, leading to some inconsistencies in the definitions 

and the categories.  

 

Figure 1: Number of times generative design showed in literature from 1978 up to 2018(Caetano, Santos & Leitão 2020) 

(Terzidis 2006) highlights in his book the necessity of rationality in the design process. Which 

started to appear in the 1960s, due to the development of computers as logical devices.  

Different researches in literature (Caetano, Santos & Leitão 2020; Fernandes 2013; Terzidis 

2006) had pointed out that (Stiny & Mitchell 1978) paper in bilateral symmetries can be 

considered the entail major step in algorithmic architecture design. Which described a 

parametric shape grammar that generates the ground plans of Palladio's villas. Authors 

highlighted the papers rational description of the process, along with its clear instructions had 

led to the production of algorithms.  
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More than a decade later, (Soddu 1989) published in his book a morphological simulation with 

a research software that uses algorithms to write specific rules that define the dynamic and the 

chaotic systems to generate 3d town models, results had showed differences in the generated 

designs but similarities in the sense of the environmental form of the generated town.  

Figure 2 is showcasing the first case study that was tested in 1988, which was a medieval town 

in Italy. As the logical structure of this virtual city controlled its formalization, and its identity 

was inspired by Simone Martine and Giotto paintings (Soddu 1988). 

 
Figure 2: a sequence of generated 3D models by the first generative project of Medieval Towns in Italy (Soddu 1989) 

Two years later, (Soddu 1991) published two software that work as simulation tools for 

learning approaches to a dynamic evolution of town shapes, architecture, and industrial 

designs. In 1993, the same author created a new search software employing the idea of design 

evolution, stating it as a sequence of logical procedures that increases performance and 

complexity.  The proposed software generates the simulation of the increased complexity of an 

idea. The idea can target three parameters: architecture, environment and industrial designs. As 

every logical approach to design builds a possible path to simulate a dynamic evolution that 

address of one of those three parameters (Soddu 1993).  
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At the beginning of the 21st century, literature had started to focus more on generative design, 

including a literature shift into algorithmic design (Caetano, Santos & Leitão 2020).  

Whereas, in 2001 (Caldas & Rocha 2001) had published a new generative system that uses 

genetic algorithm to investigate the integration of architectural design targets and its impact on 

the generative design system. Allowing the generated solutions to be within certain design 

intentions. It was tested on Alvaro Siza’s School of Architecture at Oporto, Portugal, as the 

system worked on three-dimensional narrative of the building which included the geometry, 

orientation, spatial characteristics, materials and so on. Proving its flexibility as a system that 

includes different constrains which allows the designer to manipulate certain design targets.  

(Chien & Flemming 2002) exhibited in the next year a comprehensive approach that helped 

navigating and filtering the generated solutions in generative design systems that delt with 

human spatial design. While (Frazer et al. 2002) had focused on proposing a new initial design 

implementation for a building envelope system utilizing generative approaches and the use of 

algorithms. 

One of the key researches that were highly cited in different papers throughout literature was 

(Kolarevic 2003). The author investigated the architectural applications that utilized 

computational design which included algorithmic design and fabrication technologies.  

Providing a comprehensive understanding of the relationship between architecture and its 

suitable methods of production. Similarly, (McCormack, Dorin & Innocent 2004) was a highly 

influential research, reviewing a variety of processes that can be investigated by designers 

including generative grammars. Providing different examples of applications to creativity and 

design. A year later, (Shea, Aish & Gourtovaia 2005) had described the initial combination of 

a generative design tool through the use of XML models. Exhibiting a discussion of the 

interoperated relationship between associative modeling and generative systems.  
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Fasting forward to 2010, algorithmic design had become numerously addressed in literature. 

(Kotnik 2010) offered a theoretical framework that provides a comprehensive approach that 

explains the logical correlation and concepts that is translated to algorithms and mathematical 

scripts in digital design tools, to teach digital design in architecture.  

As exhibited earlier in  Figure 1; based on (Caetano, Santos & Leitão 2020) evaluation, the 

year of 2011 had witnessed a noticeable incensement in algorithmic design researches in the 

literature. (Krish 2011) proposed a Computer Aided Design (CAD) design generative 

exploration system. Addressing complex multi-criteria design issues. It is constructed based on 

a genotype structure of the design with parametric CAD system which verifies its parameters 

randomly through utilizing identified limits in order to generate various designs. Krish’s design 

philosophy behind this generative approach was later utilized by various papers in the 

literature.  

While 2012 had various important publications about algorithmic design in architecture, as 

(Dunn 2012) book: Digital Fabrication in Design had addressed the importance of 

computational designs that utilized parametric design and algorithmic design to transform 

concepts into forms, with the focus on the formation process over the final product. 

Highlighting the enormous capacity provided by the current computational modeling methods, 

that impacted the traditional creative way of thinking for designers, enabling them to create 

unthinkable designs that would’ve been hard to achieve through the traditional methods. 

Additionally, (Singh & Gu 2012) provided one of the key steps towards supporting multiple 

generative design techniques through creating a framework for an integrated system. The paper 

reviewed five different generative design approaches: Cellular automata (CA), Genetic 

algorithms (GA), Shape grammars (SG), L-systems (LS) and Swarm intelligence (SI) and 

compared between their characteristics and design systems. Painting a framework that aims to 

develop an integrated system that provides high levels of flexibility.  
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In the year of 2013; (Jabi 2013) published a book called: Parametric Design for Architecture, 

where Part I in the book had discussed algorithmic thinking in detail. Identifying the overall 

structure, logic behind it, the functions that utilizes it and much more. The book explained how 

algorithmic thinking key structure relies on logic, which allows the computer to generate any 

desired solution. It provided simple, easy to understand framework on how to transfer logic 

into a programming language digitally. While (Magna et al. 2013) work was highly referenced 

in literature. The paper exhibited a project as a case-study to identify the methodological steps 

that led into generating a design utilizing biomimetic principles in developing structural and 

architectural matters, Figure 3 shows the different design steps that were developed in an FE 

model, simulating cell elements. 

 
Figure 3: Different steps of geometric variations (Magna et al. 2013) 

In the following year; (Svoboda et al. 2014) revealed a new tool for complex architectural 

objects under the name of algorithmic forms. It utilized two open sources written in 

Grasshopper algorithm editor and C++, which are linked to scripting-based architectural 

modeling software Rhinoceros, IntelliCAD. Generating various structural characteristics that 

matches the targeted design objectives. The paper demonstrated three case studies that 

showcased the capacity of the algorithmic system. Algorithmic design is developing 

throughout the years, generating novel approaches for various design solutions. Published 

papers in literature from 2015 up to 2020 are addressed further throughout this chapter.  
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2.2.3 Algorithmic design sustainability approaches for commercial artificial lighting  

Algorithmic Design had utilized artificial lighting as a mean of approaching sustainability in 

the literature, optimizing various solutions that targets energy efficiency in different fields. 

25% to 35% of the total energy consumption in architecture is consumed by artificial lighting 

(Madias, Kontaxis & Topalis 2016). Consequently, several research papers in literature 

targeted artificial lighting calculations in commercial sectors to investigate the generated 

energy efficiency. Where a 23% reduction of energy savings was achieved through utilizing 

different lighting systems and control strategies tested on some open-plan office layouts (Xu 

et al. 2017), showcasing the importance of simulation analyses studies that investigate artificial 

lighting, leading to 77% of energy savings in some cases such as (Larsen et al. 2017).  

Different means of energy savings regarding office building lighting were proposed in the 

literature that took advantage of the promising potential of generative design; starting from 

designing the optimal space layout that allows merging between day light and artificial lighting, 

impacting the office energy performance (Du et al. 2019), finding the most suitable 

configurations for lighting control systems (Wagiman & Abdullah 2018), or identifying the 

reflecting materials to redirect interior lighting in office spaces (Wu 2018). Whilst harvesting 

daylighting to illuminate indoor areas through applying light guiding systems (Chen, Oh & 

Burhan 2020), all the way to examining a number of lighting technologies merged with daylight 

harvesting systems (Doulos et al. 2019).  

However, occupants play an important rule that has an active impact of energy efficiency 

(Gandhi & Brager 2016). That’s why (Lowry 2016) argues that the published studies for energy 

efficiency concerning lighting optimization systems that are provided in energy software might 

fall in the trap of overstating saving potentials in automatic control. Since manual control is 

not highlighted enough. It is more realistic and depends on the occupants’ behaviors, that 

usually has a critical impact on the lighting use.  
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2.2.3.1 Algorithmic design in optimizing light uniformity  

(Mendes et al. 2017) had identified that decreasing the energy usage whilst keeping an adequate 

lighting levels can be an optimization problem in offices. Hence, genetic algorithms have been 

exploited in artificial lighting (Madias, Kontaxis & Topalis 2016). Aiming to achieve 

uniformity in indoor lighting spaces while still achieving sustainability through energy 

efficiency. (Wagiman et al. 2020) had produced results that concurred with (Mendes et al. 

2017) statement, identifying the Optimization-Based Control Technique as the most used 

approach in commercial lightings upon reviewing the state of the art interior lighting system 

control techniques in commercial buildings.  

(Baloch et al. 2018) work presented state of art systematic review of indoor lighting simulations 

related to the building research in the literature. Where the levels of various methods that 

targeted indoor lighting simulations are showing in Figure 4 , with genetic algorithms (GA) 

attaining the highest levels.  

 
Figure 4: Optimization techniques found in the literature (Baloch et al. 2018) 
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Algorithmic optimization lighting approaches were widely found throughout literature, where 

(Wang & Tan 2013) had reduced energy consumption through optimizing the illumination 

levels, creating a lighting energy optimization algorithm through proposing a neural network 

that defines the complicated relationship between the dimming levels and the measured 

illuminance of the task area. While (Liu et al. 2017) proposed a gene density genetic algorithm 

(GDGA) to obtain an optimal light layout to attain uniform power, that serves the needs of both 

Light Emitting Diode (LED) lamp coordinates with the optical signal power’s uniformity and 

population's diversity on the communication plane. Furthermore, the same authors had 

improved the genetic algorithmic system in order to improve the uniformity coverage through 

minimizing the fluctuation power and enhance the fairness without changing LED layout or 

position (Liu et al. 2019).  

(Madias, Kontaxis & Topalis 2016) had created multi-objective genetic algorithmic system for 

indoor lighting; through formulating two mathematical functions that decrease energy 

consumption while increasing uniformity and sustaining the illuminance levels. (Mendes et al. 

2017) on the other hand had proposed a bio-inspired metaheuristic optimization algorithmic 

system that addresses the problems of reducing required energies to provide lighting levels that 

matches a set of targets. The proposed algorithmic system was put to the test using the standard 

benchmark functions, followed by real time lighting issues.  

While (Dupláková et al. 2019) created 15 sequences of rationalization algorithms for 

redesigning lighting in manufacturing enterprises. Where direct measurements were carried out 

in a selected machine engineering company to input the acquired data to the rationalization 

algorithms. Verifying the beneficial levels of the algorithmic system through Dialux Evo 6.1. 
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2.2.3.2 Algorithmic design in optimizing indoor lighting control systems 

Plenty of optimization methods have been applied in indoor lighting control systems using 

algorithmic techniques in commercial spaces. As (Soori & Vishwas 2013) had proposed a 

lighting control algorithmic system that allows a control strategy for office lighting systems 

with the target of achieving energy efficiency. The authors had examined a typical office 

building in Dubai, United Arab Emirates. And designed the algorithm taken into consideration 

the following logical parameters; day lighting, integrated lighting control systems and space 

cooling systems, along with investigating the level of comfort for occupants in order to address 

thermal conditions and lighting, with other elements that contribute to the occupants’ 

productivity levels.   

Furthermore, (Gunay et al. 2017) was able to formulate an algorithmic system that learns the 

illuminance preferences of the occupants, and employs that data to control five different light 

control systems and the closing-opening behaviors of the blinds in the office. Resulting in a 

substantial reduction in lighting loads while sustaining the occupant’s visual comfort.  Another 

novel adaptive lighting control system is proposed by (Seyedolhosseini et al. 2020); as the 

system proposed a smart lighting control approach for both controllable (dimmable) and 

uncontrollable light sources. The system was able able to adapt the different lighting conditions 

on different areas when tested on an indoor environment, responding to irregular variations in 

daylight and reducing energy consumption.  

Additionally, (Plebe & Pavone 2017) had created a new system based on multi-objective 

optimization criteria for interior lighting. The selected criteria targeted illuminance levels, 

uniformity and electrical saving energy. The paper had utilized 3D graphic software Blender 

as a direct engine to provide a three-dimensional interior space, and a simulation platform for 

the lighting calculations. The system developed an algorithm that generate tailored solutions 
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for lighting design optimization, utilizing potential illumination configurations, lamp 

specifications, lamp position and orientation, intensity, color temperature and much more.  

A lot of papers had focused on optimizing lighting systems through linking independent 

versions to current software for modeling and lighting calculations in offices (Dupláková et al. 

2019). (Şahin, Oğuz & Büyüktümtürk 2016) had created an artificial neural network (ANN) 

model that estimates the illuminance distribution in interior spaces. The model efficiency had 

been proven through a results comparison with long-duration experimental measurements, 

contributing to energy-saving interior lighting development. Similarly, (Ilbeigi, Ghomeishi & 

Dehghanbanadaki 2020) had utilized ANN-based energy consumption prediction model in an 

office building. Optimizing energy through a genetic algorithm that takes under consideration 

essential variables, revealing that artificial lighting is one of the key factors that directly 

impacts the total energy demand, due to its operation time.  

Furthermore, (Tagueu & Ndzana 2019) compared using Dialux Evo simulation between the 

different approaches in lighting optimizing systems; employing dual Fluo/LED luminaires, a 

neural network model that exemplified the relationship between dimming levels and 

illumination, along with a similar model that was built through a mathematical/algorithmic 

approach. The evaluated results revealed the advantage of the mathematical/algorithmic model 

over the neural network model, however both had optimized lighting in a selected building. 

(Natephra et al. 2017) on the other hand had developed an approach that utilizes a virtual reality 

software to simulate daylighting and artificial lights through connecting it to a Dynamo script 

-an algorithmic visual programming software- allowing users to compare design scenarios 

while obtaining energy consumption feedback. Moreover, (Bangali 2018) had calculated 

discomfort glare and the unified glare ratings in an office conference room through utilizing a 

Python developed program that calculates the Unified Glare Rating through a Discomfort Glare 

Index equation, and comparing the results to acquired data from Dialux Evo software.    
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2.2.4 Algorithmic design for generating designs in commercial spaces 

Research proposals that targeted office interiors from a generative design aspect proposed 

different approaches to optimize various solutions. Most papers in literature targeted spatial 

layouts; as (Nagy et al. 2017) developed a computational design model that generates a variety 

of office layouts, built on identifying all the desired interactions through some metric inputs. 

Figure 5 shows the selected design metrics that produced the generated values which are used 

in the generative process. The generative process is identified as a search algorithm that 

evaluates the designs. The design metrics can be summarized into 6 metrics: the adjacency 

preference, work style preference, buzz, productivity, daylight, and views to outside. 

 
Figure 5:Design metrics in the algorithmic system: (from left to right: adjacency preference, work style preference, buzz, 

productivity, daylight and views to outside). (Nagy et al. 2017) 

Relatedly, Autodesk had included generative design feature in Revit 2021. Where one of the 

features is workspace layout; creating various desk configurations in a room (Smith et al. 

2020). Allowing end users to input the required parameters in order to produce the most 

suitable desired solution.  

(Anderson et al. 2018) had presented various practical algorithms for space planning in 

commercial offices. As the algorithmic system was tested on 13,000 offices designed by 

architects. Performing equally as good as an architect in 77% of the time and producing 
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promising results that utilized space standards. In addition, (Phelan, Davis & Anderson 2017) 

proposed a new approach to utilize meeting rooms spaces through an artificial neural network 

that outperformed human designers. Affirming that recognizing patterns in built architecture 

using machine learning algorithms can help designers to establish better design decisions.  

Furthermore, (Abdulbaki, Abdulbaqi & Mohialden 2018) had also proposed a new method for 

office space planning based on Monte Caro technique that is correlated to a Density-Based 

firefly algorithm. Generating the optimal space planning and assigning furniture in the office 

through utilizing various parameters.  Figure 6 shows simulation results in an office working 

area that is 7x10 m2 using the created novel approach for office space planning. Similarly, 

(Tachikawa & Osana 2012) had proposed an algorithmic system that generates two key outputs 

for offices, room arrangement plans, and layout plans for workspace. The system structure is 

based on the combination of genetic algorithms, where an adaptive algorithm, and a genetic 

algorithm with a search area adaptation are utilized to produce a variety of layout plans in a 

small amount of time. 

 
Figure 6:Simulation results in an office using the created algorithm (Abdulbaki, Abdulbaqi & Mohialden 2018) 

While, (Coelho, Amaral & Guimarães 2018) had optimized the quantity of light sources in 

interiors using a genetic algorithm, achieving an appropriate light intensity while minimizing 

the quantity of light sources.  
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2.2.5 Algorithmic design utilized in commercial ceiling designs  

As for reflected ceilings designs, generative design was mostly utilized through exploring 

shape variations, mostly for the purpose of optimizing the space’s acoustics. (Rumpf et al. 

2018) had customized an acoustical structure that combined various digital design methods in 

an office space. Employing various modeling techniques that formulated the inserted data to 

geometry, with a work scope that included structure, light, sound and other parameters of 

energy and matter.  

Achieving desired acoustical performance through using generative designs was mostly found 

employed in large spaces in design. (Badino, Shtrepi & Astolfi 2020) explored the existing 

architectural applications of Performance-Based Designs, where generative design covers an 

essential part in creating the acoustical three-dimensional geometry. The paper had given 

various case-studies of ceiling designs that were created by international architectural 

companies, utilizing algorithmic design in order to create unique shapes that covered various 

performance parameters. Figure 7 is showing three selected cases that highlighted the usage of 

algorithmic design in creating various shape variations.  

 
Figure 7: From left to right: University of Iowa Concert Hall, Conga Room dance club, Resonant Chamber (Badino, Shtrepi 

& Astolfi 2020) 
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The first example is the University of Iowa Concert Hall, where the suspended structure is 

created from folded aluminum composite modules. The design was generated through a 

collaborative parametric model developed in Grasshopper. Which later was transferred into 

Sketch-up and Autodesk Revit models as well. The structure had proposed solutions for five 

different categories: acoustics, stage lighting, house lighting, audio-visual and fire protection 

while still fabricating a unique, one of a kind ceiling design. The second ceiling example shown 

in Figure 7 is the ceiling for Conga Room dance club in Los Angeles. Made of CNC-milled 

plywood panels that target almost the same categories as the first example. The design was 

generated utilizing CATIA software, Rhinoceros which utilizes grasshopper and Ecotect. 

While the third example seen in Figure 7 is Resonant Chamber; which is a responsive acoustic 

envelope system that’s designed based on origami principles. Created from a combination of 

different plywood panels, and generated through Grasshopper, Kangaroo software to create the 

deformation of the ceiling, and ray-tracing tool for acoustics (Badino, Shtrepi & Astolfi 2020). 

The examples given highlights the importance of algorithmic design in creating three-

dimensional ceiling designs that solves various problems while still creating unique forms.   

However, little literature was found about creating two-dimensional ceiling layouts that utilized 

algorithmic design to address generating lighting layout designs. 

(Kim et al. 2016) had proposed an automated lighting layout system for indoor space using 

properties included in Building Information Modeling (BIM) model to generate lightings 

layouts. The created system employee information taken from the BIM model to generate 

solutions. It arranges lighting fixtures automatically in space based on the calculation of 

illuminance and the quantity of lights that are recommended based on the Korea Industrial 

Standards. The system was tested on a literature room as seen in Figure 8, it produced two 

alternatives; scenario A was chosen as a suitable alternative, since scenario B produced a 

luminous flux that was too low to meet the Korea Industrial standards. 
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Figure 8: BIM model of college of human ecology building and the lecture room along with the results (Kim et al. 2016) 

A lot of lighting design software provide certain tools to help designers distribute lighting 

throughout the space, as DIALux software for example presents an interactive approach for 

distributing light luminaries, providing different methods that arrange uniform lighting on the 

constructed model in the software. As the end user is able to draw a rectangular, polygon or a 

line arrangement for the lights. Selecting the appropriate space within each light. However, 

based on (Shikder, Price & Mourshed 2009) evaluation for different four artificial lighting 

simulation tools, DIALux displayed shortage in building complex geometric description. 

Apart from (Kim et al. 2016) paper, there wasn’t any papers that addressed generating two-

dimensional ceiling designs using any form of generative design, nor did the authors discussed 

any formal papers found in that field. Most papers had focused on optimizing lighting 

calculations, utilized algorithmic design in lighting uniformity and in control systems. In regard 

to office designs, most novel algorithmic systems were built for space utilization, while 

algorithmic systems addressing ceiling designs targeted creating three-dimensional shapes.  
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2.3 Identifying the literature gap  

Reviewing the current literature, it is noticeable that a lot of different approaches employed 

generative design in artificial lighting in commercial spaces. Utilizing different lighting 

strategies in offices (Chen, Oh & Burhan 2020; Doulos et al. 2019; Du et al. 2019; Larsen et 

al. 2017; Xu et al. 2017). And optimizing indoor lighting control systems using algorithmic 

systems (Gunay et al. 2017; Plebe & Pavone 2017; Seyedolhosseini et al. 2020; Soori & 

Vishwas 2013; Wagiman & Abdullah 2018), with the focus on linking independent versions to 

current software for modeling and lighting calculations (Bangali 2018; Ilbeigi, Ghomeishi & 

Dehghanbanadaki 2020; Natephra et al. 2017; Şahin, Oğuz & Büyüktümtürk 2016; Tagueu & 

Ndzana 2019). While attaining sustainability through energy efficiency by utilizing the 

generative design to achieve light uniformity in indoor spaces (Baloch et al. 2018, Dupláková 

et al. 2019; Liu et al. 2017; 2019; Madias, Kontaxis & Topalis 2016; Mendes et al. 2017; 

Wagiman et al. 2020; Wang & Tan 2013). 

While research proposals that targeted office interiors from a generative design aspect proposed 

different approaches to optimize various solutions. Most papers in literature targeted spatial 

layouts (Abdulbaki, Abdulbaqi & Mohialden 2018; Anderson et al. 2018; Coelho, Amaral & 

Guimarães 2018; Nagy et al. 2017; Phelan, Davis & Anderson 2017; Smith et al. 2020; 

Tachikawa & Osana 2012), As for reflected ceilings designs; generative design was mostly 

utilized through exploring shape variations, mostly for the purpose of optimizing the space’s 

acoustics (Badino, Shtrepi & Astolfi 2020; Rumpf et al. 2018) 

It was clear that literature had exploited generative design in targeting artificial lighting through 

various approaches that aim to produce and optimize lighting uniformity, lighting calculations, 

and different several artificial lighting systems that address decreasing energy levels to achieve 

sustainability.  
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While commercial interior design was mostly highlighted in the generative design field through 

two aspects: office space layout distribution, which included the optimal furniture distribution 

that relied on different variables. And creating three-dimensional acoustical ceilings that 

utilized algorithmic systems. 

Hence, a gap was identified that this dissertation aims to fill. Where generative design is 

employed to merge between two-dimensional ceiling designs and artificial lighting in 

commercial spaces. Creating an algorithmic system that embodies a practical approach to 

develops and generate various reflected two-dimensional ceiling layouts, using various design 

approaches. Furthermore, allows for lighting calculations to ensure the selection of the optimal 

design.  

It was found that (Kim et al. 2016) paper proposed a similar concept as this dissertation, 

however, it is much more like the available tools found in lighting calculations software. Thus, 

is it not filling the gap found in literature, as it is producing only uniform lighting layouts, and 

proposing a two to three layouts as solutions that matches the Korea Industrial standards. 

The aim of this dissertation is to generate various reflected ceiling designs through a multi-

algorithmic system. It works through selecting certain inputs by the end user to generate a large 

number of ceiling designs in a short time, while providing diversity in the generated designs in 

three design aspects: light patterns, used design approaches and lighting fixtures quantities. It 

has the capacity to produce various ceiling layouts using one design parameter only, in addition 

to producing layouts that combine different designs parameters at the same time. Not to 

mention that it is an interactive system that gives the designer’s the ability to alter and fix the 

visual results immediately and turn on-off the appropriate design methods he/she desire. 
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Methodology: Generative System Outline 
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3 Chapter 3: Methodology - The generative system outline 

3.1 Introduction 

The generative system is created using Dynamo-Revit, which can be defined as a 

comprehensive programming application hosted by Autodesk Revit. It is an inserted plug-in 

that became embedded within Autodesk Revit in 2020 version.  

The system was formed using two primary means, visual programming, and Dynamo textual 

programming. Due to Dynamo-Revit correlation; the end users will be able to insert the ceiling 

selection from Revit into Dynamo and run the created algorithms to generate various lighting 

layouts for the selected ceiling. The developed algorithm shown in Figure 9 can be defined as 

an interactive system that generates reflected ceiling results immediately based on the inserted 

variables. This system does not rely on one algorithm only, as it is a combination of various 

Dynamo-scripts that can be used individually as tools to create specific design outputs, or as a 

whole to generate various reflected ceiling designs outputs.  

 
Figure 9: The final algorithm with the scripts and variables sliders created in Dynamo (author) 
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The red rectangular outlined in Figure 9 contains all the variables the designer can manipulate 

to produce different results. Every variable changed by the designer allows a different output 

to be generated.  

This algorithm is a primary outline of what can be developed into a proper software that is able 

to produce all different design possibilities for different types of ceilings. Presenting feasible 

outputs in terms of the diversity in the mechanisms for selection, limitation and mutation of the 

outputs and sustainability implementation.  

This chapter outlines the process of developing the generative system, it briefly discusses each 

subsystem and the different approaches that every subsystem has. It also gives an overview of 

the shortfalls and the limitations that every sub-system encountered. The detailing for every 

script is found in the next chapter. As this is merely an outline of what is the next chapter 

specifies in detail.  

Figure 10 shows a comprehensive outline for the generative system, which aims to simplify 

the structure of the generative system. However, the algorithmic system has a high interaction 

level between its components that might not be clearly identified in the outline.  

Relying heavily on visual outputs and instant results, this generative system displays an 

interaction section between human’s creativity and the algorithmic production. Where great 

amount of flexibility in design is given to the end user, which vary based on the selected design 

approach. The system also provides the flexibility in altering results and updating different 

values using different system-interactions means, without the need for the designer to alter the 

algorithm scripts to update or change anything. 
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Figure 10: Outline for the generative system discussed in this chapter (author)
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3.1.1 User-System interactions  

Arranging the algorithmic system was created through utilizing different interactive means. 

The default status of the generative system combines all the several functions of the subsystems 

into a single system that produces more than five hundred different reflected ceiling layouts. 

However, the end user can exclude auxiliary functions that support the main function, by 

turning them off, without affecting the performance of the main function. This approach was 

created to give the end user the flexibility to target certain designs approaches he/she desires.  

Figure 11 presentes all the different sliders that were created in generative system in order to 

achieve that flexibility. As they allow the end-user to select certain parameters, turning on and 

off other parameters, adjusting or altering different values and inputting other values to achive 

certain dimensions; leading every alteration to connect to a selected script in the generative 

system and run simultaneously. 

Every slider is connected to a script to create the interactive system between the designers and 

the algorithmic scripts. Allowing them to decide the option that fulfill their design needs. They 

ensure that the generative algorithm presents feasible outputs in terms of the diversity in the 

mechanisms for selection, limitation and mutation of the outputs and sustainability 

implementation.  

The sliders influence different algorithmic tasks, such as the splitting slider that will divide the 

surface area into smaller areas, while switching it off will sustain the inserted ceiling as is and 

treat it as one entity. Figure 11 displays all the approaches such as boundary lighting, drop 

down ceilings, which starts from a simple offset of the surface to creating a decagon drop down 

ceiling. The algorithm is a complex system that aims to generate all the possible designs for 

the user to use. 
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Figure 11: All the interactive sliders in the generative system (author) 
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3.2 The generative system components  

3.2.1 Key Step: Importing a ceiling from Autodesk Revit to Dynamo 

The first step in designing the generative system was to create an easy, user friendly transition 

between Autodesk Revit and Dynamo. To do so, 3 Nodes were created to make the Autodesk-

Dynamo transition.  

The model of the interior scene is designed in Autodesk Revit workspace, when activating 

Dynamo and importing the scripted algorithm, the first Node in the system will require to select 

a Model element. Where the end user will simply select the required ceiling. Figure 12 shows 

Autodesk Revit with Dynamo’s workspace showing the red outlined Nodes that shows the 

ceiling selection. The Nodes will automatically isolate the lower surface of the selected ceiling, 

and transfer it to a surface, in order for the algorithm to process it to the other subsystems.  

 
Figure 12: The transition between Autodesk Revit to Dynamo (author) 

The only limitation in this approach, its inability to select more than one ceiling at a time. If 

the end user wishes to do so, different ceilings needs to be joined in Autodesk Revit then 

transferred into Dynamo.  
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3.2.2 Subsystem 01: Three approaches to identify a surface  

One of the key issues that needed to be researched was the variety of shapes that ceiling designs 

can form. It is almost impossible to predict all various layouts and shapes that a designer might 

input to the algorithm. Writing a separate algorithm for every possible shape is not a practical 

process and might result in various errors. Therefore, it was important to figure out a logical 

way to address all the possible shapes that might be inserted, the best thinking strategy was to 

study all the common characters in shapes.  

The surface’s overall boundaries, the degree with the quantity of the angles, and the area that 

every shape has are considered the common elements throughout numerous surfaces that were 

selected in this dissertation. Different approaches were build using these three elements as a 

foundation, allowing the generative system to understand any given ceiling surface.  

Utilizing the degree and the quantity of the angles any surface has resulted in creating two 

approaches: Approach 01: Splitting the surface, and  Approach 02: Forming boundaries. While 

addressing the area of the surface created Approach 03: Creating a grid. 

Since the first two approaches rely on the same parameter, a condition was created to prevent 

overlapping the generative results. The condition prevents splitting the surfaces if the surface 

has 4 angles or less, as it will just identify the surface using the boundaries it has. For example; 

in the case of a rectangular, square or a round layout, the algorithm will not run split the ceiling 

command, as it is considered as a simple shape that is suitable for applying lighting designs 

methods on it directly. Nonetheless, If the surface has more than 4 angles; the end user is given 

the flexibility to choose between the two different approaches. 

The third approach relys on a different parameter, which is the area of the surface instead of 

the angles. Thus, the generative system gives the option to apply a grid regardless of the 

inserted surface’s shape.  
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3.2.2.1 Approach 01: Splitting the surface 

This approach splits the surface into smaller surfaces using the corners of the shape in both x 

axis and y axis, which leads to dividing the total surface into smaller surfaces and generates 

different outputs for the same layout.  

The degrees of the angles in the surface is a key element in this approach, merely because it is 

easy to split lines from different angles to create shapes, resulting in potential spaces that 

simplify the shape of the surface, while indicating different zoning in an open plan layout.  

The scripted algorithm was built on the following logical statement: If the measured angle in 

any corner of the surface is bigger than 90°, the shape will split from that corner creating a 

simpler shape.  

This approach has three key steps to generate various splitting options: Calculating the angles’ 

degrees of the surface, Investigating the proper spliting sequence and Applying a division cut 

to the surface. Figure 13 outlines these steps along with its sub-steps that are discussed in detail 

in every section. 

 
Figure 13: Splitting script key steps and sub-steps (author) 
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3.2.2.2 Approach 02: Forming boundaries  

Dynamo’s default approach to surfaces does not immediately form constant line or a boundary 

around the surface’s shape by itself. It breaks the shape down into lines that are connected, 

with every line having its own individual characteristics.  

Forming a proper constant boundary is a fundamental step and considered an important 

approach to identify the surface. It is essential, as it will allow the generative system to run any 

design inside the surface only. Hence, this approach can investigate the inserted surface and 

the attributes for each line forming it.  

Since Dynamo does not give the user a direct information about every line’s attribute, a testing 

method was created to investigate the characteristics of the connected lines. The testing method 

basically offset the lines that forms the surface, visually producing results that indicate the 

attributes of each line. If the lines are showing a random offset in multiple directions, it means 

that every line has a different direction. That problem cannot be ignored because it causes a lot 

of random issues further in the generative system, since this is one of the three approaches to 

of identify the inserted surface.   

To fix the issue; lines were joined into a polygon. Resulting in unifying all the characteristics 

of them. After that, the polygon was exploded to revert the lines to their original status while 

sustaining the new attributes created by the polygon. Figure 14 outlines the basic steps for 

forming boundaries. 

 
Figure 14: The steps in forming boundaries approach (author) 
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3.2.2.2.1 Boundaries sub-approach: Creating boundary lighting  

After the offset test method was successful in Approach 02: Forming boundaries, it was 

developed into its own lighting design method. This method identifies the surface’s boundaries 

and explode it. Then uses a value given by the end user as a wall offset, offsetting every border 

line towards the inside. Where the new offsetted line will be used to place lights coordinates 

around the ceiling, or as an indication to a drop-down ceiling. 

In order to place light coordinates on the new offsetted line, the algorithm will check the length 

of each exploded offsetted line that forms the surface, and divide the length of it by the spacing 

between the lights which is determined by the end user. Figure 15 shows the result of boundary 

lighting method on different ceilings, the algorithm works on any shape or curved surfaces. 

 
Figure 15: Different ceiling layouts showing boundary lighting method generated in Dynamo (author) 
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The generative system for boundary lighting is divided into three main Dynamo scripts. The 

first script runs the algorithm when the ceiling is not split and treated as one surface as seen in 

Figure 15.  

While the second script works in the condition of splitting the surfaces, as an individual script 

was required to be written to prevent a reoccurring error that appears when the splitting 

approach is turned on. The error showed inaccuracy in dividing the spaces between the lighting 

coordinates, creating discontinuity in the light quantities between the original line that forms 

the surface and the added line that forms the splitting command from the surface.   

Narrow ceilings and corridors were required to be considered individually. As it is not visually 

appealing nor practical to have two rows of lights on a narrow ceiling. Thus, in the case of a 

narrow corridors, a script was created to center a line in the middle of any corridor, which is 

discussed in detail in Creating central line lighting for narrow ceilings. 

Figure 16 shows the scripts and the structure of creating boundary lighting in the generative 

system.  

 
Figure 16: The scripts outline for Creating Boundary Lighting approach (author) 

 



 42 

3.2.2.2.2 Boundaries sub-approach: Creating drop down ceilings 

Drop down ceiling method was extracted from boundary lighting method. As it adds the option 

in creating various ceiling designs using two-dimensional geometrical lines instead of 

generating designs through placing light coordinates as the other methods. This approach can 

help the end user to indicate cove lighting and other geometrical designs for the ceilings.  

This sub-approach generated two different key outputs seen in Figure 17. The first approach 

will offset the same surface shape inwards, twice if desired. Where the end user can input the 

desired space between the original ceiling wall and the new offset using different sliders.  

While the second approach will create different polygon shapes in the center of the surface. 

The written script will identify the center of the inserted ceiling and draw a circle in using the 

center point. A circle can develop into an ellipse, then a triangle, quadrilateral, pentagon, 

hexagon, heptagon, all the way to decagon. It is the same approach that was done while creating 

polygon light patterns.  

 
Figure 17: The outline for creating drop down ceilings (author) 
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3.2.2.3 Approach 03: Creating a grid  

A grid can be identified as a pattern of horizontal and vertical lines, that usually forms shapes 

on a selected surface. Creating a grid was important as it serves a design approach that both 

Splitting the Surface and Forming Boundaries didn’t address, it’s created to serve lighting 

design in large spaces where the end user aims to have a uniformed distributed lighting 

coordinates throughout the ceiling. Creating a grid went through different stages that are 

mentioned in detail in Chapter 4: Approach 03: Creating a grid 

The main issue in Stage 01 that resulted in scripting a new grid, is the approach the plug-in 

creates points through. As it was created to form geometric designs, not points, thus 

overlapping points occur as every 4-sided shape will have 4 points on its corners. Since the 

grid is a repetition of the same shape; overlapping points occur. The points do show as one 

point visually in Dynamo’s workspace, but when connected to a light in Revit or to another 

Node; errors occur. 

3.2.2.3.1 Stage 01: Creating a plug-in grid  

Stage 01 was through a downloaded plug-in called Lunch box; which resulted in creating 6 

different types of grids: (1) Quad grid, (2) diamond grid, (3) hexagon grid, (4) Triangle grid 

shape A, (5) Triangle grid shape B, (6) Triangle grid shape C.  

Although results showed an interesting variety, some types didn’t produce the inserted numbers 

in U and V directions when testing the generated grids. As the visual output was half of the 

inserted input value, while other types produced the points as the input value. In addition, it 

only worked efficiently on four corners’ surfaces, as errors showed when testing it on 

asymmetrical surfaces. Furthermore, the grid points were applied of the surface’s borders 

regardless of the number of angles the surface had. Shortfalls and solutions in the plug-in gird 

discuss each shortfall in detail.  
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3.2.2.3.2 Stage 02: Scripting a uniform/quad grid  

Stage 02 scripted a uniform/quad grid using mathematical calculations. In order to create a 

grid, the algorithm will assume an imaginary four angled surface that works like a boundary 

box to the inserted surface from Dynamo, then it will provide divisions for both x and y axis 

that creates the imaginary surface. After that, the intersected lines between the divisions are 

considered the coordinates that the points are placed on.   

The grid in stage 02 relied on three inputs: the inserted surface, and two values taken from two 

numerical sliders called: Division 01 and Division 02 sliders. These two sliders provide the 

two directions of divisions for the grid that distribute itself out equally on both axes. The 

inserted value in them is controlled by the end user.  

3.2.2.3.3 Stage 03: Scripting a non-uniform/diamond grid  

Stage 03 showed the other design that was chosen to be scripted, the diamond grid.   

Where one point in the second line of the grid lies is in the center area of two points in the first 

line of the grid, creating a grid that is like a zigzag pattern. 

The mathematical process that allowed this script to produce a proper diamond grid is more 

complicated that the quad grid. It was essential to find the proper formula that allows the second 

line to start at an offsetted value to create an accurate pattern. This is discussed in detail in 

Scripting a new diamond/non-uniform grid design. 

A script was created to allow the swapping between both designs of the grid, it was created 

through an if statement, and connected to a slider that gives the end user 2 options. The 

selection of value 1 in the slider will produce the quad grid, while value 2 will result in the 

second produced type which is the diamond grid.  
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3.2.2.3.4 Stage 04: Updating the scripts  

The grid is a fundamental step to approaching ceiling designs, as its intersection points are used 

as light coordinates to apply various uniform lighting patterns, and a key element in lighting 

distribution. Thus, various tests were conducted to ensure that it is working properly.  

The previous finalized grid’s algorithm ran through taking the two divisions input from the end 

user through two sliders called Divisions 01 and Divisions. Diving it based on the length and 

width of the ceiling. Which worked without any issues when applied on a one surface. 

However, since a section of the algorithm offers splitting the ceiling into smaller ceilings to 

create different zones in open plans layouts. Errors in the grid occurred upon splitting.  

Testing showed different densities of lights in different split surfaces. Although the divisions 

inputs are the same. This issue occurred since the system distributes the inserted values on the 

length and the width of the surface. Hence, after applying the splitting option to the surface, 

the algorithmic system will take every length and width for every split surface and distribute 

the inputted values on those two variables. Resulting in creating ceilings with various densities 

while the inserted values taken from the sliders are the same for all the surfaces.  

The new update the fed the generative system replaced the new values. Instead of Division 1 

and Division 2 sliders, new sliders called Spacing in length and Spacing in width is fed to the 

system. This value is not the final amount of lights on a surface as the previous approach. It is 

now the amount of space between every light. Examples are discussed in detail in 4.2.2.3.6. 

Table 1 shows the different stages of developing the grid with the advantages, disadvantages, 

and highlights the issues that were fixed in creating every stage. Due to its errors Stage 01 was 

removed and no longer used. And Stage 02 with Stage 03 were introduced, followed by Stage 

04 update. 
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Table 1: The development of the stages of the grid (author) 

Development 
stages of the grid Advantages Disadvantages  Highlighted issues in 

the stage 

Stage 01: 
Creating a grid 
using a plug- in 

1- Offered 6 gird 
designs for 

distributing the lights 
 

2- Distributed the 
points without the 
need to script the 
calculations to the 

algorithm, thus 
saving time and effort 

1- The coordinates by 
the points are 

uncontrolled as they 
don’t always match 
the inserted U and V 

values. Not producing 
clear numbers for the 
lights coordinates in a 

surface 
 

2- Over lapping 
points that caused a 

lot of errors 

1- Removing the 
points coordinates 

that appeared on the 
boundaries of the 
inserted surface 

 
2- Intersecting the 

surface with the grid 
to remove the points 
on the outside of the 

surface 

Stage 02: 
Scripting a new 
uniform/quad grid 
design 

1- Produced a 
uniform grid 

1- When merged with 
splitting the surface 
approach, the grid 
produced different 

light densities in each 
split ceiling 

1- Finding a proper 
division approach for 

uniform lighting 
 

2- Reversing the 
sequence in order to 
create different grid 
patterns that are able 
to alternate the two 

types of lights. 

Stage 03: 
Scripting a new 
non-uniform grid 

2- Produced a 
non-uniform grid 

1- Create an accurate 
mathematical 

approach to form a 
diamond grid 

Stage 04: 
Updating the 
scripts 

1- Produced a 
uniform grid 

 
2- Produced a non-

uniform grid 
 

3- The grid displays 
suitable light 
densities and 

distribution when 
merged with splitting 
the surface approach 

None 

1- Replacing the grid 
calculations from 
relying on a slider 

that gives the number 
of lights on each line, 
to a slider that gives 
the spacing between 

each line in both axes 
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3.2.2.3.5 Grid sub-approach: Creating light patterns 

After the grid was created, it was important to place lights on the points the grid had provided. 

The initial idea was to only place points as spotlight indicators in the axis intersections between 

x and y. However, this option was quite simple, so in order to allow the algorithm to generate 

various designs for uniform lighting, four scripts were developed to create all the possible 

shapes and movements using certain variables as inputs for lighting sizes.  

The patterns are designed through a primary concept. The pattern is created based on a point; 

this point is taken from the axe’s intersections in the grid. There are two primary types of 

patterns: the rectangle-based patterns, and the polygon-based patterns. Each type contains two 

approaches that generates patterns; uniformed and non-uniformed, Figure 18 shows the 

structure of the final four generated types. 

True to their names, the rectangle based pattern uses an invisible rectangle to create a 

distribution of lights around the parameter of the point, while the polygon based patterns starts 

from a circle which gradual to a triangle, as the end user starts adding more sides using a given 

slider, the shape develops to a quadrilateral, pentagon, hexagon, heptagon, all the way to 

decagon.  

 
Figure 18: Light patterns outline (author) 
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The main difference between the two categories is the uniformity in creating the patterns; as 

the rectangle holds the properties of having a different length to the width, while all the polygon 

shapes can be treated as having equal length.  

This difference is the reason for creating two algorithms instead of developing a rectangle from 

the polygon algorithm. Where the rectangle script treats two equal sides, and the other two 

sides as one due to its properties. As for the polygon algorithm, the script addresses only one 

side of any shape and automatically repeats it on the other sides. However, since the circle has 

one consistent edge, the script treats it as one side only.  

Table 2 shows a sample of the created patterns for the uniform rectangular patterns. The 

generative system had produced around 470 light patterns.  

In addition, it produced 409 different non-uniformed rectangular patterns using the following 

light dimensions: 500x500, 300x300, 600x600mm in addition to adding points as well. 

Table 2: Sample of the generated patterns for uniform and non-uniform rectangular pattern (author) 

The Pattern  Image 

Uniform 
Rectangular 

Pattern 

 

Non-uniform 
Rectangular 

Pattern 
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The produced patterns were around five hundred and thirty patterns for all the uniform polygon 

shapes. Table 3 shows a sample of them. And around two-hundred non-uniform polygon 

patterns that can be used as light patterns applied on a grid or as center lights. 

Table 3: Sample of the generated patterns for uniform and non-uniform polygon pattern (author) 
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Circle Triangle Square Pentagon Hexagon Heptagon Octagon Nonagon Decagon 
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3.2.3 Subsystem 02: Counting the generated light quantities  

After producing all the lights using different generating methods, the quantities of each light 

type were provided. This procedure provides the counting for the end-user in order to create 

proper bill of quantities for the design. In addition, it saves time and optimizes the usage of the 

algorithm. 

The counting of the lights was created through two approaches; the first approach was through 

connecting the produced results directly to a Node that counts the numbers of points, producing 

an accurate count. This was applied in Boundary Lighting and Forming a Grid approaches. 

The second approach had grouped the types of 

lights upon measuring the dimensions of each 

used light. This approach is used when the end-

user switches-on Creating Light Patterns 

approach. 

The light types were grouped as per their 

dimensions (300x300, 600x600, 100x300, 

100x600, 100x1200, 50x50 millimeters). 

These groups are the same groups that were 

inserted into the generative system to create 

lighting patterns. After grouping every 

category, a counting Node was connected to 

each group which produced the different 

counts as seen in Figure 19 

Figure 19: The Code Blocks that show the 
counting in the generative system (author) 
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3.2.4 Subsystem 03: Exporting the results back to Autodesk Revit 

After producing all the designs in Dynamo, results were carried to Autodesk Revit and 

connected to different light families that represented all the inserted light dimensions in 

Dynamo.  

In order to do so, another grouping approach was scripted, that automatically resulted in 

creating a connection between Dynamo and Revit. As all the geometrical shapes that represents 

different lights in Dynamo are connected to actual lighting families in Autodesk Revit. And 

any alteration for the design that occurs in Dynamo will result into an automatic alteration in 

Revit.  

3.3 Arranging the generative system  

Nodes were created to arrange Dynamo workspace to allow the end user to view the generated 

ceilings effortlessly, and control or alter the results efficiently. 

Dynamo scripts and - if statements - were created to arrange the results in the workspace of the 

software for better visibility. Splitting the ceiling results were arranged  horizentally while 

generated patterns of lights were arranged vertically.  

Furthermore,  different Nodes and scripts were created to color the surfaces and to the lights, 

creating an easier identification for every light approach.  

3.3.1 Arranging the results horizontally and vertically  

3.3.1.1 Creating proper spacing between the generated ceilings  

In order to avoid the various generated results from intersecting on top of each other, a logical 

script with an - if statement - is created; allowing the ceilings to distribute horizontally 

throughout the workspace without overlapping as seen in Figure 20.  
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Figure 20: The arrangement of results in Dynamo for Splitting the ceiling design approach (author) 

Figure 20 shows Dynamo’s workspace after the arrangement script is applied; where only the 

selected ceiling option is colored with green borders to be distinguished.  

It is important to note that the selected ceiling surface with the green borders will always be in 

the original ceiling location that was imported from Revit. So, when the end user applies the 

lighting results Dynamo and returns to Revit, they will be applied on the ceiling’s location 

exactly and not on a random area.  

3.3.1.2 Arranging and placing the generated light patterns on the original ceiling 

In addition to arranging split surfaces’ results, a cross section arrangement for the light patterns 

was created, giving a visual representation in Dynamo’s work space, where both ceiling outputs 

and light pattern outputs are seen in the opposite axes, allowing the user to have an overall 

view of the results. Details of the arrangement are discussed in Arranging and placing the 

generated light patterns on the original ceiling. 
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3.3.2 Coloring the surfaces and the produced lights 

Different Nodes were created to allow visual indication for every light type. Figure 21 shows 

the Nodes that were connected to the different scripts. Every color is shown in Figure 21 with 

the title of the connected generative method. 

 
Figure 21: The different coloring Nodes for the different approaches (author)  
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4 Chapter 4: Development of the generative system 

4.1 Introduction 

This chapter addresses the components of the generative design system and the development 

processes of it, which aims to generate various reflected ceiling designs through an independent 

approach that targets ceilings as a surface only. The system works through selecting certain 

inputs by the end user and running it produce various outcomes in a short amount of time.  

Different approaches to investigate a ceiling layout are described and discussed, undertaking 

three primary design elements: the surface’s overall boundaries, the degree and the number of 

angles, and the area every shape. Resulting into creating three foundations the algorithm runs 

on; splitting the surface into smaller surfaces; which can be used in the case of open ceiling 

layouts. Forming boundaries around the surface and applying lighting design methods directly 

on it. In addition to creating two types of grids enabling the placement of lights coordinates on 

the surface.  

Various sub-approaches were built on these three foundations. Dynamo-scripts were written to 

generate four key types for lighting patterns using specified lighting dimensions. In addition, 

boundary lighting method is created for the end user to be able to place lights around any given 

ceiling design, or after splitting it. And manipulate various inputs that insures a required design. 

Furthermore, a script for drop down ceilings was created which develops from the original 

shape of the inputted surface to different polygon shapes all the way to a decagon.  

The different algorithms were incorporated in an approach that reduced calculations time for 

each script and allowed the overall results for all the design methods to be produced at once. 

Creating a key outline for a generative system that can produce different ceiling design layouts 

and can be developed further into a proper comprehensive plug-in. 
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4.1.1 Software background - Dynamo’s anatomy and previous implementations   

The initial version of Dynamo was created by Ian Keough while he was working in Buro 

Happold Consulting Engineers in New York. The current software is owned by Auto Desk and 

developed to its existing version through its engineers. The first stable Dynamo version -

Dynamo 0.6.3- came out in 2013 for public, and ever since; Dynamo versions had been rapidly 

developing to the latest downloaded version - Dynamo 2.0.3 - before including Dynamo in 

Auto Desk Revit 2020 (Dynamobim 2014). 

The software can be defined as a comprehensive programming application hosted by Autodesk 

Revit; allowing developers and designers to create their customized tools using several 

programming means. Dynamo is mostly used as a visual programming application, where the 

instructions and the relationships between different elements in the software are approached 

through a graphical algorithm user interface. Nevertheless, textual programming can also be 

used in the application and will produce the same visual outputs (The Dynamo Primer 2019). 

It is found in literature that Dynamo-Revit was widely used in addressing structural analyses 

as (Basta, Serror & Marzouk 2020) had developed a framework using the software to enhance 

the assessment of the de-constructability of steel structures, while (Sheikhkhoshkar et al. 2019) 

had reduced the complexity of manual planning of concrete pouring in large construction 

project through developing a 4D Building Information Approach (BIM) that created automated 

concrete joint positioning solutions, and much more. 

Dynamo had also shown that visual programming is able to support sustainable design studies 

in the primary stages of design by computing certain metrics relating to energy such as, solar 

gain and air movement (Nastasi et al. 2018), to simulate and investigate the relationship 

between the future building and the environment (Peters 2018). Studies such as (Lim et al. 

2019) had used a multi objective optimization algorithm using Dynamo-Revit to achieve 
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44.78% reduction in overall thermal transfer value (OTTV) and 19.64% incline in the 

construction cost by creating an algorithmic Building Information Management (BIM) based 

optimization model. Furthermore (Gao et al. 2019) had developed using Revit Auto Desk and 

Dynamo an energy simulation and optimization BIM-based building system, helping architects 

to optimize the building form, orientation and window to wall ratio in the early stages of the 

design, through using the building energy performance. 

Furthermore, Daniel Knott an associate in Buro Happold had developed the [Dynamo Master 

Planning Tool] that investigates key building form parameters such as building height and 

typology, alongside different mechanical, electrical and public health systems. Resulting in a 

direct effect to various sustainable metrics such as passive ventilation, external shading, and 

others (Peters 2018).   

The anatomy of Dynamo is shown in Figure 22 . It is formed using two primary components 

(Nodes and Wires) that connect to create and run a visual program.  

Nodes can be outlined as the commands the developer and designer use to perform an 

operation. Due to the embedded library in Dynamo and the available packages created by 

Dynamo community; the operations that are performed are numerous. Starting from a simple 

mathematical equation to a complex command that generates geometry in the workspace.  

While Wires are the connections between nodes that results in creating the visual relationship 

and establishing the logical flow that the developer or the designer require. They are similar to 

electrical wires that transports the data and builds on the commands to create a certain output.  
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Figure 22:Nodes and Scripts that are generated with sequences and ranges (Dynamo 2.0.3) 

Dynamo allows writing algorithm scripts directly using certain Nodes called Code Block 

displayed in Figure 22, where the scripted algorithm will run and produce a helical curve at a 

base point. The software also supports Iron Python - which is a programming language - by 

using one or two types of Python Nodes. 

A direct relationship between visual programming and textual programming can be created, to 

avoid the increased number of Nodes and Wires that might lead to complicating the logical 

visual flow in the workspace.  

The written Code Blocks can be referred to using the visual Nodes, if the long as Code Block 

containing the algorithm script is in the same workspace. This relationship is showcased in this 

dissertation while writing the proper algorithm script in a lot of design methods, allowing the 

workspace not to clutter with wires and Nodes. 
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4.1.2 Justification for selecting Dynamo-Revit as a programming software 

Dynamo-Revit is often the choice for building simulations and building performance analysis 

by various studies in the literature review. Its high degree of flexibility in terms of the features 

that can be modeled and ability to manipulate the parameters of Revit Auto Desk to create a 

new level of associativity and generate various opportunities for cross-platforms (Lim et al. 

2019) and customized form-generating algorithms had made it a popular choice along with 

Grasshopper, and Marionette.  

It is the only used visual programming plug-in for Autodesk Revit. Compared to Grasshopper 

- another visual programming software that’s widely used – that is identified as the visual 

programming plug-in to Rhino. Both software provide a similar variety of programming 

advantages, as both of them uses various scripting languages, both of them includes Nodes and 

Wires as a mean for visual programming, and in most cases, both of them are able to create, 

manipulate and generate various results based on the scripted commands.  

However, the characteristics of Dynamo and the characteristics of Autodesk Revit Dynamo 

were the key contributors for selecting Dynamo as the visual programming software for this 

dissertation. As Dynamo offers a range of scripting methods between visual programming and 

textual programming, which was utilized in this dissertation. The merge between both scripting 

approaches created high flexibility and ease compared to other software. Although Dynamo 

has the ability to script different commands using various programming textual languages as 

the other present cross-platforms, such as Java and Python. It offer the ability of scripting using 

Dynamo-scripts, which was used to create textual scripts for the design approaches. This 

language is much simpler to script compared to Python and Java.  

In addition, one of the main reasons for the selection of Dynamo-Revit is the presence of one 

character that Autodesk Revit provides compared to the other software. Autodesk Revit is able 
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to identify its model components, such as ceilings, walls, floor, and different furniture, lighting 

families. It holds definitions with-in itself that enables the end user for easy selection of 

components in any model. While other software on the other hand doesn’t offer this feature. 

This is a critical feature since this dissertation key concept is to provide designers with a 

flexible generative approach that creates ceiling lighting layouts. The first step of running the 

algorithm will be selecting the ceiling. If the designer is not able to separate the ceiling 

component, the whole approach fails. Hence, Dynamo was the selected visual software for this 

concept. This important feature allows the end user the ease of selection.  

Furthermore, Revit offers a key feature in providing lighting families to the end-user. It offers 

existing light families with its own characteristics in its library, it also allows the users to insert 

specific lighting families as an IES format. This format is usually available with any lighting 

supplier. This is a vital feature in this dissertation as it gives a great flexibility for the designer 

to select whatever lighting family with its specific characteristics he/she desires.  

Not to mention that creating an algorithmic Dynamo-Script in a plug-in format makes it very 

appropriate for designers and architects to include it in their original models. As users will only 

require to open the created algorithmic script and run it on their original model created in 

Autodesk Revit in order to provide a variety of results that can be adjusted and manipulated 

upon creation based on specific aims and goals the designer aims to create.  

The discussed  characteristics that Dynamo offers along with Autodesk Revit had allowed this 

dissertation to achieve its aims and objectives, where the usage of other visual programming 

software might have resulted in creating unfixable difficulties that would work as a barrier that 

prevents reaching of notion of this research.   
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4.2 The Algorithms - description, development, and shortfalls 

The selected approach to generate various lighting layout designs neglects the relationship 

between furniture and luminaires, and investigates the different shapes of the ceiling surface, 

and the connecting walls to it.   

Figure 23 shows the level of interactions across the components of the algorithm. The dynamic 

interaction between these design approaches are the key element in generating a high number 

of different designs. Resulting in an outcome of multiple generative layouts and designs. Figure 

23 shows four approaches the algorithm utilizes for generating ceiling designs, splitting 

ceilings approach was not added due to its complexity in interacting with all the different 

approaches. While Figure 24 outlines the functionality for the design approaches created in this 

system.  

Furthermore, every subsystem has multiple approaches and different options in it, that results 

in further interactions and further possibilities. They are briefly discussed in this chapter, along 

with the main issues that were faced and solved in each one.  

 
Figure 23: The Interaction level between different design Sub-approaches and their types (author) 
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Figure 24: Outline for the scripted design approaches and their functionalities (author) 
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4.2.1 Key Step: Importing the ceiling from Autodesk Revit to Dynamo 

Autodesk Revit can identify and work with different structural elements, whereas Dynamo 

works with surfaces regardless of the type of the surface. An easy transition is created to enable 

selecting any ceiling from a model created in Revit to Dynamo. The first Node of the algorithm 

allows the selection as seen in Figure 25. However, since the ceiling element is three-

dimensional, another step was required to isolate the bottom surface only, where the location 

of the lights can be identified.  

After various tries on various models, it was found that the second surface placed in the list 

which transformed the inserted ceiling element into multiple surfaces - shown in Figure 25 as 

(1)Surface - was to be the bottom surface in the majority of cases. Thus, it was isolated as an 

individual two-dimensional surface using another Node, allowing the various applications of 

lighting design methods on it.  

 
Figure 25: Dynamo Nodes that collect one ceiling element from Revit and isolating the bottom horizontal face (author) 

This method will only insert one selected ceiling surface at a time and will run the entire 

algorithm on the inserted surface only. For example, if the layout has an open area ceiling and 

closed rooms such as Figure 26. The designer will be able to only select one of the available 
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ceilings, either the open space area or one closed room ceiling and so on. Allowing the 

algorithm to run on the selected ceiling to produce design options. 

 
Figure 26: Selecting one ceiling in Revit-model to transfer to Dynamo (author) 

4.2.2 Subsystem 01: Three approaches to identify a ceiling  

Three elements are considered in this dissertation as the key elements to address any ceiling 

design: (1) The surface boundaries (2) The degree and the quantity of the angles the surface 

has (3) The area of the surface, which created three approaches for the algorithm to investigate 

any inserted ceiling design; the approaches are discussed in details in Approach 01: Splitting 

the surface, Approach 02: Forming boundaries, and Approach 03: Creating a grid. 

If the surface has four angles or less; it will just identify the surface using the boundaries it has; 

Which is discussed in detail in later in section Approach 02: Forming boundaries. While 

splitting the surface command will occur if the surface has more than four angles. The steps 

that were made to reach splitting a surface, along with the issues it had are mentioned in 

following section.  

If the surface has more than four angles; the end user is able to choose between the two 

approaches that investigate the surface from its angles, he/she is given the flexibility to choose 
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to what suits the design’s vision. For the end user to be able to make the choice, a scripted 

algorithm for the selection is discussed under Arranging the generative system. 

4.2.2.1 Approach 01: Splitting the surface 

Different attempts analyzing the surface were conducted and resulted in a technique that 

worked on almost every ceiling design. It became one of the key initial steps that the algorithm 

performs prior to applying any scripted algorithm that results in placing light coordinates on 

the surface.  

In order to split the surface into smaller areas; the generative system will go through three 

sequential main steps: (1) Calculating the degree of every angle of the surface, (2) Creating a 

proper splitting sequence, and (3) Performing the division cut.  

Each one of these steps are has its own sub-steps that are explained in details in its own sections, 

Calculating the angles’ degrees of the surface has four sub-steps the scripted algorithm 

performs in order to get the degree of all the angles of the inserted surface, which is explained 

in Figure 27. 

While Investigating the proper spliting sequence has three sub-steps: The first step Creating a 

proper splitting sequence using permutation, explains the first approach to create sequences, 

followed by Permutations shortfall and using combinations as a solution, which is a good 

approach to create sequences. And it was optimized in Merging between permutations and 

combinations as an optimized approach section. 

The final step was to draw a line on the inserted surface to indicate the different splitting 

options, which occurred through downloading a plug-in called Lunchbox to Dynamo (Nathan 

2013). It is further discussed in detail in section Applying a division cut to the surface. 
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4.2.2.1.1 Calculating the angles’ degrees of the surface 

Figure 27 displays a simple surface created to explain the steps the algorithm takes to calculate 

the degree of the angles in any shape. 

 

Figure 27: The steps to calculate the angles of the surface (author) 

(a) Shows the surface which contains different lines with different angles such as a semi-circle 

polygon in some areas, and a diagonal line in a corner, along with different angle measurements 

shown. 

(b) Displays the different possibilities of splitting the surface, showcasing the logical part of 

splitting the surface from a corner or an edge rather than from the center of a line.  Those 

various possibilities shown in different colors have a correlated relationship with the number 
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of the corners the surface has. The more > 90° corners the surface holds, the more generative 

options the algorithmic system will produce. 

Point (c) in Figure 27 illustrates the advantage of Dynamo used in this technique, as the 

software will break down the surface into lines referred to in numbers and different colors in 

Figure 27 and combine them together in a list called Index, zero being the first number in Index.  

It’s important to mention that every line has a direction that is linked to its coordinates, for 

example; if the line’s coordinate is (0,1)(0,2), it means that line’s direction is from left to right.  

(d) shown in Figure 27, explains how the algorithm calculated the angles between each line. 

The software will start at Index 0 and move down the list. Checking the Normal Vector of 

every line. The Normal Vector is defined as 90° projection vector that comes from the center 

of the line, it is perpendicular from the direction of the line (The Dynamo Primer 2019).  

When two consequent Normal Vectors from two lines intersect, the degree of the angle of the 

intersection is calculated, the same angle is usually reflected on the corner between these two 

lines. For example; Figure 27 shows that A angle = 90° calculated upon the intersection of  (0) 

line Normal Vector and (1) line Normal Vector from the Index. Whereas line (3) and line (4) 

has an angle that is bigger than 90°. However, B angle will be calculated as 90°, since the 

Normal Vector will come from the center of the semi-circle line, not from the corner.  

The textural writing for calculating the angles is displayed in Figure 28.  It was essentially 

created from visual Nodes and Wires, then transferred into textural script to reduce the clutter 

of the workspace in Dynamo.  
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Figure 28:The scripted Code Block for calculating the angles between consecutive edges in Dynamo (author) 

After the algorithm calculates all the angles of the surface, it saves the outputs in a list that will 

go to the secound part of the process. The list is organized as the sequence of  Indexes 

mentioned earlier. 

4.2.2.1.2 Investigating the proper spliting sequence  

4.2.2.1.2.1 Creating a proper splitting sequence using permutation 

The second step is sorting out the values of the gathered angles. The algorithm will sequentially 

check the given list from the first step, starting with Index (0). If the value of the angle is not 

more than 90°, the algorithm will just ignore it. If it is more than 90°, it will attempt to split the 
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surface from that corner. The splitting will be from two directions only: x and y axes. However, 

the positive or negative direction of each axis will be determined based on the suitable direction 

that goes inside the boundaries of the surface. As there is no point to split in a direction that 

will only redraw the existing surface’s boundaries. 

Each angle that is more than 90° has two directions, hence two possibilities of splitting. The 

scripted algorithm will combine the possibilities of splitting in each direction using 

mathematical permutation for the angles. For example, if the shape has five angles that are 

more than 90°, each angle will have (Direction1, Direction2). So Angle-1 will have (d1,d2), 

Angle-2 will have (d1,d2), and so on. The algorithm will run through the angles and create 

different possibilities of splitting. The first possibility will split to Direction1 only in all the 

angles of the shape. So, Angle-1 and will be split from d1, Angle-2 will also be split from d1, 

and so on. Creating a splitting sequence like this: (d1,d1,d1,d1,d1).  

Then, the algorithm will run again and focus this time on Direction2, repeating the same thing 

where it will split all the angles to Direction2. Creating a splitting sequence like this 

(d2,d2,d2,d2,d2). After that, the algorithm will run again splitting only Angle-1 to Direction1, 

and splitting all the remaining four angles to Direction2, resulting in a sequence like this 

(d1,d2,d2,d2,d2). Next, it will run again, and split Angle-1 and Angle-2 in Direction1, while 

keeping the other angles to Direction2, creating a sequence like (d1,d1,d2,d2,d2). The 

algorithm will keep looping until it reaches all the possibilities of the sequences.  

In other terms, the algorithm is calculating the permutations of the angles. For the given 

example, the permutation of 5 is 5x4x3x2x1=120, so the algorithm will produce 120 

possibilities on how to combine the splitting angles, to get all the options to divide the ceiling. 
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4.2.2.1.2.2 Permutations shortfall and using combinations as a solution  

One of the issues faced in using permutations, its inability to replicate any values. Although it 

is an effective method since it picks each value and combine it differently with other values. 

The method had failed in splitting surfaces that have two or one angles above 90°, because it 

does not allow any values to be repeated in the sequence. So if a surface has two angles that 

are more than 90°, using permutations will result in two splitting options only; 2x1=2 these 

two options will split in two directions that are (d1,d2)(d2,d1). Whilst in reality the possibilities 

of splitting two angles will result in four options (d1,d1)(d1,d2)(d2,d2)(d2,d1). That’s why 

combinations were added to the scripted algorithm, because combinations are able to pick the 

same value twice.  Dynamo has a default Node in its library for combinations. But when it was 

tested, the default Node was not providing all the possible combinations, because it wasn’t 

shuffling the values as it should.  

 
Figure 29:The scripted Code Block for combinations for arranging the splitting angles in Dynamo (author) 
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The issue was fixed through creating two combinations lists, P1 and P2 that are highlighted in 

yellow and red in Figure 29 that’s showing the script for the combinations algorithm.  

The first combination list (P1) is highlighted in red and the statement in it is written as follows: 

P1=List.Combinations([0,1],itt,true); where List.Combinations is a command to create a 

combinations list, and 0 refers to the first direction, while 1 refers to the second direction, and 

itt refers to the number of angles that are above 90° in the surface.  

To explore all the possibilities of how combinations can work; P2 list is created and highlighted 

in red in Figure 29. P2 list is the opposite of P1 list. After creating the two combinations lists, 

the algorithm will join the the two lists together in a new list called P0.  

Shown in Figure 29; the command Perminations=List.UniqueItems(p0); which is 

highlighted in green, is created to eliminate the repeated values in the final list. It will go 

through P0 list and remove any repetition that will occur from joining the two lists (P1 and P2).  

For example, the first combination list (P1) will produce the sequences shown in Table 4. 

Presenting the values for a surface with five angles above 90°, starting with (0,0,0,0,0) and 

ending with (1,1,1,1,1), While the opposite combination list (P2) shown in Table 4 will produce 

the opposite values. Those values represent the possibilities of directions coming out from the 

five angles, which will split the surface. However, as clearly shown in Table 4, the results are 

in a specific range of options. It is missing the sequence where the numbers are shuffled in the 

center, such as (1,1,0,0,1), (0,1,1,0,1,0), (0,1,0,1,1) and so on.  

Table 4: The results of p1 and p2 combinations command (author) 

P1 Combination list Values [0,1] P2 Combination list Values [1,0] 
(0,0,0,0,0) (1,1,1,1,1) 
(0,0,0,0,1) (1,1,1,1,0) 
(0,0,0,1,1) (1,1,1,0,0) 
(0,0,1,1,1) (1,1,0,0,0) 
(0,1,1,1,1) (1,0,0,0,0) 
(1,1,1,1,1) (0,0,0,0,0) 
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To find the missing sequences that are not presented in the Table 4, the algorithm will create a 

new list that will shuffle all the values in the list of P0; which is the list that joins P1 and P2. 

After shuffling all the values, the outcome of that list will be joined to P0 to create a bigger list. 

And then, the algorithm will remove any repeated values that were caused by the joining of the 

two lists.  

However, since creating a list of values from shuffling is considered a random process, running 

the shuffling process one time will not produce all the possible values for the directions of 

splitting. That is why the algorithm will run the process of [creating a list using shuffling, and 

joining the outputs to P0, then excluding the repetitive values] multiple times. After 

experimenting different numbers of repeating the process. the outputs showed that the best 

repetition was from seven to ten times, where the values produced covered almost all the 

possibilities. It was decided then, that the algorithm will repeat the shuffling process for ten 

times. The dynamic flow of these operations is displayed in Figure 30. 

 

Figure 30: Flow progress of creating the final list using combinations (author) 
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4.2.2.1.2.3 Merging between permutations and combinations as an optimized approach  

The algorithm can produce proper sequences using combinations method only, however a trial 

was conducted to see what might occur if both methods were combined. As discussed 

previously, permutations method had failed due to the fact that it doesn’t produce all the 

maximum sequences from a surface that only had two or one angles above 90°, because it 

doesn’t allow any values to be repeated in the sequence. And the complexity in combination is 

defined in the shuffling process that occurs around ten times in order to produce unpredictable 

possibilities of sequences using the number of angles that are > 90° from the surface as the 

index reference.  

The merging of both methods was created due to a minor error that was detected a while after 

creating the combinations method. The error showed that whenever the software is closed and 

re-opened, the combinations algorithm will run again. Due to the random procedure of 

shuffling in the script, the produced results are not constant. For example, if the end user had 

selected a ceiling that is spilt in a curtain design and saved the software and closed it. Once the 

file is re-opened, the algorithm will run again automatically, resulting in creating different 

unpredictable designs, indicating that the initial approved design might be lost. This procedure 

will always happen as the shuffling process is random. Thus, unexpected, and uncontrollable 

results occur.  

The merging of both methods had produced proper results, because although using 

combinations can lead to random results, adding permutations with it allows the results to be 

constant and controlled. Figure 31 shows how the two lists are combined in a simplified 

approach. 
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Figure 31: Merging combinations and permutations Nodes in Dynamo (author) 

Assuming that [0,1]; shown in Figure 31 is the list that represents the Index, allowing the 

algorithm to roam throughout the inserted surface to investigate the number of angles that are 

more than 90°. While 4; is the actual number of angles that are found to be above 90°. These 

inputs are connected to the combinations Node found in Dynamo’s library. The produced list 

is outlined in green in Figure 31, as the generated sequence will have 5 lists in the normal state 

of combinations without the added shuffling script. The combinations Node essentially counts 

the amount of times the algorithm can use a certain value from the Index list. As mentioned 

earlier in details in Permutations shortfall and using combinations as a solution, it cannot mix 

the values in between the produced lists. That is why the shuffling method applied previously 

resulted in unpredictable results every time the algorithm ran. To merge permutations with 

combinations, the written script will apply permutations on every list resulted from 

combinations. For example; only one list from the combination output containing 4 values, 

which are (0,0,0,1) -shaded in red in Figure 31- is connected to the permutations Node, 

resulting in four lists of permutations. This example is to clear the connection between 

permutations and combinations for one list only that is taken from the combinations output. 

The actual algorithmic script takes all the lists from the combinations’ outputs. 
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In summary; instead of applying permutations on the original index list which is [0,1]; in Figure 

31, the algorithm will now apply permutation on the output lists of combinations. This allows 

a controlled output that will have consistency every time the algorithm runs. However, 

permutations treat every value as its own, creating its individual lists for it. So in Figure 31, 

although zero is a recurring value from the combinations list, permutations Node treats every 

zero as a different value, resulting in repeating the same lists in some cases again and again. In 

order to fix the issue, list.uniqueItems Node is added; where it will remove the repeated values 

found in permutations as seen in Figure 32.  

A written script in Figure 32 is added to the workspace as a replacement for the Nodes shown 

in Figure 31, since the permutations will be looping on every list created by the combinations 

command. In the previous example shown in Figure 31, the output of combinations was 5 lists; 

each had 4 values. The permutation will loop on those five produced lists, creating outputs for 

each, and then the lists will be filtered using List.UniqueItems command. It’s easier to add the 

looping definition in a script than Nodes as it allows easier definitions, in addition to sustaining 

a clear workspace in Dynamo. 

 
Figure 32: The definition script for splitting the surfaces in Dynamo (author) 
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The importance of these lists falls in its ability to generate various splitting options for any 

inserted ceilings’ designs. The algorithm will calculate the angles that are above 90° and pick 

one value from the final list that is created by merging combinations and permutations. Splitting 

the surface is based on the values given in the final list, as it treats those values as directions.  

4.2.2.1.3 Applying a division cut to the surface  

After the proper lists are produced, the results will be shown through drawing the different 

options of splitting lines on the inserted ceiling surface. However, the graphics tool in Dynamo 

is not as developed as the other Adobe software. It does not have a good tool to draw lines that 

indicates splitting the surface in different directions at the same time. it can however split an 

angle towards one direction only, but not all the angles at once consecutively. To fix this issue; 

new Nodes from a plug-in called Lunch Box were added to the script. This plug-in is created 

by a third party called The Proving Ground; and used for both Grasshopper and Dynamo. It is 

used as a tool for managing data, and it allows geometry behaviors such as generative form 

making (Nathan 2013).   

The algorithm will select every value individually from the final list and will treat it as a 

direction to produce ceilings’ designs that are split differently.  

For the same example given earlier in Figure 31,  if the inserted surface has four angles above 

90°,  the outputs will be 16 options of splitting, equal to the values in the final list. Each option 

is split in a unique different way from the other, as every sequence created will produce a 

ceiling that is divided differently from the others. Generating all the possible splitting options 

for one surface. The 16 results from splitting the surface is shown in Figure 33 along with the 

final scripts; the quantity of splitting outputs are coherent with the amount of the angles that 

are above 90°in the surface. 
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Figure 33: Splitting results on a ceiling that has four angles above 90 and the final script for splitting in Dynamo (author) 
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4.2.2.2 Approach 02: Forming boundaries  

The number of corners the shape has will lead the algorithm to which method to use, if the 

surface has more than 4 angles; the algorithm will run Approach 01: Splitting the surface, 

regardless of the degree of the angles. If it has less than 4 angles; it will identify the surface 

through the boundaries it has and run this method.  

4.2.2.2.1 Creating a polygon line as boundaries  

An offsetting testing method was created, to allow the investigation of the characteristics of 

the connected lines that create surfaces in Dynamo. It intends to stop any lighting design 

methods further applied in the generative system, from acting outside the borders of the inserted 

surface. Clearly identifying the borders of the surface.  

When the algorithm ran the offset command on the surface immediately, the attributes of each 

line were visually clear.  

As seen in Figure 34; a simple ceiling shape was tested through applying a direct Offset Node 

in the workspace of Dynamo after selecting the ceiling, and the results showed that some lines 

were offsetting outside or inside the surface, on positive or negative Z axis directions.  

Concluding that regardless of the surface, the characteristics of the lines forming the surface 

are not similar, and each line had offset based on its own direction. Which is based on the line’s 

Normal Vector. The Normal Vector is defined as 90° projection vector that comes from the 

center of the line, it is perpendicular from the direction of the line (The Dynamo Primer 2019).  
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Figure 34: Testing a simple shape offset command in Dynamo (author) 

For the offset to function as expected, the characteristics of the lines that created the surface 

needed to be unified. To do that, the Normal Vector of every line needs to be aligned towards 

the center.   

After various trials, the solution was to take all the lines of the surface and join them into a 

polygon. Due to the fact that a polygon is a continues line, it forces every line to have consistent 

direction, as it starts from one corner and goes around the shape - clockwise direction or anti 

clock wise depending on how it is joined - until it reaches the starting corner again.  

After that, since a normal consistent direction for the lines is created, running the offsetting 

testing method again on the surface resulted in a proper offset shown in Figure 35.  

It successfully offsetted towards the inside with negative 600mm, forcing all the lines of the 

polygon to inherit the properties of a closed shape, where they have a consistent similar 

direction. The value of the offset in Figure 35 is negative, because closed shapes in Dynamo 

will offset positively towards the outside, and towards the inside if it’s negative. 
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Figure 35: The surface after the polygon offset with the Nodes for it in Dynamo (author) 

The offset testing method discussed was merely a test to investigate the characters of each line 

forming the surface. Different ways were tested to show and identify the attributes of the lines; 

however, the offsetting testing method showed its ability to showcase the attributes of every 

line visually. It is not applied in the final scripted algorithm nor required to create boundaries.  

The testing method had proved its ability to identify the Normal Vector of every line, which 

controls the line’s direction. While creating a polygon had resulted in unifying the Normal 

Vectors of all the lines to be aligned towards the center of the shape. 

Since Dynamo needs to treat the lines that creates the surface individually for it to run different 

design methods, an explode command is applied to the polygon line, reverting it back to 

individual lines. However, these lines are retaining the same properties as the polygon, thus 

creating a uniformed proper direction for all the lines and establishing proper boundaries to 

work with in different lighting methods later on in this chapter.   
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4.2.2.2.2 Choosing between splitting the surface or forming boundaries  

Figure 37 shows the script that allows the end user to decide whether to give the command to 

the algorithm to split the ceiling; which was discussed in details in Approach 01: Splitting the 

surface or to treat the ceiling as a full surface through creating a polygon line around the ceiling 

and applying direct design methods on it, found in details in Approach 02: Forming 

boundaries. 

The script will take the inputs from an added slider under a group shown in Figure 36 called: 

split controls. If the slider is at 1, it will allow the algorithm to split. If it is at 0, the algorithm 

will run choosing the boundary option which will treat the surface as one entity and not split 

it. This method saves calculations time as it does not showcase all the options at once. It only 

shows the option picked by the slider. 

For the slider to be able to determine whether the splitting algorithm is selected or not. A simple 

if statement was scripted shown in Figure 36, where the if statement is defined as the following: 

If the split is equal to 1, the algorithm script that defines the splitting will run. Or else; return 

it to the boundary surface option.  

 
Figure 36: Split controls sliders and script for turning on and off the split by the end user in Dynamo (author) 
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The split choice slider in Figure 36 allows the end user to see the different designs for the 

splitting output, as the user changes the value, the splitting design will change. The total 

number of the produced splitting designs are based on the number of angles the surface has. 

The issue faced while writing the script in Figure 37 , was its inability to determine how many 

options the ceiling might produce. So, it is impossible to create a proper end for the slider, as 

it starts from zero and can lead up to perhaps 60 or 90 options of splitting. So, the slider can’t 

be limited as design options might be lost. However, if the spilt options produced are little and 

the slider has more values that the actual produced options, an error will result in the algorithm 

when the end user moves the slider. In order to fix that, an if statement is added to the script, 

highlighted in red in Figure 37; where if the choice that the end user is inputting is more than 

the number of options produced, it will return to the number of options that exists. So, whenever 

the end user goes beyond the last option, it will always return into the last option of the splitting 

output, therefor removing the error in the algorithm.  

Sft definition is highlighted in yellow in Figure 37, it defines the split option; where if the split 

grid input equals zero, it will return to the original surface state, otherwise if the surface equals 

one, it means that there are various outputs based on the splitting. 

 

Figure 37: Splitting the surface or not script in Dynamo (author) 
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4.2.2.2.3 Boundaries sub-approach: Creating Boundary lighting  

4.2.2.2.3.1 Creating a script for full surfaces 

The algorithm will take the boundaries of the inserted surface from Revit, convert it into a poly-

curve, and offset the polygon inwards and outwards using the same offset value inserted by the 

end user using a slider.  

The reason of this offset method is demonstrated in Figure 38, where this approach allows the 

small and narrow corridors - similar to Figure 38 (a) - to be excluded from applying lights 

around it. 

 
Figure 38: Offset inwards and outwards explanation in boundary lighting (author) 
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If the inserted value of the offset is relatively low, Figure 38 (b) will result. However, if the 

offset value is equal to half the width of the narrow corridor in the inserted ceiling, the inwards 

and outwards offset will eliminate this corridor as seen in  Figure 38 (c). Resulting in a ceiling 

that is shown in Figure 38 (d). This step is important as placing a double line of lights in a small 

corridor does not serve the design. In addition, another approach is created to address the 

excluded areas such as small corridors explained in Creating central line lighting for narrow 

ceilings. 

After that, the outwards offset is exploded into lines instead of a polygon with the same 

attributes, the reason for this approach is previously discussed in detail Approach 02: Forming 

boundaries. Outlined in red in Figure 39, a for-loop will run for each exploded line that created 

the surface, treating them as independent values. 

 
Figure 39: The created script for running the algorithm on full surfaces in Dynamo (author) 
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Highlighted in yellow in Figure 39; the algorithm will check the length of the line, and evaluate 

if the length is less than two times the inserted value for the spacing between the lights. It will 

only place a point at the end of the line. Preventing overlapping points that might occur if points 

are placed at the start and at the end of every line that creates the surface. 

Otherwise, if the measured length is less than three times the inserted value for the spacing 

between the lights, the algorithm will place a point at the center and at the end of the line. The 

else statement is highlighted in blue in Figure 39. 

Furthermore, if the measured length is more than the two discussed conditions, it will divide 

the length by the inserted value for the spacing between the lights. After that, the results are 

rounded to avoid fractions that leads to unnecessary points. This statement is highlighted in 

Figure 39. Although Dynamo places points not lights, these points will be used by Revit as 

coordinates for lights. 

4.2.2.2.3.2 Shortfalls of boundary lighting algorithm on split ceilings 

Figure 40 shows the issue that started to appear if the boundary lighting algorithm is tested on 

split ceilings. Although the scripted algorithm divides the lines correctly, results showed errors 

in the spaces between the lights, creating inaccurate results. The black arrows in Figure 40 

highlights the locations where the division had failed.  

After various testing and investigations, the inaccuracy in division occurred because of the 

splitting algorithm. Since the splitting algorithm draws an extension line from the original 

surface to do the split, Dynamo treats this case as two individual lines: dividing both lines 

separately. So, although they might appear as one extended line visually, Dynamo is treating it 

as two separate lines, creating this discontinuity in the division as the calculations depends on 

the length of the line.  
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Figure 40: The issue that appeared when applying boundary lighting on split ceilings in Dynamo (author) 

Figure 41 shows the steps the algorithm takes to fix the discontinuity issue when placing 

boundary lights. Where (a) shows a random ceiling before applying the splitting algorithm. 

While (b) shows what happens when the split algorithm is successful, where it creates division 

lines that are colored in light green. When applying the boundary algorithm, it will address 

each split surface on its own as (c) shows. However, due to the extended split lines; the surface 

will appear to have multiple lines creating one side of the surface, hence the discontinuity issue. 

(d) in Figure 41 is showing the first step to fix the issue, where if two lines showed a parallel 

condition, this condition can tell the algorithm which lines are on the same axis. For the 

algorithmic system to know which lines have this condition, Normal Vectors were extruded 

from all the lines and checked if they were parallel, since there are not any Nodes in Dynamo 

to check for parallel lines directly. The output will be fed into (e). 

(e) displays the next step of the algorithm in Figure 41, where a script is written to arrange the 

indexes of the lines, arranging them through checking each index and shifting it to a position 

that results in creating sequential indexes that are coherent with the surface lines. 
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Figure 41: Explanation for the algorithm approach to fix the discontinuity issue (author) 

(f) is showing the next step, where the algorithm will extract the points of the start and the end 

of the parallel index and joins these two points using a poly-curve line.   

Due to the fact that a new line is drawn, this adds up to the original indexes, so the algorithm 

will remove the old indexes as seen in (g) in Figure 41. A while-loop is created in this condition 

rather than the standard for-loop as not all the lines that forms the surface requires this step.  
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(h) in Figure 41 joins all the new clean lines and creates a poly-curve, While (i) is the final step 

that patches the surface. Resulting in creating the same split surfaces but without the 

discontinuity issue. After that, the patched ceiling is fed to the first algorithm and the boundary 

lighting method is created.  

4.2.2.2.3.3 Creating central line lighting for narrow ceilings 

Figure 42 shows how the algorithm approaches the narrow ceilings and places a center line of 

lights in the middle. The same steps that were explained in Figure 38 is conducted again in this 

approach, resulting in having a ceiling as (d), where the narrow corridors are excluded from 

the layout.   

(e) in Figure 42 is showing the next step, as the algorithm will apply Normal Vectors 

throughout the entire surface, in addition to the reversed Normal Vectors as well.  

 

Figure 42: The algorithmic script approach to creating central line lighting for narrow ceilings in Dynamo (author) 
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Since the corridors were excluded in the beginning due the to the inwards-outwards offset 

explained in Figure 38 previously. The algorithm is treating the blue outlined surface as a 

surface by its own and the purple surfaces as surfaces by their own individually.  

(f) in Figure 42 is highlighting where both surfaces had intersected. The script applied a 

condition on the Normal Vectors to identify if the applied Normal Vectors are projecting from 

one ceiling to another. If so; they will remain as seen in (g) in Figure 42. Otherwise they will 

be discarded. 

After that; (h) in Figure 42, is showing the created poly-curve using the points on the 

intersections, and (i) is the final step that takes the poly-curve and divide it based on the inserted 

value by the Boundary Lighting Spacing Slider.  

4.2.2.2.3.4 Boundary lighting controllers 

Figure 43 shows the controllers that are used by the end user to allow easy and instant design 

alterations based on the visual outputs. The first slider can turn on and off boundary lighting 

method to reduce calculations on the total algorithm. 

 
Figure 43: Boundary lighting controllers in Dynamo (author) 
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Limit of Narrow Corridor slider shown in Figure 43 refers to the amount of narrow corridors 

the end user would like to exclude from the boundary ceiling approach. If the slider value 

increased, the number of corridors or narrow ceilings that applies the boundary lighting method 

will decrease.  

Wall Offset Slider controls the distance between the lighting and the borders of the ceiling. The 

increased spacing works in a direct correlation with the value in the slider. While Boundary 

Lighting Spacing Slider shown in Figure 43 is basically the value that states the spacing 

between every light coordinates. This value is also used for the division part in the algorithm.  

4.2.2.2.4 Boundaries sub-approach: Creating drop down ceilings 

Figure 44 shows one option produced by the algorithm, along with the sliders controlled by the 

end user.  

 
Figure 44: Drop down ceiling option with its controllers in Dynamo (author) 

The Wall Offset 01 is at a value of 400 and Wall Offset 02 is at a value of 800 producing the 

double lines shown in Figure 44.  
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4.2.2.2.4.1 Drop ceilings script 

Figure 45 shows the script for the drop ceilings method that is outlined in red. Where the 

algorithm is using the surface that is inserted from Revit to form boundaries around the ceiling 

using a polygon line. Then, the created polygon line is offset inwards, the value of the offset is 

controlled by the end user using two sliders. As two offsets are created to increase the variety 

of options. 

 
Figure 45: The script for drop down ceilings and minor definitions for boundary lighting in Dynamo (author) 

To place various polygon shapes in the center of the ceiling; the center point of the shape is 

created, and a plane is placed on that center. By using a plane, the algorithm can insert a 

Circle.ByPlaneRadius command, that created a circle in using the center point. 

Using the circle created, different shapes can be generated from the circle. Generating a circle 

followed by an ellipse, then a triangle, quadrilateral, pentagon, hexagon, heptagon, all the way 

to decagon.  
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However, the created ellipse is scripted in an individual line in the algorithm since it is using 

two axes: a minor axis and a major axis. The minor axis is considered as the radius of the circle 

and uses the same slider of the Circle/Polygon Radius slider. While the major axis is controlled 

individually using the Ellipse Radius 2 Slider. 

4.2.2.2.4.2 Drop ceiling controllers 

As all the other algorithms, drop ceiling controllers allows a flexible, instant, visual design 

approach for the end user. The first slider in Figure 46 turns on and off the method. While the 

Wall Offset 01 slider determines the first offset that creates the drop ceiling design. The Wall 

Offset 02 slider controls the second offset design. The offset space from the boundaries that 

creates the ceiling to the new created line increases as the value in the slider rises.  

 
Figure 46: Drop Ceiling Controllers created in Dynamo (author) 
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The Off-On(Circle\ellipse\polygon) slider in Figure 46 turns on and off the other drop ceiling 

designs instead of an offset that has the same identical outline as the ceiling.  

The other sliders are self-explanatory, as the Polygon No of Sides slider changes the created 

shapes based on the value in the slider. As 1 creates a circle, 2 creates an ellipse, 3 creates a 

triangle and so on, the number in the slider matches the number of the sides that creates the 

shape.  

The Circle/Polygon Radius controls the radius of the polygon shape as well as the circle radius. 

While the Ellipse Radius 2 allows the user to manipulate with the ellipse dimensions as seen 

in Figure 47. 

 
Figure 47: Figure 23: Produced drop down ceiling in Dynamo (author) 
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4.2.2.3 Approach 03: Creating a grid 

4.2.2.3.1 Creating a grid using a plug-in 

For creating a grid, a plug-in called Lunch Box was used, it is also previously used in adding 

the splitting lines in Approach 01: Splitting the surface. The grid tool is a part of the plug-in 

and it is usually used for creating three dimensional shapes and for controlling the geometry 

while creating different masses. Thus, it offers a variety of different shapes for the grid. 

Different Nodes were added to the algorithm, a quad grid, a diamond grid, a hexagon grid and 

three different shapes of triangle (a,b and c grids). If the diamond Node is used for example, it 

will result in placing points on the shape of a diamond distributed uniformly throughout the 

ceiling.  

After adding the Nodes from Lunch Box, each Node required three main inputs: the surface, 

the U direction, and the V direction. Those directions are numerical inputs that control the 

amount of points inserted. Once these three elements are fed to the Node, it will automatically 

create points on the selected surface using the referred Node shape. These points are treated as 

light coordinates. 

When testing the different grids, results showed an interesting variety. As not all the grid Nodes 

produced the inserted numbers in U and V directions. For example, for the Quad, and Triangle 

B grids; if the V or U direction input was 10, the number of points shown on the surface will 

be 9 on each axis.  

While the Hexagonal and Triangle B produce 10 points on both axis as the input. While the 

Diamond grid produced 4 points on a line, followed by 5 points on the next line to create the 

diamond shape on both U and V axis, however the inserted input was 10.  

While Triangle C grid produced the opposite of the diamond grid starting with 5 points on the 

U axis, followed by 4 points on the V axis. 
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Table 5 shows the Nodes with the results of each grid. In the shown Nodes, the three inputs are 

visible. The U and V inputs are inserted through a Slider Node, that shows 10 in all the grids.  

Table 5: The resulted grids using Lunch Box in Dynamo (author) 

Grid Type The Node in Dynamo The Resulted Points Grid 

Quad 
Grid 

 

 

Diamond 
Grid 

 

 

Hexagonal 
Grid 

 
 

Triangle 
Grid A 

 

 

Triangle 
Grid B 

 

 

Triangle 
Grid C 
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4.2.2.3.2 Shortfalls and solutions in the plug-in gird  

The plug-in grid was able to distribute the points without the need to feed the division 

calculations to the algorithm, thus saving time and effort in figuring out proper calculations. In 

addition, it offered a variety of designs for distributing the points on the grid.  

However, the plug-in grid had failed in distributing points in the surfaces that had more or less 

than four corners, furthermore it had applied points of the surface’s borders in all the tested 

shapes regardless of the number of angles the surface had.  

The first issue occurred when the grid Node was tested on rectangular and square ceilings. The 

algorithm was able to apply the coordinates of the points using the different designs, however 

the boundaries of the surface had also points on it as seen in Figure 48. Since the points refers 

to light coordinates, it is essential for the boundaries not to have any points on it.  

 
Figure 48: First shortfall of the inserted grid in Dynamo (author) 

The second issue occurred when the algorithm was tested on ceilings that had more or less than 

four angles. As seen in Figure 49, in order for the algorithm to achieve uniformed distribution 

for the points with different designs, it created a boundary box that applied an imaginary four 

edges surface on top of the selected shape, then the algorithm measured the length of  the U 

and the V directions from the boundary box, and divided it mathematically to be able to 

distribute the points on it equally. Resulting in locating a lot of points outside the surface.  
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Figure 49: Second shortfall of the inserted grid in Dynamo (author) 

The plug-in tool produces the proper distribution of the points using the imaginary boundary 

box, which is important to keep, as it creates equal spaces between each point. However, to 

delete the points that are located outside the surface, a Code Block was added to the algorithm.  

The script is highlighted in red in Figure 50, where it intersects the produced points with the 

shape of the surface that was inserted in Dynamo. Upon intersecting the points with the surface; 

the algorithm will sustain the points that are attached to the surface or touching the boundaries, 

while ignoring the points that didn’t.  

 
Figure 50: The Quad Node connected to the intersecting Code Block in Dynamo (author) 

The script shown in Figure 50 had eliminated the extra points that did not intersect with the 

surface. Nevertheless, the points found on the boundaries are considered intersecting points, 

thus this script cannot remove it. To fix that issue another script was created and added to the 

algorithm. 
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The added script is shown in Figure 51, where it creates a polygon line that forms the 

boundaries of the surface.  Then, offsets that line towards the inside based on a given value 

from the end user - shown in Figure 51 as a numerical slider - creating a smaller surface inside 

the original surface by patching the offsetted polygon.  

After that, the new patched ceiling that resulted from the offset towards the inside of the shape 

connects to the intersection script. Finally, the preview of the offset line is turned off which is 

outlined in Figure 51. To allow displaying only the points inside without showing the points 

on the boundaries nor the geometry of the boundaries inside the ceiling that indicates the 

polygon offset. 

 
Figure 51: The final Plug-in Grid algorithm in Dynamo 2.0.3 (author) 

Figure 52 shows the full final algorithm for the quad grid, and the surface if the patched offset 

is turned on, where the offset line that created a new surface is clearly visible, and the grid 

points are only applied to the new surface. Resulting in having a clear frame that doesn’t have 

any points in the original surface.  

While Figure 53 shows how the surface looks when the preview of the offset line is turned off, 

resulting in creating points inside the original surface without showing the new added surface, 

the offset is 2000mm in both figures and it can be controlled and changed to increase the grid 

points to the surface.  
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In Figure 53; turning off the line of the offset doesn’t mean that the algorithm is not using the 

script and creating a new smaller surface, it simply means that the line can’t be seen visually, 

however the result of creating it is clearly visible.   

 
Figure 52: A Surface with the final grid algorithm with the patched offset turned on in Dynamo 2.0.3 (author) 

 

 
Figure 53: A Surface with the final grid algorithm with the patched offset turned off in Dynamo 2.0.3 (author) 
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Although the plug-in grid had shown promising results, it had a few issues that resulted in 

changing the grid approach completely. Nevertheless, this grid can be used widely if the 

algorithm is addressing masses and geometrical shapes.  

Due to fact that the aim of the algorithm is to create light coordinates only, the output results 

did not serve that purpose as required. The coordinates by the points are uncontrolled as they 

do not always match the inserted U and V values. Not allowing the end user to determine a 

clear number for the lights coordinates in a surface. 

Although the different design Nodes had shown great differences when the points are 

connected through panels, exhibiting the potential different results the grids can make - as seen 

in Figure 54 - these options tend to have a very similar results when the lines or panels are 

removed.  

Figure 54 displays the different four types of grids when the panels are turned on and 

connected, as (a) presents the diamond grid (b) is the triangle A grid, (c) is showing the triangle 

B grid and (d) is the triangle C gird.  

 
Figure 54: Different grid designs with the panels turned on in Dynamo 2.0.3 (author) 
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4.2.2.3.3 Scripting a new uniform/quad grid design 

Due to the errors that occurred in the previous stage, it was simpler to take the two distinguished 

grid designs (the quad and diamond shape grids) and script down the grid calculations manually 

in order to avoid overlapping points.  

 
Figure 55: The first script for the uniformed grid in Dynamo 2.0.3 (author) 

The scripting of the two grid designs had been developed through different stages. The first 

grid is called Grid 1, shown in Figure 55; it’s for the uniformed gird, which resembles the quad 

grid. While Grid 2 is the non-uniformed grid, which imitates the diamond grid discussed earlier. 

The end user will have three types of sliders as seen in Figure 55; the grid type, which basically 

switches between the quad/uniformed grid and the diamond/non-uniformed grid. Due to the 

fact that this algorithm is working with the number of divisions on each side; slider Division1 

and slider Division2 shown in Figure 55 determine the number of points on both axis. Rather 

than having it produced randomly as the plug-in grid. This gives the end user the flexibility to 

customize their grid based on the shape of their inserted ceiling.  

The scenario of choosing number one only in Division 1 and Division 2 sliders was added to 

the script under an if statement. For example; the division starts normally if the end user placed 

in the both division sliders number 2, as it will basically pick the starting point of the surface; 
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which is always 0 in all surfaces in Dynamo and the end point of the surface; which is 1. 

Creating coordinates for two points on each axis, where x axis will have (0,0),(1,0) coordinates, 

and y axis will have (0,0),(0,1) coordinates. Whenever the coordinates are intersecting, a point 

is created. So in this case; the two intersection points between the two axis will be (0,0) and 

(1,1), creating two-point division as per the input by the end user. However, if only number 1 

is picked in the division sliders, the algorithm will automatically place one point in the center 

of the surface with coordinates of (0.5,0.5). 

These commands can be seen in Figure 55; in the script. In the start of the script, the algorithm 

has three input elements highlighted in yellow: srf which refers to the surface, div1 and div2; 

that refers to the division sliders in both axes. While Pr1 is the list of coordinates created based 

on Division1 slider that divides the surface in the first direction, and Pr2 is a similar list that 

divides the the surface in the second direction.  

The if statement is highlight in blue in Figure 55, Pr1 definition is the following:  

pr1=div1==1?0.5 states that if the inserted value of Division1 is 1, the coordinate point will 

be 0.5, Otherwise - created using the colon mark in the statement - 0..1..#div1; that means the 

algorithm will create a sequence starting from zero all the way to 1, depending on the inserted 

number of divisions. #div1 inserted using the slider, the divisions will distribute itself out 

equally on the axis.   

In order to place visual points in the divided axis, the used tool in Dynamo is 

surface.point.parameter, which  takes a surface, and produces a point at a certain given 

coordinates, it’s highlighted in green as the final step in Figure 55. 

Normally the grid will produce points seen in Figure 56 when tested on a ceiling. The final grid 

output intersects the points with the surface only, so points will be only on the surface.  
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Figure 56 shows the entire imaginary four angled surface to highlight the sequence of the 

coordinates in it. As it’s clearly seen in Figure 56 the numbers are going in one direction only 

as the arrows show. Although this is not a bad sequence, but due to the fact that this grid is 

applied for uniformed lighting, creating light coordinates in this sequence will work in applying 

one light pattern normally, but it can’t alternate patterns sequentially. 

 

Figure 56: The first sequence produced by uniformed grid on a ceiling in Dynamo 2.0.3 (author) 

For example; as seen in Figure 57; if an LED spotlight is to be placed on zero-point, two-point, 

and four-point coordinates and a square LED light is placed on one-point and three-point 

coordinates. Dynamo will repeat the same sequence again and again as this sequence is located 

in one list that’s outlined in orange in Figure 57; where coordinates (0 to 4) are automatically 
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placed in one list and numbered as the first list. And that list repeats itself for a second, third, 

and fourth list in this example. The number of lists depends on the input number of divisions.  

This sequence will result in the output seen in Figure 57, where a line of spotlights is seen 

vertically followed by a line of square LED.  

 
Figure 57: Applying lights on the first sequence for uniform grid in Dynamo 2.0.3 (author) 

In order to change that sequence, the following script was added, showing in Figure 55. Where 

pr3 = List.Reverse(pr2); Which means that the second list Pr2 is reversed and defined under 

a variable named Pr3. So, if the list is zero to four, it will be four to zero.  

In this step, the grid had an issue where it had reversed the sequence but the coordinates didn’t 

reach to the end of the surface in the division direction produced by Pr3, while reaching the 

end of the surface in other direction that was produced by Pr1. 
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After various trials the solution was to add another variable called Pr4 that combines Pr2 with 

the new reversed list Pr3, it is written in the following form: pr4 = List.Cycle([pr2,pr3],div1); 

After combining Pr2,and Pr3, these two lists are cycled. The two lists will cycle to reach the 

same division value in Pr1, thus div1 is added.  

In other terms, Pr4 will cycle itself over and over to reach the same number inputted in 

Division1. Division 1 is discussed earlier as the input value the end user places using the slider 

creating a large list of numbers.  

Since Pr4 is a combination between the original list Pr2, and the reverse list Pr3. The list 

became double the values compared to Pr1. So to equalize Pr4 list to Division 1 value, Pr5 

variable is added, where it will take the values that are not repeated to match the same amount 

of as Pr1, it is written as the following:  pr5 = List.TakeItems(pr4,div1);  

These added scripts had changed the sequence shown as seen in Figure 58, where the 

coordinates on the grid are reversed in the second and the fourth lists. Creating a different grid 

pattern that is able alternate the two types of lights.   

 
Figure 58: The uniform grid after applying the reverse lists in Dynamo 2.0.3 (author) 
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4.2.2.3.4 Scripting a new diamond/non-uniform grid design 

Figure 59 shows the diamond/non-uniform grid with the imaginary boundary box showing. As 

mentioned before; the final step in the grid script intersects the boundary box with the surface 

and only shows the points that are located on the surface.  

 
Figure 59: Grid 2 – the diamond/non-uniform grid in Dynamo 2.0.3 (author) 

To achieve the diamond grid, the first line starts at an offsetted value, and goes all the way to 

1, as 1 refers to the end of the imaginary boundary box. While for the second line; it starts from 

zero and does not end at 1.  

Figure 60 shows the written script for the diamond algorithm where Pr1=0..1..#div1;. Pr1 is 

defined as a one direction of the division, Pr1 can be the division script x or y axis. Because 



 107 

there is no valid way to identify which division is for x axis and which is for y axis. It can only 

be seen once the algorithm is tested on a certain surface, and that may vary based on the 

dimensions of the inserted surface.  

Assuming that Pr1 is x axis; in that case the script states that the border of the imaginary 

boundary box that intersect with x axis is divided starting from zero, which is the starting point 

of the axis until the end of the of the imaginary boundary box which is 1, diving that axis with 

the value inputted in #div1. This value is obtained from the end-user, where a slider shown in 

Figure 60 is placed in the workspace under the name of Division 01. 

 
Figure 60: The first script and grid controls for the non-uniformed grid in Dynamo 2.0.3 (author) 

Pr2 is split into two mathematical equations: Pr2a and Pr2b. Pr2a refers to the line in the grid 

that doesn’t starts from zero, it starts from an offsetted value. It is highlighted in red in Figure 

60 and written as the following in the script: Pr2a=1/div2/2..1..#div2; which means: 1 is 

divided by div2, which is the value inserted from Division 02 slider shown in Figure 60, divided 

by 2 ; to get the point to be in the center of the following line to create the zigzag effect.  

For example, if the inserted division by the end user was 4. The list in Pr1 will be (0,0.25,0.5,1) 

which is the normal gird line that starts from zero. While Pr2a will be is [(1÷4) ÷2] presenting 
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the script of 1/div2/2. This will create the coordinates to start the second grid line, that is in the 

center of the space between the two points in the first line. In other terms, it creates the offset 

value to start the second line with. So, in this example, the second grid line will start at 0.125, 

which is the center of 0.25. where #div2; in the script refers to the number of divisions inserted. 

Pr2b is highlighted in green in Figure 60, which starts from zero but the points don’t reach the 

end of the surface in the grid, because Pr2a will get to the end of the surface since it started 

with an offsetted value and not from zero. In order to keep Pr2b from reaching to the end -1 is 

added, the script is written as the following: 0..1-1/div2/2..#div2; as it starts from zero 

coordinates and run until 1-1, which means it doesn’t reach the end, which is 1. div2 refers to 

the second division slider input that is visible in Figure 60.  

The rest of the script is like the uniform grid script, however in this case Pr2b is the list that is 

reversed under the definition of Pr3.  

Then the same procedure is carried on, as Pr3 and Pr2a are combined and cycled to the number 

of the inserted divisions from Divisions 01 slider, to create a bigger list that is called Pr4.  

After that, the final step is the same step as the quad grid script, where P5 is the final list that 

will only take the same number of unrepeated coordinates from Pr4 as the inserted division 

value.  

As mentioned earlier, the tool in Dynamo to place points is seen in Figure 60 is called 

srf.PointAtParameter. It will take coordinates from the final two lists Pr1 and Pr5 and place 

points on those coordinates, creating the visual diamond grid.  

List.Flatten command basically cleans out all the inner loops that the algorithm is doing, It 

comes after the calculations script is closed, in this the list is flattened because the cycling script 

loops various times and can impact the efficiency of Dynamo. 
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4.2.2.3.5 Switching between the two types of the scripted grids 

After creating both grids, a slider was added to the workspace to allow the end user to choose 

an option for the grid design. In order to do that, a simple algorithm is scripted in Figure 61 

and connected to the slider, allowing the swapping between the grids.  

As seen in Figure 61; it is defined as grid_t(t,srf,div1,div2), where t refers to the slider that 

chooses the type of gird, srf is for the selected surface, and div1,div2 is for the divisions slider, 

srf,div1,div2 are the same inputs written in the definitions of the two girds as will.  

 

Figure 61: Swapping between Grid1 and Grid2 script and slider in Dynamo.2.0.3 (author) 

An if statement is created in this script, allowing the selection between the two types of grids 

1 or 2 (uniformed or non-uniformed). The highlighted script in Figure 61 states:  

- If the slider selection is 1, if t=1 then run the algorithm on grid 1, which is the quad option 

- Or else run the algorithm on grid 2. Since the inserted slider is set to only move between one 

or two, else in the script refers to the second option.  
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4.2.2.3.6 Updating the scripted grids upon testing it  

Figure 62 shows the error that occurred when the grid is applied after splitting the ceiling, 

although Division 01 and Division 02 had very close inputs 8 and 7. The grid had divided each 

split space differently, In addition, the designer doesn’t have the control to alter that division.  

 
Figure 62: The quad grid results after applying it on a split surface in Dynamo 2.0.3 (author) 

In order to fix this issue, the divisions controllers were replaced to become Spacing in Length 

and Spacing in Width as seen in Figure 63. The old approach inserts the numbers the end user 

wants. So, for example, if the surface 6000x6000mm, and the end user inserted in Division 01 

a value of 300 points. The algorithm will automatically find x variable [x=inserted value/the 

length of the line], which will be 0.05 to place 300 points on the line. So, the end user is giving 

the generative system the quantity of lights they desire on the line.  
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The new approach replaced the value from the quantity of lights, to the spacing between each 

line. Now the algorithm finds x variable through [ x=the length of the line/the inserted value 

called spacing], in this case 6000/300= 20 points on the line. And a parallel approach is applied 

on the width of the surface.  

After that, the division will result in lines from both directions that will intersect to create the 

grid and proper intersection points. The same procedure is repeated on all the split surfaces. 

Resulting in an even distribution on all the split surfaces.  

 
Figure 63: The quad grid results after applying it on a split surface using the new approach in Dynamo 2.0.3 (author) 

In addition, different sliders were added that are shown in Figure 63 , allowing a better mobility 

by the end user. The sliders are discussed in detail in the following section The grid controllers. 

Figure 64 is showing the final scripts for the both the quad and the diamond grids, with the 

added script highlighted in the script. The three variables fed to the algorithm now are: the 
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ceiling surface, the spacing in the length, and the spacing in width that are taken from the 

sliders. 

 
Figure 64: The final quad and diamond grids scripts in Dynamo 2.0.3 (author) 

The highlight parts in Figure 64 are added to the original script, where div1 is for calculating 

the length divided by the inserted value, in the length direction. And div2 calculates the width 

and divides it by the inserted value from the second slider (Spacing in Width).  

While Math.Ceiling that’s seen in Figure 64 rounds up the division output to be a whole 

number instead of a fraction.  

The rest of the script remains the same as before, however in the previous calculations 

explained prior to this section, the variables fed to the calculations were the values taken from 

Divisions 01 and Divisions 02 sliders, but in Figure 64; div1 and div2  are now the output of 

dividing the length or width by the inserted variable from the Spacing in length and Spacing in 

width sliders. 

  



 113 

4.2.2.3.7 The grid controllers  

The grid controllers are a group of sliders that are connected to the discussed scripts earlier. 

Allowing the end user to have more flexibility over the shape and design of the grid.  

The Off-On Grid Points slider seen in Figure 65 is a tactic to reduce the amount of calculations 

required on the total algorithm. This slider is applied almost on all the different light generating 

methods, channeling the algorithm to select specific design methods that the user chooses. The 

Off-On Grid Points slider has two values: as zero switches the grid approach off and 255 

switches it on.  

The Limit Grid-able Surface Slider can limit the grid to certain areas instead of the whole 

surface. And the Offset Grid Extents slider allows the end user to determine the desired offset 

distance from the wall, as zero value will result in applying the grid starting from the borders 

of the ceiling, while increasing the value in the slider will automatically result in increasing the 

offset space between the border of the ceiling and the grid.  

 
Figure 65: Grid Controllers Group in Dynamo 2.0.3 (author) 
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Figure 66 shows a ceiling with the Limit Grid-able with a value off 500. As the grid points 

applied throughout the ceiling.  

 
Figure 66: Ceiling with a gird points with Limit Grid-able of 500 in Dynamo 2.0.3 (author) 

Figure 67 shows the same ceiling with the Limit Grid-able with a value of 1500, showing the 

grid points reduced in the narrow areas of the ceiling. 

 
Figure 67: Ceiling with a gird points with Limit Grid-able of 500 in Dynamo 2.0.3 (author)  
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4.2.2.3.8 Grid sub-approach: Creating Light patterns 

4.2.2.3.8.1 Uniform rectangular patterns 

In order to place lights forming a uniform rectangular pattern, an outline of an imaginary 

rectangle was created with the center of it being a point taken from the grid’s x and y 

intersections. The algorithm takes the length of the imaginary rectangle outline which is 

inserted by the end user using a slider, and dividing it to obtain the number of points that will 

be distributed on one side of the imaginary rectangular outline. These points refer to the lights 

coordinates depending on the required spacing between each light, which is also controlled by 

the end user.  

 
Figure 68: Simplified concept of creating rectangular uniform patterns (author) 

Figure 68 shows a simplified concept of creating a uniformed rectangular pattern, (1) shows 

the center point that’s taken from the grid intersection, and the two parallel sides creating the 

imaginary rectangle outline, in this example one side is called a and the other is b.  
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(2) is showing how the algorithm will study the shape, as it will treat every side as it’s own, 

hence the two different colors for the sides. For b, the algorithm had placed three square lights, 

including the edges of the line in the division. 

While (3) shows in Figure 68 that -side a- had only placed one circular light in the center, 

neglecting the edges of the side, the numbers of the lights can be increased based on the end 

user input. The algorithm will always run this method; where if one side had included lights at 

the starting and at the end of it, it will automatically not place lights at the start and at the end 

of the other side. Preventing an overlapping in the corners between the two opposite sides. (4) 

in Figure 68 is showing the result, as the imaginary rectangular will not show and a rectangular 

light pattern is created.  

Furthermore, the user’s input to create the imaginary rectangle is controlled by the slider where 

the end user has access to manipulate both sides of the rectangular. The center point can change 

to become a center light. 

 In order to limit the amount of outputs the algorithm is able to produce, all the used lights to 

create patterns and the center lights had fixed dimensions which are shown in Figure 69, the 

end user has the ability to change the dimensions of the lights shown in millimeters, however 

a possibility of an overlapping might occur.  

 
Figure 69: The lights sizes input in the algorithm for creating patterns in Dynamo 2.0.3 (author) 



 117 

4.2.2.3.8.1.1 Key issues in creating uniform rectangular lighting patterns  

Different errors occurred while scripting the algorithm for the creating light patterns. The first 

issue happened once the lights’ dimensions were added to the algorithm, as some of the lights 

had dimensions of 100x600mm and 100x1200mm. When the lights were applied using the 

explained method earlier, the results showed overlapping patterns shown in Figure 70 (1), 

where the red square represents 300x300mm light and the blue rectangles  are 100x600mm, 

while the green hatched line is the imaginary rectangular outline.  

In order to eliminate this issue , Figure 70 (2) shows the solution; as a script is added in the 

algorithm to measure the longest dimension of the placed light, and use that value to do the 

offset of the imaginary outline. So regardless of the direction of the light, the default offset will 

remain equal to the longest dimension of the light. 

 
Figure 70:The algorithm error due to the dimensions of the lights and proposed solution (author) 

Due to the fact that there isn’t a specific rule for the spacing between each light, different sliders 

were given to allow manipulations in the patterns spacing. Although the default offset is equal 

to the longest length of the placed light, that offset can be changed using the sliders, as the 

imaginary rectangle can change its length using the slider (Pattern Scale 1) and its width using 

slider (Pattern Scale 2) that are shown later in The light patterns controllers. 
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The second issue in creating rectangular patterns, was the orientation of the lights that are 

placed using the imaginary rectangle outline. Where the algorithm had managed to produce 

lights that are shown in Figure 71 (1) but didn’t produce option (2).  

 
Figure 71: Lights orientation issue in uniform rectangular lighting algorithm (author) 

After various trials, this issue was fixed through scripting different steps that are explained in 

Figure 72.  

 
Figure 72: The steps to change the orientations of the lights (author) 
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The first step was to find the Normal Vector of every line that created the imaginary rectangle 

outline, colored in black in (a) in Figure 72. The Normal Vector is defined as 90° projection 

vector that comes from the center of the line towards the inside of the shape (The Dynamo 

Primer 2019).  

The second step was to create a plane for every line that creates the imaginary rectangle outline, 

they’re colored in orange in (b) in Figure 72. The plane is created from a Node found in 

Dynamo’s library that’s called Plane.ByOriginNormalXAxis; where the Normal Vector is 

fed into that plane, forcing every plane to be aligned with the axis of each line created the 

imaginary rectangle outline.  

 To create a rectangle that represents the light with the required dimensions, a Node called 

Rectangle.ByWidthLength is added; where the plane direction is fed into that Node, along 

with the required dimensions of the light. Resulting in creating rectangles on top of the planes 

that holds the same orientation as the plane as seen in Figure 72 colored in blue.  

(d) in Figure 72 shows the final results; where the planes nor the Normal Vectors are displayed 

for the end user and only the created pattern will appear.  

4.2.2.3.8.1.2 Uniform rectangular patterns script explanation 

Figure 73 shows the script that explains the division process to produce the uniform rectangular 

patterns. Small1 highlighted in green in Figure 73 is taking the input lists of lights dimensions 

shown in Figure 69 and reversing it, as some lights will be drawn as 100mm being the length, 

and 1200 being the width, so the reversing option flips the lights dimensions, then small_t uses 

a command that’s called List.UniqueItems which removes any repeated lights, as a reversed 

300x300mm dimensions will result in an unnecessary repetition of lights. And applies 

List.Transpose command which will take the length of the input lights and place them in a 

list, and the width of the lights and place them in another list. Those two lists will feed the 
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rectangle the two required dimensions to create it.  These commands are not connected to the 

for-loop and will be constant in any pattern creation, the for-loop starts after 

return=[Imperative] and ends after return that is found at the end of the script. 

 
Figure 73: Uniform rectangular patterns script in Dynamo 2.0.3 (author) 



 121 

Figure 73 displays the three for-loops created where the algorithm will pick only one variable 

from the input light dimensions, ignoring the rest of the dimensions. And run the all the for-

loops on that variable only, then place the results it in a list. After that, the algorithm will pick 

the second light and do the same procedure and add it to the final list. So, in this case, since the 

input lights have five different dimensions, the algorithm will for-loop five times, every for-

loop has three for-loops inside of it. That overall for-loop process is seen in (h in 0..List.Count 

(small2)-1) highlighted in blue; as h index takes the lists created from the transpose command, 

and runs the for-loop using it. That is why h is repetitive throughout the script. Without the 

sub-level lists of h. The for-loop will have shortage of looping. 

R0 highlighted in yellow; shows the creation of the center light. while R1 shows the offset of 

R0 to create the imaginary outline rectangular. It is exploded to get individual sides. One side 

of the imaginary rectangular outline is called a and the other is b. To create proper division, the 

two parallel lines of both a and b were grouped, and the division was applied on the groups 

immediately.  

C highlighted in orange; allows the algorithm to pick the first value from the first list in small_t 

list and checks if that value is bigger than the first item in the second list in small_t. If it is 

bigger it will return to the first list, using the value from the first list. Otherwise, the algorithm 

will to the second list. This procedure feeds the created rectangular light shape only one 

dimension, while the opposite dimension is fed to the rectangular from wid1; which refers to 

original light inputs found in small_2 list. C definition essentially created to identify which 

length of the light dimensions from the two lists is longer, to feed it into the division process 

of the imaginary rectangle outline. For example, if the division calculations did not consider 

the longest length of the light, and the short length of the lights had been placed in the divisions, 

once the light rectangles will be placed, they will overlap. This ensures the overlapping within 

the lights in one side of the imaginary rectangle outline does not occur. 
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Highlighted in purple; (a) represents one of the groups that creates the imaginary rectangle 

outline, assuming that it is the length groups. While (b) is the opposite group which will be the 

width group that forms the imaginary rectangle outline.  

 The division calculations of (a) side that is applied on the imaginary rectangular outline; where 

the length of R1 -which is the offsetted rectangle- is measured, divided by C -which is the 

longer dimension of the light- and multiplied by 1.5 to increase the space a bit more, so the 

pattern will not end up with lights that are very close to each other. Math.Floor command 

rounds down the results, as the division might result in fractions. Rounding it down allows the 

algorithm to lose the extra fraction that might result in having more lights. After that, the 

algorithm will check if the patterns results are more than 3, it will revert to three. Otherwise, 

the calculations will run again if it is less than 3.  

The 3 restriction is added after the algorithm was created and done, to limit the patterns options. 

The algorithm was able to produce up to 4000 options, which did not feel beneficial and simply 

time consuming to view by the end-user. So, limiting the patterns to only the first 3 from every 

sub-list had reduced the overall options. (b) side has also the same calculations as (a) but for 

the opposite group of the imaginary rectangle outline.   

Highlighted in red in Figure 73, n0 for group (a) and n1 is for group (b) and I for-loop; where 

these three definitions creates the varieties of designs in the patterns. n0 creates a list starting 

from 1 all the way to 3 -which is the added limit- where the first option the division for group 

(a) will be by 1, after that; lights will be placed and patterns will result from only one division 

in one side of the rectangular. Then using I for-loop it will run again and divide by 2; placing 

two lights on the points of the divisions and producing patterns, and finally the algorithm will 

run 3 divisions as well. All these divisions are only for group (a). Then n1 will repeat the same 

scenario for group (b). I definition basically counts and creates an index of different values of 
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divisions to divide the rectangle. A statement is created in I where if the index is zero, which 

means 1 because the Index list in Dynamo starts at 0. Then this list can’t run more than once, 

otherwise; if n0 count is not 1 then count it and subtract 1. The -1 is added because the index 

starts from zero in Dynamo. 

Another for-loop called j is created outlined in black in Figure 73. Where pts1, pts2, pts3 and 

pt3 that are highlighted in pink in Figure 73, will check if the division for both n0 and n1-

which refers back to both sides of the imaginary rectangle outline- is 1; then the division point 

will be placed at the middle of the line, but if more than 1, then run the division algorithm to 

place the points on equal spaces.  

While the gray shaded scripts are the Normal Vector, Plane and the light rectangular creations 

that was explained previously using Figure 72.  

4.2.2.3.8.1.3 The produced uniform rectangular patterns  

This script had produced around 470 light patterns. Figure 74 and Figure 75  show some of the 

produced lighting patterns.  

 
Figure 74: Uniform rectangular patterns output generated in Dynamo 2.0.3 (author) 
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Every pattern will be placed on the grid and repeated to create uniform lighting that was created 

using generative designs. The grid will not mix the patterns together in one space, although this 

option can be scripted, it is not beneficial from a design or execution perspective.  

 
Figure 75: Uniform rectangular patterns output generated in Dynamo 2.0.3 (author)  
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4.2.2.3.8.2 Non-uniform rectangular light patterns 

The non-uniform rectangular patterns were an output of a scripting mistake, which resulted in 

mixing different sizes of lights, generating irregular patterns that were unique and different 

from the uniformed patterns.  

4.2.2.3.8.2.1 The scripted error that produced the non-uniform patterns 

 
Figure 76: The script error that resulted in creating non-uniform patterns in Dynamo 2.0.3 (author) 

While scripting the green highlighted part in the uniform lighting algorithm as seen in Figure 

76; instead of refereeing small_t to index [0][h] in rc1, the script had referred to index [h] 

only; which is the transposed list as seen in Figure 76. So, writing an [h] index resulted in 

picking all the values in every sub-list that are outlined in black, and running the algorithm 

using only one dimension. So, if the first list in [h] has 100 value, the algorithm will place that 

value to pts1 and create a rectangle that is 100x100 dimension. Then it will go to the second 

value found in the first list in [h] list, which is 300 in Figure 76 and repeat the same procedure. 

Until it reaches to a point where the values inside the [h] sub-lists ran out, while pts count is 

still running, because pts is using [0] index not [h] index. Which will result in creating only 

center points instead of shapes. The repetitive results of producing only center points and not 

patterns had highlighted an error in the algorithm.  



 126 

4.2.2.3.8.2.2 Non-uniform patterns script explanation   

Since [h] list had only fed the algorithm one value at a time in the error. A simpler lighting 

input were created for the non-uniform lighting as shown in Figure 69, which takes every 

variable as the width and the length. So, for example 50mm will create a spotlight that is 

50x50mm, and so on.   

Figure 77 shows the non-uniform rectangular pattern, where all the reverse lists written in the 

uniform lighting script were removed as the lighting inputs are only one variable for both length 

and width. After that, a for-loop is running based on the number of lights inputted in the 

algorithm, since the non-uniform lights input are 5 values, creating 5 types of lights. Then the 

for-loop will run 5 times using a different value every time.  

C highlighted in red in Figure 77  is now the value of h only, while in the uniform lighting 

script c had checked the longer length of the light to add it in the division. And R1, highlighted 

in green will create the offset and explode it to get each line of the imaginary rectangle outline 

exactly as the uniform lighting script.  

The calculations of both (a) and (b) groups that are highlighted in blue in Figure 77 are 

calculated as the uniform lighting, where group (a) refers to one side of the rectangle and (b) 

refers to the opposite side of the rectangle that creates the imaginary rectangle outline. As the 

calculations takes the length of R1 -which is the offsetted rectangle- and divide it by C -which 

is light input - and multiplied by 1.5 to increase the space between the lights and. Math.Floor 

is also applied in this script to rounds down the results.  

The gray shaded scripts are as the uniform lighting script that were explained in detail 

previously using Figure 72. 
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Figure 77: Non-uniform pattern script in Dynamo 2.0.3 (author) 



 128 

4.2.2.3.8.2.3 The produced non-uniform rectangular patterns 

The algorithm had produced for the non-uniform rectangular pattern 409 different patterns 

using the following light dimensions: 500x500, 300x300, 600x600mm in addition to adding 

points as well as a spotlight reference. Figure 78 shows some of the outputs. 

 
Figure 78: Non-uniform rectangular pattern outputs generated in Dynamo 2.0.3 (author)  
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4.2.2.3.8.3 Uniform circular and polygon patterns 

The circular pattern will start from a point taken from the intersection of x and y axis from the 

grid. And a circle will be drawn around this point. Since the circle doesn’t have a length and a 

width, the algorithm will treat it as one line which will be divided by the input number of lights 

that will place points around the circle, and on those points the different light shapes will be 

placed.  

Due to the fact that the imaginary outline is a circle, the algorithm is able to create various 

polygon shapes inside the circle as seen in Figure 79; where it starts from a circle to a triangle, 

and as the end user starts adding more sides using a given slider, the shape develops to a 

quadrilateral, pentagon, hexagon, heptagon, all the way to decagon.  

 
Figure 79: The different shapes the polygon algorithm develops into 
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4.2.2.3.8.3.1 Uniform circular and polygon script explanation 

For the algorithm to work; the user has to input the radius of the circle and the number of sides 

the polygon shape will have. In addition to the points that will be taken from the grid 

intersection and the light variables that are used for all the patterns.  

As seen in Figure 80; circ highlighted in yellow created the circle using a plane that was created 

using the point on the grid in pln0. The end user has the ability to change the number of sides 

using a slider that’s shown further in the section The light patterns controllers; the polygon 

shapes starts once the slider reaches to 3, as 3 sides creates a triangle, but between 0 and two 

in the slider, the end user will only get a circle. In order to do that, an if statement was created 

that’s shown in in Figure 80 under s0 definition that’s highlighted in red; where a it states the 

following: if the number of sides are less or equal to two, always run the algorithm to creating 

a circle, otherwise the algorithm will create a polygon which uses two variables ( the created 

circle and the number of sides) as inputs.  

The three definitions of small1, small2 and small_t highlighted in green are for the light inputs. 

To allow different orientations for the lights. The same lists were discussed in detail in creating 

uniform lighting patterns.  

s1 highlighted in blue will offset the shape, so if it’s a circle, the algorithm will offset the circle, 

and if it is a polygon it will offset it by the width given and then explode it. Since the circle is 

treated as one line, only one calculation is required which is the same as the other calculations 

in the previous patterns creations, where s1 is measured and divided by C - that calculates the 

longer dimension of the light- and multiplied by 1.5. After that the algorithm checks if it is 

more than 3, then it will return to 3 as a limitation parameter that is applied and discussed in 

creating uniform lighting. Finally, the result is rounded down to avoid any fractions output. 
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 n0 highlighted in orange in Figure 80 is also the list of counts that can be found in the previous 

patterns creations, allowing the different divisions for the polygon to create the different variety 

of patterns. i is the start of a different for-loop; if the count is 1, the division output will be one 

point only, so if it’s a circle, the output will only be one light, whilst if it’s a triangle; it will 

have three lights because of its sides, and so on. 

 
Figure 80: Uniform circular and polygon patterns script in Dynamo 2.0.3 (author) 



 132 

 Another level of for-loop is created – highlighted in gray- which goes through all the edges of 

the polygon and divide every side of the shape. So, if it is a circle the for-loop will run once, if 

it is a triangle it will run three times and so on. In other terms, this for-loop counts the number 

of lines that creates the polygon after exploding it, and if the number of edges is less than 2, 

the algorithm will always have 1 point. Otherwise then it will deal with the division based on 

the numbers of the number of the lines creating it.  

Furthermore; pts1 definition that is highlighted in purple in Figure 80 is added to prevent the 

over lapping of the light points in the corners of the polygon shapes. Where the division of 

every line does not skips placing a point at the beginning while placing a point at the end. The 

rest of the script creates a Normal Vector, a plane and draws the light rectangles using index 

[h][0] as per the uniform lighting algorithm that discussed these definitions in depth.  

4.2.2.3.8.3.2 The produced uniform circular and polygon patterns 

The produced patterns were around 530 patterns for all the polygon shapes. The variety refers 

to two main parameters, the lights inputs, and the division method. If the light dimensions are 

increase, the outputs will increase coherently. Figure 81 shows a minor part from the circle 

pattern results and Figure 82 and Figure 83 displays some of the patterns for the different 

polygon shapes. 

 
Figure 81: Uniform circular patterns outputs generated in Dynamo 2.0.3 (author) 
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Figure 82: Triangle and quad uniform patterns outputs generated in Dynamo 2.0.3 (author) 

 
Figure 83: Pentagon, hexagon, and decagon uniform pattern outputs generated in Dynamo 2.0.3 (author) 
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4.2.2.3.8.4 Non-uniform circular and polygon patterns 

The transition between the uniform and the non-uniform circular and polygon patterns obtains 

the same transition characteristics that is explained previously in the transition between the 

uniform and the non-uniform rectangular patterns. In addition, it will only use the input square 

lights that are taken from the non-uniform lights variables and apply it on the different polygon 

shapes to create different patterns. 

4.2.2.3.8.4.1 Non-uniform circular and polygon script explanation 

Figure 84 is showing the final script for the non-uniform circular and polygon patterns. Where 

creating a vector, a plane and a circle is as the same as the uniform script, then the different 

lists were removed that revered the lights in order to insure all the orientations due to the fact 

that the square lights are only used in this approach.  

S0 is still the same; highlighted in red in Figure 84;  in order to develop the shapes from a circle 

to the different types of polygons. Similar to the uniform circular pattern, where an if statement 

is written s0 = sides<=2?circ:Polygon.RegularPolygon(circ,sides); the script basically states 

that if the sides are less or equal to two, then the algorithm will create a circle, otherwise create 

a polygon that takes two variables which are ( the circle radius and the number of sides for the 

shape). These two variables are taken from two sliders that are discussed further in The light 

patterns controllers. 

After that, the second for-loop starts where nt that’s highlighted in yellow in Figure 84 takes 

the number of lights from the end-user, to feed it to the created index under the name of [h]; 

which  allows the algorithm to running through all the different sizes of lights, one value at a 

time, in order to divide the shape and place the lights.  

The definition of a is highlighted in blue in Figure 84; showing the calculations for the divisions 

where a=Math.Floor(s1[0].Length/(c*1.5))>nt?nt:Math.Floor(s1[0].Length/(c*1.5)). As 
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the length of one of the lines that forms the shape is taken (s1) and divided by the current light 

input the algorithm is dealing with taken from the [h] index and multiplied by 1.5.  

Then the rest of the statement is checking if in case the algorithm did the division and the result 

produced a bigger number than the actual value of the lights input, the result will just produce 

points that don’t have any shapes because the algorithm ran out of lights input. So in order to 

eliminate this error. The rest of the definition >nt?nt:Math.Floor(s1[0].Length/(c*1.5)) states 

if it is more than the number of lights (nt) the algorithm will force the division to be the same 

number as the number of lights. 

 
Figure 84: Non-uniform circular and polygon patterns script in Dynamo 2.0.3 (author) 
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4.2.2.3.8.4.2  The produced non-uniform circular and polygon patterns 

The algorithm had produced around 200 non-uniform circular patterns that can be used as light 

patterns applied on a grid or as center lights. Figure 85 shows some of the non-uniform circular 

patterns while Figure 86 shows the some of the non-uniform hexagonal patterns results. 

 
Figure 85: Non-uniform circular patterns outputs generated in Dynamo 2.0.3 (author) 

 
Figure 86: Non-uniform hexagon patterns outputs generated in Dynamo 2.0.3 (author) 
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The produced patterns develop and the spaces between the lights can be adjusted and increased 

based on the end user requirements. Figure 87 shows some of the outputs for triangle and quad 

non-uniformed patterns. 

 

Figure 87: Non-uniform triangular and quad patterns outputs generated in Dynamo 2.0.3 (author)  
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4.2.2.3.8.5 The light patterns controllers 

In order to control the different variables for the four different produced patterns, different 

sliders were inserted under a group called Light Pattern Controls, seen in Figure 88.  

The red outlined two sliders under the names of Pattern Scale 1 and Pattern Scale 2 allow the 

end user to change the imaginary rectangle outline, resulting in a change of the scale of the 

pattern for both uniform and non-uniform rectangular patterns, one slider changes the length 

and the other changes the width.  

 
Figure 88: All the sliders for creating light patterns in Dynamo 2.0.3 (author) 
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Whereas the blue outlined sliders in Figure 88 control the circle and the polygons radius. And 

the Polygon Number of Sides slider determines the shape in the uniform and non-uniform 

circular and polygon patterns. If the number of the slider is on 1 or 2; all the produced patterns 

will be circular, otherwise the polygon shaped patterns will show once the slider is placed on 

three, creating triangular patterns, all the way to decagon patterns. 

The Pattern Type slider, outlined in green in Figure 88, controls the four patterns. Table 6 

shows the number of the slider and the lights patterns that will appear accordingly.  

Table 6: Pattern Type Slider Details (author) 

The input number in the slider The pattern type 

1 Uniform rectangular pattern 

2 Non-uniform rectangular pattern 

3 Uniform circular/polygon pattern 

4 Non-uniform circular/polygon pattern 
 

The Pattern Choice slider allows the end user to move the slider to view all the different 

produced designs under each type. While the three remaining sliders (Center Rectangles, Point 

and Rectangles) turns on and off different shapes within the light pattern itself.  

For example, If the end user does not want to have any points that refers to spotlights within 

the produced patterns, he/she can switch off the point slider. The same command is created for 

the center rectangular which places a green colored center rectangle in the patterns, and the 

Rectangles slider that draws the outline of the inputted lights, it is usually colored in blue. 

Figure 89 shows how turning on and off the three outlined controllers can impact the pattern. 

(1) is showing the full surface with the center rectangle, points and rectangular slider are 

switched on, while (2) shows how the same pattern will look with the center rectangle switched 

off. And (3) in Figure 89 is displaying where the center rectangle and points are switched off, 
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keeping only the light rectangle switched on. (4) is showing the result when all the three sliders 

are turned off.  

The remaining green points that are showing in (4) Figure 89 are the points that were imported 

from the grid not the pattern. If the end user wishes to remove all the points on the ceiling, 

he/she needs to switch off the grid slider.  

 

 
Figure 89: Explanation of the three on/off sliders for the light pattern controllers in Dynamo 2.0.3 (author) 
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4.2.3 Subsystem 02: Counting the generated light quantities  

Some design methods were connected to a Node that counts the lists to produce numerical 

outputs indicating the quantity of lights used in the method. While other methods required 

adding a script to group the results, followed by connecting the groups. 

The boundary lights script was connected to a List.Count seen in Figure 90, that counted the 

lights outputs and displays them in a Watch Node. In addition, the grid outputs were also 

connected using the same method.  

The grid output points do not display the patterns count. As it presents the number of points 

that were made from x and y axis intersection. Those points are later fed to creating 

uniform/non-uniform light patterns. 

 
Figure 90: Boundary lights list count connected to a watch node to display the numbers in Dynamo 2.0.3 (author) 

The outlined Code Block in Figure 91 counts the center point for every light pattern produced. 

Where every light pattern requires a center point to be created.  

This count is beneficial in knowing the number of patterns placed on a surface. And can also 

be used to be the number of fixtures on the ceiling. The colors terms between brackets shown 

in Figure 91 allows the end user to identify each light category visually.  

A minor issue occurred in counting the different light patterns. Since all the light patterns were 

created using the same point, the algorithm count could not differentiate between each pattern. 

A scripted algorithm was created to group the same light types together. 
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Figure 91: The light counts results and the scripted algorithm for the Pattern Rectangle Lights in Dynamo (author) 

Figure 91 shows the script where all the light dimensions are fed to the counting script. The 

light types were obtained from the initial list that was used to run the algorithm in the beginning.  

The yellow highlighted script inquires the length and the width of every light, and list them 

separately. Creating a length group and a width group. After that, the two separate groups 

carried to blue highlight script.  

Where the blue highlighted script in Figure 91 creates the textural writing that is visible in the 

red outlined Node in Figure 91. Where the text indicates the [length list x width list].  

After that, every similar type of lights that has the same dimensions is detected using 

List.GroupByKey command seen in Figure 91.   

Then, every type of lights that has the same dimensions is grouped in its own list and counted 

to get the proper sum for every light type used in producing a pattern. 
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4.2.4 Subsystem 03: Exporting the results back to Autodesk Revit 

After the algorithm system was created and the various scripts were tested individually, the 

produced results in Dynamo required to be exported back into Revit in order for this system to 

valuable for the end user. Where it will not only produce different ceiling designs in Dynamo, 

but will also be able to apply the results on Revit through connecting the produced lights to 

actual light families found in Revit in order to conduct any lighting calculations required. The 

results were transferred from Dynamo into Revit using the script shown in Figure 92.   

 
Figure 92: The Script to export the results in Dynamo back to Revit (Dynamo 2.0.3) 

A definition for grouping the lights was done previously in Subsystem 02: Counting the 

generated light quantities, which produced textual results for the end user, indicating the 

produced quantities for every light. Another script was created as seen in Figure 92, where 

every two dimensional rectangle that indicated a light size was patched, converting the light 

shapes into surfaces. This step was conducted to calculate the area of each rectangle to ease the 
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grouping process. For example; a drawn rectangle that has 30x30cm dimensions will always 

produce an area of 900cm2 , allowing the algorithm to group all the 900cm2 results together, 

and so on.  

 
Figure 93: The grouping Nodes created in Dynamo 2.0.3 (author) 

After every light category is grouped individually based on area, the lists that are highlighted 

in red and yellow in Figure 93 were produced. In addition, the center of each rectangle is 

acquired since Autodesk Revit only needs a point from Dynamo to connect a light family to. 

The outlined Node in Figure 93 connects every group to a certain light in Revit. Where a light 

family is created in Revit that has several lights which correspond to the produced lights in 

Dynamo.   
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4.2.5 Arranging the generative system  

4.2.5.1 Arranging the results horizontally and vertically 

4.2.5.1.1 Creating proper spacing between the generated ceilings 

The distribution of the results is created through using a sequence of values given to the 

surfaces’ outputs. Where the first value is zero, allowing the first output to be in the origin 

surface location.  

The sequence is created using three elements; the original location of the surface, the quantity 

of values that indicates the surfaces outputs, and the spacing between each surface.  

The length of the surface is measured and multiplied by 1.5 in the y axis direction, the 

multiplication is added to the scrip so the surfaces’ results will not overlap. The entire 

sequences of results will move on the positive and the negative directions based on the end user 

selection from the slider that’s seen in Figure 36 with the name of: Split Choice. 

Figure 94 shows the clear distinguished origin ceiling placed next to the splitting results. 

 
Figure 94: Close up shot showing the outlined selected ceiling compared to the other ceiling options in Dynamo (author) 
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4.2.5.1.2 Arranging and placing the generated light patterns on the original ceiling 

In addition to arranging split surfaces’ results, a cross section arrangement for the light patterns 

was created, giving a visual representation in Dynamo’s work space shown in Figure 95. Where 

both outputs are seen in the opposite axis, allowing the user to have an overall view of the 

results.   

The end user is able to choose a pattern distribution through the Pattern Choice slider shown 

in Figure 95, as the light pattern changes coherently with the number in the slider. In addition 

to the ceiling split selection through using the Split Choice slider shown in Figure 95. In other 

terms, the end user is able to move the splitting options on y axis while moving the patterns on 

x axis, and the intersection point of both axis is the location of the original surface that is 

imported from Revit.  

 
Figure 95:Dynamo workspace after the arrangement of the splits results and the patterns (author)  
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4.2.5.2 Coloring the surfaces and the produced lights 

Minor Nodes were added to enhance the overall presentation of the light inputs and produced 

results. Allowing the end user to distinguish the different light types produced clearly in 

Dynamo. 

The first adjustment was created to the surfaces of the produced ceilings. As the selected ceiling 

will have different color opacity that the other ceilings as seen in Figure 96. Where the selected 

surface has an opacity of 50% with light green borders as seen, whereas the other ceilings have 

an opacity of 100% with gray borders.  

 
Figure 96: Changing the opacity and borders for the surfaces in Dynamo 2.0.3 (author) 

Since Dynamo’s graphics may not always show the best resolutions as the end user changes 

the angles of the view, so reducing the selected ceiling opacity ensures that the lighting results 

will always show. 

In addition to changing the ceiling opacities, the patterns produced lights had to be color 

separated to ease the selection and elimination process for the end user. Figure 97 shows how 
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the lights are colored next to the Nodes that created the required coloring. The center rectangle 

lights were colored in green, while the points in red and the produced light dimensions in blue. 

If the end user decides to choose between any light category turning on and off certain sliders, 

the results will show as Figure 98. 

 
Figure 97: Lights patterns color display on a surface and the connected Nodes in Dynamo 2.0.3 (author) 

 
Figure 98: Lights patterns color display on a surface in Dynamo 2.0.3 (author) 
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Furthermore, the boundary lights were colored in purple to separate it from the patterns lights, 

Figure 99 shows the boundary lights applied on a simple ceiling structure. And the grid points 

were also colored in green as seen in Figure 100, Where the diamond grid is showing, these 

points are the result of the intersection between x and y axis division that occurred in the grid 

script. 

 
Figure 99: Boundary lights color display on a surface and connected Nodes in Dynamo 2.0.3 (author) 

 
Figure 100:Grid lights color display on a surface and connected Nodes in Dynamo 2.0.3 (author)  
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5 Chapter 5: Results and discussion - Testing the generative system 

5.1 Introduction 

The algorithm is an interactive system that generates results immediately based on reading 

inserted variables, some variables are inserted in a form of numbers, such as Figure 101 that 

shows the lighting sizes in millimeter. While other variables are in the form of sliders; allowing 

the designer to manipulate the values through moving the slider tap, to produce instant visual 

changes in the designs.  

Every variable changed by the designer allows a different output to be generated. The 

limitations of the outputs are related directly to the end user’s aim in that certain layout. 

Although the algorithm generates various options, it is up to the designer to change, alter and 

translate what every drawn line can be.  

Thus, human’s evaluation is essential in the algorithm’s outputs, to assure producing the best 

required results. Although the scripted algorithm is an outline for a system that generates 

reflected ceilings designs that can be implemented directly on ceilings, it works better when 

the end user tries to manipulate the given sliders in Dynamo script. Since that exhibits all the 

possibilities that this algorithm is able to generate.  

 
Figure 101:Inserted lighting sizes in the algorithm in Dynamo Nodes (author) 
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This chapter tests the scripted generative design system using different approaches that are 

identified in three phases: Phase 01, Phase 02, and Phase 03. Ensuring that the generative 

algorithm presents feasible outputs in terms of the diversity in the mechanisms for selection, 

limitation and mutation of the outputs and sustainability implementation.  

Phase 01 highlights the diversity of the produced reflected ceiling layouts, the system’s ability 

to produce relatively high quantities of reflected ceilings designs, and it sheds light on the 

system’s flexibility in manipulating and altering results. It is conducted through testing the 

system using four case studies. The case studies were diverted into two sections: (1) Conceptual 

case-studies (2) Field case-studies.  

Conceptual case studies target ceiling forms and asymmetrical layouts.  In order to test the 

generative system ability and limitations in producing reflected ceiling layouts with 

untraditional spaces. The selected case-studies in this section are in different countries around 

the world. The tested case-studies are two offices, the first office is called The Green Room, 

located in Utrecht, Netherland, while the other office is Commerzbank headquarters, located 

in Frankfurt, Germany. The two case studies revealed interesting limitations that standard, 

more traditional ceilings might have not been able to reveal. Which provide an insight to the 

enhancement possibilities in the algorithm, for it to work more efficiently and to be used on a 

wider spectrum.  

Field case-studies tested the algorithm on existing offices located in Dubai, United Arab 

Emirates. Where concerned authorities were contacted, permissions were obtained, and site 

visits were carried out. Field case-studies aimed to test the generative system efficiency in 

depth. Since designers might take on projects that had been previously designed and alter in it 

or might sign a project in its construction phase. The field case-studies showed both options, 

where two offices were selected in Dubai Design District area. Both offices were not occupied 
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by any company. The first office was in a base-build status, while the other office was recently 

cleared by the previous tenants; thus, interior elements remained. Results displayed a different 

aspect of the generative system and produced results that the conceptual case-studies might 

have not revealed.   

Phase 02 highlights how the scripted algorithm is a comprehensive generative system that not 

only produces and alter unlimited design options, but also takes the results into practical 

applications. As the light variables in Dynamo -seen in Figure 101- were connected to actual 

lighting families in Autodesk Revit. To ensure that the light families are valid, lighting 

calculations were conducted on two different reflected ceiling layouts. 

The two reflected ceiling layouts in Phase 02 were chosen from the generated results in the 

second field case-study in Phase 01. The selection of the two layouts aimed to highlight the 

diversity that the system can create. As the first selected ceiling used three different light 

families, while the second reflected ceiling used one lighting family. Furthermore, this phase 

had also tested another feature the algorithmic system has which is counting lights, as it 

automatically produces the quantity of lights any selected ceiling has. And in both cases, the 

system showed accurate counts. To perform artificial lighting calculations, a plug-in called 

Elum-tool was downloaded in Autodesk Revit, which produced accurate results that can predict 

the luminance levels in any tested area. 

Phase 01 and Phase 02 in testing the scripted algorithm shows how the generative system 

creates a full cycle that starts from generating various and diverse reflected ceiling designs, 

altering them automatically and giving the end user the ability to change the design based on 

their desires, all the way to producing numerical data for lighting counts, and artificial lighting 

calculations, all within the same software.  
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This full cycle does not require the end user to use multiple software nor to perform different 

exporting approaches to transfer the designs from Dynamo to Revit, as the scripted algorithm 

does that automatically. Nor does it require to export the design to run lighting calculations. 

Furthermore, all the tools in Revit can be applied on the final design, which includes exporting 

the design into any suitable format the designer desire, to use it in AutoCAD or any other 

software. 

Phase 03 in testing the generative system approaches it from a sustainable aspect. As it proves 

sustainability using two approaches; the first approach analyses the scripted algorithm using 

literature review that validates the generative system’s sustainability with-in itself. Showcasing 

various parameters, the algorithm utilizes to maximize the positive affect and minimize 

negative affect. 

The second approach fosters sustainability through two key parameters: (a) Increasing benefits, 

and (b) reducing costs. Numerical data were obtained using cross-sectional study conducted on 

61 interior designers and architects. Increasing benefits parameter was achieved through 

evaluating and comparing the beneficial outcomes that had been proven in the generative 

system individually in Phase 01 and Phase 02 against the participants’ responses. 

Reducing cost was attained through a simple time-cost analysis, which utilized the data 

obtained from the survey, analyzed the saved time and financially priced it. Presenting 

sustainability through creating more benefits at low costs, as results showed an astonishing 

reduction of cost which reached 99%.  

Figure 102 outlines the three discussed phases and the steps are performed under each phase. 

Showcasing the framework that was conducted to test the generative system. 

  



 155 

 

Figure 102: The framework outline for Results and discussion Chapter - Testing the generative system (author) 
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5.2 Phase 01: Case studies  

5.2.1 Conceptual case studies  

5.2.1.1 Office 01: The green room - Utrecht, Netherland 

The first tested layout is shown in Figure 103; it’s an office located in the 14th floor of a tower 

in Utrecht, Netherland. The office space is designed by the Dutch studio: Space Encounters, 

featuring leafy partitions designed as an alternative to the standard claustrophobic boxed-in 

workrooms (Levy 2019).  

 
Figure 103: The green room layout (Levy 2019) 

This layout was selected due to its shape. The curved corners in the layout and the asymmetrical 

spaces should result in a new assessment approach for the algorithm. The columns in the layout 

provide a new challenge for the algorithm, while the various edges with different angles shows 

great potential in using the splitting option in the algorithm. 
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The floor plan was modeled in Revit as seen in Figure 104. The highlighted area in red was 

selected and transferred to Dynamo for testing the algorithm. While scripting the algorithm; 

every method was tested on a relatively simple design, thus testing it on the selected area should 

provide results that identify the strong aspects of the algorithm and the fields that it requires 

improvement in, providing a better scope the system’s advantages and limitations. 

 
Figure 104: The green room layout after modeling in Autodesk Revit (author) 

The algorithm is constructed in an approach that allows the end user to only select one ceiling 

at a time. In order for a designer to be able to create a reflected ceiling design for a large area 

that’s divided by partitions or walls, the ceilings need to be joined in Revit and converted into 

one surface only to be inserted in Dynamo. However, in this case study the red area was tested 

only. 

 
Figure 105: The modeled layout in Autodesk Revit and the selected ceiling to export to Dynamo (author) 
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Figure 105 shows the selected ceiling that was transferred from Revit to Dynamo for testing 

the algorithm. As seen, the ceiling has different holes that were created from the columns, in 

addition, the ceiling has curved angles in certain corners and perpendicular angles in other 

corners. Furthermore, the ceiling is asymmetrical, having parts that fail to correspond to one 

another in shape. All these elements will investigate the algorithm ability to generate reflective 

ceiling layouts in asymmetrical ceilings.  

5.2.1.1.1 Office 01 limitations and shortfalls 

5.2.1.1.1.1 Unable to identify ceilings with openings  

The first limitation the algorithm showed is its inability to identify openings in the inserted 

ceiling. The openings are caused by the structural columns that are visible in Figure 105. 

Results showed that the algorithm was not able to identify the surface, it resulted in an error 

and wasn’t able to generate any lighting option. 

Figure 106 shows the initial results; as the outlined (null) list indicates an error list, which 

means the algorithm did not find the ceiling to apply and lighting methods on. 

 
Figure 106: The error list that appeared from the ceiling shape in Dynamo 2.0.3 Nodes (author) 
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The reason the algorithm was not able to identify the inserted ceiling was because its scripted 

structure. It is built on extracting the boundaries of the surface to identify any inserted ceiling. 

In this case, the boundaries of the openings were also extracted. This situation created an error 

in the algorithm, since the ceiling openings had produced areas that are not connected to the 

outer boundaries to the surface. 

For the algorithm to identify the surface and run the calculations correctly, the openings were 

patched in Revit; allowing the algorithm to apply a polygon line only on the boundaries of the 

surface. Figure 107 shows ceiling (a) that resulted in an error result, and ceiling (b) that 

produced proper results after the openings in were patched in Revit.  

 
Figure 107: The inserted ceiling before and after patching from Dynamo 2.0.3 workspace (author) 

5.2.1.1.1.2 Limiting the generated results due to laptop capacity  

 Figure 108 shows the produced number of the generated ceilings by the algorithm. As it was 

able to produce 512 reflected ceilings designs options. The list in Figure 108 shows 511 results 

due to the fact that Dynamo’s index starts from (0) not (1).  

Since the algorithm generated 512 options for this ceiling shape, the calculations took about 15 

minutes to predict all the possibilities produced from permutations and combinations in 

splitting the ceiling. In addition, Dynamo had crashed twice while calculating the produced 

ceilings. It seemed that the used laptop with 8 GB memory was not able to produce results as 

fast as required.  
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Figure 108: The algorithmic generated results on splitting the ceiling exhibited in Dynamo 2.0.3 (author) 

A simple limiting script was added to limit the generated results to only 40 options in one 

design approach, which divides the ceiling. In doing so, the mathematical procedure for 

permutations and combinations in order to split the ceiling was reduced significantly. The 

algorithm took only 1 minute to produce more than 100 ceiling options. This solution is not 

necessary if the used laptop’s capacity is higher.  

The end user will not be able to perform this solution unless if he/she has some knowledge 

about visual programming. The best solution in this case is to wait 15 to 20 minutes for the 

algorithm to calculate all the possible scenarios. Figure 109 shows the original script and the 

limiting script, as the green outline is the original script and the red outline shows the new 

limitation as it selects 40 produced layouts only. 

 
Figure 109: Limiting results script created in Dynamo 2.0.3 (author) 
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5.2.1.1.1.3 Curved corners shortfall  

The corners and the narrow corridors were considered in creating the algorithm. However, a 

condition for curved corners was not added. Which resulted in a division error when applying 

one design method which is boundary lighting. Figure 110 shows two generated options, where 

the boundary lighting is applied in both, the boundary lighting is shown in purple dots.  

 
Figure 110: Curved corners shortfalls for Office 01 generated from the algorithmic system in Dynamo 2.0.3 (author) 

(a) in Figure 110 displays boundary lighting and a grid option. With the spacing between the 

boundary lighting being 1500mm. the error is not noticeable visually, however it is clear that 

the space between the two light coordinates in the corner is different that the spacing between 

the rest of the light coordinates, creating inaccurate results.  

While the division shortfall in (b) in Figure 110 is more visually prominent, as the ceiling 

showcased the drop down ceiling option merged with the boundary lighting with 1000mm 

spacing. The light coordinates are divided based on the curved arch that forms the corner of 

the ceiling, and not based on the continuous line of the polygon that formed the ceiling.  

To fix this issue, an if statement or an individual script needs to be added in the algorithm. And 

then tested, producing proper division regardless of the arch diameter.   
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5.2.1.1.2 Office 01 results 

Table 7 shows some of the produced ceilings results, where design options showed different 

approaches that the end user can choose from. The results vary; starting from a simple boundary 

lighting around the ceiling, all the way to multiple approaches combined; showing the ceiling 

divisions with boundary lighting and different lighting patterns.  

Table 7: Office 01 generated ceilings designs results from the algorithmic system in Dynamo 2.0.3 (author) 

Generated Ceiling Designs 
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 164 
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Table 7 shows the algorithm diversity in generating different reflected ceiling layouts 

immediately. Producing 69 ceiling designs in a matter of 1 minute. Reducing significant design 

time. The algorithm also provides for the designer the ability to select the ceiling he/she likes, 

and adjust it based on what suits their needs or design vision. The designer can view multiple 

options of different lighting arrangements instantly. 

 
Figure 111: The diversity example of the produced layouts for Office 01 generated in Dynamo 2.0.3 (author)  
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Figure 111 is showcasing a small example of the diversity in the generated layouts the 

algorithm can produce. As (a) option is showing a simple drop ceiling layout, where the 

designer can set the proper distance, he/she requires from the wall.  

While (b) in Figure 111 shows boundary lighting method and a simple spot lights grid created 

in a relatively different design than the standard grid applied on ceilings. 

(c) option in Figure 111 is showing a bit more complex layout that mixes between spotlights 

and 100x600mm lights along with boundary lighting all around the layout. The inserted 

dimensions of the lights are also within the hands of the end user. As they are inserted through 

a list called Light Sizing.  

While (d) in Figure 111 displays an overly complex irregular lighting distribution for 

60x100mm lights. Although the quantity of lights produced in (d) option is not required in this 

area and might not be used by designer. It shows the capacity of the algorithm as it produces 

all the possibilities of lighting patterns regardless of its efficiency to the space.  

Filtering results is left for the designer’s hands. Since the immediate results are organized 

through writing a script that allows the end user to see the results visually and choose between 

the produced options in the workspace of Dynamo. Section Arranging the generative system 

discusses in detail how the designer can see the produced results. 

The algorithm interactive system not only generates for the designer various options of ceiling 

layouts based on selected inputs. But also involves the end user through the progress. Whether 

it is by inserting certain variables and lighting dimensions that produces specific layouts, or 

through altering the produced outputs to what suits the design’s vision and the interior theme. 

The capacity of the algorithm is constantly tested throughout the interaction between the 

designer and the algorithm. 
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Figure 112 shows the flexibility that creates an interactive system between the designer and the 

algorithm. The interactive levels in the algorithm are various and comprehensive. Starting from 

a simple approach as Figure 112, that shows the increasing or decreasing of the spacing 

between light coordinates in boundary lighting method. 

 
Figure 112: Comparison between boundary lighting design output for Office 01 by changing variables in Dynamo (author) 

The visual results for the algorithm are immediate, producing altered results in seconds, which 

provides for the designer different and fast possibilities of alterations and fixing. If the same 

alteration is conducted in AutoCAD or Autodesk Revit, it will take around 5 to 7 minutes based 

on the designer’s speed. However, the algorithm produces instant results as the end user simply 

moves the slider to whatever value he desire. 

In addition, instant results of various lighting design patterns were created. Figure 113 shows 

four produced ceiling designs where the Pattern Type slider is the only variable that is 

changing, resulting in four different options generated instantly. The Pattern Type slider is 

discussed in the previous chapter which controls the four different families of patterns the 

algorithm produces: The uniform rectangular pattern, the non-uniform rectangular pattern, the 

uniform circular/polygon pattern and the non-uniform circular/polygon pattern. 
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Figure 113: Different ceiling patterns for Office 01, generated solely by changing the pattern type in Dynamo 2.0.3 (author) 

The produced results of the algorithm are controlled by every slider. As every minor change in 

any value in these sliders produce different ceiling designs. And all the sliders are controlled 

by the designer.  

Table 8 summarizes the limitations and the results found in this case study. The limitations 

shown in the schedule had emerged after testing the algorithm on this ceiling, as the ceilings 

conditions of structural columns and curved corners were not considered earlier in building the 

algorithm. While the advantages confirmed the potential of the algorithm and its ability to save 

time, produce a high number of reflected ceilings, and its capacity to alter the results instantly 

based on the designer’s request. 

Testing the algorithm on various case studies reveals a lot of limitations that might not have 

been considered while scripting it. The recommendations points added to Table 8 provide an 

insight to the enhancement possibilities in the algorithm, in order for it to work more efficiently 

and to be used on a wider spectrum in the future.  
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Table 8: Office 01 limitations and advantages (author) 

Office 01: The green room results 
Limitations Advantages 

1- The algorithm is not able to identify 

ceilings with structural holes in them. Or 

any openings in the center of the ceiling. 

The inserted ceilings must be one continues 

surface for the algorithm to draw a polygon 

line around the shape and identify it. 

1- The algorithm initially generated 512 

reflected ceiling design options 

2- The algorithm generated more than 100 

ceiling designs in a matter of 1 minute after 

limiting the splitting ceilings method to only 

40 option. 

2- The generated reflected ceilings designs 

took around 15 minutes, which is 

considered relatively slow in generative 

design to calculate all the possibilities 

which resulted in 512 options, this error 

refers to the used laptop capacity and not 

the algorithm itself. 

3- The visual results for the algorithm are 

immediate, producing altered results in 

seconds, which provides for the designer 

different and fast possibilities of alterations 

and fixing. 

4- Various lighting design patterns were 

created 

3- The curved corners of the ceiling affected 

the division error when applying boundary 

lighting method. As it was divided based on 

the curved arches that formed the corners of 

the ceiling and not based on the continuous 

line of the polygon that formed the ceiling. 

5- An interactive system between the 

designer and the algorithm is established, as 

the produced results of the algorithm are 

controlled by every variable inserted in the 

algorithm’s sliders that are controlled by the 

designer. 

Future recommendations 
1- Increase the original script to accommodate the condition of ceilings’ openings. 

2- Insert a script or an if statement for curved corners to sustain the division correctly for 

boundary lighting method. 

3- Add a slider that allows the algorithm to limit the generated produced ceilings to stop 

any possibility of crashing Dynamo while running. 
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5.2.1.2 Office 02: Commerzbank headquarters - Frankfurt, Germany 

The second case study is considered the world’s first ecological office tower in Europe, the 

fifty-three-story building is designed by Forster and Partners in 1997 (foster and partners 2018).  

With a triangular plan, the tower relies on natural systems of lighting and ventilation. As the 

offices are astonishingly naturally ventilated for 85% of the year, reducing energy consumption 

up to 50% in comparison to an equivalent air-conditioned office. Furthermore, the offices are 

designed to be lit naturally in addition to having open-able windows, which allows the 

occupants to manage and control their desired environment (foster and partners 2018).  

 
Figure 114: Commerzbank Headquarters - Frankfurt, Germany (foster and partners 2018) 
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The design concept of the offices tower is inspired from the anatomy of a flower, where the 

offices areas represent three petals, while the stem is created by the full height central atrium. 

Creating a triangular plan that is shown in Figure 115.  

 

Figure 115: Commerzbank Headquarters layout and elevation (foster and partners 2018) 

 
This case study is chosen due to its unique floor plan and shape. While creating the algorithm, 

a lot of simple ceiling shapes were tested to ensure the efficiency of it, revealing errors that 

were fixed while developing the proper script for the algorithm. Those errors are discussed in 

the previous chapter. However, unique conceptual layouts were never tested throughout the 

scripting of the algorithm, thus this unique layout should reveal some limitations and highlight 

some advantages for the algorithm that a regular symmetrical floor plan might have not reveal.  

In order to test the algorithm, the layout was modeled in Autodesk Revit as seen in Figure 116, 

The division of the space internally is mostly standards rectangular rooms. The algorithm is 

able to only select one ceiling at a time, thus; the red highlighted ceiling in Figure 116 was 
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tested as it showed the possibility of revealing untapped potential and limitations in the 

algorithm.  

 
Figure 116: Commerzbank Headquarters modeled layout in Revit 2018 (author) 

Figure 117 shows the imported ceiling to Dynamo. Since the other rooms are regular rooms, 

which will produce regular results, this room was selected. The room layout will allow the 

algorithm to investigate the chamfered edge that’s shown by the arrow in Figure 117 and the 

asymmetrical area of it, which might produce unexpected results.  

 
Figure 117: The imported ceiling in Dynamo for Office 02 (author)  
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5.2.1.2.1 Office 02 limitations and shortfalls 

5.2.1.2.1.1 Producing unparalleled shapes with the surface outline 

The room had produced an odd result that was researched to identify the reason beyond it. After 

the ceiling was imported to Dynamo, one of the methods that were implement was the polygon 

drop ceiling method, where the approach creates different polygon shapes selected by the 

designer as a drop-down ceiling. 

 
Figure 118: Bad drop-down ceiling results for Office 2 generated in Dynamo 2.0.3 (author) 

Figure 118 shows the result when turning on the ellipse controller. The ellipse is not aligned 

with the surface boundaries nor any angle in it. This result should not occur as the algorithm 

script should produce parallel designing with the ceiling direction. 

To apply certain light methods such as implementing two different types of grids and adding 

polygon shapes in the center of the surface. The algorithm needs to create an imaginary 

bounding box around the inserted surface, then intersects the shape of the surface with the 

created bounding box.  

This limitation was revealed in this case study because of the plan shape and orientation in 

Revit. If the surface is inserted from Revit, the bounding box will be created based on the World 

Axis in Autodesk Revit, regardless of the orientation of the surface in Dynamo. This case is 
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presented in Figure 119; where the bounding box is shown in pink around the surface in 

Dynamo workspace next to the Revit model.  

 
Figure 119: The modeled ceiling in Revit and the bounding box around the ceiling in Dynamo workspace (author) 

The bounding box is forced to be aligned with the x, y and z axes in Revit where the original 

model is created. As the algorithm will fit the created ellipse from the polygon drop down 

ceiling method to the same axes of Revit as seen in Figure 120. This shortfall indicates that the 

bounding box might not always be the best approach, in addition to the importance of the 

model’s orientation. This shortfall will impact all the generated designs methods since all of 

designs approaches will follow the World Axis in Revit. 

 
Figure 120: The applied grid using the boundary box on Revit axes in Dynamo 2.0.3 against the Revit model (author)  
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5.2.1.2.2 Office 2 results 

Due to the previously discussed shortfall, all the produced light patterns were on a non-vertical 

slop direction, instead of the traditional horizontal or vertical directions to produce patterns. 

Nonetheless, the generated patterns were unique and different from the standard patterns that 

an individual might design. Table 9 shows some of the generated results, showcasing 78 

different ceiling designs for the selected room in 1 a minute time span. 

Table 9: Office 02 generated ceilings designs results from the algorithmic system in Dynamo 2.0.3 (author) 

Generated Ceiling Designs  
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As shown in Table 9, the algorithm can generate numerous results. showcasing various 

generated layouts that display several lighting quantities in each. Some options display only 

one simple approach while other generated options display more than one method merged.  

One of the advantages seen in this case study is the different generated light patterns; 

demonstrating the diversities the algorithm can create in lighting quantities. Figure 121 shows 

three produced ceilings that visually show the development of the same pattern. 
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Figure 121: The development of the same pattern in Room 01 in Office 02 generated in Dynamo 2.0.3 (author) 

The pattern development showcased in Figure 121 is due to the fact that the algorithm generates 

these patterns using mathematical divisions in order to distribute the selected lights. The 

mathematical calculations repeat itself for around 10 times in a matter of seconds, ensuring that 

every division possibility is created. As every mathematical value generated produces a pattern.  

In addition to creating various layouts with different quantities of lights fixtures, the end user 

is able to manipulate the scale of the pattern and the quantity of the lights that created the 

pattern while still sustaining the pattern shape and outline. Furthermore, the designer can 

choose the lighting type they desire for that selected pattern through turning on and off the 

lights using different sliders, the sliders details are discussed in depth in The light patterns 

controllers. 
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Figure 122: Generated results for Room 01 in Office 02 from Dynamo 2.0.3 (author) 

Figure 122 displays two produced ceilings from this case study, the light patterns forms 

beautifully in the wider space, while it space out and reduce in the narrower areas - where the 

black arrow is pointing in Figure 122 - creating this asymmetrical look for the ceiling, which 

fits the surface’s shape.  

These patterns are originally created by a symmetrical grid that places an imaginary boundary 

box on the ceiling surface, dividing it equally on both axes, and then intersecting the surface’s 

shape with the division. In this case, the division in the narrow part is different than the wider 

part. 

This irregular division occurred due to increasing the value in the slider that controls the grid 

limitation. If the value is reduced; the grid will space out more creating more uniformity in the 

patterns. However, the results in Figure 122 creates a proper division that flows with the 

surface’s shape. 
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Figure 123 demonstrates different results generated for the selected ceiling. It visually presents 

how the algorithm has the capacity to combine or separate different light methods that were 

scripted individually earlier.  

 
Figure 123: The development of different lighting layouts for Office 02 generated in Dynamo 2.0.3 (author) 

These results show how the algorithm works, creating unlimited options that are controlled by 

the end user. As the algorithm is capable to produce ceilings’ layouts with one design 

parameter: generating multiple outputs. And able to combine the different design parameters 

together in one ceiling at the same time. Which is produced in a matter of minutes.  

(a) in Figure 123 is showing boundary lighting; a simple approach to generate lighting around 

the surface of the ceiling. While (b) added the drop-down ceiling method to the boundary 

lighting. Whereas (c) option had doubled the drop-down ceilings while sustaining the previous 

methods.  
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(d) in Figure 123 had inserted the grid to the inner surface that was created from the double 

drop-down ceiling. (e) option in Figure 123 had transformed the grid into a pattern light. And 

(f) had applied splitting the ceiling option while removing the boundary lighting and the second 

drop down ceiling. Which can be added or removed using the different controllers shown at 

Dynamo’s workspace. 

Table 10 concludes the results that appeared in this case study, showcasing the limitations and 

the advantages the algorithm produced for this ceiling, in addition, the recommendations that 

might help to upgrade the algorithm. 

Table 10: Office 02 limitations and advantages (author) 

Office 02: Commerzbank headquarters  
Limitations Advantages 

1- The lights methods were forced to be 
aligned with the model’s orientation, in 
Autodesk Revit, regardless of the 
orientation of the surface in Dynamo. 

 

1- The light patterns were not aligned with 
the surface boundary which created visually 
appealing designs. 

2- the algorithm generated 78 results in a 
matter of 1 minute.  

3- The results showcased diverse lighting 
quantities in each produced layout. 

4- The algorithm distributed the light 
patterns asymmetrically, which fitted the 
surface’s shape. Creating proper grid 
division that flows with the surface’s shape. 

5- The capacity to producing various 
ceilings’ layouts using one design parameter 
only. While producing layouts that combine 
the different designs parameters in one 
ceiling at the same time. 

Future recommendations 

1- Add an option that changes the light patterns directions to include positive and negative 
non vertical slopes.  

2- Investigate the possibility to change the axes that the algorithm relies on instead of Revit 
orientation to Dynamo’s orientation. Or allows the end user to change the orientation 
which will immediately impact all the design methods. 
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5.2.1.3 Summary of the results from both conceptual case studies  

Table 11 shows the shortfalls besides the advantages of testing the algorithm on two conceptual 

case studies that had asymmetrical ceilings. Furthermore, recommendations are added to 

enhance the practicality of the algorithm, making it more comprehensive. 

Table 11: The summary of the results from the conceptual case studies (author) 

Limitations Advantages 

1. The algorithm is not able to identify 
ceilings with structural holes or 
openings in the center of the ceiling.  

1. The algorithm’s quantity of produced 
ceiling diverse based on the ceiling’s 
shape. 

2. The laptop’s capacity plays a direct role 
on the required time to produce results. 

2. A high number of ceiling designs were 
generated in a matter of 1-3 minutes in 
both cases.  

3. The algorithm is not able to apply 
boundary lighting method appropriately 
on curved corners  

3. The algorithm provides an interactive 
system for the designer that can alter and 
fix the visual results. 

4. The orientation of the surface in Revit 
impacts the direction of the lighting 
methods in Dynamo 

4. The results showcased various lighting 
quantities in the generated options 

 
5. The algorithm can create proper grid 

division that flows with the surface’s 
shape. 

 

6. Various ceilings’ layouts using one 
design parameter only were produced. In 
addition to layouts that combine the 
different designs parameters in one 
ceiling at the same time. 

Future recommendations 
1-  Add an option that changes the grid direction to include non-vertical slopes.  
2-  Investigate the possibility to change the axes that the algorithm relies on instead of 

Revit orientation to Dynamo’s orientation. Or add an option that allows the end user 
to change the orientation which will immediately impact all the design methods. 

3-  Increase the original script to accommodate the condition of ceilings’ openings. 
4- Insert a script or an if statement for curved corners to sustain the division correctly 

for boundary lighting method. 

5- Add a slider that allows the algorithm to limit the generated produced ceilings to 
stop any possibility of crashing Dynamo while running. 
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5.2.2 Field case studies  

5.2.2.1 Office A101 - Building 5 - Dubai Design District 

The first field case study is an office located in Building 5, Dubai Design District (d3) area in 

Dubai, UAE. D3 is considered a creative ecosystem that nurtures designers from different 

fields. It is the home for the region’s most famous architectural and interior design companies.  

 
Figure 124: Building 5 floor plan - The office A101 floor plan (Tecom Group) 

Figure 124 is showing the office location in Building 5 floor plan with a close-up image. The 

space’s total area is 161.881 square meters with one main entrance only. The office is in a base 

build status since it is not occupied by any company now. There are not any lighting fixtures 

placed at the ceiling except for the emergency lights as seen in Figure 125. And currently lit 

naturally by the two full windows on both sides of the space. Since there are not any partitions 

or walls in the space, the entire ceiling was tested at once. 
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Figure 125: Site images of Office A101 (author) 

This case study will allow the algorithm to be tested on an actual area that is still not designed 

nor occupied. Showcasing the capacity of the algorithm when tested on a complete surface and 

highlighting its importunacy in the primary status of design. 
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In order to run the algorithm on the selected office, the space was modeled in Autodesk Revit 

as seen in Figure 126. The shape of the ceiling is relatively simple; thus no limitations were 

expected in this case study. 

 
Figure 126: Office A101 modeled in Autodesk Revit 2018 (author) 

An additional step was created in this case study to avoid the shortfall that appeared in Office 

02 limitations and shortfalls. The office was oriented in Revit to become parallel to the 

horizontal axes, so when inserted in Dynamo; the applied lighting strategies will follow the 

same horizontal orientation.  

This small step can have drastic changes to the generated outcome. If the end user wishes to 

have the lights methods applied in an angular direction, the model in Revit needs to be oriented 

towards the desired angle, since any changes in the orientation in Dynamo will not impact the 

outputs. 
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5.2.2.1.1 Office A101 results 

The algorithm had generated more than 100 various ceiling designs for this case study, 103 

results are shown in Table 12. The designer can generate up to 500 option, through playing and 

manipulating the different variables that are created for every design method. 

One of the main advantages of the algorithm is its flexibility, allowing it to produce individual 

ceilings using only one design parameter and generate ceilings that showcase more than one 

design method. 

Table 12: Office A101 produced options from the generated ceilings designs in Dynamo 2.0.3 (author) 

Generated Ceiling Designs  
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Results showed the strong aspect of the algorithm for generating reflective ceilings designs; it 

produces a diverse number of ceilings in a matter of 2 to 3 minutes. Which saves great time to 

the designer and provides a variety of innovative options.  

 
Figure 127: Development of the produced patterns in Dynamo 2.0.3 for Office A101 (author) 
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Figure 127 shows two key approaches the algorithm provides for the end user; The first 

approach is shown in (a), (b) and (c), as it produces different patterns from the same outline. 

These patterns are extracted from the same pattern but with different design variables turned 

on and off - an example for these variables is discussed earlier in Figure 89 -. This approach 

relies heavily on the interaction between the system and the designer. As he/she can select what 

to switch on and off through controlling the given variables in the controller sliders.  

The second approach is generated automatically by the algorithm, where (c), (d), and (e) in 

Figure 127 shows the same pattern but with different division, giving the designer the diversity 

to select the number of light fixtures required while sustaining the same pattern. While (f) in 

Figure 127 displays the ability of the designer to change the lights’ variables even if a certain 

pattern with specific division is selected. 

The first approach in Figure 127 shows (a) with the center rectangular and the points around it 

that indicates spot lights, while (b) displays the same center rectangular lighting with 

600x100mm lights turned on instead of the points. However, the points are actually located in 

the center of these lights. (c) had replaced the center rectangle to a point and kept 600x100mm 

lights. This shows how one outline can easily produce different patterns. 

While (c), (d) and (e) in Figure 127 shows the second approach the algorithm uses to produce 

patterns, where (c) shows a division that resulted in 2 lights; producing only one 600x100mm 

light on every side. Whereas (d) had increased the division to result in 3 lights, and (e) to 4 

lights. The algorithm will repeat the same division vertically as well.  

Every pattern will only be divided up to 3 times and then the next pattern will be divided 

vertically and horizontally and so on. In addition, the algorithm uses 4 different scripts to 

generate the patterns, that falls under 4 different categories that are discussed previously in 

detail in Grid sub-approach: Creating Light patterns. 
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Figure 128: Different generated ceilings using spotlights in Dynamo 2.0.3 for Office A101 (author) 

Figure 128 highlights the different results the algorithm produced using only spotlights. This 

shows the ability of the algorithm to not only produce diversity in lighting patterns, but also in 

arranging spotlights to create different ceiling reflective designs. Varying from a simple grid 

or boundary lighting to more complex designs that forms polygon shapes. The spaces between 

every spotlight and the radius of the shapes in the showcased designs can be increased or 

decreased based on the designer’s desire. 
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Figure 129: Generated mixed lighting design methods in Dynamo 2.0.3 for Office A101 (author) 

Figure 129 displays other produced options generated by the algorithm, where different design 

approaches are mixed. This shows that this system does not only depend on producing designs 

using one design approach. But has the capacity to generate different designs through mixing 

different approaches together.  

For example; (a) in Figure 129 shows that the algorithm had applied splitting ceilings approach, 

creating 2 areas for the ceiling, and applied boundary lighting, double drop down ceiling and a 

polygon drop down ceiling in one of the split areas. The levels of the ceilings are left entirely 

to be determined by the designer’s desire as these information depends on the ceiling height, 

and the algorithm is not fed the ceiling’s height since it only uses two axes: y and x axes to 
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create the surface shapes. (b) shows a different option where an ellipse polygon drop-down 

ceiling is applied on only of the split ceilings. 

(c) and (d) in Figure 129 show a different possibility after applying the splitting method. Where 

a designer can place only one pattern in the center of each ceiling. The generative system will 

treat every ceiling individually after the splitting, giving the designer the flexibility to pick and 

choose what to apply for each. 

While (e) and (f) create a different option where the pattern is applied in the center of the drop-

down ceiling. Any selected pattern will always fall in the center of any selected polygon shaped 

drop ceiling because both approaches use the same center point for the surface.  

Table 13 highlights the advantages that were seen in testing the algorithm on this ceiling. No 

limitations had appeared due to the simplicity of the ceiling shape.  

Table 13: Office A101 limitations and advantages (author) 

Field case study 01- Office A101 
Limitations Advantages 

None were found in this case study 

1- Producing over 100 different ceiling 

designs in 2-3 minutes. 

2- Great deal of diversity in light patterns, 

design approaches and lighting fixtures 

quantities 

3- The algorithm showed its capacity as a 

functional interactive system between 

the designer and producing designs. 



 196 

5.2.2.2 Office A202 - Building 7 - Dubai Design District 

The second field case study is also located in the same area; Dubai Design District (d3) in 

Dubai, UAE. The office is located on the second floor in Building 7. Its space is larger than the 

first field case study, where the total area is 341.704 square meter. Figure 130 shows the 

location of the office in building 7, in addition to the office layout.  

 
Figure 130: 24: Building 7 floor plan and the office A202  floor plan (Tecom Group) 

The previous tenants had recently cleared the office; thus, the glass partitions and the floor 

finishing remain. The office has one entrance and it is divided into 4 areas. Two rooms with an 

area of 61 square meter each, and an area of 186 square meter for the employees’ desks. In 

addition; a small storage room with and area of 24 square meter. 

The space is currently lit naturally through the windows seen in Figure 131, since the ceiling 

only has the emergency lights.  
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Figure 131: Site images of Office A202 against its location in the layout (author) 
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Since the office has 4 areas, only one area is selected. Which is the meeting room highlighted 

in red in Figure 132. The meeting room holds an area of 61 square meter, and since no 

rectangular room was tested in the previous case studies, this room should display the 

optimized resulted of the algorithm, where all the different lighting methods should work 

without any limitations.  

As all the previous case studies, the office was modeled in Autodesk Revit as seen in Figure 

132. To select the chosen ceiling and insert it to Dynamo to start the calculations. 

 
Figure 132: Office A202 modeled in Revit 2018 (author) 

Like the previous field case study, the orientation of the model was adjusted in Revit to ensure 

that the desired orientation of the lighting methods will appear in Dynamo. 

An additional phase will be added to this case study only, where 2 designs from the generated 

ceiling designs will be chosen to run the lighting analysis in Autodesk Revit 2018 in Phase 02: 

Connecting the results to Autodesk Revit.  



 199 

5.2.2.2.1 Office A101 results 

Table 14 shows the results generated by the algorithm for this case study, as it was able to 

produce 110 ceiling designs.  

Table 14: Office A202 produced options from the generated ceilings designs from Dynamo 2.0.3 (author) 

Generated Ceiling Designs  
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As per the previous case studies outputs, the generated results insure the variety and the 

elasticity of the algorithm in a small amount of time. Running the algorithm only took one 

minute to produce the showcased results. 

Figure 133 shows the same pattern applied using different methods, this flexibility is what 

generates endless amounts of reflective ceiling designs. The created pattern is a mixture of 

300x300mm square lights, and points that can indicate spotlights or suspended lights from the 

ceiling. They are arranged in a circular outline to produce the displayed pattern. 
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Figure 133: Same pattern merged with different pattern generated in Dynamo 2.0.3 for Office A202 (author) 

(a) in Figure 133 shows the pattern in the center of the room with a simple boundary lighting 

around the ceiling. While (b) shows the same pattern multiplied 3 times. 

 (c) is showing the same pattern repeated twice and merged with a drop-down ellipse ceiling 

Figure 133. Although the pattern radius had changed in the three cases, the dimensions of the 

light remains the same. The three options can fit the tested meeting room with no issues.  

Figure 134 shows different results of arranging 300x300mm lights in different methods. These 

results were produced automatically without the need for the designer to change any variables 

as they are based solely on division. The produced ceilings show diversity in arrangement and 

in quantities of lights. 

The 300x300mm can be changed into any suitable dimensions that the end user desire. The 

algorithm is scripted in an approach that allows all these patterns to revert to Revit and apply 

the lights on the actual ceiling in the model.   
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Figure 134: Different types of designs using the same light generated in Dynamo 2.0.3 for Office A202 (author) 

Figure 135 shows with arrows how the mathematical division happens in the algorithm 

resulting in creating all the possibilities of the same pattern but with different quantities. Where 

the horizontal arrow shows how the same pattern develop vertically, and the vertical arrow 

displays how the same pattern develops horizontally. Every pattern will only be divided 3 times 

only. The initial scripted algorithm did not have the 3 times limit, where every limit would 

depend on the pattern scale itself. In other words, the pattern will keep dividing itself as long 

as the lights fit along the shape and did not overlap. But this approach had produced over 4000 

patterns, which is a large quantity of patterns that makes it inefficient for the designer to go 

through. Hence, the limitation of 3 times were added as seen in Figure 135. 
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Figure 135: Division / combination example for both directions generated in Dynamo 2.0.3 for Office A202 (author) 
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Table 15 highlights the advantages and the limitations found in the two field case studies that 

were conducted on two different offices in Dubai Design District area.  

Table 15: Office A101 and Office A202 limitations and advantages (author) 

Field case study - Office A101& A202 
Limitations Advantages 

None were found in this case study 

1- Producing over 100 different ceiling 
designs in 2-3 minutes for both case 
studies. 

2- The algorithm provided options with 
lighting fixtures quantities 

3- Produced numerous options in designing 
light patterns 

4- The algorithm showed its capacity as a 
functional interactive system between the 
designer and producing designs. 

 

5.2.3 Summary of both conceptual and field case studies  

Testing the algorithm through two different aspects: conceptual case studies and field case 

studies was essential to evaluate the efficiency of it and document the generated results. This 

evaluation had revealed the limitations that need to be investigated further to enhance the 

algorithm’s capacity. To make it a comprehensive system that works with every ceiling 

condition that might occur. 

During the scripting process of the algorithm, a lot of variables and cases were considered, and 

the system was contentiously tested to identify errors and fix them. However, most of the 

testing at that time the was on different dimensional shapes, to ensure that the algorithm is able 

to take all the possible ceiling layouts, and work effectively on the majority of shapes that 

forms any ceiling. Small conditions like having a curved corner in parts of the layout or the 

orientation of the model was not considered in the scripting process.  
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The conceptual case studies had exposed new limitations the algorithm did not inspect. 

Providing proper feedback that aims to develop the system and upgrade it. Unfortunately, the 

field case studies did not reveal new limitations due to the simplicity of the ceiling shapes, as 

these shapes were considered in the scripting process of the algorithm. 

The advantaged were similar in the conducted case studies; both conceptual and field case 

studies proved the algorithm’s capacity in four main parameters:  

1- Generating many ceiling designs in a short time; 2 to 3 minutes. 

2- Providing diversity in the generated designs in three design aspects: light patterns, used 

design approaches and lighting fixtures quantities 

3- Showcased its ability as an interactive system in two aspects: the designer’s ability to 

alter and fix the visual results immediately, and the algorithm capacity to turn on and 

off different approaches that allows the designer to pick and choose the suitable designs 

he/she desires. 

4- The capacity of the algorithm to produce various ceiling layouts using one design 

parameter only. And produce layouts that combine the different designs parameters in 

one ceiling at the same time. 

The major limitation the case studies had revealed, which needed proper investigation to 

identify the reason behind it; was the orientation of the model in Revit. This limitation emerged 

in the second conceptual case study that investigated Commerzbank headquarters. Which 

showed the connection between Dynamo and Autodesk Revit, where the model’s orientation 

in Revit has a direct impact on all the lighting methodologies in Dynamo. Forcing all the 

lighting methods to match the same orientation as the building in Autodesk Revit regardless of 

the ceiling’s orientation in Dynamo. This can be considered as an advantage or a disadvantage. 

In this case study, this orientation had produced creative results, while in other case studies it 
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might produce inefficient results. Therefore, the orientation of the model always needs to be 

considered.  

5.3 Phase 02: Connecting the results to Autodesk Revit  

The next phase of testing the algorithm is through connecting the results back to Autodesk 

Revit and running lighting calculations on the selected designs. This phase will be applied 

using the fourth field case study: Office A202, located in Building 5, Dubai Design District.  

5.3.1 Exporting the lights from Dynamo and connecting it to Revit light families  

Section Subsystem 03: Exporting the results back to Autodesk Revit in the previous chapter had 

discussed in detail how the algorithm exports back the results from Dynamo into Revit. Which 

is done through grouping every light category into different groups, to connect the produced 

lights in Dynamo to actual light families found in Revit.  

 
Figure 136: Nodes that creates light lists to connect to Revit in Dynamo 2.0.3 (author) 
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Figure 136 shows the Nodes that create the connection between Dynamo and Revit. Where the 

grouped lighting lists in Dynamo are connect to the created light families in Revit that’s seen 

in the red outlined list. 

The light families in Autodesk Revit where obtained from Acuity Brands Lighting, Inc. The 

company is in Atlanta, Georgia (Acuity Brands Lighting 2020). 

The chosen lights are seen in Table 16; which have the same dimensions as the inserted light 

dimensions in Dynamo that generated all the different ceilings designs. The company provides 

in its website (IES. Lighting formats) that can be connected to Revit lighting families 

immediately.  

Table 16: The selected lights from Acuity Brands Lighting (author) 

Lighting Source: Acuity Brands Lighting, Inc 
Light 
Series Image 

Width and 
Length CRI 

Color 
Temperature Lumens Wattage 

Epanl 
LED Flat 

Panel  
600x600mm 80 35k 2000 17 

JSFQ 
Slim Form 

Surface 
Mount 

Downlight 
Square 

 

300x300mm 90 35k 1300 15 

Wf6 
Thin LED 
Downlight  

Dia:50mm 90 30k Low 
Lumen 10 

Slot 1 
Recessed 

 

600x75mm 90 30k 1000 37.82 

1200x75mm 90 35k 1000 37.82 
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5.3.2 Lighting calculations in Autodesk Revit 

Once the algorithm connects the produced lights in Dynamo to a light family in Autodesk 

Revit, the results of any selected ceiling will automatically show on the original model in 

Autodesk Revit. In this case; the Revit lighting families shown in Table 16 were downloaded 

from Acuity Brands Lighting website in an IES format that allowed Revit to connect them to 

the same families identified in Dynamo. 

For the lighting calculations, two ceilings were chosen from the fourth field case study: Office 

A202. As seen in Figure 137 (a) shows another generated ceiling using three different lights 

families: Epanl-LED Flat Panel, JSFQ -Slim Form Surface Mount Downlight Square and Wf6-

Thin LED Downlight. While (b) shows a generated result using only one light family, which 

is Epanl-LED Flat Panel. 

 
Figure 137: The chosen ceilings for the lighting calculations generated in Dynamo 2.0.3 (author) 
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In addition to producing numerous lighting designs using one or multiple lighting families. The 

algorithm also provides the accurate counting for any selected ceiling. Figure 138 shows the 

counting for ceiling (a) and (c) in the red outlined area.  

Although the other methods are turned off; the counting for all the lighting methods will show 

as seen in the Nodes in Figure 138, if the end user turned them on; the results will match the 

showed counting. The details about the counting method script is discussed in detail Subsystem 

02: Counting the generated light quantities in the previous chapter. 

 
Figure 138: The counting for ceiling (a) and for ceiling (b) from Dynamo 2.0.3 (author) 

To run the lighting calculations; an integrated lighting calculation plug-in was downloaded into 

Auto desk Revit. ElumTools add-in can calculate the luminance on any surface in Revit through 

identifying the lighting fixture families (Lighting Analysts 2020).  

This plug-in was chosen due to its ability to provide the desired lighting calculations. In 

addition to having the flexibility to insert the selected lighting families shown in Table 16. 

Which were connected to Dynamo and Autodesk Revit previously.   

Once the tool is downloaded, its own ribbon toolbar will appear as displayed  in Figure 139 for 

the end user to access the different analysis tools.  
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Figure 139: ElumTools Plug-in in Revit Workspace (Autodesk Revit 2018) 

5.3.2.1 Lighting calculations for ceiling (a) 

Figure 140 shows the generated design for ceiling (a) in Dynamo and the immediate results in 

Autodesk Revit. Since the algorithm scripts in Dynamo connects the generated lights to Revit 

lighting families; the results of any selected ceiling will automatically show on the original 

model in Autodesk Revit. 

 
Figure 140: Dynamo produced results for ceiling (a) and application of them in Revit workspace 
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Figure 141: The inserted lights and the Revit model with the layout model (Autodesk Revit 2018) 
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Figure 141 is showing the Luminaire Manager tool in the ribbon toolbar along with the three 

light families presented under that tool. Although Table 16 shows 5 different types of lights, 3 

are only connected in this case study since the produced ceiling layout is using three different 

light families only as seen in the shown Revit model in Figure 141. 

The Luminaire Manager tool provides the standard specifications for every light family used 

in Revit , which is outlined in purple in Figure 141. This gives the flexibility for the designer 

to always revert to this list to turn on/turn off certain lights or change the luminaire Watts if 

desired.  

Since the displayed light families in Figure 141 are downloaded as an IES format from Acuity 

Brands Lighting, Inc website; there was no need to alter nor change any light specifications to 

match the standards of the existing light that’s being sold from the company. After uploading 

the light families in the Luminaire Manager tool, the calculation points were added using Add 

Points Tool shown in Figure 142. This step allows the designer to choose the desired quantity 

and space between every calculating point to produce lighting calculations results based on 

these points. 

 
Figure 142: Adding Calculations Points (Autodesk Revit 2018) 
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After running the lighting calculations, Table 17 displays the produced results from ceiling (a). 

Table 17: Ceiling (a) Lighting Calculations Results (Autodesk Revit 2018) 

Ceiling (a) Lighting Calculations Results 
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As seen in Table 17; the highest luminance levels were noticed on the sides on the room, with 

a maximum luminance of 342 lx, this is due to the 5 lights placed close to each other on the 

sides of the room.  

However, if the designer wishes to change the spacing between the lights or reduce the light 

quantity to minimize the lx levels. He/she will simply alter the dimensions through changing 

the value in the slider Pattern Scale, which will automatically alter the space of the lights in 

Revit. The Pattern Scale slider is presented in Figure 140. This shows the flexibility of the 

scripted system as any alteration in Dynamo will automatically alter the light families in 

Autodesk Revit and can be modified even after choosing the pattern and running lighting 

calculations without presenting any glitches or errors. 

Another method to minimize the lx levels is through changing the luminaire Watts for the light 

family - outlined in purple in Figure 141- to match another luminaire produced by the supplier 

in order to reduce lower levels of Watts. 

In addition, the minimum luminance is noticed in top left of the room with 147 lx which is 

illuminated by Wf6-Thin LED Downlight. While results showed 248 lx as the luminance 

average of the room. The luminance results are summarized in Table 18. 

Table 18: Ceiling (a) luminance Generated Results from Autodesk Revit 2018 (author) 

luminance Generated Results 

luminance 
Calculation 

Points Name 

luminance 
Average 

luminance 
Maximum 

luminance 
Minimum 

luminance 
(Avg/Min) 

luminance 
(Max/Min) 

Ceiling (a) 248 lx 342 lx 147 lx 1.7 2.3 
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5.3.2.2 Lighting calculations for ceiling (b) 

Ceiling (b) is generated using the scripted algorithm in Dynamo as seen in Figure 143. This 

ceiling was chosen because it only utilizes one light family in Autodesk Revit, while ceiling 

(a) had utilized three different lighting families. Showcasing the diversity of generated options 

the algorithmic system can produce. 

 
Figure 143: Dynamo produced results for ceiling (b) and application of them in Revit workspace  

The next step is to identify the selected light family in ElumTools plug-in using the Luminaire 

Manager tool. Figure 144 shows the model in Autodesk Revit and the selected lighting family 

for the design, which is downloaded with its specifications from Acuity Brands Lighting, Inc. 

The selected light family is Epanl-LED Flat Panel.  

The designer is always able to change the light family to any desired option. As long as the 

naming of the new light families is altered to match the original naming for the previous light 

families, which are: Light 01, Light 02, and up to Light 05.  

If the naming of the light families is changed by the end user in Autodesk Revit. Dynamo will 

not be able to connect the produced results to the light families in Autodesk Revit, which will 
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lead in an error in displaying the results in Autodesk Revit workspace. This issue occurs 

because the algorithm is creating the connection through the similarities of names in both 

software. For example: the algorithm understands that group A in Dynamo is connected to 

Light 01 family in Autodesk Revit. If Light 01 family in Autodesk Revit was removed, the 

connection will fail.  The Nodes displayed earlier in Figure 136 shows the connection clearly 

where the red outline shows the names of the family types in Dynamo. 

 
Figure 144: The light specifications for the produced ceiling (Autodesk Revit 2018) 

The same procedure is repeated, where the next step is to select the calculation points and place 

them in the room with the desired height, for the lighting calculations to use these points as a 

base level to perform the lighting calculations and display the results. In both ceiling (a) and 

(b) the calculation points were set on a height of 720mm, matching a meeting table height.  

After that, the lighting calculations are conducted to investigate the efficiency of the produced 

ceiling. Table 19 shows the produced results from using ElumTools plug-in.  

Results showed great difference between both ceilings. Since (a) had a total of 16 lights that 

diversified in lumens, while ceiling (b) used 18 lights with the same lumens. The difference of 

lighting lumens and quantities is between both ceilings had created 30.5% difference in the 

luminance average. 
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Table 19: Ceiling (b) Lighting Calculations Results (Autodesk Revit 2018) 

Ceiling (b) Lighting Calculations Results 
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The produced values show a maximum luminance level of 450 lx. The highest luminance levels 

were found in the centered area of the room due to the minor spacing between every two lights 

in the middle space. While the luminance minimum had a value of 228 lx, emerged in the left 

top corner of the room. The luminance average of the room was 357 lx, which is notably higher 

than ceiling (a). The generated results are summarized in Table 20.  

Table 20: Ceiling (b) luminance Generated Results from Autodesk Revit 2018 (author) 

luminance Generated Results 

luminance 
Calculation 

Points Name 

luminance 
Average 

luminance 
Maximum 

luminance 
Minimum 

luminance 
(Avg/Min) 

luminance 
(Max/Min) 

Ceiling (a) 357 lx 450 lx 228 lx 1.6 2 

 

5.3.3 Phase 02 out-turns 

Figure 145 presents a visual comparison between both cases, where ceiling (b) had produced 

higher luminance levels than ceiling (a). Ceiling (b) showed an increase of 30.5% for the 

luminance average. And a rise of 24% for luminance maximum values, and 35.5% increase in 

the luminance minimum value. 

These results show that the algorithm creates diverse options for the designer to use from, using 

one light family to generate ceilings that are mathematically produced to ensure every potential 

arrangement for the lights. Or producing ceilings that utilize every light family to create all the 

design possibilities. In other words, the algorithm starts producing all the possibilities using 

one light only, then develops to generate all the potential options using two lights, followed by 

three lights and so on. Until it reaches into using 5 different types of lights in one ceiling.  
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Figure 145: Ceiling (a) and ceiling (b) comparison (author) 

The results also display the capacity of the scripted generative system; as it is able to take the 

produced designs from Dynamo to a further step after, and applies them automatically in 

Autodesk Revit, as well as connecting the produced outputs to actual light families taken from 

lighting suppliers. Producing accurate results that can predict the luminance levels in any tested 

area.  

In addition, different levels of flexibilities in the generative system are shown through the 

different phases. Lighting calculations had shown the given flexibility to the designer regarding 

choosing the desired lighting families with different light specifications. As the light 

specifications are not fixed and can be altered while sustaining the same family or changed 

completely through adding a new lighting family that has an IES format. In addition, the actual 

design of the ceiling can be altered, manipulated, or changed completely in Dynamo and it will 

automatically reflect the new design in Autodesk Revit.  
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5.3.4 Lighting power density calculations 

Litrature had showed previous generative systems that were designs soly for performing 

lighting calculations, such as (Plebe & Pavone 2017) and (Seyedolhosseini et al. 2020). 

Lighting power density (LPD) was calculated manually in this dissertation, since selecting light 

families is assigned in Autodesk Revit and not in Dynamo. If the lighting power density is 

calculated in Dynamo, the flexibility of selecting and changing the light families in Autodesk 

Revit will not be possible. As the Wattage of every inserted light will be detrmained in Dynamo 

to perform the calculations and not in Autodesk Revit. 

The light counts shown earlier in Figure 138 highlights the sizes of each used family which is 

connected to the inserted light families shown in Table 16. The total area of the selected room 

is 61m2 as showcased previously in Figure 131, which is around 657 square foot (sF). 

Ceiling (a) had three different types of lights: Epanl-LED Flat Panel, JSFQ -Slim Form Surface 

Mount Downlight Square and Wf6-Thin LED Downlight. While Ceiling (b) was generated 

using only one light family, which is Epanl-LED Flat Panel. Table 21 exhibits the details of 

every light. Along with the Lighting Power Density for each ceiling. Where LPD for ceiling 

(a) upon calculating it is 0.54 W/sF, while LPD for ceiling (b) is 0.47 W/sF, as (17 Watts x 18 

pieces) / 657 SF = 0.47 W/sF. 

Table 21: Lighting fixtures details for Ceiling (a) and (b) and LPD calculations (author) 

 Fixture Description Watts Per 
Fixture Quantity Total Fixture 

Wattage 
Lighting Power 
Density (W/sF) 

C
ei

lin
g 

(a
) Epanl-LED Flat Panel 17 2 

359 0.54 
JSFQ -Slim Form Surface 
Mount Downlight Square 15 15 

Wf6-Thin LED Downlight 10 10 

C
ei

lin
g 

(b
) 

Epanl-LED Flat Panel 17 18 306 0.47 
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5.4 Phase 03: Sustainability elements of the proposed generative design sysetm 

(Cohen & Reich 2017) had proposed an appropriate framework that analyzes sustainability in 

biological systems. They have proved that this framework is applicable for general design as 

well. Furthermore; the book they’ve wrote provided a checklist to be implemented as a design 

principal that fosters economical, enviromental, social and ethical sustanability.  

This framework was created through connecting ideality to sustainability. The connection was 

created through the similarities of definitions, where (Cohen & Reich 2017) affirmed Charter 

and Tischner definition of sustanibility as all products, services, hybirds and systems that 

decrease the negative effect and increase the positivie effect of the four key parameters of 

sustainability - economical, enviromental, social and ethical - (Charter & Tischner 2001). And 

connected the definition to the concept of ideality defined by the Theory of Inventive Problem 

Solving (TRIZ). Defining ideality as the benefits-cost systems ratio; where all systems aim to 

develop the ratio of their functional abilities to the costs throughout their life cycle (Orloff 

2017). Yael Cohen and Yoram Reich discussed that ideality is accomplished through 

maximizing positive affect and minimizing negative affect, and that’s how the bridge is created 

for both notions. Attaining sustainability through ideal systems that create more benefits at low 

costs (Cohen & Reich 2017).  Table 22 shows the sustainability framework proposed by (Cohen 

& Reich 2017). 

Table 22: ideality strategies proposed as a framework that fosters sustainability (Cohen & Reich 2017) 

Ideality- sustainability strategies 

Increase benefits 
Adding functions to the existing working parts 
Improve the performance of some functions 

Reduce costs 

Exclude auxiliary functions that support the main function but may be 
removed without affecting the performance of the main function 
Combine subsystems of several functions into a single system 
Transferring some functions to a super system 
Utilizing internal and external resources that already exist and are 
available 
Improving the conductivity of energy through the system 
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5.4.1 Proving the system’s sustainability with-in itself  

All the points in Table 22 were utilized in creating the generative system. To prove that the 

system with-in itself addresses sustainability individually. And demonstrate that the created 

generative system is a valid sustainable system based on (Cohen & Reich 2017) definition.  

Table 23 shows the same points presented in Table 22 with related points showcasing the 

created generative system, connected to every ideality-sustainability strategy to a function in 

the scripted algorithmic system. 

Table 23:The proposed sustainable framework with the algorithm’s sustainable ability for each point (Cohen & Reich 2017) 

Ideality- sustainability strategies The generative system sustainability 

In
cr

ea
se

 b
en

ef
its

 

Adding functions to the existing 
working parts 

The algorithm is scripted in Dynamo, which 
is a visual generative program for Autodesk 
Revit. That is widely used in the design and 
construction field. The produced results are 
automatically applied in Autodesk Revit 
which adds function to existing working 
parts. 

Improve the performance of some 
functions 

The generative system provides unlimited, 
innovative options of reflected ceilings 
layouts in minutes. Which assists and 
improves the current performance of 
individuals in producing ceiling layouts.  

R
ed

uc
e 

co
st

s 

Exclude auxiliary functions that 
support the main function but may 
be removed without affecting the 
performance of the main function 

The algorithm within itself allows the end 
user to turn on and off design approaches, 
without affecting the main function, as it will 
still generate a high number of generative 
reflected ceilings layouts regardless. 

Combine subsystems of several 
functions into a single system 

Different Dynamo scripts in the algorithm 
perform different functions in producing 
various design approaches individually, 
which are combined to produce a full efficient 
system 
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Transferring some functions to a 
super system 

Not only the system produces different 
designs, a script is created to automatically 
connect the results to actual light families in 
Autodesk Revit, allowing the same generated 
design to be transferred to Autodesk Revit for 
the designer to use and to preform lighting 
calculations on the design. 

In addition, the system provides lighting 
counts for every light input, saving efficient 
time for the designer that is equivalent to 
money. 

Utilizing internal and external 
resources that already exist and 
are available 

Dynamo, which is a visual programming 
software that’s usually used to create forms 
and generate commands in Autodesk Revit, 
was utilized to script algorithms to generate 
reflected ceilings layouts. 

In addition, an external plug-in called (Elum 
tools) was used in Autodesk Revit to perform 
the lighting calculations without the need to 
export the results into any other software. 

Improving the conductivity of 
energy through the system 

The generative system allows the end user to 
perform lighting calculations for every 
selected design. Which can coherently allow 
the end user to conduct energy efficiency 
calculations. 

Furthermore, the speed in; producing 
reflected ceiling layouts, altering the output 
results, and providing the lighting counts 
saves focus-time and energy for designers 
which can be utilized in performing other 
tasks. 

 

(Cohen & Reich 2017) framework for sustainability validates that the generative system itself 

is a sustainable system that utilizes almost all sustainability strategies.   
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5.4.2 Proving the system’s sustainability by utilizing results from a cross-sectional study  

Furthermore, following (Cohen & Reich 2017) framework that fostered sustainability, it is 

addressed through two key parameters: (a) Increasing benefits, and (b) reducing costs.  

Numerical data were attained through a cross-sectional study conducted on 72 interior 

designers and architects, that showcased various parameters the generative system utilizes to 

maximize the positive affect and minimize negative affect. In addition, a simple time-cost 

analysis is conducted, to present sustainability through creating more benefits at low costs. 

The survey was tailored to evaluate and compare the parameters that had been proven in the 

generative system individually in Phase 01 and Phase 02. Which can be summarized to the 

following: (a) The diversity and the quantity of produced ceilings. (b) The flexibility in two 

aspects; creating reflected ceiling layouts, and the flexibility in altering the proposed reflected 

ceiling layouts (c) Required time to produce and modify reflected ceiling layouts, (d) The 

average cumulative hours in order to get the counts of lights for the bill of quantity (B.O.Q.). 

Furthermore, the survey allows to create time-cost analyses, which is one of the key targets for 

conducting it.  

5.4.2.1 Survey participants  

The cross-sectional study was conducted on a sample of 72 interior designers and architects. 

11 surveys were excluded to avoid inaccurate results as some designers are currently working 

in none-related design careers.  

The targeted participants included 35 females and 26 males, between ages of 25 to over 50 

years old. 59.02% were between 25-30 years old, while 26.23% ticked the category of 31-40 

years old. Whilst 13.11% were 41 to 50 years old. And only 1.64% were over 50 years old.  



 228 

The age category between 25-30 years old in the tested sample showed 80% of interior 

designers, 60% of architects and 18.2% of designers that are currently working in contracting 

and fit-outs companies. The demography of architects showed higher percentages in age 

categories between 31-50 years old than interior designers. While the 54.5% of designers who 

work in contracting and fit-outs are 31- 40 years old. Figure 146 shows each career category 

with its age participant age percentages.  

 
Figure 146: The survey participants demographic (author) 

The variation of the designers’ demographic was essential to showcase the coherent 

relationship between the level of expertise in design with age, which will reflect accordingly 

on the quantity of the produced reflected ceiling layouts, and the designer’s speed to do so. 

In addition, it will highlight the willingness to adopt and use generative systems in design. 

Which address sustainbility through increasing benefits. Furthermore, the diverse demographic 

allows to investigate the relationship between expertise and the cost of the designer’s time and 

value per hour. Which is related to sustainbility through reducing costs. 
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5.4.2.2 Survey questions outline 

The survey was prepared using an online survey platform. It presented eleven multiple-choice 

questions and one close-ended question and one open-ended question.  

Questions (1-2) obtains general knowledge about the participant gender, age, while questions 

(3-4) aim to determine the level of exposure in designing reflected ceiling layouts, through 

identifying the field of expertise and the years of experience; which creates an evaluation 

metric that consider or neglect the survey results.   

Q1: Please specify your gender: Female / Male 

Q2: Please specify your age: 25-30 / 31-40 / 41-50 / Over 50 years old 

Q3: Please specify your field of expertise in design: Interior Designer - product designer / 

Architect / Contracting and fit-outs / Sales-marketing and business development / Other 

Q4: How many years of working experience do you have? 1-5 years / 6-10 years /11-15 

years /16 -20 years / Over 20 years 

Question 5 is a closed-ended question, that separates the participants based on the answer to 

obtain accurate results. The question asks if the designer had worked on or altered reflected 

ceiling layouts in their field.  

If the participant answered positively, the survey would propose question 6, while the negative 

answer will lead the participant to question 10.  

Q5: Have you designed or altered reflected ceiling layouts/ lighting layouts in your field? 

Yes / No  



 230 

Questions 6 aims to get the average quantity a designer would usually propose in a project for 

reflected ceiling layouts. Which enables to compare the diversity and quantity of the produced 

ceilings from the generative system to a human’s level of quantity and diversity.  

Q6: How many reflected ceiling layouts do you usually propose in a project?  

1-3 layouts / 4-6 layouts / 7-10 layouts / 11-15 layouts 

While questions (7-9) investigates the cumulative hours required from the designer to: design 

a reflected ceiling layout, alter it, and count the lights in it. The answers produce numerical 

date that is compared with the generative system in: (a) the needed time in producing layouts, 

and in altering results, (b) the saved cost upon connecting it with saved time. 

Q7: How many hours do you usually take to alter the ceiling’s proposed designs after the 

client’s feedback? 1-3 hours / 4-6 hours / 7-10 hours / 11-15 hours / Above 15 hours 

Q8: How many hours would you spend on creating a ceiling layout for a 7x7m meeting 

room?  1-3 hours / 4-6 hours / 7-10 hours / 11-15 hours / Above 15 hours 

Q9: Based on your experience, how many cumulative hours do you take in getting the 

counts of lights while doing a B.O.Q for large ceilings such, e.g.: theaters, dining halls, 

places of workshops, office towers, museums … etc.? 1-3 hours / 4-6 hours / 7-10 hours / 

11-15 hours / Above 15 hours 

Question (10-13) produce results that connects cost with time to perform the cost-benefit 

analysis. Furthermore, the questions investigate the level of exposure and usage of Autodesk 

Revit, and any lighting calculations software. To have a better perspective of the generated 

system’s practicality in the design field.  
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Q10: How many cumulative hours do you work daily? Less than 6 hours / 7-10 hours / 11-

15 hours / More than 15 hours 

Q11: Choose an expected salary rate for a designer with 5years of experience?  

Less than 4,000 AED / 4,000 - 8000 AED / 8,000 - 15,000 AED / 15,000 - 20,000 AED / Above 

20,000 AED 

Q12: Are you familiar with Autodesk Revit software? And have you used it before?  

Yes, I use it all the time / Yes, I use it only when necessary-required / Yes, I’ve heard about it 

but I never used it before / No, I’ve never heard about it or used it before. 

Q13: Do you use any lighting design or lighting calculation software?  Yes / No 

The questions survey was distributed to a network of designers and architects through a web 

link, as it was created through an online survey platform, providing flexibility and accessibility 

for participants.  

The online survey link was only given to trusted designers and architects, in order to assure 

attaining accurate data without bias.  

And information was gathered through a time span of a week, where participants from the 

selected design fields gave their answers throughout the day.  

Practical experience was a key element in gathering data since it impacted the accuracy of the 

answers for the remaining questions. Thus, Question 3 was the main question that filtered the 

results, where surveys that selected: Sales-marketing and business development / Other, from 

the multiple-choice answers were not considered and removed from the total data gathering.  
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5.4.2.3 Survey results  

Results showed that 82.9% of the participants will propose 1-3 reflected ceiling layouts in a 

project, as seen in Figure 147. While based on the case studies conducted in Phase 01 in this 

chapter; the generative system can produce a minimum of 50 reflected ceiling layouts. 

Accounting that the designer will propose 3 layouts; the algorithm is able to produce 94% more 

layouts than a designer. Creating significantly higher results, that will surely include greater 

diversity in design than only 3 layouts. Proving one of the many benefits in generative design.   

 
Figure 147: Question 6 results/ How many reflected ceiling layouts do you usually propose in a project? (author) 

Question 8 had asked the designers: How many hours would you spend on creating a ceiling 

layout for a 7x7m meeting room? Results showed that 70.7% had selected from 1 to 3 hours, 

while 19.5% stated 4 to 6 hours, while 7.3% had surprisingly stated 7 to 10 hours as seen in 

Figure 148. Calculating the average for the highest percentage only, a designer will take around 

2 hours to produce layouts for 7x7 meeting room. In comparison with the generative system 

that produced various layouts in Phase 01. The algorithm takes an average of 3 minutes to run 

and to produce results. Saving remarkable time of 97.5%. This highlights the amount of time 

the generative system can save, which can be utilized by the designer to complete other design 

tasks, especially in cases of big projects and deadlines that requires extra working hours.  
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Figure 148: Question 8 results /How many hours would you spend on creating a ceiling layout for a 7x7m meeting room? 

(author) 

Time is also addressed in question 7 and 9. Where 51.2% of the designers stated in question 7 

that it takes 1-3 hours to alter the ceiling’s proposed designs after the client’s feedback. 

However, the algorithm can alter the results automatically in a mouse click. As the designer 

changes the required variables using the given different sliders. The results are not only altered 

in Dynamo, but automatically fixed in Autodesk Revit and connected on the spot to the light 

families in Revit. Figure 149 shows the different responses for question 7.  

 
Figure 149: Question 7 results / How many hours do you usually take to alter the ceiling’s proposed designs after the 

client’s feedback? (author) 
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While question 9 showed diverse results as seen in Figure 150. As the highest percentage was 

31.7% for 4- 6 cumulative hours that a designer would take to calculate the counts of lights 

while doing a B.O.Q for large ceilings such as: theaters, dining halls, places of workshops, 

office towers, museums ...etc. Whereas the generative system automatically produces the 

counts of the lights with the produced reflected ceilings, regardless of the ceiling size or shape 

as seen in Phase 02 in this chapter. It only requires the end user to run it the algorithm once 

which takes an average of 3 minutes to do so. Which saves an astonishing 99% of the time if 

compared with the average of the highest percentage from question 9. The algorithm can 

decrease significant amount of time that is wasted in counting the lights.  

 
Figure 150: Question 9 results /  Based on your experience; how many cumulative hours do you take in getting the counts of 

lights while doing a B.O.Q for large ceilings such, e.g.: theaters, dining halls, places of workshops, office towers, museums 

… etc.? (author) 

Table 24 shows the comparison between the designer’s ability and the generative system 

ability. Summarizing the average results from questions (6-9) that are created to obtain 

quantitative data.  

The percentages of change column in Table 24 presented the saved time the generative system 

can achieve. Showing sticking results that addresses the diversity and the quantity of produced 
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ceilings, the flexibility in time in order to produce and modify reflected ceiling layouts, 

furthermore, the time to alter the proposed reflected ceiling layouts, and the average cumulative 

hours in order to get the counts of lights for the bill of quantity (B.O.Q.) 

Table 24: Comparison between the designer’s ability and the generative system ability - Questions (6-9) 

Questions The designer’s 
ability (Avergae) 

The generative system 
ability (Average) 

The 
precentage 
of change 

Q6: Number of produced 
reflected ceiling plans 2 plans 50 plans 96% 

Q7: Time required to alter the 
ceiling’s proposed designs 
after the client’s feedback  

2 hours  1 minute 99%  

Q8: Time required to create a 
ceiling layout 2 hours 3 minutes 98% 

Q9: Time required to calculate 
the counts of lights while doing 
a B.O.Q for large ceilings 

5 hours 3 minutes 99% 

 

Table 25 presents the different percentages for questions (10-12). The obtained results for 

questions 10 and 11 are discussed in detail in the following section Time-Cost analysis 

Question 12 in Table 25 showed the level of exposure and usage of Autodesk Revit, providing 

results that illustrates the practicality of the generated system in the design field. Where only 

3.8% of the sample participants never heard about Autodesk Revit. While 47.2% have a 

background knowledge of it and use it when required. Whereas 22.6 % use it all the time. And 

26.4% know about the software but do not utilize it. This shows the market’s potential of the 

generative system, where 69.8% of designers use Autodesk Revit. In addition, the newest 

version of Revit 2020 is including Dynamo as a tool in it, which increases the feasibility of this 

system significantly.  
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While question 13 showed that 92.5% of the targeted sample didn’t use any lighting 

calculations software before. Indicating two assumptions: (1) Designers will only perform 

lighting calculations when required by a certain sector, which can be justified using the second 

assumption (2) Using various software that requires exporting and importing specific formats, 

in order to design and calculate different lights makes designers avoid running lighting 

calculations. The hassle of doing so wastes time and is not a priority if not required.  

Table 25: Results for questions (10-12) 

The Questions The highest precentage of responses 

Q10: How many cumulative hours do 
you work daily? 

 

Q11: Choose an expected salary rate 
for a designer with 5 years of 
experience? 

 

Q12: Are you familiar with Autodesk 
Revit software? And have you used it 
before? 

 

Q13: Do you use any lighting design 
or lighting calculation software? 
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5.4.2.4 Time-Cost analysis  

The impotency of saving time has a coherent relationship with the cost an individual or a 

company can save. Which has a direct relationship with sustainability as the scripted generative 

structure is a system that produces various benefits in the lowest costs.  

To connect time with money, participants were asked in question 11; the expected salary rate 

for a designer with 5 years of experience. 52.8% had answered from 8000 to 15,00 AED. While 

question 10 had asked how many cumulative hours do the participants work daily, where 79.2% 

had answered 8 to 10 hours daily, as seen in Table 25. If the average of both results were 

calculated. A designer with 5 years of experience will work 8.5 hours daily with a monthly 

salary of 11,500 AED. In that case, the designer works 42.5 hours in 5 days, which is 170 hours 

monthly. That means that the designer is being paid around 68 dirhams per hour, an 

approximate of 1 dirham and 13 fils per minute. 

Following the results of question 8 discussed earlier; a designer will take an average of 2 hours 

to produce reflected ceiling layouts for a 7x7 meeting room. Which costs 136 dirhams. While 

the generative system takes 3 minutes. Costing 3 dirhams and 39 fils. That means the generative 

system saves approximately 133 AED. Which saves 98% of the cost.  

In question 7; designers selected an average of 2 hours to alter the ceiling’s proposed designs 

after the client’s feedback. Which is costs 136 dirhams. While the algorithm automatically 

alters the results as the designer changes the value in the given slider, which takes an average 

of 1 minute. Saving 99% of the cost.  

As seen in Figure 150 earlier, 31.7% of the participants stated that counting lights for a 

relatively large spaces takes around 4-6 hours. Which means 5 hours on an average. Costing 

340 Dirhams. While the generative system produces the count of the lights automatically with 

the generated designs. With an average of 3 minutes. Saving 99% of the cost.  
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Figure 151 shows the cost comparison between designer’s cost and the generative system cost. 

In three different aspects; (a) generating reflected ceiling layouts, (b) altering the ceiling’s 

proposed designs after the client’s feedback, and (c) counting lights for a relatively large space. 

Percentages show astonishing results where the generative system saves 98%-99% of the cost. 

 
Figure 151: Human cost and the generated system cost comparison  

The reduced cost was calculated based on the reduced time, which was priced based on the 

crossed-sectional study. The results of testing the algorithmic system exhibits sustainability 

through providing numerous benefits that were discussed and proven in both Phase 01 and 

Phase 02 in this chapter. In addition, the crossed-sectional study provides numerical data and 

percentages that showcased the reduced cost and time the generative system can do.  

Using (Cohen & Reich 2017) definition of sustainability; the generative system had proved its 

sustainabilty through maximizing positive affect and minimizing negative affect, creating more 

benefits at low costs.  
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6 Chapter 6: Conclusions  

6.1 Introduction 

This chapter presents an overview of the work presented in this dissertation, defining the 

created generative algorithmic system, and presenting a comprehensive briefing for its 

structure and summarizing the different phases selected to test the system along with the 

presented results. In addition, it underlines the key contribution of the research in this field. 

Along with the faced limitations while scripting and testing the system and proposes further 

work that is founded based on this research.  

6.2 Summary  

This research presented a novel design approach that generates reflected ceiling layouts. 

Presenting an algorithmic system scripted utilizing Dynamo software - a programming 

application hosted by Autodesk Revit - to create a generative system that employs various 

design approaches through transferring design concepts into mathematical scripts to generate 

suitable diverse two-dimensional lighting layouts.  

The structure of the algorithmic system can be simplified into the following: three key 

foundations for the generative system to identify a ceiling shape. And various sub-approaches 

developed based on the three key foundations. The different scripted approaches were 

incorporated in a direction that reduced calculations time for each script and allowed each 

approach to be used individually as tools, or as a full system to generate various reflected 

ceiling designs outputs.  

The three key foundations in the algorithmic system are: splitting the surface into smaller 

surfaces, forming boundaries around the surface, and creating two types of grids, enabling the 

placement of lights coordinates on the surface. They were created based on key design 

characteristics that are similar in all the ceilings designs regardless of the shape. The 
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characteristics are the surface’s overall boundaries, the degree, and the quantity of angles it 

has. 

The different sub-approaches were formulated as an extension of the key approaches, as the 

scripting of two different types of grids resulted in creating lighting patterns sub-approach. As 

two primary types of lighting patterns using specified lighting dimensions were scripted, the 

rectangle-based patterns, and the polygon-based patterns. Each type contains two approaches 

that generates patterns: uniformed and non-uniformed. While the formation of boundaries 

resulted in designing boundary lighting sub-approach, which diverted into two aspects: 

boundary lighting for full ceilings, and boundary lighting for narrow corridors. Furthermore, it 

produced drop-down ceilings sub-approach, that is split into two categories regarding the 

geometry of the ceiling. The first category will produce a drop-down ceiling that replicates the 

same shape of the ceiling, while the other category will create different polygon shapes in the 

center of the ceiling, developing from a circle all the way to a decagon. 

Arranging the algorithmic system was created through utilizing different interactive means. 

The default status of the generative system combines all the several approaches and sub-

approaches into a single system that produces more than 500 different reflected ceiling layouts. 

Nevertheless, the end user can exclude auxiliary functions that support the main function, by 

turning them off, without affecting the performance of the main function. This approach was 

created to give the flexibility to target certain designs approaches that meets the designers’ 

desire. 

The created generative system prevents the need to use multiple software or to perform 

different exporting approaches to transfer the designs from Dynamo to Revit, as the scripted 

algorithm does that automatically. In addition. the exhibited results eliminated the need to 

export the design from Autodesk Revit to any other format to generate lighting calculations. 
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Furthermore, the generative system allows applying all the tools in Revit on the final design, 

which includes exporting the design into any suitable format the designer desire, to use it in 

AutoCAD or any other software. 

Results had validated the system’s capacity in various perspectives. The algorithmic system 

was tested through three different phases, each phase had successfully attained targets that 

highlighted the system’s capacity in different perspectives.  

Phase 01 and Phase 02 prove the generative system as a comprehensive system that can perform 

a full design cycle. Starting from generating various and diverse reflected ceiling designs, 

altering them automatically and giving the end user the ability to change the design based on 

their desires, all the way to producing numerical data for lighting counts and artificial lighting 

calculations, all within the same software.  

Phase 01 had performed two types of case studies: conceptual case studies and actual case 

studies. Results showcased the algorithm diversity in generating different reflected ceiling 

layouts immediately. Producing more than 100 ceiling designs in a matter of 1 minute. 

Produced ceiling layouts showed diversity in in three design aspects: light patterns, used design 

approaches and lighting fixtures quantities.  

In addition, results exhibited the algorithm interactive system that involves the end user through 

the progress and altering the produced outputs. As the designer inserts certain variables and 

lighting dimensions to produce specific layouts, while manipulating the generated results by 

utilizing different controllers to manipulate the scale of the pattern and the quantity of the lights. 

Phase 01 results had also showed the algorithmic system flexibility in producing ceilings’ 

layouts with one design parameter, generating multiple outputs. And it is ability to combine 

different design approaches together in one ceiling at the same time as well. 
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Phase 02 of testing the generative system was through taking two generated ceiling layouts 

from the produced results of a case-study from Phase 01 and conduct lighting calculations on 

them by a plug-in called Elum-tool. Since the algorithmic system connects the two-dimensional 

geometrical shapes of lights in Dynamo to actual light families in Autodesk Revit.  

This phase tested the comprehensiveness of the generative system to prove its ability to take 

the generated results into practical applications. In addition, it also had tested another feature 

the algorithmic system provides, which is counting lights. As it automatically exhibits the 

quantity of lights that any selected ceiling produce. Results showed accurate counts for both 

selected ceiling designs and delivered great outputs that predicted the illuminance levels in the 

tested areas. 

Phase 03 exhibited the systems sustainability through two approaches, the first approach had 

discussed the system sustainability within itself through (Cohen & Reich 2017) proposed 

framework that analyzes sustainability for systems, while the second approach had proved 

sustainability through two parameters: maximizing benefit and decreasing cost. As numerical 

data were attained through a cross-sectional study conducted on 61 interior designers and 

architects, including 35 females and 26 males, between ages of 25 to over 50 years old.  

Increasing benefits parameter was achieved through evaluating and comparing the beneficial 

outcomes that had been proven in the generative system individually in Phase 01 and Phase 02 

against the participants’ responses. While Reducing cost was attained through a simple time-

cost analysis, which utilized the data obtained from the survey, analyzed the saved time, and 

financially priced it. Presenting sustainability through creating more benefits at low costs, as 

results showed an astonishing reduction of cost which reached 99%. 
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6.3 Conclusions 

The essential contribution of this dissertation is the creation of a comprehensive, interactive 

generative system that produces relatively high quantities of lighting layouts for interior 

ceilings. The research goals that were introduced in Chapter 1 were achieved through the 

various results exhibited in Chapter 5, Phase 01, Phase 02, and Phase 03. 

1- To propose a computational generative design in producing various solutions for 

reflected ceiling layouts designs. The tested case-studies presented in Chapter 5; Phase 

01 exhibited the ability of the scripted generative system to provide various solutions 

for each tested case-study. As Conceptual case studies produced 69 results in Office 01 

and 78 ceiling designs for Office 02. While the Field studies; tested on actual offices in 

Dubai Design District produced 108 results for Office A101 and 110 designs for Office 

A202.  

 

2- To exhibit a methodological framework that presents an outline for a comprehensive, 

interactive generative system that produces relatively high quantities of lighting 

layouts for interior ceilings, performing a full design cycle. Starting from generating 

various and diverse reflected ceiling designs, all the way to producing numerical data 

for lighting counts and artificial lighting calculations, all within the same software.  

Results in Chapter 5, Phase 01 with Phase 02 had achieved this target, where the 

generated options displayed in Table 7, Table 9, Table 12 and Table 14 from Office 01, 

Office 02, Office A101, and Office A202 presented the system’s ability to generate 

large quantities of reflected ceiling designs while highlighting the diversity and the 

flexibility in the generated results.  

While results in Phase 02 proved the system’s comprehensive and automatic approach 

to transfer the generated results from Dynamo into Autodesk Revit in section 5.3.1, 
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without the need to export results. The generative system had connected the geometrical 

2-D designs from Dynamo to lighting families in Autodesk Revit presented in Table 

16. It was able to provide accurate lighting counts showcased in Figure 138 to two 

selected lighting layouts - Ceiling (a) and Ceiling (b), where Ceiling (a) showcased 

three different lighting families and Ceiling (b) showcased one lighting family - and 

performed proper lighting calculations presented in section 5.3.2. 

Lighting calculations results had validated the efficiency of the system as the numerical 

outcomes were suitable to each selected design. Ceiling (b) had produced higher 

luminance levels than ceiling (a). Ceiling (b) showed an increase of 30.5% for the 

luminance average. And a rise of 24% for luminance maximum values, and 35.5% 

increase in the luminance minimum value compared to Ceiling (a). Which can be traced 

back to the selected design and the quantity and the type of the lights used in Ceiling 

(a) and Ceiling (b).  

 

3- Demonstrate different aspects in sustainability in generative systems, such as saving 

time, cutting cost, increasing diversity, providing flexibility, delivering innovative 

designs, creating various design tools and much more. The results of Chapter 5; Phase 

01, Phase 02, and Phase 03 had achieved these various aims. 

The comparison between the numerical data attained from the cross-sectional study 

conducted and the results that were generated from the conducted case-studies in 

Chapter 5; Phase 01 and Phase 02. The comparison percentages displayed in 5.4.2.3 

had validated the different aspects of sustainability in the scripted generative system. 

Where results had shown that time was decreased around 98%, with an increasement 

of 96% in the generated quantity of ceiling layouts, as the average time for a designer 

will be around 2 hours to propose an average of 2-3 lighting layouts, while the average 
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time of the generative system is 3 minutes to produce an average of 50 layouts. And a 

reduction of 99% of the cost was proved through identifying the average cost of hiring 

a designer per hour - which is around 68 dirhams per hour - and connecting it through 

the time required to produce results by the generative system and by a designer. 

Results had also validated sticking comparison results in diversity, as the algorithmic 

system is able to produce 94% more layouts than a designer, creating significantly 

higher results, that will surely include greater diversity in design. In addition, section 

5.4.2.3  in Chapter 5 had presented visible results that validated the flexibility and 

simplicity of altering generated results, section-study results had stated the average of 

2 hours to alter the ceiling’s proposed designs after the client’s feedback, costing 136 

dirhams based on the average pay for a designer per hour. While the algorithmic system 

alters it instantly through changing the value input in the given slider. Saved 98% of 

the time, which coherently saved 99% of the cost.  

Furthermore, participants had selected an average of 5 cumulative hours for a designer 

to calculate the counts of lights while doing a B.O.Q for large ceilings such as: theaters, 

dining halls, places of workshops, office towers, museums ...etc. Whereas Phase 02, 

section 5.3.2. in Chapter 5 had proved the system’s ability to automatically produces 

the counts of the lights along with the generated design results. Which saves an 

astonishing 99% of the time, which automatically saves 99% of the cost.  

In addition, results in Chapter 5; Phase 01 had proven the scripted algorithmic system 

ability to work as design tool that can utilize one design parameter only - such as the 

exhibited generated results in Figure 127, Figure 121, Figure 134, Figure 135 - and 

utilizing various design parameters at once, presented in Table 7, Table 9, Table 12 and 

Table 14. And highlighted in Figure 111, Figure 123, Figure 129, Figure 133.  
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4- Targeting sustainability through cost reduction and benefits increasement, through 

statistically proving the usage of the software to produce results is more beneficial 

compared to a designer. Section 5.4.2.4 in Chapter 5 had achieved this goal. Where 

time-cost analyses had been conducted through calculating the reduced cost based on 

the reduced time, which was priced based on the crossed-sectional study, resulting in 

an astonishing reduction of 99% of the cost. In addition, the created generative system 

had proved sustainability in its own structure, through utilizing (Cohen & Reich 2017) 

framework of sustainability in generative system; by maximizing the positive affect and 

minimizing negative affect that -which is highlighted and compared in Table 23- 

 

5- To integrates generative lighting design with a BIM module. This was confirmed 

through connecting Dynamo to Autodesk Revit, through importing a ceiling layout 

from Revit to Dynamo; addressed in Chapter 3 in section 3.2.1 and in depth in Chapter 

4, section 0.  And exporting the generated results from Dynamo to Autodesk Revit  

discussed in detail in Chapter 5, Phase 02, section 5.3.1.  

Exporting happens automatically. The scripted generative system created in Dynamo 

will always have one center layout that is distinguished in green boundaries, located in 

the intersection point between x and y axes of the displayed results, as explained in 

Chapter 4, section 4.2.5.1.2. This location indicates the original ceiling location that 

was imported from Autodesk Revit. Hence, when the end user chooses a design that 

they wish to connect to Autodesk Revit upon viewing all the displayed results in 

Dynamo. He/she would move the chosen design to the intersection point location using 

a given slider, which will automatically connect lighting families to the selected choice 

as seen in Chapter 5, Phase 02. 

 



 248 

This research had provided various contributions to the literature and the design field.  

suggesting an approach to automated lighting layout system in indoor space and proposes a 

way that generates alternatives of lighting design through using compensation of mathematical 

and algorithmic scripts.  

It validates the interpretation of conceptual designs into mathematical approaches and digital 

languages that targets interior design and achieve proper design results. Contributing into the 

usage of generative design approaches in interior artificial lighting. The mathematical scripts 

are explained in detail in Chapter 4, where every design approach had its primary Dynamo 

scripts. For example, a mixture of two mathematical approaches - permutations and 

combinations - were created to provide all the possibilities of splitting a ceiling design, which 

is discussed in details in sections 4.2.2.1.2.14.2.2.1.2.2, 4.2.2.1.2.3. And the creation of Quad 

and Diamond shaped grids was created using simple mathematical calculations that allows the 

generative system to place light coordinates in the shape of a grid on any inserted ceiling 

surface, and much more.  

In addition, it introduces the use of algorithmic design for indoor artificial lighting design in 

interior offices. Increasing the productivity with hundreds of outputs delivered in a short 

amount of time, freeing relatively expensive human resources from somewhat repetitive tasks. 

And increasing creativity as the scripted algorithms generate non-traditional designs.  

Furthermore, individual algorithmic scripts that generate each approach and sub-approach can 

be copied and utilized as design tools to help designers in distributing lights or perform simple 

light design approaches, such as creating a grid, apply boundary lighting and so on. Instead of 

running the entire generative system to develop lighting layouts. 
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6.4 Research limitations 

The main limitations of this research are Dynamo software limitations. Which can be divided 

into two categories: limitations faced through scripting the algorithmic system, and the 

limitations faced when testing the system. The following points highlights the limitations faced 

through scripting the algorithmic system: 

The graphics tool in Dynamo is not as developed as the other Adobe software. It does not have 

a good tool to draw lines that indicates splitting the surface in different directions at the same 

time. it can however split an angle towards one direction only, but not all the angles at once 

consecutively. To fix this issue; new Nodes from a plug-in called Lunch Box were added to 

the script. This plug-in is created by a third party called The Proving Ground. It is used as a 

tool for managing data, and it allows geometry behaviors such as generative form making 

(Nathan 2013).   

The current available tools in Dynamo are not able to achieve the goals of the algorithmic 

system, thus, a lot of individual tools were translated from design concepts to logic and scripted 

mathematically to a certain goal. A lot of errors and limitations occur during this process. 

Constant testing and continuous development were attained to ensure that the written scripts 

and definitions do perform the required goal.  

The software does not allow switching and altering between choices, which became an issue 

as the algorithmic system started growing, as an efficient method was required to allow the 

exchange between design approach. Hence, a definition was scripted in this dissertation that 

works as a switch, allowing easy transition and selection between different approaches. 

Although Dynamo generates different outputs, the software places all the options in the same 

location, causing all the results to overlap. That is why a method was investigated and scripted 
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to distribute all the generated options while considering appropriate spaces between each 

option, which depended on the dimensions of the inserted ceiling.  

One of the major limitations was creating a system that present the results in a legible way. 

Creating an appropriate method to display all the results in Dynamo workspace without 

repetition of the generated designs, since the scripted algorithms interfere with each other, 

producing results that cannot be displayed using the spacing approach. This issue was solved 

through various testing and resulted in creating a complex script that allowed a vertical and a 

horizontal intersective movement, that guarantees displaying all the results that gives the end 

user a proper visual feedback, displaying all the possibilities, while using a tool that allows a 

smooth transition between every result.  

While designing the lighting counts approach, limitations appeared due to Dynamo’s attributes. 

Since the software cannot provide a counting tool that counts different lighting types 

individually, calculating all the values inside a list regardless of the type of light. This limitation 

caused various failures in the counting approach. In the end, a scripted approach was designed 

to group the different lights individually based on area and count them accordingly. 

The following points highlights the limitations faced when testing the algorithmic system: 

(a)The algorithm is not able to identify ceilings with structural holes in them. Or any openings 

in the center of the ceiling. (b) Suitable computer’s qualifications are important to avoid the 

standard computational issues (c) The algorithm is not able to apply boundary lighting method 

appropriately on curved corners. (d) The orientation of the surface in Revit impacts the 

direction of the lighting methods in Dynamo. 
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6.5 Further work 

This dissertation can be considered as a basepoint for developing a complete generative system 

that can become an independent software or as a plug-in tool in Autodesk Revit to help 

designers generate all the possible reflected ceiling layout designs possible. hence, future work 

includes the enhancement of the existing algorithmic system and the continuous development 

of the scripts. 

One of the most immediate needs in terms of future work is to develop evaluation metrics for 

the generative system. The current system relies heavily on the visual interaction between the 

designer and the generative system. Since the algorithmic results will go through evaluation 

metrics from the human mind, as designers select the results not the algorithm. The proposed 

work will filter the results through an evaluation metric. Proving for the end user various 

metrics to choose from.  

This research recommends utilizing Project Refinery Beta as a tool for optimizing only one 

approach. Project Refinery is generative design tool that is hosted by Autodesk which can filter 

and optimize Dynamo results based on selected inputs. Project Refinery is an Autodesk 

generative design beta for different fields of designs that gives users the power to quickly 

explore and optimize their Dynamo designs. In the case of the exhibited algorithmic system, 

one algorithmic script for creating light patterns can be taken into Refinery and apply suitable 

evaluation metrics that allows the results to be filtered accordingly. However, due to the 

complexity of the algorithmic system, and the level of interactions of the scripted algorithms 

together, the entire algorithmic system cannot be taken into Refinery at once. 

That is why the research is recommending scripting various evaluation metrics in the form of 

logical questions and definitions that allow suitable assessment that will make the generative 

system outputs easily usable by architects, researches, and students. 
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The evaluation type addresses evaluating the generated results from a sustainable aspect. It 

includes four metrics, evaluating the generated ceiling layouts through (a) the used quantity of 

the lights in every ceiling layout, (b) the level of diversity in the generated ceiling layouts, and 

(c) the lighting power density based on the design (d) the cost of the proposed designs 

The used quantity of lights is selected as a sustainable metric as it has a direct impact of the 

energy levels of the space. This evaluation metric can be scripted and connected to the created 

light groups that were created to perform the lighting calculations. The script will perform a 

limitation approach along with a logical statement for this metric to be successful in the 

algorithmic system, in addition it will need to be connected to a slider that allows the end user 

to select a certain value that represents the amount of lights they desire in a ceiling layout. For 

example, an if statement can be scripted stating that if the slider value is on number 5, then the 

algorithmic system will showcase only the lighting layouts that has 5 lighting fixtures in them, 

and so on. Defining the script might be slightly complicated to do, as a clear approach needs to 

be created for the algorithmic system to include the counting regardless of the type of used 

lights. This approach would require the algorithmic system to produce results and investigate 

the quantities of each generated ceiling. limitation might occur since the built generative system 

perform counting for all the selected design approaches regardless if the end user had turned 

on or off the design. 

The level of diversity in the generated ceiling layouts is the second proposed metric for the 

sustainability evaluation type. This metric has a direct relationship with the third metric, as 

every lighting type has a certain characteristics and watts, impacting the lighting power 

densities. This metric arranges the generated designs based on the number of light families 

used. The minimum light family used will be 1, indicating only one type of lights in the 

generated lighting layout, while the maximum will be 5 based on the inserted lighting types 

utilized in this generative system, allowing the end user to select how many lighting types they 
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desire to use. If this evaluation metric will be applied. The lighting input variables that is added 

by the designer in the beginning of the algorithmic system should not be flexible anymore. As 

this evaluation metric will be built on numerical data that is taken from the lighting input which 

describes the dimensions of the lights and connects different dimensions to different Revit 

lighting families. Any alteration in the lighting input might result in errors, as there is a chance 

that the algorithmic system might not be able to identify any new lighting inputs that are not 

connected to Revit lighting families.  

The third evaluation metric in sustainability will arrange the generated ceiling layouts based 

on the lighting power densities of each design. This indicates creating a mathematical 

algorithmic script that performs lighting power densities for each generated design. This 

evaluation metric can be constructed as its own as an independent algorithmic system, since 

there is a possibility for generative system to crash if the calculations for every generated design 

were merged along with the different calculations performed by the system to generate designs. 

This research recommends exploring this evaluation metric as its own, recognizing its ability 

to produce powerful results that is built on this generative system. 

The fourth recommended evaluation metric will filter the proposed layouts based on the cost 

of the lights used in the generated design. Where the end user will be able to filter and arrange 

the results from low to high or vice versa, allowing the designer to easily point out the cheapest 

and the most expensive cost for the variety of designs.  

The proposed approach will remove the fixability in inserting any type of dimensions in the 

lighting lists displayed earlier as the Lighting Sizing in Figure 11 in Dynamo. As this approach 

will only provide certain dimensions that are connected to specific light families in Autodesk 

Revit. Those light families will be attained from specific suppliers in the United Arab Emirates 

in an IES format along with the cost of each light type. The scripting approach will be similar 



 254 

to the approach that was created to produce the counts for the lights discussed in section 3.2.3, 

where every light type is grouped separately and paired with a its cost, as script is required in 

order to do so. In addition, a definition script that provides mathematical calculation is essential 

in order to produce the cost of every design.  

For example; if one result of the generated ceiling designs showed three different types of lights 

- A, B and C - where the design had 5 bulbs of type A, 3 of type B and 4 of type C. Assuming 

that Type A costs 25AED, Type B costs 12AED and type C costs 35AED. First, the algorithmic 

script will have to identify the three different types, this identification can be similar to the 

same approach as the counting approach in section 3.2.3, where the area of every type was 

identified in order for the algorithmic script to identify the different types. Then, the counting 

of every time is created, in this stage the algorithmic system understands the quantity and the 

types of each light in the design. Finally, a definition script that multiples the cost of every type 

with the quantity found in the produced design. In this example; the script can be an if-script 

where it states: if the light found is type A, then the algorithm will multiply 25 by the quantity 

of the lights for type A. The script will also has a second condition that states; if the found light 

is type B, then multiply 12 by the quantity found for type B, or else multiple the quantity of 

Type C with 35. Upon that statement, the cost in this example for type A will be 125 AED, 36 

AED for type B, and 140 AED for type C.  

In addition, another definition script will be connect to the if-script, which adds up all the results 

found in the if-script in one list. Creating a total cost of lights in the given example as 301 

AED. This procedure will be repeated to all the generated ceilings, and then listed in lists that 

can connected to another script in order to filter from high to low and vice versa.  
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This research recommends updating the current algorithmic generative system based on the 

tested case-studies investigated earlier. Since some case-studies had showed minor limitations 

that were not considered in the scripting process.  

The first update is adding a slider that allows the end user to rotate the grid direction 360 degree 

instead of having it applied on the same orientation as the model in Autodesk Revit.  This 

approach will investigate the possibility to change the axes that the algorithm relies on instead 

of Revit orientation to Dynamo’s orientation. Giving the end user the opportunity to change 

the orientation which will immediately impact all the design methods. 

The second update addresses the boundary approach in identifying ceilings. Where another 

script should be added to accommodate the condition of ceilings’ openings. Since the current 

algorithmic system will only work on ceilings that do not exhibit any holes in them or any 

structural openings in different areas of them. 

The third recommended update is to include a script that addresses curved corners in a ceiling, 

as testing the generative system showed minor division errors in the boundary lighting 

approach when applied on curved corners. 

Finally, this research recommends adding a slider that allows the end user to limit the amount 

of produced generate ceiling layouts required. Since some ceiling shapes may result in creating 

a lot of designs that require some time to produce. Hence, a limitation approach will help in 

decreasing the calculations time and stop any possibility of crashing Dynamo while running. 

The algorithmic generative system had been investigated and tested frequently through the 

scripting process and through the testing process, however every case study might reveal new 

limitations, thus, it is recommended to test the algorithmic system on at least 100 different 

ceiling designs to ensure that no new limitations might occur.   
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Upon finalizing testing the generative system in a more comprehensive approach, adjusting 

discovered errors and applying various filters.  It is recommended to create another version of  

the generative algorithmic scripts to match different software. This dissertation recommends 

investigating creating a similar version through grass-hopper; a visual programming software 

for Rhino software.  

The design concepts will be similar, however the used language for creating the scripts and the 

definitions might differ slightly. Various investigations are required to see the suitability of 

grass-hopper in delivering the same results as Dynamo.  

The optimal case is re-writing the scripts in a coding language, Python for example. Where any 

programming software would be able to read the scripts and definitions, generating suitable 

results in multiple platforms. A part of the new scripts will aim to develop this concept into a 

plug-in for different software. That would require multiple coding scripts that allows the 

generative system to work on any inserted software, not to mention translating all the design 

approaches to suitable scripts. This requires a lot of sources and an in-depth knowledge in 

coding and scripting, along with extensive testing on the different software platforms.  
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