Abstract

Existing literature on double-skin facades is reviewed, including classifications and its transferability to hot and humid climates. The analysis led to evaporative cooling spray, where objectives are drawn to quantify its benefit.

For research tools, selection process for appropriate software is undergone followed by training to achieve proficiency. Basic software validation is conducted using an actual building consumption comparison.

The simulation parameters are established by changing a Prototype configuration to determine its energy consumption, mass air flow and CFD patterns. Governing equations are explained and utilized for manual calculations together with the Psychrometric chart that plots values against various air conditions. Simulation results are post processed and integrated into the equation to achieve values not covered in the software capability.

Results show 5% energy consumption savings utilizing double skin facades. There are little energy savings with the tested variables in configuration. Air mass flow is generally improved by increase of width and height while orientation air flow results vary. Using the proposed spray on the double skin façade, Prototype day design savings on an office building is improved by 3% while a residential building could benefit from 50 – 90% reduction.

The dissertation concludes with limitations and suggestions for future studies.
Acknowledgement

I would like to acknowledge the following who have been instrumental for the accomplishment of this thesis:

To BUiD and Atkins who have established this institution and provided aspiring individuals like myself to progress in their careers.

To my mentors, Dr. Bassam Abu –Hijleh, Dr. Ahmad Okeil, and Dr. Gisella Loehlin who pioneered this institute and provided the students direction throughout this course.

To my employer, RMJM Robert Matthew – Johnson Marshall who has been very enthusiastic in my academic endeavor and involving me into the direction of this field of study.

To the my parents, brother and sisters and friends, whose presence inspired be to improve myself in every aspect.

To Mr. Enda Tuomey for the enlightening my interests and help make them achievable.

To God Almighty, the ultimate source of inspiration and goodness whose diving intervention, knows how to bring out the best in me.
TABLE OF CONTENTS

Acknowledgement

Abstract

List of Tables and Figures

Chapter 1: Introduction

1.1. Introduction ... 2
1.2. UAE Sustainability Scenario 4
1.3. Importance of the Study ... 7

Chapter 2: Literature Review

2.1. Definitions and History of Double Skin Facades10
2.2. Classifications and Typologies14
2.3. Technical Description ...19
2.4. Other Applications ...23
2.5. Double Skin Façade Examples30
2.6. UAE Climatic Profile ...38
2.7. Examples in the Desert Climate and UAE42
2.8. Findings of Literature Review - Water Spray51
2.9. Dissertation Aims and Objectives70

Chapter 3: Methodology

3.1. Building Physics ..64
3.2. Spray Components ..67
3.3. Research Methodology ...70
3.4. Selection of Software and Training85
Chapter 4: Computer Simulation

4.1. Software Validation ...90
4.2. Simulation Results ..97

Chapter 5: Results and Discussion

5.1. Calculation Results: Water Spray Effect124
5.2. Energy Reduction Synopsis130

Chapter 6: Conclusions and Recommendations

6.1 Conclusions ..135
6.2 Recommendations ..137

References ...146

Appendix A
Dubai Resolution No. 66 ...149

Appendix B
IES Modules ...152

Appendix C
IES Training ...158

Appendix D
DWTC Plans for Software Validation160

Appendix E
Simulation 1 Configuration References164
Appendix F
Simulation 2 Orientation ..166

Appendix G
Simulation 3 Cavity Depth ...174

Appendix H
Simulation 4 Height from Building Top179

Appendix I
Latent Heat and Water Spray Calculation Spreadsheets186
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>UAE’s energy consumption per capita compare to other regions from 1980 to 2003 (Kazim, 2005)</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>UAE’s carbon emission in comparison to other regions from 1980 to 2003 (Kazim, 2005)</td>
</tr>
<tr>
<td>Figure 2.1a</td>
<td>Double Skin Façade as Central Plan Pre-Heater of Supply Air, Stec et al (2003 cited in Poirazis, 2004)</td>
</tr>
<tr>
<td>Figure 2.1b</td>
<td>Double Skin as Exhaust Duct, Stec et al (2003 cited in Poirazis, 2004)</td>
</tr>
<tr>
<td>Figure 2.1c</td>
<td>Double Skin as Supply of Pre-Heated Air, Stec et al (2003 cited in Poirazis, 2004)</td>
</tr>
<tr>
<td>Figure 2.1d</td>
<td>Double Skin as Central Exhaust Duct for Ventilation System, Stec et al (2003 cited in Poirazis, 2004)</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>DSF with Plants (Stec et al, 2004)</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Lab test facility of double skin with plants (Stec et al, 2004)</td>
</tr>
<tr>
<td>Figure 2.4a</td>
<td>Atriplex halimus [http://en.wikipedia.org/wiki/Atriplex_halimus]</td>
</tr>
<tr>
<td>Figure 2.4b</td>
<td>Lantana camara [http://en.wikipedia.org/wiki/Lantana_camara]</td>
</tr>
<tr>
<td>Figure 2.5ab</td>
<td>Figure 2.5 a & b Occidental Chemical Building Exterior, (Harrison, 2001)</td>
</tr>
</tbody>
</table>
Figure 2.6 Occidental Chemical Building Floor Plans
(Harrison, 2001) ...30

Figure 2.7 Occidental Chemical Building Materials
(Harrison, 2001) ...31

Figure 2.8 Occidental Chemical Building Details
(Harrison, 2001) ...31

Figure 2.9 Occidental Chemical Building Exterior
(Harrison, 2001) ...31

Figure 2.9a RWE AG Headquarters
http://www.josef-gartner.de/referenzen/images/heidel.gif
...33

Figure 2.9b RWE AG Headquarters
http://en.structurae.de/photos/index.cfm?JS=114781 ...33

Figure 2.10a RWE AG Headquarters Façade Features
(Nippon, 1999) ...33

Figure 2.10b RWE AG Headquarters Façade Features
(Nippon, 1999) ...33

Figure 2.11 GSW Headquarters
http://www.archidose.org/Jul01/071601.html35

Figure 2.12 GSW Headquarters Façade Features
http://gaia.lbl.gov/hpbf/casest_f.htm35

Figure 2.13 GSW Headquarters Floor Plan
http://gaia.lbl.gov/hpbf/casest_f.htm

Figure 2.14 GSW Headquarters Section showing cross ventilation
http://gaia.lbl.gov/hpbf/casest_f.htm ..36

Figure 2.15 UAE map
http://www.alhiba.com/images/MiddleEastMap1.JPG 38

Figure 2.16 Ecotect Abu Dhabi Climate Summary40

Figure 2.17 Ecotect Abu Dhabi Prevailing Winds
Date: 1st Jan – 31st December .. 41

Figure 2.18 Sowwah Square Façade (Soberg, 2008)44

Figure 2.19 ADNEC Section (RMJM, 2007)46

Figure 2.20 ADNEC Façade (RMJM, 2007)47

Figure 2.21 ADNEC Option 1 Double Façade (RMJM, 2007)50

Figure 2.22 ADNEC Option 2 Single Façade (RMJM, 2007)50

Figure 2.23 Façade CFD (RMJM, 2007)52

Figure 2.24 Schematic Air Flow (RMJM, 2007)53

Figure 3.1 Prototype Specification ...73

Figure 3.2 June 21 Design Day Solar Path (Ecotect)74

Figure 3.3 December 21 Design Day Solar Path (Ecotect)74

Figure 3.4a June 21 Design Day Weather Readings (IES)75

Figure 3.4b June 21 Design Day Weather Readings (IES)
showing Wind ...75

Figure 3.5a December 21 Design Day Weather Readings (IES)76

Figure 3.5b December 21 Design Day Weather Readings
showing Wind (IES) ..76

Figure 3.6 Simulation Matrix ..77

Figure 3.7 Ecotect Psychro Tool – Psychrometric Chart80

Figure 3.8 Software Selection Matrix (RMJM, 2008)86
Figure 4.1 DWTC Office Block Image (RMJM) 92
Figure 4.2 Google Sketchup – VE Building Properties 93
Figure 4.3 DWTC IES Simulation model 94
Figure 4.4 DWTC Energy Consumption (IES) 96
Figure 4.5 Prototype IES Model (IES) 97
Figure 4.6: Simulation1 Configuration References Diagram 99
Figure 4.7: Simulation1 Configuration Reference
Annual Energy Consumption .. 100
Figure 4.8: Simulation1 Configuration Reference
Monthly Energy Consumption .. 100
Figure 4.9 Prototype Air flow (June 21) (IES) 102
Figure 4.10 Prototype Air flow (December 21) (IES) 103
Figure 4.11: External Wind CFD (IES) 105
Figure 4.12: Y Axis (South Facade) (IES) 106
Figure 4.13: Cavity Air Flow Y Axis (South Facade) (IES) 107
Figure 4.14: Y Axis (North Façade) (IES) 108
Figure 4.15: X Axis (IES) ... 109
Figure 4.16: Simulation2 Orientation Diagram 110
Figure 4.17: Simulation2 Orientation Annual Energy
Consumption (IES) .. 110
Figure 4.18: Simulation2 Orientation Monthly
Energy Consumption (IES) .. 111
Figure 4.19 Simulation 2 Orientation Net Mass Air Flow ………….113
Figure 4.20: Simulation 3 Cavity Depth115
Figure 4.21 Simulation 3 Cavity Depth Annual
 Energy Consumption (IES) ...115
Figure 4.22 Simulation 3 Cavity Depth Monthly
 Energy Consumption (IES) ...116
Figure 4.23 Simulation 3 Depth Net Mass Air Flow (IES) 117
Figure 4.24: Simulation4 Height from Top118
Figure 4.25: Simulation4 Height from Top Annual Energy
 Consumption Total (IES) ..119
Figure 4.26: Simulation4 Height from Top Monthly Energy
 Consumption Total (IES) ..119
Figure 4.23 Simulation 4 Height from Top Net Mass Air Flow
 (IES) ..120
Figure 5.1 Energy Consumption Breakdown (kW)125
Figure 5.2 Energy Absorbed through Spray Application –
 Prototype model (kW) ..126
Figure 5.3 Water Consumed through Spray Application –
 Prototype model (liters) ..127
Figure 5.4 Energy Absorbed through Spray Application –
 1.5m Cavity (kW) ..128
Figure 5.5 Energy Absorbed through Spray Application – 1
 .5m Cavity (kW)
List of Tables: Page

Table 2.1 Primary Identifiers Arons (2000)14
Table 2.2 Secondary Identifiers Arons (2000)15
Table 2.3 Classification on Cavity Geometry by Saelens (2002) ...15
Table 2.4 Five Primary Types by Battle McCarthy
 (cited in Poirazis, 2004) ...16
Table 2.5 Classification by Uutu
Table 2.6 Categories by Magali
Table 2.7 Wall types by Kragh
Table 2.8 Classification by BBRI
Table 2.9 UAE Temperature
 http://www.wordtravels.com/Cities/United+Arab+Emirates/
 Abu+Dhabi/Climate ..39
Table 3.1 Simulation Materials IES VE 5.972
Table 4.1 DWTC Simulation Validation results (IES)95
Table 5.1 Energy Reduction – Prototype130
Table 5.2 Energy Reduction – 1.5m Cavity Depth131
Table 5.3 Energy Reduction – Prototype Residential132