DESIGN FOR OUTDOORS IN A HOT & DRY CLIMATE

A Study of Outdoor Thermal Comfort
in Dubai, United Arab Emirates

by

Malaya V. Fabros

A thesis submitted in partial fulfillment of the
requirements for the degree of

M. Sc. in Sustainable Design of the Built Environment
Faculty of Engineering

Supervisor: Prof. Bassam Abu-Hijleh
June 2009
DISSERTATION RELEASE FORM

<table>
<thead>
<tr>
<th>Student Name</th>
<th>Student ID</th>
<th>Programme</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaya V. Fabros</td>
<td>60031</td>
<td>M.Sc. in Sustainable Design of the Built Environment</td>
<td>02 June 2009</td>
</tr>
</tbody>
</table>

Title

DESIGN FOR OUTDOORS IN A HOT & DRY CLIMATE

A Study of Outdoor Thermal Comfort in Dubai, United Arab Emirates

I warrant that the content of this dissertation is the direct result of my own work and that any use made in it of published or unpublished copyright material falls within the limits permitted by international copyright conventions.

I understand that one copy of my dissertation will be deposited in the University Library for permanent retention.

I hereby agree that the material mentioned above for which I am author and copyright holder may be copied and distributed by The British University in Dubai for the purposes of research, private study or education and that The British University in Dubai may recover from purchasers the costs incurred in such copying and distribution, where appropriate.

I understand that The British University in Dubai may make that copy available in digital format if appropriate.

I understand that I may apply to the University to retain the right to withhold or to restrict access to my dissertation for a period which shall not normally exceed four calendar years from the congregation at which the degree is conferred, the length of the period to be specified in the application, together with the precise reasons for making that application.

Signature
ABSTRACT

With the growing interest on sustainability, design consideration for thermal comfort in the outdoors is seen as an important factor enhancing the quality of life in the urban setting. The topic has received significant interest and several studies have been made in mostly temperate and tropical climates. However, not much investigation into the matter has been done in hot-arid climates characteristic to that of the middle-eastern countries. The study then aimed to understand the relationships between the several factors (air temperature, solar radiation, relative humidity, wind speed, clothing and activity) affecting thermal comfort, determine the actual comfort zone for Dubai UAE through field measurements and interview surveys, and recommend design considerations to achieve thermal comfort.

The findings of the study show that majority of the sample population in Dubai reported overall thermal comfort for the three seasons observed. Solar radiation has most direct influence on thermal comfort outdoors thus it is recommended that shading be of primary consideration during summer. It was also found that relative humidity is an amplifying factor for air temperature. Wind should be accounted for its cooling effect thus high wind speeds are encouraged during summer while protection from this must be provided during winter. Contrary to the common notion that middle eastern climate is very harsh and that thermal comfort could only be achieved in a controlled indoor environment, the study shows that with proper design consideration of the findings in the study, it is possible to achieve thermal comfort for outdoors in Dubai for longer periods of the year.
ACKNOWLEDGEMENTS

The author would like to thank God for making everything and anything possible. She also like to thank the following:

- Prof. Bassam Abu-Hijleh for his continuous guidance throughout the dissertation and the entire course
- The staff and professors in BUiD, especially Lynn Randall, Dr. Ahmad Okeil, Dr. Gisela and the librarians for all their support throughout the entire course
- The LWD Architects family, especially Colin Doyle and Morten Hansen, for their support, respect and patience
- All her friends and housemates who are constant reminders of a balanced and healthy life everyone should aspire for
- Jeffrey Lopez for the listening ear and critical mind as she went through the research process
- Queency Cadag for an introduction to John Creswell’s book and guidance through the research process in the confines of her home.
- Red Ventura for rubbing off his unrelenting positive attitude in life
- Hyden Restificar, Mabuhay Fabros and Jerico Bisnar for the fun company and for just being funny most of the time
- Friends from the University of the Philippines Alumni Association in the UAE, especially Grace Casas and Marietta Morada for the research materials and briefing on statistics

She would also like to express deep gratitude to Lars Waldenstrom for his continuous guidance, words of wisdom and motivation. Most of all, the author would like to thank her parents and brothers for their support, comforting words, inspiration and love.
DEDICATION

This book is dedicated to the shiny happy people of Dubai.
May you continue living a full life – both indoor and outdoor.
CONTENTS LISTING

ABSTRACT iii

ACKNOWLEDGEMENTS iv

DEDICATION v

LIST OF TABLES x

LIST OF FIGURES xi

TABLE OF CONTENTS vii
TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

1.1 Background of the Study 1

1.2 Research Aims and Objectives 6

1.3 Scope, Limitations and Delimitation 7

CHAPTER 2: LITERATURE REVIEW 8

2.1. Key concepts 8

2.1.1 Thermal Comfort 8

2.1.2 Forms of Heat Transfer Related to Thermal Comfort 10

2.1.3 Human Process and Responses to Achieve Thermal Comfort 12

2.1.4 Physical Factors Affecting Thermal Comfort 14

- Air Temperature 14
- Radiant Temperature 14
- Relative Humidity 15
- Wind speed 16

2.1.5 Personal Factors Affecting Thermal Comfort 17

2.1.6 The Heat Balance Equation 21

2.1.7 Thermal Comfort Models 22

- Predicted Mean Vote (PMV) 22
- Wet Bulb Globe Temperature (WBGT) 24
- Physiological Equivalent Temperature (PET) 25
- The Adaptive Model 25

2.2 Studies that have addressed similar problems 26
CHAPTER 3: METHODOLOGY

3.1 Design of Methodology

3.1.1 Comparison of Different Methods

3.1.2 Selection of Method

3.2 Independent and Dependent Variables

3.3 Population Sample and Participants

3.4 Data Collection Instruments

3.4.1 Field Measurements

3.4.2 Interview Survey

3.4.3 Dubai, UAE Meteorological Data

3.4.4 Survey Sites

3.4.5 Survey Time Frame

3.5 Statistical Analysis

3.5.1 Statistical Software

3.5.2 Analysis Matrix

3.6 Challenges to the Researcher

CHAPTER 4: RESULTS & DISCUSSIONS

4.1 Summary of Results

4.2 Discussions

4.2.1 Relationship of Variables

4.2.2 Recommended Conditions and Design Suggestions

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

5.2 Recommendations for Further Studies
GLOSSARY 71
REFERENCES 74
APPENDICES 78

Appendix A: Predicted Mean Vote (PMV) values 78
Appendix B: Detailed Description of Monthly Weather 79
Appendix C: Meteorological Data for the Survey Periods 85
Appendix D: Summary of the Sample Population 99
Appendix E: Environmental Readings 102
Appendix F: Compilation of Survey Results 104
Appendix G: Overall Distribution of Votes 116
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Typical Insulation Values for Clothing Ensembles</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Individual Clothing Garments</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Typical Metabolic Heat Generation for Various Activities</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Limitations to the range of conditions over which PMV is applicable</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>WBGT Reference Values</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Major studies using experimental methodology</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Mean Monthly Climate Conditions in Dubai, UAE</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>Analysis Matrix</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Ranges of Measured Independent Variables</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of Overall Votes</td>
<td>49</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Completed Sample of Survey Questionnaire</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Location of the United Arab Emirates in the World</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Location of the Dubai within the UAE</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Mean Monthly Relative Humidity Levels</td>
<td>43</td>
</tr>
<tr>
<td>3.5</td>
<td>Survey Site 1 – Sheikh Zayed Road</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>Survey Site 2 – Abu Baker Al Siddique Road, Deira</td>
<td>44</td>
</tr>
<tr>
<td>3.7</td>
<td>Survey Site 3 – Al Mankhool Road</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Summer Heat Votes vs. Air Temperature</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Autumn Heat Votes vs. Air Temperature</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Winter Heat Votes vs. Air Temperature</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>Summer Heat Votes and Comfort Votes vs. Air Temperature</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>Autumn Heat Votes & Comfort Votes vs. Air Temperature</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>Winter Heat Votes & Comfort Votes vs. Air Temperature</td>
<td>52</td>
</tr>
<tr>
<td>4.7</td>
<td>Summer Wind Votes vs. Wind Speed</td>
<td>53</td>
</tr>
<tr>
<td>4.8</td>
<td>Autumn Wind Votes vs. Wind Speed</td>
<td>54</td>
</tr>
<tr>
<td>4.9</td>
<td>Winter Wind Votes vs. Wind Speed</td>
<td>54</td>
</tr>
<tr>
<td>4.10</td>
<td>Summer Wind Votes & Comfort Votes vs. Wind Speed</td>
<td>54</td>
</tr>
<tr>
<td>4.11</td>
<td>Autumn Wind Votes & Comfort Votes vs. Wind Speed</td>
<td>55</td>
</tr>
<tr>
<td>4.12</td>
<td>Winter Wind Votes & Comfort Votes vs. Wind Speed</td>
<td>55</td>
</tr>
<tr>
<td>4.13</td>
<td>Summer Sun Votes vs. Solar Radiation</td>
<td>57</td>
</tr>
<tr>
<td>4.14</td>
<td>Autumn Sun Votes vs. Solar Radiation</td>
<td>57</td>
</tr>
<tr>
<td>4.15</td>
<td>Winter Sun Votes vs. Solar Radiation</td>
<td>57</td>
</tr>
<tr>
<td>4.16</td>
<td>Summer Sun Votes & Comfort Votes vs. Solar Radiation</td>
<td>58</td>
</tr>
</tbody>
</table>
Figure 4.17: Autumn Sun Votes & Comfort Votes vs. Solar Radiation 58
Figure 4.18: Winter Sun Votes & Comfort Votes vs. Solar Radiation 58
Figure 4.19: Summer Humidity Votes vs. Relative Humidity 59
Figure 4.20: Autumn Humidity Votes vs. Relative Humidity 59
Figure 4.21: Winter Humidity Votes vs. Relative Humidity 60
Figure 4.22: Summer Humidity Votes & Comfort Votes vs. Relative Humidity 60
Figure 4.23: Autumn Humidity Votes & Comfort Votes vs. Relative Humidity 60
Figure 4.24 Winter Humidity Votes & Comfort Votes vs. Relative Humidity 61
Figure 4.25: Air Temperature vs. Heat Votes per Season 62
Figure 4.26: Air Temperature vs. Comfort Votes Per Season 62
Figure 4.27: Overall Comfort vs. Temperature & Relative Humidity 63
Figure 4.28: Overall Comfort vs. Air Temperature & Wind Speed 63
Figure 4.29: Observed Activity Levels per Season 65
Figure 4.30: Sun Exposure per Season 65
Figure 4.31: Solar Chart for Dubai, UAE 67
Figure 4.32: Wind Rose for Dubai, UAE 67
Figure 4.33: Plotted Thermal Comfort Zone for Outdoors in Dubai, UAE 68