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Abstract

In this thesis, I present an OWL ontology for describing arguments and argument schemes.
Following the same key principles of the World Wide Argument Web (WWAW) for building a
large-scale Web of structured and inter-connected arguments, this ontology provides an infras-
tructure for mass argumentation support on the Web.

First, I describe the OWL ontology which is based on a new reification of the Argument
Interchange Format (AIF) and structures arguments according to Walton’s theory of argu-
mentation schemes. Then, I demonstrate how this ontology enables the use of automated
Description Logic reasoning over argument structures. In particular, OWL reasoning enables
significantly enhanced querying of arguments through automatic scheme classifications, instance
classification, inference of indirect support in chained argument structures and inference of crit-
ical questions. Finally, I present the implementation of a Web-based system for authoring and
querying argument structures in RDF which utilizes the proposed OWL ontology.
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Chapter 1

Introduction

Argumentation can be defined as “a verbal and social activity of reason aimed at increasing
(or decreasing) the acceptability of a controversial standpoint for the listener or reader, by
putting forward a constellation of propositions (i.e. arguments) intended to justify (or refute)
the standpoint before a rational judge” [51].

The theory of argumentation is a rich interdisciplinary area of research encompassing but not
exclusive to philosophy, psychology, linguistics, and communication studies [15]. Argumentation
has been recognised as a key area of importance in Artificial Intelligence, specifically, over the
last decade.

1.1 Argumentation and Artificial Intelligence

The study of argumentation in Artificial Intelligence is receiving increasing attention since it
was first recognised that argumentation can embark upon issues of reasoning and explanation in
the presence of incomplete and uncertain information; unlike the assumption underlying usage
of classical methods for representation and reasoning, that information is complete, certain and
consistent.

One of the most significant differences between “logical proof” and “persuasive argument”
is that arguments are defeasible: the reasoning that formed a persuasive case for a claim, in
the light of changes in viewpoint or awareness of information not previously available, may
subsequently fail to convince. This defeasibility is never removed: an argument may cease to
be challenged and so accepted, but the possibility of challenge always remains [5].

Since argumentation has emerged as an important sub-discipline of Artificial Intelligence, a
number of significant contributions have been made in both theoretical and practical branches of
this field. Examples include: non-monotonic reasoning [13], knowledge engineering [11], natural
language processing [18], legal reasoning [4], ontology engineering [45] and recommender systems
technology [14].

Multi-agent systems communication and negotiation is another area where argumentation
has been influential [36]. Recently, Toronni et al [46] have proposed an architecture for support-
ing a high-level reasoning and argumentation-driven interaction among Semantic Web services;
another recent research [6] utilizes argumentation in composition of Web services. A compre-
hensive recent survey on argumentation in Artificial Intelligence is reported by Bench-Capon
and Dunne [5].
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1.2 Argumentation Support Systems and the Web

Another area witnessing significant growth is argumentation support systems [25] that enable
users to browse, visualise, search and manipulate arguments and argument structures. The
World Wide Web has made the advent of large-scale argumentation support possible. The Web
can be seen as an ideal platform for enhancing argumentative expression, due to its global reach
and openness. A variety of opinions and arguments are presented every day on the Web, in
discussion forums, blogs, news sites, debate sites, mailing lists, etc. As such, the Web acts as
an enabler of large-scale argumentation, where different views are presented, challenged, and
evaluated by contributors and readers [38].

However, current Web-based argumentation systems exhibit a trade-off between scalability
and structure. On one hand, scalable systems such as discussion forums and blogs, lack the ar-
gumentative structure that makes the task of searching, evaluating, comparing and identifying
the relationships among arguments difficult. On the other hand, highly-structured deliberation
support systems such as Parmenides [2] usually support a small number of participants (in spe-
cific domains) and are therefore not easily scalable. Moreover, there is lack of a interoperability
among existing systems and integration of argument repositories across different systems is not
straight forward [38, 37].

Motivated by the current limitation in Web-based argumentation and the vision of creating
a highly scalable yet highly structured argument representation on the Web, Rahwan et al [38]
proposed theoretical and software foundations of a World Wide Argument Web(WWAW): a
large-scale Web of inter-connected arguments posted by individuals on the World Wide Web
in a structured manner. The theoretical foundation was an ontology based on the Argument
Interchange Format [15] but extended to include Walton’s account of argumentation schemes
[56]. The software foundation was based on Semantic Web ontology language RDF Schema
(RDFS) [9]. They also proposed a pilot system, ArgDF1 as the first implementation of this
vision.

1.3 Problem Statement

The WWAW provides a rich and novel framework for building a Web of inter-connected ar-
guments. However, the implemented ontology of ArgDF suffers from a number of limitations,
both in terms of design specification and the ontology language used.

An important aspect that is not investigated by any of the Web-based argumentation sup-
port systems is the possibility of inferring and acquiring additional information about arguments
in an argument network as opposed to what is explicitly captured. Argument networks change
as new arguments are added or new interaction among arguments are formed. In such a dy-
namic network, automated reasoning can enable inference of additional and accurate knowledge
about arguments.

Another feature that is not modelled or utilized by any of the existing systems is how certain
argument schemes relate to each other. Argument schemes provide patterns of presumptive
reasoning (for drawing inferences from certain premises to conclusions). As stated by Walton
[56], some schemes are sub-species of others and thus, are not mutually disjoint.

I believe an opportunity exists to further improve the state of the art in Web-based argu-
mentation systems; by following the same principles of WWAW, an ontology (and a Web-based
system that utilizes this ontology) can be designed that is based on open standards (to en-
able integration of argument repositories among different tools). This ontology will provide
high scalability while representing the arguments (and their interactions) in a highly structured
manner. The ontology can improve upon the underlying ontology of ArgDF and solve some of
its existing problems and limitations. Moreover, classification of hierarchy of argument schemes
and utilizing different ontological reasoning tasks in an argument network can improve query

1http://www.argdf.org/
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answering and analysis of arguments. Exploring this opportunity forms the basis of this thesis.

1.4 Aims

This thesis addresses the following research questions:

- What are the ontological primitives needed to capture the relationship of argument
schemes?

- Which knowledge representation language provides the formal syntax and semantics to
model the argumentation domain?

- What types of ontological reasoning tasks can be useful in specifying arguments using
ontology of schemes?

- How can we exploit this representation together with existing Semantic Web tools to
develop systems for rich argumentation annotation, navigation and querying?

1.5 Contributions

The contributions of this thesis are both in terms of the design of an argumentation ontology
and the implementation of a Semantic Web-based system exploiting the proposed ontology. I
outline these contributions next as an answer to each of the research questions identified in the
previous section.

- What are the ontological primitives needed to capture the relationship of argument schemes?

The new ontology is based on a reification of the Argument Interchange Format (AIF) ex-
ploiting Walton’s account of schemes. It defines two main concepts: Schemes and Statements.
Statements represent different parts of a scheme (i.e. conclusion, premises, assumptions and
exceptions). Each scheme is defined in terms of its constituent parts; the conclusion and the
premises of the scheme are defined as the necessary-and-sufficient conditions of the scheme while
the exceptions and assumptions are captured through the necessary conditions. This enables
explicit classification of schemes themselves.

- Which knowledge representation language provides the formal syntax and semantics to model
the argumentation domain?

The formalisation of the proposed ontology is based on Web Ontology Language (OWL)
in Description Logic notation. Description Logics provide a formal syntax and formal model-
theoretic semantics, and thus, can provide support for sound and complete reasoning algorithms.
In particular, a specific dialect of OWL, called OWL-DL is used which is equivalent to logic
SHOIN (D) (very expressive, yet decidable).

Another important advantage of OWL (and other Semantic Web Ontology Languages) is
that they represent information in standard, machine-processable formats. Therefore, the ar-
gument repositories of the system can be shared and integrated with other tools with minimum
effort.

- What types of ontological reasoning tasks can be useful in specifying arguments using ontology
of schemes?

The proposed ontology enables the first explicit use of Description Logic-based OWL rea-
soning over argument structures. In particular, OWL reasoning enables significantly enhanced
querying and analysis of arguments through automatic scheme classifications, instance classi-
fication, inference of critical questions and inference of indirect support in chained argument
structures. This provides a seed for further work that combines traditional argument-based
reasoning techniques [13] with ontological reasoning in a Semantic Web environment.
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- How can we exploit this representation together with existing Semantic Web tools to develop
systems for rich argumentation annotation, navigation and querying?

The implementation of a Semantic Web-based system that exploits the new ontology to
allow for creating, manipulating, and querying complex argument structures requires a number
of tools. The core Website is built on Java. Jena provides the programming environment for
manipulating the ontology model. Moreover, ARQ libraries are used to provide the SPARQL
query engine. Pellet, an open source description logic reasoner for OWL-DL, enables inference
over the ontology model generated by Jena. The ontology and the instances are stored in a
SQL Server database.

The system provides the following features: listing the available arguments, creation of
new arguments, attacking/supporting existing arguments, retrieving attacking/supporting ar-
guments of a claim, retrieving argument scheme details, displaying hierarchy of argumentation
schemes, creation of new argumentation schemes and searching for arguments in both basic and
advanced modes.

1.6 Scope

In the research presented in this thesis, I focus on designing an OWL ontology based on a
reification of the Argument Interchange Format for description and annotation of arguments
and argument schemes. Current implementation utilizes Walton’s account of argumentation
schemes. I explore different ways in which the expressive power of OWL and the use of descrip-
tion logic reasoning can improve analysis and queries over argument structures. A Web-based
system is also built to exploit this ontology and allow for creation, update and querying of
arguments in RDF. This system also enables extension of the underlying ontology by adding
new argument schemes.

This research does not engage in other important aspects of argumentation support systems,
such as argument visualisation [25], evaluating the acceptability of arguments [17], natural
language processing [58], content acquisition, argument generation [12], etc. However, the
proposed ontology provides an interesting opportunity that can be explored through further
work to include the above mentioned features of argumentation support systems.

1.7 Organisation of the thesis

The rest of this thesis is organised as follows: In the next chapter, I discuss some of the
most important current Web-based argumentation applications, and outline a number of key
requirements of WWAW for large-scale argumentation on the Web. In Chapter 3, a brief
overview of the Argument Interchange Format is provided. Chapter 4 provides an overview
of argument schemes and compares two of their reifications in the AIF: one by the underlying
ontology of ArgDF and the second by the proposed ontology. The new ontology is presented
in Chapter 5 and its various new reasoning capabilities are explained in Chapter 6. Chapter 7
focuses on the architecture of the Web-based system, the tools used and the system features. In
Chapter 8, the Web-based system is compared against the WWAW key requirements and the
system limitations are outlined. The last chapter explains future directions of this project and
the conclusion. Appandix A includes an overview on Semantic Web technologies and the Web
Ontology Language (OWL). Appendix B describes the most common argument structures. A
brief explanation of Description Logics is available in Appendix C. Appendices D and E include
sample argument scheme definitions (in Description Logics) and SPARQL queries respectively.
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Chapter 2

Argumentation on the World
Wide Web

In this chapter, I compare a number of Web-based argumentation tools and identify some of
their limitations with respect to a truly global scale argumentation system. Moreover, a number
of key requirements for large-scale argumentation on the Web are explained. I also explore some
opportunities for further improvement of large-scale argumentation on the World Wide Web.

2.1 Mass Argumentation Tools on Web 2.0

There are a number of Web 2.0 applications,1 designed to support large-scale argumentation
on the World Wide Web. In this section, I discuss some of these tools and provide a concise
assessment.

2.1.1 Existing Tools

An imperative feature of a Web-based argumentation system is its ability to capture (explicitly)
the structural components of each argument as well as the way different facts, opinions, and
arguments relate to one another and, as such, contribute to the argument network [38].

Some of the existing argumentation tools provide a simple structure; an example of such
sites is Debatepedia.2 It synthesizes two critical elements: a ‘wiki’ technology and a ‘logic
tree’ debate methodology. The Wiki technology enables collaborative content management on
the World Wide Web by users (a significant feature of Wikis is the ease with which pages are
created, edited and linked). The logic tree is a pro/con logic tree, in which the main debate
topic is located at the root. In other words, every debate is driven by a main yes/no question
that reflects a substantial public debate. Then, users are allowed within this logic tree and
with the accompanying software, to present yes/no sub-questions that break-down the larger
main question. Sub-questions provide a way of breaking down, categorizing, and simplifying a
certain debate topic. It is also possible to shift sub-questions up or down a tree.

Arguments are added in free format text and do not follow any specific structure. Users
support (or attack) arguments by adding their arguments under pro/yes (or con/no) sections of
each question. Arguments can be re-used across debates; however, each debate tree is treated
in isolation. A basic keyword search is also provided in this system.

1Web 2.0 refers to second phase of architecture in application development on the World Wide Web. It
focuses on user contribution and collaboration by tagging data (e.g. Social bookmarking), editing data (e.g.
Wikis), mass publishing (e.g. Weblogs) and Web feeds (e.g. RSS).

2http://wiki.idebate.org/index.php/
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Debatemapper3 is one of the most recent Web-based argumentation systems which adds
more structure to arguments by using elements representing different argumentative constructs
(e.g. issues open to debate, the positions taken, arguments attacking or supporting these
positions and repertoire of possible measures and alternative policies). Every map conforms to
a ‘map grammar’ which specifies a vocabulary of element types and a set of rules stipulating
how they may be combined.

It is possible to link elements across debate maps and build cross relationships among them.
Users can also rate an element (e.g. a position) according to a scale (e.g. 1 to 9); the average
of these ratings on each element is used in sorting them visually (in descending order) in
maps. Different modes of keyword search on maps are available to users. While debatemapper
structures argument maps by identifying different components such as issues or positions, it
does not provide a distinction among different types of arguments.

Cohere [43] is another Web-based argumentation tool that is intended to allow students
and researchers make personal and collective sense of problems while working on distributed
systems. The data model of Cohere is inherited from ClaiMaker [49]. Users can create (or re-
use) Ideas and link them by means of different Connection types. All connections are broadly
classified as positive or negative. Ideas play one or more Roles within a given association. Both
connections and roles can be extended by users. Using the role mechanism, IBIS structure4 or
any other argumentation scheme can be modelled in the system.

In Cohere, visualisation is provided through a tool called Connection Net. This tool allows
different views over the argument network by filtering the graph according to certain connection
types. The system also offers a simple keyword search. Cohere represents arguments in a
relational database format and this data is only transformed to XML before being sent to a
Web page.

Truthmapping5 is a public argumentation support system which exhibits an advanced ar-
gument structure; it distinguishes between premises and conclusions of an argument. Users can
agree with or attack existing arguments (via critiques) and the creator of the argument can
add a single rebuttal to each critique. Arguments can be chained (although supporting claims
is restricted to the same team members) and can contain hyperlinks to other Websites or to
premises or conclusions of other arguments. A state map visually summarizes the overall user
rating of different parts of an argument. A basic keyword search is provided over categories
and topics.

Although Truthmapping provides a rather advanced structure of arguments, it only provides
a distinction between deductive and inductive types of arguments. The fact that cross-references
(hyperlinks) exist among different arguments enables linking them in different types of forma-
tions that resemble more complex structures such as divergent or convergent arguments. (See
Appendix B for a brief overview of argument structures). However, as argued by Rahwan [37],
the cross-references among arguments have no explicit semantics. So it is not possible to con-
nect multiple arguments explicitly in complex structures (e.g. that contain combinations of
convergent arguments, divergent arguments, etc.). This limitation hinders the possibility of us-
ing meta-data about arguments to enhance the automated search and evaluation of arguments
on the Web.

Capturing the structural attributes of arguments, as well as the details of different com-
plex interactions among arguments, not only facilitates evaluation and search of arguments, it
also enables far better visualisation and navigation of arguments by users or automated tools.
Moreover, it improves the group’s ability to reach consensus and make higher quality decisions
[19]. Such structure could also simplify the automated support for the argumentation process
(e.g. discovering inconsistencies or synergies among disputants)[38].

Parmenides [2] is an example of highly-structured argument-based deliberation support sys-

3https://debatemapper.com/sf/home.aspx
4The Issue Based Information Systems (IBIS) were first introduced to enable collaborative problem identifi-

cation and solving through modelling issues, positions and arguments [41].
5http://www.truthmapping.com
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tems (ADSS). Parmendies is based on a formal model of argumentation and a specific inference
scheme for justifying the adoption of an action. It is intended to let governments (or other
groups) present users with a position justifying a particular action and give them the opportu-
nity to critique that position by disputing various points.

After a position is put forward, the system provides a forms-based, questionnaire interface
to obtain views from the user, and a fixed set of possible attacks that can be made. Once the
original position has been subjected to their critique, another sequence of forms enables them to
propose positions of their own; again in a way which will lead them to construct their position
in the same form of the argument scheme.

A main drawback of Parmendies, similar to most ADSS, is that it is intended for a small
number of participants and focused on a specific domain. Consequently, it is based on specialised
approaches of interaction and decision-making, instead of a general theory of argumentation.
A Web-based argumentation system must be based on a general theory of argumentation and
allow for a variety of reasoning patterns to structure interactions [38].

Another limitation of existing large-scale Web-based argumentation systems indicated by
Rahwan [37] is the limited (or lack of) integration between the different argument repositories.
This limits the ability to provide services (e.g question answering systems) that make use
of arguments from multiple mass argumentation repositories. One of the main challenges in
argumentation support tools on the Web is the lack of a shared ontology (or interchange format)
for representing arguments and argumentation.

2.1.2 Assessing Web 2.0 Tools

The existing Web 2.0 systems for argumentation support suffer from a number of limitations.
Firstly, most of them exhibit a trade-off between structure and scalability. Highly structured
systems (such as Parmenides) are intended for smaller domains and are based on specific reason-
ing patterns instead of general theories of argumentation, while highly scalable systems (such
as Debatepedia) present very simple structures of arguments and argument networks, limiting
automated querying and analysis of argument repositories.

Another drawback with Web 2.0 argumentation systems such as Truthmapping is that while
arguments are structured, and cross-links and connections exist among arguments, these links
carry no explicit semantics. This limitation hinders the possibility of using meta-data about
arguments to enhance the automated search and evaluation of arguments on the Web.

Lastly, a shared ontology (or interchange format) for representing arguments does not ex-
ist, making it very difficult (or impossible in some cases) to provide services (such as query
answering) that utilize arguments from multiple mass argumentation systems [38, 37].

2.2 Argumentation and the Semantic Web

The key feature of Semantic Web technologies (see Appendix A for a brief overview) is that
they represent Web information in standard, machine-processable formats. Semantic markup
enables us to explicitly annotate arguments and their different components.

Semantic Web technologies can present a solution to the integration among mass argumen-
tation tools through two key features: Firstly, a unified argument description ontology could act
as an inter-lingua between the different tools and secondly, if a standard ontology of arguments
can not be achieved, then ontology mapping tools [23] can potentially provide means for the
automatic translation of a variety of argument annotation languages [37].
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2.2.1 Existing Tools

XML, located at the lower layer of the Semantic Web technologies (see Figure A.1), introduces
structure and syntactic interoperability. The provided structure can be made machine-accessible
through DTDs and XML Schema.

CoPe it! [48] utilizes XML and is designed for community deliberation on the Web. CoPe it!
is based on IBIS (Issue Based Information Systems) and captures users’ contributions in form of
issues, positions and arguments. This system implements an incremental formalization approach
(to facilitate the process of decision making) through different projections of the workspace. A
projection can be defined as a particular representation of the collaboration space. For example,
the ‘IBIS graphs’ provide an informal projection while the synthesized ‘outline tree’ from this
graph provides a formal projection. In the ‘outline tree’ mode, users are able to state their
preferences over different positions by ranking the strength of each position. Depending on the
status of positions and preferences, the scores for different alternatives of an issue are calculated.
A basic search facility is also provided with this system.

An XML interchange language called “Argument Markup Language” (AML) has been pro-
posed for structuring arguments by annotating premises and conclusions in XML. The valid
AML document structures are contained in a DTD file. AML is used in Araucaria [42]. Arau-
caria is a stand-alone application tool for analysing and diagramming arguments. Arguments
can be authored (diagrammed) using alternative sets of argumentation schemes such as Walton
[54], Pollock [33], and Katzav and Reed [24]. This tool also provides the facility to design
one’s own argumentation schemes. Araucaria supports labels (tags) that are used to indicate
user’s evaluation for each part of an argument (nodes or arrows). These labels do not carry any
semantics and are simply used to document user’s preferences.

Once arguments have been analysed, they can be uploaded to AraucariaDB, which is an
online repository of arguments. It provides a search engine,6 which allows advanced searches
based on combination of different parameters such as argument schemes, argument creation
date range, argument analyst or source, etc. Both CoPe it! and Araucaria enable search over
their online argument repositories using XPath queries.

These various attempts at providing argument markup languages share a limitation: they
are built on XML, and standard XML does not provide any means of talking about seman-
tics(meaning of the data); each particular language is designed for use with a specific tool; as
a consequence, the semantics of arguments specified in these languages is tightly coupled with
particular schemes to be interpreted in a specific tool and according to a specific underlying
theory. Thus, for example, arguments in CoPe it! are to be interpreted in relation to the theory
of issue-based information systems [37].

Unlike XML, Semantic Web ontology languages such as RDF Schema (RDFS) [9] and
OWL [28] can offer a unified ontology for describing and annotating arguments as they contain
machine-processable semantics. RDFS is a vocabulary for describing properties and classes of
RDF-based [27] resources, with semantics for hierarchies of such properties and classes. OWL
adds more vocabulary for describing properties and classes to RDFS and enables reasoning
about asserted concepts to infer new concepts.

DiscourseDB7 is an argumentation system based on Semantic Wiki [53] technology. This
system collects the opinions of the world’s journalists and commentators about ongoing political
events and issues. Using this tool, users can post arguments and other users can have “for”,
“against” or “mixed” positions on those arguments. It provides the facility to export content
into OWL/RDF format for use by other Semantic Web applications.

In addition to simpler keyword searches, this system offers a semantic search module in
which users can use Semantic Media Wiki’s query language to write queries. The only type
of inference available over the argument network is sub-class hierarchy (e.g. a query to list
instances of a specific topic theme returns instances under all the topics that are sub-classes

6http://araucaria.computing.dundee.ac.uk/search.php
7http://discoursedb.org/wiki/Main Page
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of that specific topic theme). While semantic search enables users to run different queries and
retrieve the needed information, this feature can only be used by users who are familiar with
the special Semantic Media Wiki’s query language.

Another drawback with DiscourseDB is that the arguments posted are in free format text
and do not follow any specific structures or adhere to any explicit schemes. Moreover, it is not
possible to form complex structures of multiple inter-connected arguments (e.g. convergent,
divergent, etc). Capturing argument structures as well as the details of different interactions
among arguments is essential for evaluation and querying of arguments by users or automated
tools.

ArgDF is a pilot system presented by Rahwan et al [38] following the theoretical and software
foundations of World Wide Argument Web (see Section 2.3 for a brief overview). ArgDF is based
on a RDFS ontology that models the Argument Interchange Format (AIF) specification and
extends it to include Walton’s account of argumentation schemes.

In ArgDF, users can author new arguments that adhere to any of the available schemes; they
can also attack or support existing arguments (although the process of support is constrained
in some ways). Users can also extend the underlying ontology by adding new argumentation
schemes; the new schemes are added as new instances of the scheme related concepts (classes)
in the ontology. A semantic based keyword search facility is also offered by the system that
returns the supporting/attacking arguments of a claim containing a specific keyword.

ArgDF implements an interchange format and is based on open standards, and therefore
resolves many problems related to current Web-based argumentation systems. However, the
underlying ontology of ArgDF suffers from number of limitations, both in terms of design
specification and the ontology language used.

A core argumentation ontology developed in OWL is reported by Verheij [52]. He suggests
that each argumentation format should use the argumentation core ontology as its starting
point and provide a translation back into the core ontology. In this case, translations between
argumentation formats are optional and can be developed whenever considered useful. The
core ontology is meant to provide the glue. At the time of writing, no Web-based system has
been reported that utilizes this ontology.

2.2.2 Assessing Semantic Web based Argumentation Tools

As explained in the previous section, XML merely provides syntactic interoperability. Therefore,
in systems based on XML (such as Araucaria and CoPe it!), each particular language is designed
for use with a specific tool; as a consequence, the semantics of arguments specified in these
languages is tightly coupled with particular schemes to be interpreted in a specific tool and
according to a specific underlying theory.

ArgDF utilizes a RDFS ontology which offers machine-processable semantics and therefore
a unified ontology for describing and annotating arguments; however, RDFS does not offer the
strength and expressitivity that other ontology languages such as OWL can provide.

2.3 Desiderata

Motivated by the limitations in current Web-based argumentation systems, Rahwan et al
[38] proposed the theoretical and the software foundations of a World Wide Argument Web
(WWAW): a large-scale Web of structured and inter-connected arguments. In their paper, they
have listed the following key requirements that are important in order to allow for large-scale
argument annotation on the Web:

- The WWAW must support the storage, creation, update and querying of argumentative
structures;
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- The WWAW must have Web-accessible repositories;

- The WWAW language must be based on open standards, enabling collaborative develop-
ment of new tools;

- The WWAW must employ a unified, extensible argumentation ontology;

- The WWAW must support the representation, annotation and creation of arguments
using a variety of argumentation schemes;

2.4 Opportunities for further improvement

In this thesis, following the same principles as WWAW, I present an OWL ontology that reflects
the argumentation domain in a more comprehensive way than the original ontology underlying
ArgDF. This ontology is based on a new reification of the Argument Interchange Format (AIF).
In addition, Web Ontology Language(OWL) offers richer features than RDFS and presents
the potential for automated inference over argument structures, such as inference based on
Description Logic [3]. As an example, reasoning can be used to infer the classification of
hierarchy of argumentation schemes.

2.5 Comparison of the main features of different argu-
mentation tools

Table 2.1 summarizes the main features of the argumentation tools discussed in this chapter. In
this table, ‘argument represenation’ denotes the main technology used to capture the structure
of arguments. ‘Micro structure’ defines structure of a single argument while ‘macro structure’
represents the complex structures (e.g. divergent, convergent, serial) of multiple inter-connected
arguments. Supporting or attacking claims refer to the ability of users to support or attack
arguments posted by other users of the system.

2.6 Summary

In this chapter, I compared some of existing Web 2.0 argumentation systems and highlighted
their main features. The main limitations with these systems were identified as a trade-off
between scale and argument structure, lack of semantics in cross links among arguments and
lack of a shared ontology or interchange format. I also presented the argumentation systems
utilizing the Semantic Web technologies and discussed two of their drawbacks: the tight coupling
between XML based systems and the utilized XML languages as well as limited expressitivity
of RDFS and consequently, the system utilizing it (ArgDF). A number of key requirements of a
large-scale argument annotation of the Web were explained and finally some opportunities for
further improvement were identified.
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Chapter 3

Overview of Core Argument
Interchange Format

This chapter explains the current state of the Argument Interchange Format, which is the most
recent general ontology for describing arguments and argument networks.

3.1 Argument Network and Nodes

The Argument Interchange Format(AIF) represents a core ontology of argument-related con-
cepts. Its specification can be extended to capture different argumentation formalisms and
schemes. The AIF core ontology assumes that argument entities can be represented as nodes
in a directed graph called an argument network. A node can also have a number of internal
attributes, denoting things such as title, creator (author), creation date, certainty degree, ac-
ceptability status, etc. Figure 3.1 depicts the original AIF ontology reported by Chesñevar et
al [15].

Information nodes relate to content and are used to represent passive information contained
in an argument, such as a claim, premise or data that depend on domain of discourse. On
the other hand, S-nodes capture the application of schemes (i.e. patterns of reasoning). Such
schemes may be considered as domain-independent patterns of reasoning, which resemble rules
of inference in deductive logics but broadened to include non-deductive inference. The schemes
themselves belong to a class of schemes and can be classified further into: rule of inference
scheme, conflict scheme, and preference scheme etc.

The AIF specialises S-nodes further into three (disjoint) types of scheme nodes, namely rule of
inference application nodes (RA-node), preference application nodes (PA-node) and conflict ap-
plication nodes (CA-node). The word ‘application’ on each of these types was introduced in the
AIF to emphasise the fact that these nodes function as instances, not classes, of possibly generic
inference rules. Intuitively, RA-nodes capture nodes that represent (possibly non-deductive)
rules of inference, CA-nodes capture applications of criteria (declarative specifications) defining
conflict (e.g. among a proposition and its negation, etc.), and PA-nodes are applications of
(possibly abstract) criteria of preference among evaluated nodes.

3.2 Edges in the Argument Network

The argument network contains edges that connect different nodes. For example, an edge
named “uses” connects a S-node to the scheme it exploits. The AIF core specification does
not type its edges. Edge semantics can be inferred from the types of nodes they connect. The
informal semantics of edges are listed in Table 3.1. Basically there are two types of edges: the
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Figure 3.1: Original AIF Ontology [15]

scheme edges that emanate from S-nodes and are meant to support conclusions that follow
from the S-node (these conclusions may either be I-nodes or S-nodes); and the data edges that
emanate from I-nodes ending in S-nodes and are meant to supply data, or information to scheme
applications. One of the restrictions imposed by the AIF is that no outgoing edge from an I-
node can be connected directly to another I-node. This ensures that the relationship between
two pieces of information must be specified explicitly via an intermediate S-node.

to I-node to RA-node to PA-node to CA-node

from I-node I-node data used in
applying an inference

I-node data used in applying a
preference

I-node data in conflict with infor-
mation in node supported by CA-
node

from RA-
node

inferring a
conclusion
(claim)

inferring a conclusion
in the form of an
inference application

inferring a conclusion in the
form of a preference application

inferring a conclusion in the form
of a conflict definition application

from PA-
node

preference
over data in
I-node

preference over
inference application
in RA-node

meta-preferences: applying a
preference over preference
application in supported
PA-node

preference application in support-
ing PA-node in conflict with pref-
erence application in PA-node
supported by CA-node

from CA-
node

incoming
conflict to
data in
I-node

applying conflict
definition to inference
application in
RA-node

applying conflict definition to
preference application in
PA-node

showing a conflict holds between a
conflict definition and some other
piece of information

Table 3.1: Informal semantics of untyped edges in core AIF [15]

A simple argument in propositional logic is depicted in Figure 3.2(a). The S-nodes are
distinguished from I-nodes graphically by drawing the former with a slightly thicker border.
The node marked MP1 denotes an application of the modus ponens inference rule.

3.3 Representing Conflict Among Arguments in the AIF

An attack or a conflict from one information or scheme node to another is captured through
a CA-node, which captures the type of conflict. An asymmetric attack represents a state
where one node (e.g. I-node) attacks another node (e.g. I-node) through a CA-node. On the
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p → q

p

qMP1

(a) Simple argument

(b) Symmetric attack among two simple arguments

r → p

r pMP2
A1

A2
p → q

p

qMP1

neg1

(c) Undercut attack among two simple arguments

r → p

r pMP2
A3

A2 s → v

s

vMP1

cut1

Figure 3.2: Examples of simple arguments and conflicts among them

other hand, in symmetric attacks, two nodes (e.g. I-nodes) attack each other simultaneously
through a CA-node. Figure 3.2(b) depicts a symmetric conflict between two simple arguments
(commonly known as a rebut attack in the literature). The node marked neg1 denotes conflict
as propositional negation.

Figure 3.2(c) illustrates a situation where a rule of inference node (RA-node) is attacked by
an I-node through a CA-node. An attack on an inference application is often referred to as an
undercut [32].1 The node cut1 represents conflict as an undercut.

3.4 Summary

The Argument Interchange Format represents a core ontology of argument-related concepts. It
assumes that argument entities are represented as nodes in a directed graph called the argument
network. Nodes are divided into two main groups : I-nodes that represent passive information
(e.g. claims, premises, etc.) and S-nodes that capture application of schemes (i.e. patterns
of reasoning). S-nodes are further specialised into different types of scheme nodes (RA-node,
CA-node and PA-node) to capture different types of application of schemes. The argument
network also contains edges that connect these nodes. The edges in the AIF are not typed and
their semantics can be inferred from the types of nodes they connect. Different types of conflicts
among arguments (e.g. asymmetric attacks, symmetric attacks) can also be represented in the
AIF.

1In some literature, asymmetric attacks by a CA-node on an I-node are also referred to as undercuts; for exam-
ple, as explained by Prakken and Sartor [34], an argument A undercuts another argument B if A proves(claims)
what was assumed unprovable by B.
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Chapter 4

Reification of Argument Schemes
in the AIF

This chapter describes argument schemes and explains their formalisation in the underlying
ontology of ArgDF and suggests an enhancement to this formalisation. Moreover, classification
of argument schemes in a hierarchy is discussed.

4.1 Overview of Argument Schemes

Argumentation schemes are forms of argument that capture stereotypical patterns of reasoning.
They might represent the deductive or inductive forms of argument as well as forms of argument
that are presumptive in nature [40]. These schemes are referred to as presumptive inference
patterns, in the sense that if the premises are true, then the conclusion may presumably be
taken to be true.

Structures and taxonomies of schemes have been analyzed and proposed by many theorists
such as Perelman and Olbrechts-Tyteca [31], Eemeren et al [50], and Katzav and Reed [39].
But it is Walton’s exposition [56] that has been most influential in computational work.

Each Walton scheme has a name, conclusion, set of premises and a set of critical questions.
Critical questions enable contenders to identify the weaknesses of an argument based on the
particular scheme, and potentially attack the argument. Here is an example:

Scheme 1. (Scheme for Argument from Position to Know)

– Position to know premise: E is in a position to know whether A is true (false).

– Assertion Premise: E asserts that A is true (false).

– Conclusion: A may plausibly be taken to be true (false).

Many types of different schemes are explained by Walton [56]; examples of which include:
argument from sign, argument from analogy, appeal to expert opinion, etc. Actual arguments
are instances of schemes.

Argument 1. (Instance of Argument from Position to Know)

– Premise: Allen is in a position to know whether Brazil has the best football team.

– Premise: Allen says Brazil has the best football team.

– Conclusion: Brazil has the best football team.
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It is possible that premises may not always be stated, in which case it is said that a given
premise is implicit [56]. One of the benefits of argument classification is that it enables analysts
to uncover the hidden premises behind an argument, once the scheme has been identified.

One way to evaluate arguments is through critical questions, which serve to inspect argu-
ments based on a particular argument scheme. For example, Walton [56] identified the following
critical questions for “argument from position to know” :

Critical Questions 1. (Critical Questions for Argument from Position to Know)

1. Knowledge: Is E in a position to know whether A is true(false)?

2. Trustworthiness: Is E an honest (trustworthy, reliable) source?

3. Opinion: Did E assert that A is true(false)?

It can be seen that critical questions 1 and 3 merely question two of the explicit premises. In
this thesis, the critical questions of such nature are omitted; thus, the only critical question
focused on with regard to “argument from position to know” is the “Trustworthiness” question.

As discussed by Gordon et al [22], critical questions are not all alike. Some questions
may refer to assumptions required for the inference to go through, while others may refer to
exceptions to the rule, and correspond to Toulmin’s rebuttal [47]. The contemporary view is
that the main difference between assumptions and exceptions lies in the burden of proof. The
proponent of the argument has the burden of proof to answer questions about assumptions,
while with exceptions the burden shifts to the questioner.

4.2 Schemes in the Original AIF

Let us now consider how schemes may be formalised in the AIF. The initial AIF specification
separates the classification of nodes from the classification of schemes (see Figure 3.1). Both
nodes and schemes are independently classified upper-level concepts. S-nodes are classified into
nodes that capture inference, conflict, preference, etc. Likewise, schemes are classified into
similar sub-schemes such as inference schemes, conflict schemes and so on. S-nodes are linked
to schemes via a special edge uses.

It should be noted that the original AIF represents an “abstract model”, allowing a number
of different concrete reifications to be made. The reification of the AIF in ArgDF ontology
defines two types of classes for representing schemes and nodes. Moreover, Rahwan et al [38]
introduced a new type of class, Form node (F-node), to capture the generic form of state-
ments (e.g. assumptions, premises) that constitute presumptive arguments. For example,
PremiseDescriptor is a sub-class of F-node that captures the generic form of premises used in
arguments.

In ArgDF ontology, the actual arguments are specified by instantiating nodes, while actual
schemes are created by instantiating the “scheme” class. Then, argument instances (and their
constituent parts) are linked to scheme instances (and their part descriptors) in order to show
what scheme the argument follows.

Figure 4.1 shows an argument network for “an argument from position to know” using the
underlying ontology of ArgDF. Here, each node in the actual argument (unshaded nodes) is
explicitly linked, via a special-purpose property, to the form node it instantiates (shaded nodes).
These special-purpose proprieties (e.g. fulfilsScheme) are particular reifications of the “uses”
relation (between S-nodes and schemes) in the original AIF specification.

From the above, it is clear that ArgDF’s reification of the AIF causes some redundancy at
the instance level. Both arguments and schemes are described with explicit structure at the
instance level. As a result, the property “fulfilsScheme” does not capture the fact that a
S-node represents an instantiation of some generic class of arguments (i.e. scheme). Having
such relationship expressed explicitly can enable reasoning about the classification of schemes.
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Figure 4.1: An argument network linking instances of argument and scheme components

In fact, the ontology presented in this thesis captures this relationship explicitly; presenting
a simpler and more natural ontology of arguments. The AIF model is reified by interpreting
schemes as classes and S-nodes as instances of those classes; in this case, the semantics of the
“uses” edge can be interpreted as “instance−of”. The design of the new ontology is discussed
in detail in Chapter 5.

4.3 Classification of Scheme Hierarchy

A notable aspect of schemes, receiving relatively little attention in the literature, is that they
do not merely describe a flat ontology of arguments. Consider the following scheme:

Scheme 2. (Scheme for Appeal to Expert Opinion)

– Expertise premise: Source E is an expert in domain D containing proposition A.

– Assertion premise: E asserts that proposition A is true (false).

– Conclusion: A may plausibly be taken to be true (false).

It is clear that this scheme specialises the scheme for argument from position to know. Apart
from the fact that both schemes share the conclusion and the assertion premise, the statement
“Source E is an expert in domain D containing proposition A” is clearly a specialisation of
the statement that “E is in a position to know (things about A).” Having expertise in a field
causes one to be in a position to know things in that field.1

Consider also the critical questions associated with the scheme for appeal to expert opinion
[56] (again, here the Walton’s “field” and “opinion” questions are omitted since they merely
question two of the explicit premises). Notice that the trustworthiness question is repeated,
while additional expertise-related questions are added.

Critical Questions 2. (Critical Questions for Appeal to Expert Opinion)

1. Expertise: How credible is expert E?

2. Trustworthiness: Is E reliable?

3. Consistency: Is A consistent with the testimony of other experts?
1Indeed, there may be other reasons to be in a position to know A. For example, if E is taken to refer to

society as a whole, then the argument from position to know becomes “argument from popular opinion.”
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4. Backup Evidence: Is A supported by evidence?

Thus, schemes themselves have a hierarchical ontological structure, based on a classification of
their constituent premises and conclusions. The underlying ontology of ArgDF does not classify
schemes according to this level of detail, but as whole entities.

As another example, let us consider legal formulation of “appeal to expert opinion”; this
particular form of reasoning is of central importance in law as it relates to evidence [57]. This
scheme is called “legal argument from expert opinion” and has the following structure:

Scheme 3. (Scheme for Legal Argument from Expert Opinion)

– Competence premise: E is an expert in knowledge domain D (containing A).

– Statement premise: E said (asserted or implied) the sentence A∗.

– Interpretation premise: A is a reasonable interpretation of A∗.

– Conclusion: A may plausibly be taken to be true (false).

As can be seen, this scheme includes the premises and conclusion of the “appeal to expert
opinion” scheme, and in addition, it contains another specialisation premise, namely the inter-
pretation premise. Therefore, this scheme specialises the“appeal to expert opinion” scheme.

The following critical questions are associated with this scheme. As can be seen, some of
the critical questions of “appeal to expert opinion” are repeated while some new questions are
added:

Critical Questions 3. (Critical Questions for Legal Argument from Expert Opinion)

1. Expertise: How credible is expert E?

2. Careful Analysis: is E’s testimony A∗ based on his own careful analysis of evidence in
this case?

3. Other Experts: Is A consistent with the testimony of other experts?

4. Depth of Knowledge: Is the knowledge of E about D deep enough to know about A?

Capturing such structures (and in general, capturing the hierarchical ontological structure of
different argumentation schemes) presents an opportunity to enhance analysis and querying of
arguments in argument networks.

4.4 Summary

Argument schemes are forms of arguments that capture stereotypical patterns of reasoning.
Each Walton scheme has a name, conclusion, premises and set of critical questions. The con-
temporary view on critical questions categorizes them under assumptions and exceptions, based
on the burden of proof. In reification of the AIF by ArgDF, structure of arguments and struc-
ture of schemes are represented separately; this presents a redundancy in the ontology which
can easily be eliminated. Moreover, the schemes themselves have a hierarchical ontological
structure, based on classification of their constituent premises and conclusions. The ArgDF
ontology does not classify schemes according to this level of detail, but as whole entities.
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Chapter 5

A New Argumentation Ontology
in Description Logic

In this chapter I describe the formalisation of the new argumentation ontology based on a new
reification of the AIF in Description Logic.

5.1 Description Logics

Description Logics (DLs)[3] are a family of logical formalisms that have initially been designed
for the representation of conceptual knowledge in Artificial Intelligence (see Appendix C for a
short overview of DL). Description Logic knowledge representation languages provide means for
expressing knowledge about concepts composing a terminology (TBox), as well as knowledge
about concrete facts (i.e. objects instantiating the concepts) which form a world description
(ABox). Since Description Logics are provided with a formal syntax and formal model-theoretic
semantics, sound and complete reasoning algorithms can be formulated.

The formalisation of the new argumentation ontology is done using the Web Ontology Lan-
guage OWL [28] in Description Logic (DL) notation. OWL is partially mapped on a Description
Logic. The ontology is designed using a particular dialect of OWL, called OWL-DL, which is
equivalent to logic SHOIN (D) [3]. While very expressive,1 SHOIN (D) is still decidable,
therefore enabling the use of efficient reasoning support.

5.2 Representing the Main Concepts and Properties

At the highest level, three concepts are identified: statements that can be made, schemes that
describe arguments made up of statements,2 and authors of those statements and arguments.
All these concepts are disjoint.

Scheme v Thing

Statement v Thing

Author v Thing

Author v ¬Scheme

Author v ¬Statement

Statement v ¬Scheme

1SHOIN (D) allows expression of basic DL, transitive roles, nominals, role hierarchy, inverse roles and
number restrictions.

2In this thesis, the terms “scheme” and “class of arguments” are used interchangeably.
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As with the original AIF, different specialisations of scheme are identified; for example the rule
scheme (which describes the class of arguments), conflict scheme, preference scheme etc.

RuleScheme v Scheme

ConflictScheme v Scheme

PreferenceScheme v Scheme

Each of these schemes can be further classified. For example, a rule scheme may be further
specialised to capture such deductive or presumptive arguments. The same can be done with
different types of conflicts, preferences, and so on.

DeductiveArgument v RuleScheme

InductiveArgument v RuleScheme

PresumptiveArgument v RuleScheme

LogicalConflict v ConflictScheme

PresumptivePreference v PreferenceScheme

LogicalPreference v PreferenceScheme

A number of properties (or roles in DL terminology) are defined, which can be used to refer
to additional information about instances of the ontology, such as authors of arguments, the
creation date of a scheme, and so on. The domains and ranges of these properties are restricted
appropriately and described below.3

> v ∀creationDate.Date

> v ∀creationDate−.Scheme

> v ∀argT itle.String

> v ∀argT itle−.RuleScheme

> v ∀authorName.String

> v ∀authorName−.Author

Scheme v ∀hasAuthor.Author

Scheme v= 1creationDate

RuleScheme v= 1argTitle

To capture the structural relationships between different schemes, their components should first
be classified. This is done by classifying their premises, conclusions, assumptions and exceptions
into different classes of statements. For example, at the highest level, we may classify statements
to declarative, comparative, and imperative, etc.4

DeclarativeStatement v Statement

ImperativeStatement v Statement

ComparativeStatement v Statement . . .

Actual statement instances have a property that describes their textual content.

> v ∀claimText.String

> v ∀claimText−.Statement

When defining a particular RuleScheme (i.e. class of arguments), I capture the relationship
between each scheme and its components. Each argument has exactly one conclusion and
at least one premise (which are, themselves, instances of class “Statement”). Furthermore,
presumptive arguments may have assumptions and exceptions.

3The counterpart of data types in Description Logics are called concrete domains which allow integration of
concrete qualities such as numbers and strings [26] into the formalism.

4In this thesis, an extensive ontological discussion of all types of statements is deliberately avoided. The
interest is in a (humble) demonstration of how a given classification of argument parts may be useful for
automated ontological reasoning about argument types. How individual parts get categorised into classes (e.g.
using natural language processing techniques, or manual tagging) is beyond the scope of this thesis.
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RuleScheme v ∀hasConclusion.Statement

RuleScheme v= 1hasConclusion

RuleScheme v ∀hasPremise.Statement

RuleScheme v≥ 1hasPremise

PresumptiveArgument v ∀hasAssumption.Statement

PresumptiveArgument v ∀hasException.Statement

5.3 Examples

With this in place, it becomes possible to further classify the above statement types to cater
for a variety of schemes. For example, to capture the scheme for “argument from position to
know,” the following classes of declarative statements need to be defined(each class is listed
with its property formDescription 5 that describes its typical form).

PositionToHaveKnowledgeStmnt v DeclarativeStatement

formDescription : “E is in position to know whether A is true (false)”

KnowledgeAssertionStmnt v DeclarativeStatement

formDescription : “E asserts that A is true(false)”

KnowledgePositionStmnt v DeclarativeStatement

formDescription : “A may plausibly be taken to be true(false)”

LackOfReliabilityStmnt v DeclarativeStatement

formDescription : “E is not a reliable source”

Now it is possible to fully describe the scheme for “argument from position to know.” Following
are the necessary as well as the necessary-and-sufficient conditions for an instance to be classified
as an argument from position to know.

ArgFromPositionToKnow ≡ (PresumptiveArgument u

∃hasConclusion.KnowledgePositionStmnt u

∃hasPremise.PositionToHaveKnowledgeStmnt u

∃hasPremise.KnowledgeAssertionStmnt)

ArgFromPositionToKnow v ∃hasException.LackOfReliabilityStmnt

Now, for the “appeal to expert opinion” scheme, we only need to define one additional premise
type, since both the conclusion and the assertion premise are identical to those of “argument
from position to know.”

FieldExpertiseStmnt v PositionToHaveKnowledgeStmnt

formDescription : “source E is an expert in subject domain D containing proposition A”

Similarly, one of the exceptions of this scheme is identical to “argument from position to know.”
The remaining assumptions and exception are added as follows:

ExpertiseInconsistencyStmnt v DeclarativeStatement

formDescription : “A is not consistent with other experts assertions”

CredibilityOfSourceStmnt v DeclarativeStatement

formDescription : “E is credible as an expert source”

ExpertiseBackUpEvidenceStmnt v DeclarativeStatement

formDescription : “E’s assertion is based on evidence”

Likewise, the necessary and necessary-and-sufficient conditions of “appeal to expert opinion”
are:

5formDescription is an annotation property in OWL-DL. Annotation properties are used to add meta-data
about classes.
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AppToExpertOpinion ≡ (PresumptiveArgument u

∃hasConclusion.KnowledgePositionStmnt u

∃hasPremise.F ieldExpertiseStmnt u ∃hasPremise.KnowledgeAssertionStmnt)

AppToExpertOpinion v ∃hasException.LackOfReliabilityStmnt

AppToExpertOpinion v ∃hasException.ExpertiseInconsistencyStmnt

AppToExpertOpinion v ∃hasAssumption.CredibilityOfSourceStmnt

AppToExpertOpinion v ∃hasAssumption.ExpertiseBackUpEvidenceStmnt

Other argument schemes (e.g. argument from analogy, argument from sign, etc.) can be defined
in the same way. Appendix D includes sample definitions of argument schemes in Description
Logic.

5.4 Capturing Support Among Chained Arguments

Arguments can support other arguments by supporting their premises. This results in argument
chaining where a claim acts both as a premise of one argument and as a conclusion of another.
A transitive property named supports was added to the ontology, to allow linking the supporting
argument to the supported argument in a chain:

RuleScheme v ∀supports.RuleScheme

5.5 Representing Conflicts Among Arguments

Conflict among arguments are captured through different specialisations of ConflictScheme
such as GeneralConflict and ExceptionConflict.

ExceptionConflict v ConflictScheme

GeneralConflict v ConflictScheme

GeneralConflict instances capture simple symmetric and asymmetric attacks among argu-
ments while ExceptionConflict instances represent exceptions to the general rule of inference.
The definition of ConflictScheme and Statement classes have been extended to include the
appropriate restrictions on properties used to represent attacks among different arguments.

ConflictScheme v ∀confAttacks.(Statement t RuleScheme)

ConflictScheme v ∀isAttacked.Statement

ConflictScheme v ∀underMinesAssumption.Statement

Statement v ∀attacks.ConflictScheme

Statement v ∀confIsAttacked.ConflictScheme

Figures 5.1 (a to d) illustrate how instances of conflict scheme and the related properties are
used to represent 4 different types of conflicts among arguments; namely asymmetric attacks (a),
symmetric attacks (b), undermining assumptions (c) and attacking by supporting the existing
exceptions (d).

In these figures, argument instances are denoted by Argn, premises are denoted by PX n,
conclusions by CX , assumptions by AsmX n, exceptions by ExcpX n and instances of general
conflict and exception conflict as GCn and EC 1 respectively where X = {A, B, C, ...} and n
represents the set of natural numbers {1,2,3,...}.

Figure 5.2 shows the different parts of an argument instance A1, which is of type “appeal
to expert opinion.” The conclusion of this argument is experiencing a symmetric attack by the
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(b) Symmetric Attack among two simple arguments

PA1

PA2
CA

Arg1

hasPremise

hasPremise

hasConclusion
attacks

A1

GC2

isAttacked

PB1

PB2
CB

Arg2

hasPremise

hasPremise

hasConclusion

A2

confAttacks

confIsAttacked

(a) Asymmetric Attack among two simple arguments

PA1

PA2
CA

Arg1

hasPremise

hasPremise

hasConclusion attacks

A1

GC1

PB1

PB2
CB

Arg2

hasPremise

hasPremise

hasConclusion

A2

confAttacks

(c) Undermining an assumption

PA1

PA2
CA

Arg1

hasPremise

hasPremise

hasConclusion

A1

GC3

PB1

PB2

CB

Arg2

hasPremise

hasPremise
hasConclusion

A2

confAttacks

AsmA1

hasAssumption

underMinesAssumption

attacks

(d) Attacking through  supporting an exception

PA1

PA2

CA

Arg1

hasPremise

hasPremise hasConclusion

A1 EC1

PB1

PB2Arg2
hasPremise

hasPremise

hasConclusion

A2

confAttacks

ExcpA1

/CB

hasException

attacks

Instance of Statement  or one of its sub-classes

Instance of Presumptive Argument Scheme or one of its 
sub-classes

Instance of Conflict Scheme or one of its sub-classes

Figure 5.1: Representation of different types of attack among arguments

conclusion of argument instance A2 (which is an instance of “argument from analogy”). An
instance of “argument from popular opinion”, A3, has attacked argument A1 by supporting
one of its existing exceptions. For the purpose of clarity, the complete details of arguments A2
and A3 are not shown.

5.6 Summary

In this chapter, I presented the formalisation of the new argumentation ontology (based on
a new reification of the AIF) using OWL-DL in Description Logic notation (SHOIN (D)).
Two main concepts were identified in this ontology: Scheme class and the Statement class.
The Statement specialisations represent the constituent parts (conclusion, premises, assump-
tions and exceptions) of different Scheme sub-classes. The conclusion and premises are defined
through necessary-and-sufficient condition on a scheme while assumptions and exceptions are
captured through necessary conditions. The formalisation of different types of conflicts and
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Figure 5.2: Different parts of an argument instance and its interaction with two other instances

support among arguments were also presented in this chapter.
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Chapter 6

OWL Reasoning over Argument
Structures

In this chapter, I describe a number of ways in which the expressive power of OWL and its
support for reasoning can be used to enhance user interaction with arguments.

6.1 Inference of Indirect Support in Chained Arguments

One of the advantages of OWL over RDF Schema is that OWL supports inference over transitive
properties. In other words, if r(X, Y ) and r(Y,Z), then OWL reasoners can infer r(X, Z). This
can be used to enhance argument querying.

Arguments can support other arguments by supporting their premises. This results in
argument chaining where a claim acts both as a premise of one argument and as a conclusion
of another. This situation is illustrated in Figure 6.1. In Argument 1, premises PA1 and PA2
have the conclusion CA which is used at the same time as premise PB1 of the argument 2.
Premises PB1 and PB2 have the conclusion CB which is used at the same time as premise
PC1 of argument 3; PC1 and PC2 have the conclusion CC. Here, we can say that Argument 1
indirectly supports Argument 3.

A user may wish to retrieve all arguments that directly or indirectly support conclusion
CC. RDF Schema does not provide straightforward support for retrieving this information. By
using the transitive edge supports, and the description logic reasoner, small and efficient queries
can retrieve the desired information.

PA1
Arg1 CA/PB1

PB2

PA2 Arg2 CB/PC1

PC2

Arg3 CC

Argument 1 Argument 2 Argument 3

supports

supports

Figure 6.1: Support among chained arguments
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6.2 Automatic Classification of Argument Schemes and
Instances

In this section, I describe the general inference pattern behind classification of argument schemes
(and their instances). This inference is based on the statement hierarchy and the conditions
defined on each scheme. Two examples of this inference are also provided.

6.2.1 General Inference Pattern

Let us consider two specialisations (sub-classes) of PresumptiveArgument : PresScheme1 and
PresScheme2. The first scheme, PresScheme1, can have an instance of CA class as its conclusion
and it has premises from classes (PA1, PA2, ..., PAn). Classes CA and (PA1, PA2, ..., PAn) are
specialisations of the class Statement. Similarly, PresScheme2 has memebrs of CB class as its
conclusion and its premises are from classes (PB1, PB2, ..., PBm) where CB and (PB1, PB2,
..., PBm) are specialisations of Statement and m >= n.

Moreover, we assume that a relationship exists between CA and CB: They could be referring
to the same class or CB is a specialisation of CA:

CB ≡ CA

Or :

CB v CA

We also assume a relationship exists among the premises of these two schemes in a way that
for every premise class of PresScheme1, there is a corresponding premise class in PresScheme2
that is either equal to or is a specialisation of that premise class in PresScheme1(the opposite
does not hold as PresScheme2 could have greater number of premises than PresScheme1).

PBx ≡ PAy

Or :

PBx v PAy

Where x = {1,2,...,m } and y={1,2,...,n }

The necessary-and-sufficient conditions on PresScheme1 are defined as:

PresScheme1 ≡ (PresumptiveArgument u

∃hasConclusion.CA u

∃hasPremise.PA1 u

∃hasPremise.PA2 u

∃hasPremise.(...) u

∃hasPremise.PAn)

Similarly, the necessary-and-sufficient conditions on PresScheme2 are defined as:

PresScheme2 ≡ (PresumptiveArgument u

∃hasConclusion.CB u
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∃hasPremise.PB1 u

∃hasPremise.PB2 u

∃hasPremise.(...) u

∃hasPremise.PBm)

Considering the statement hierarchy and the necessary-and-sufficient conditions defined on each
class, PresScheme2 is inferred by the description logic reasoner as the sub-class of PresScheme1
in case the number of premises in PresScheme2 is greater than number of premises in PresS-
cheme1 (i.e. m > n ). In case the number of premises are the same (i.e m=n), and at least
one of the premises of PresScheme2 is a specialisation of a premise in PresScheme1 and/or
the conclusion CB is a specialisation of CA, PresScheme2 is also inferred as the sub-class of
PresScheme1.

6.2.2 Examples

Following the above explanation, due to the hierarchy of specialisation among different de-
scriptors of scheme components (statements) as well as the necessary-and-sufficient conditions
defined on each scheme, it is possible to infer the classification hierarchy among schemes.

Example 1. (Inferring Appeal To Expert Opinion as the Specialisation of Argument
From Position to Know)

The necessary-and-sufficient conditions of scheme for “argument from position to know” are
specified as:

ArgFromPositionToKnow ≡ (PresumptiveArgument u

∃hasConclusion.KnowledgePositionStmnt u

∃hasPremise.PositionToHaveKnowledgeStmnt u

∃hasPremise.KnowledgeAssertionStmnt)

Likewise, the necessary-and-sufficient conditions of “appeal to expert opinion” are:

AppToExpertOpinion ≡ (PresumptiveArgument u

∃hasConclusion.KnowledgePositionStmnt u

∃hasPremise.F ieldExpertiseStmnt u

∃hasPremise.KnowledgeAssertionStmnt)

The following classes of declarative statements are used in definition of necessary-and-sufficient
conditions on the above schemes.

PositionToHaveKnowledgeStmnt v DeclarativeStatement

formDescription : “E is in position to know whether A is true (false)”

KnowledgeAssertionStmnt v DeclarativeStatement

formDescription : “E asserts that A is true(false)”

KnowledgePositionStmnt v DeclarativeStatement

formDescription : “A may plausibly be taken to be true(false)”

FieldExpertiseStmnt v PositionToHaveKnowledgeStmnt

formDescription : “source E is an expert in subject domain D containing proposition A”

Following from the statements and scheme definitions of appeal to expert opinion and argument
from position to know outlined above, the reasoner infers that the former is a sub-class of the
latter.

Example 2. (Inferring the Fear Appeal Argument as the Specialisation of Argument
From Negative Consequences)
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Similar inferences can be undertaken over other classes. A more elaborate example in-
volves inferring the “fear appeal argument” scheme as sub-class of “argument from negative
consequences.” Consider the specification of these two argument schemes:

Scheme 4. (Scheme for Argument From Negative Consequences)

– Premise: If A is brought about, bad consequences will plausibly occur.

– Conclusion: A should not be brought about.

Scheme 5. (Scheme for The Fear Appeal Argument)

– Fearful situation premise: Here is a situation that is fearful to you.

– Conditional premise: If you carry out A, then the negative consequences portrayed in this
fearful situation will happen to you.

– Conclusion: You should not carry out A.

The necessary-and-sufficient conditions of the “argument from negative consequences” are de-
tailed as:

ArgNegatvieConseq ≡ (PresumptiveArgument u

∃hasConclusion.ForbiddenActionStmnt u

∃hasPremise.BadConsequenceStmnt)

Likewise, the necessary-and-sufficient conditions of the “fear appeal argument” are detailed as:

FearAppealArg ≡ (PresumptiveArgument u

∃hasConclusion.ForbiddenActionStmnt u

∃hasPremise.FearfulSituationStmnt u

∃hasPremise.FearedBadConsequenceStmnt)

The statements are defined below. Note that the “Feared Bad Consequence” statement is a
specialization of “Bad Consequence” statement, since it limits the bad consequence to those
portrayed in the fearful situation.

BadConsequenceStmnt v DeclarativeStatement

formDescription : “If A is brought about, bad consequences will plausibly occur”

ForbiddenActionStmnt v DeclarativeStatement

formDescription : “A should not be brought about”

FearfulSituationStmnt v DeclarativeStatement

formDescription : “Here is a situation that is fearful to you”

FearedBadConsequenceStmnt v BadConsequenceStmnt

formDescription : “If you carry out A, then the negative consequences portrayed in this fearful situation will happen to you”

As a result of classification of scheme hierarchies, instances belonging to a certain scheme class
will also be inferred to belong to all its super-classes. For example, if the user queries to return
all instances of “argument from negative consequences,” the instances of all specializations of
the scheme, such as all argument instances from “fear appeal arguments” are also returned.

6.3 Inferring Critical Questions

In this section I describe the general inference pattern behind inference of critical questions
from an argumentation scheme’s super-classes and provide an example.
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6.3.1 General Inference Pattern

In the previous section I described an assumption about two specialisations of PresumptiveArgument,
PresScheme1 and PresScheme2 and the fact that PresScheme2 was inferred to be the sub-class
of PresScheme1. Each of these schemes might have different assumptions and exceptions de-
fined on their classes. For example, PresScheme1 has AsmA1 and AsmA2 as its assumptions
and ExcA1 as its exception. PresScheme2 has AsmB1 and ExcB1 as its assumption and excep-
tion respectively. AsmA1, AsmA2, AsmB1, ExcA1 and ExcB1 are specialisations of Statement
class. The the necessary conditions defined on classes PresScheme1 and PresScheme2 are:

PresScheme1 v ∃hasAssumption.AsmA1

PresScheme1 v ∃hasAssumption.AsmA2

PresScheme1 v ∃hasException.ExcA1

PresScheme2 v ∃hasAssumption.AsmB1

PresScheme2 v ∃hasException.ExcB1

Since PresScheme2 has been inferred by the reasoner as the specialization (sub-class) of PresS-
cheme1, a query to the system to return all assumptions and exceptions of PresScheme2, is able
to return all those explicitly defined on the scheme class (i.e. AsmB1 and ExcB1) as well as
those defined on any of its super-classes (in this case: AsmA1, AsmA2 and ExcA1).

6.3.2 An Example

As explained through the above example, since the schemes are classified by the reasoner into a
hierarchy, if certain assumptions or exceptions are not explicitly stated for a specific scheme but
are defined on any of its super-classes, the system is able to infer and add those assumptions and
exceptions to instances of that specific scheme class. Since critical questions enable evaluation
of an argument, inferring additional questions for each scheme will enhance the analysis process.

Consider the critical questions for “fear appeal argument” and “argument from negative con-
sequences” described below.

Critical Questions 4. (Critical Questions for Fear Appeal Argument)

1. Should the situation represented really be fearful to me, or is it an irrational fear that is
appealed to?

2. If I don’t carry out A, will that stop the negative consequences from happening?

3. If I do carry out A, how likely is it that the negative consequences will happen?

Critical Questions 5. (Critical Questions for Argument From Negative Conse-
quences)

1. How strong is the probability or plausibility that these cited consequences will (may, might,
must) occur?

2. What evidence, if any, supported the claim that these consequences will (may, might,
must) occur if A is brought about?

3. Are there consequences of the opposite value that ought to be taken into account?

These critical questions are represented in the ontology through the following statements:

IrrationalFearAppealStmnt v DeclarativeStatement

formDescription : “It is an irrational fear that is appealed to”
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PreventionOfBadConsequenceStmnt v DeclarativeStatement

formDescription : “If A is not carried out, this will stop the negative consequences from happening”

OppositeConsequencesStmnt v DeclarativeStatement

formDescription : “There are consequences of the opposite value that ought to be taken into account”

StrongConsequenceProbabilityStmnt v DeclarativeStatement

formDescription : “There is a strong probability that the cited consequences will occur.”

ConsequenceBackUpEvidenceStmnt v DeclarativeStatement

formDescription : “There is evidence that supports the claim that these consequences will occur if A is brought about.”

The necessary conditions on “argument from negative consequences” that define these critical
questions are :

ArgNegatvieConseq v ∃hasException.OppositeConsequencesStmnt

ArgNegatvieConseq v ∃hasAssumption.StrongConsequenceProbabilityStmnt

ArgNegatvieConseq v ∃hasAssumption.ConsequenceBackUpEvidenceStmnt

Likewise, the necessary conditions on “fear appeal argument” are:

FearAppealArg v ∃hasException.IrrationalFearAppealStmnt

FearAppealArg v ∃hasAssumption.PreventionOfBadConsequenceStmnt

FearAppealArg v ∃hasAssumption.StrongConsequenceProbabilityStmnt

“Fear appeal argument” is classified as a sub-class of “argument from negative consequences.”
The critical questions 2 and 3 of “argument from negative consequences” have not been explicitly
defined on “fear appeal argument”, but can be inferred through reasoning.

6.4 Summary

In this chapter, I described three different ways in which the expressive power of OWL and
its support for reasoning can be used to enhance user interaction with arguments. The first
section showed how adding a transitive property among chained arguments can enhance queries
to return arguments that directly or indirectly support another argument in a chain. The second
section illustrated how the hierarchy of specialisation among statements as well as the necessary-
and-sufficient conditions defined on each scheme, enables the inference of hierarchy of argument
schemes and facilitates classification of argument instances. The last section detailed the process
of inference of additional critical questions for each scheme due to the scheme hierarchy and
the necessary conditions defined on them.
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Chapter 7

Implementation

In this chapter, I explain the basic architecture of the implemented Web-based system Avi-
cenna.1 A comparison among different tools/technologies for building this system as well as
the reasons for choosing each tool/technology is also provided. Moreover, the main features of
this system are highlighted and briefly explained.

7.1 Basic System Architecture

The basic system architecture is illustrated in Figure 7.1. It consists of three main tiers: the
data tier, the middle tier and the client tier. The argumentation ontology (including both the
TBox and the ABox) is stored in form of RDF statements (triples) in the back-end database
which constitutes the data tier .

The middle tier is made up of two main components: the first component is the application
server which contains the database driver, the RDF Repository API and the description logic
reasoner; the second component is the Web server which includes all the server side technologies
(e.g. Java Servlets, JSTL, etc.) and is able to generate static content (HTML) from dynamic
pages (e.g. JavaServer Pages). These two components reside on the same server.

In the application server, with the help of the RDF Repository API and the appropriate
database driver, the stored RDF statements in the database are uploaded to the statement
repository. Description logic reasoner, through collaborating with the RDF Repository API,
uses these asserted statements (triples) to infer additional statements which are then added to
the statement repository.

The website acts as the application interface of the ontology and is hosted on a Web server.
The Web server receives the RDF statements (results) from the RDF Repository API and uses
the server side technologies and the dynamic pages to produce the static pages with desired
content and sends these pages to the client browser.

The client tier contains the static pages generated by the Web server as well as the client side
scripts. These scripts are run by the browser and mainly used to check for and limit user errors
before the pages are posted back to the server. While users browse the site and request to view
(or author) different statements, the request parameters are sent back to the Web server which
in turn communicates these parameters to the RDF Repository API. The appropriate queries
are constructed and the results are reported back to the Web server by the RDF Repository

1Avicenna was a Persian polymath and the foremost physician and Islamic philosopher of his time. He
developed an early theory on hypothetical syllogism, which formed the basis of his early risk factor analysis.
In addition to developing an early theory on propositional calculus and an original theory on temporal modal
syllogism, he also developed his own system of logic known as “Avicennian logic” as an alternative to Aristotelian
logic. Avicenna also contributed inventively to the development of inductive logic, being the first to describe
the methods of agreement, difference and concomitant variation which are critical to inductive logic and the
scientific method. (Source: Wikipedia)
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Figure 7.1: Basic System Architechture

API. Using these results, the Web server generates pages with requested content and sends
them to client’s browser.

The users might update the ABox by adding new arguments or through supporting or
attacking existing arguments. They might also update the TBox by introducing new argument
schemes that extend the underlying ontology. These updates are transfered by the Web Server
to the RDF Repository API which in turn updates the back-end database.

7.2 Tools Used

7.2.1 Ontology Editor

Ontology editors are applications designed to assist in the creation or manipulation of ontologies.
A Number of different ontology editors are available. Some editors are specialized in certain
domains; an example is OBO-Edit2 which is focused on domain of molecular biology. Other
editors such as WebODE3 and Ontolingua4 are not an isolated tool for the development of
ontologies; rather, they are offered in form of Web services, accessible to users through their
Web browsers.

A number of stand-alone tools exist for design and development of ontologies. Protégé5 is
by far the most widely used open source tool. It is built on Java, and provides an extensi-
ble platform that contains a suite of tools to construct domain models and knowledge-based
applications with ontologies (i.e. RDFS, OWL). It provides a DIG6 interface with available
description logic reasoners to facilitate reasoning tasks for OWL DL ontologies. SPARQL [35]
queries can be authored and run from the environment. Different third party plug-ins have
been developed for this editor . OWLViz7 and GraphViz8 plug-ins can be used for visualisation
of the ontology. Protégé has an extensive community of users and forums.

OntoStudio9 is another powerful editor based on KAON2 [29] utilizing its built-in description
logic reasoner. TopBraid Composer10 is another editor with advanced features which is very
similar to Protégé. However, both of these editors are only available through commercial
licenses. Other non-commercial based editors like CampTools editor11 exist, but none can match

2http://geneontology.sourceforge.net/
3http://webode.dia.fi.upm.es/WebODEWeb/index.html
4http://www.ksl.stanford.edu/software/ontolingua/
5http://protege.stanford.edu/
6http://dl.kr.org/dig/
7http://www.co-ode.org/downloads/owlviz/
8http://www.graphviz.org/
9http://www.ontoprise.de/content/e1171/e1249/index eng.html

10http://www.topbraidcomposer.com/features.html
11http://cmap.ihmc.us/coe/
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the extensive features and community support of Protégé. Therefore, Protégé was chosen as
the ontology editor for this project. Comparisons among different ontology editors reported by
Gomez-Perez et al [21] also highlights the advanced features of Protégé as the editor of choice.

7.2.2 RDF Repository (Semantic Web Framework)

RDF Repositories provide a framework for storage, update, inferencing and querying of RDF
data. Jena12 is an open source Semantic Web framework and grown out of work with the HP
Labs Semantic Web Programme. It provides a programmatic environment in Java for RDF,
RDFS and OWL and includes a rule-based inference engine environment for manipulating the
ontology model. ARQ13 is an implementation of SPARQL[35] query language for Jena. ARQ
libraries provide programmatic API access to issue SPARQL queries to the underlying ontology.
Jena provides different levels of reasoning facilities as well as enabling external description logic
reasoner plug-ins through DIG or direct library calls. Jena also provides persistent storage of
RDF data in relational databases.

Another powerful RDF Repository is Sesame.14 Similar to Jena, it is an open source Java
based RDF repository and provides persistent storage of RDF data in a back-end database. The
query language used in Sesame is SeRQL[10]. A limitation of this tool is that the only available
reasoner plug-in for Sesame is OWLIM. 15 The expressive power and reasoning capabilities of
OWLIM are inferior to OWL-DL.

Corese16 is another Semantic Web framework which offers a programmatic API to manip-
ulate and query ontologies using SPARQL; however, it is not able to incorporate a description
logic reasoner at the current time. Since the core ontology of this project is based on OWL-DL,
and needs to utilize richer capabilities of description logic reasoners, Jena was selected as the
suitable choice of RDF repository.

7.2.3 Description Logic Reasoner

Since Description Logics are provided with a formal syntax and formal model-theoretic se-
mantics, sound and complete reasoning algorithms can be formulated to infer additional facts
about the underlying ontology. FaCT++,17 KAON2[29], Pellet[44] and RacerPro18 are four of
the most widely used OWL/DIG reasoners. A brief description of these reasoners is provided
next.19

FaCT++ is a free open-source C++ based reasoner for SHOIQ(D) with simple data types.
It implements a tableau-based decision procedure for general TBoxes and incomplete support
of ABoxes(retrieval).

KAON2 is a free Java reasoner for SHIQ(D) and implements a resolution-based decision
procedure for general TBoxes and ABoxes.

Racer Pro also provides a reasoner for SHIQ(D) with simple data types; it is lisp-based
and is available under commercial license. Similar to FaCT++, it implements a tableau-based
decision procedure for general TBoxes and ABoxes.

Pellet is a free open-source Java-based reasoner for SHOIN (D) with complete support of
all OWL-DL and has recently been extended to SROIN (D) to support the new proposed
features of OWL 1.1[30]. Similar to FaCT++ and Racer Pro, it implements a tableau-based
decision procedure and supports general TBoxes and ABoxes. It also provides other features

12http://jena.sourceforge.net/
13http://jena.sourceforge.net/ARQ/
14http://www.openrdf.org/
15www.ontotext.com/owlim/
16http://www-sop.inria.fr/edelweiss/wiki/wakka.php?wiki=Corese
17http://owl.man.ac.uk/factplusplus/
18http://www.sts.tu-harburg.de/~r.f.moeller/racer/
19http://www.cs.man.ac.uk/~sattler/reasoners.html
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such as Ontology Analysis and Repair, Ontology Debugging, etc.

Extensive comparison among these reasoners is beyond the scope of this thesis; a benchmarking
for these reasoners is reported by Gardiner et al [20]. Considering the level of expressitivity
and support provided by each reasoner, and the fact that Jena group recommends Pellet as the
reasoner of choice (due to its robustness and scalability), Pellet was chosen as the description
logic reasoner.

7.2.4 Core Webiste

With decisions about Semantic Web framework (RDF repository) and description logic reasoner
in place, the choice of the most suitable technology to build the Website had to be consistent
with and supportive of those decisions. Since both Jena and Pellet are based on Java, JEE20

technologies were chosen to build the system. Using Java technologies allows direct interaction
with both Jena and Pellet libraries with no special plug-ins required. The following JEE
technologies were used in building the Website.

JavaServer Pages21 (JSP) technology provides a way to create dynamic web content
using Java libraries and a technique called Scriptlets. It also enables development of Web based
applications that are server and platform independent.

Servlet22 is a Java technology based Web component, managed by a container, that con-
tains the application logic and generates dynamic content. Like other Java-based components,
servlets are platform independent Java classes and are run by a Java enabled Web server.
Containers, sometimes called servlet engines, are Web server extensions that provide servlet
functionality. Servlets interact with Web clients via a request/response paradigm implemented
by the servlet container.

JavaServer Pages Tag Library23 (JSTL) encapsulates as simple tags the core function-
ality common to many Web applications. JSTL has support for common, structural tasks such
as iteration and conditionals, tags for manipulating XML documents, internationalization tags,
and SQL tags.

Java Database Connectivity24 (JDBC) API is the industry standard for database-
independent connectivity between the Java programming language and a wide range of SQL
databases.

7.2.5 Web Server

A Web server is a program that responds to an incoming TCP connection and provides a service
to the requester. There are many varieties of Web server software that support hosting a Java
based Website. Tomcat25 is a free Web server from Apache. It is a JSP/Servlet container,
supporting numerous large-scale Web applications. Java Application Server26 is not just a
JSP/Servlet container; it is a full JEE server providing support for different layers of JEE
technologies while providing a more robust Http server than Tomcat. Due to its advanced
features, Java Application Server was used as the Web server in this project.

20http://java.sun.com/javaee/
21http://java.sun.com/products/jsp/
22http://java.sun.com/products/servlet/
23http://java.sun.com/products/jsp/jstl/
24http://java.sun.com/javase/technologies/database/
25http://tomcat.apache.org/
26http://www.sun.com/software/products/appsrvr/index.xml
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7.2.6 Database

Jena facilitates creating and accessing persistent models on different databases such as MySQL,27

HSQLDB,28 Apache Derby,29 PostgreSQL,30 Oracle,31 and Microsoft SQL Server.32 HSQLDB
and Apache Derby are more suited for small scale persistence for a single application. The
other databases, as explained by Jena, all work efficiently to store and access RDF triples.

SQL Server is an enterprise level relational database management system which provides
secure and reliable storage for data and provides a solid back-end for different Web based
applications. It also provides services such as reporting, analysis, integration and notification.
In this project, SQL Server 2005 was chosen as the back-end database for three main reasons;
firstly, it is a secure and reliable database for Web based applications; secondly, as the system is
hosted on a Windows platform, SQL Server provides a more stable back-end which can benefit
from integrated features of the operating system for different types of services used; and the
last reason was my long-time familiarity with this product which helped me in managing and
fine-tuning the database to achieve optimum results while interacting with Jena.

7.2.7 Client-Side Scripting

A client-side script is a program that may accompany an HTML document and executes on the
client’s machine (Web browser). Scripts offer developers a means to extend HTML documents
in highly active and interactive ways; for example, scripts may accompany a form to process
input as it is entered. In this way, they ensure that input data conforms to predetermined
ranges of values, that fields are mutually consistent, etc. Common scripting languages include
JavaScript33 and VBScript.34

Both JavaScript and VBScript are powerful scripting languages; however, unlike VBScript,
JavaScript is supported by almost all browsers. Therefore, JavaScript was selected as the
scripting language.

7.2.8 Style Sheets

Cascading Style Sheets35 is a W3C Candidate Recommendation. It is a stylesheet language used
to describe the presentation of a document written in a markup language. By separating the
presentation style of documents from the content of documents, CSS simplifies Web authoring
and site maintenance. Its most common application is to style Web pages written in HTML
and XHTML, but the language can be applied to any kind of XML document. CSS can also
allow the same markup page to be presented in different styles for different rendering methods,
such as on-screen, in print, by voice, etc. CSS is used in this project to define presentation style
of JavaServer Pages.

7.3 System Features

Avicenna is a Web-based system that exploits the OWL ontology explained in Chapters 5 and
6 to enable creating arguments using different argumentation schemes and query the argument
network using SPARQL. Manipulation of existing arguments is also handled through re-using
existing claims and attacking/supporting available arguments. Several techniques (such as

27http://www.mysql.com/
28http://hsqldb.org/
29http://db.apache.org/derby/
30http://www.postgresql.org/
31http://www.oracle.com/
32http://www.microsoft.com/sql/default.mspx
33http://developer.mozilla.org/en/docs/About JavaScript
34http://msdn2.microsoft.com/en-us/library/t0aew7h6.aspx
35http://www.w3.org/Style/CSS/
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transaction-based database updates, error handling through scripts, etc) are utilized to en-
sure the integrity and consistency of the argument repository is maintained through different
operations. In this section, the main features of this system are explained.

7.3.1 System Users

Users of the system are categorized under three main profiles : Guests, Authors and Admin-
istrators. Each profile has a predefined set of user credentials. Users who use the system as
Guests are able to view the existing arguments (as well as any attacking or supporting ar-
guments they might have) and search for any argument or scheme information they require.
Authors, in addition to viewing and searching for arguments are able to author new arguments
and/or attack or support existing arguments. Administrators have all the Author credentials
and are also able to extend the ontology by adding new argument schemes. The navigation
links and contents of the Web pages are implemented in a way to reflect these credentials.

New users can sign up for accounts from the system interface. The default profile assigned
to each new user is the Author profile; obtaining administrative credentials is only possible
through direct contact with the system administrator. While registering new users, validation
checks are performed by the system and the appropriate error messages are displayed in case
fields are empty, password has not been retyped correctly, the user name is already in use and
so on.

7.3.2 Listing available arguments

The system lists the available arguments by listing their titles as displayed in Figure 7.2. These
titles are in form of hyperlinks and can be used to navigate to a page where the details of the
argument (its scheme, author, conclusion, premises and critical questions) are listed for further
exploration. Figure 7.3 displays the details of argument ‘Tipping lowers self esteem’ which is
an instance of “argument from expert opinion.”

Figure 7.2: List of arguments

By choosing View Arguments from main navigation menu, the user can view the most recent
threads of arguments (from the past 10 days and up to the current date) in the database. The
user can also view the entire list of arguments or a specific set as filtered through different
search modes (see Section 7.3.9). The last two options are available through a menu on the
right hand side of the page.

7.3.3 Creation of new arguments

New semantically annotated arguments can be authored using new claims or claims already
existing as part of available arguments in the system. By selecting Add New Argument from
the navigation menu, the user has the choice of creating a new argument that adheres to any
of the existing argument schemes. Figure 7.4 shows the list of available schemes in the system.
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Figure 7.3: Argument Details

After a specific argument scheme is chosen by the user, its constituent parts (the conclusion,
the premises, the assumptions and exceptions) are extracted by running a query on the different
restrictions defined on the scheme. If certain assumptions or exceptions are not explicitly defined
on a scheme but are defined on any of its deduced super-classes, the description logic reasoner
is able to infer them and add them to the list of asserted assumptions and exceptions. Since
Pellet treats the anonymous restrictions defined in an OWL ontology as syntactic expressions
and does not return them as answers to any query,36 a work-around to solve this problem was
implemented to query the default instance of each scheme class, instead of querying the class
itself.

The user is then forwarded to a page with a form containing place holders for the different
parts of the argument to be filled. Beside each place holder, a brief description of the claim
format is provided. The textual contents of assumptions and exceptions are already filled in
respective placeholders and only require minimal change by the user. Figure 7.5 illustrates the
page for authoring a new argument instance of “fear appeal argument.”

The user may enter new claims or may choose to use any of the existing claims. He can access
the existing claims by clicking a link to access a page (see Figure 7.6) that displays all the

36http://pellet.owldl.com/faq/different-results/
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Figure 7.4: List of argument schemes

Figure 7.5: Adding New Arguments

available claims in the system. This list can be searched and filtered as required. The paging
technique is implemented (through code) to limit the number of claims displayed in the page
at any given time.

Validation checks on the page are available to make sure the different parts of an argument are
filled before the user confirms addition of the new argument to the system. If validation check
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Figure 7.6: Re-using existing claims

passes, a module is ran to update the system with the new instance. The argument counter is
increased and its value is used as part of the new name that is used to create the appropriate
URI for the new instance. The new argument instance is created under the appropriate scheme
class and is annotated with details such as author, date of creation, title, etc.

The instances of the conclusion and the premises are created under the appropriate state-
ment classes and linked to the argument instance through hasConclusion and hasPremise
properties. Instances of assumptions and exceptions (if available) are also created under the
appropriate statement classes. Instances of assumptions represent a set of implicit premises
of the argument and are connected to the argument instance through hasAssumption prop-
erty. Instances of exceptions are connected to the argument instance through instances of
ExceptionConflict and hasException property; such exceptions will not undercut the pre-
sumptive argument instance unless they are supported by further statements.

7.3.4 Attacking/Supporting existing arguments

Users can attack or support existing arguments. The available operations on each claim mak-
ing up the argument are accessible through different icons on the right side of each claim as
illustrated in Figure 7.3. Users can perform symmetric or asymmetric attacks (see Section 3.3)
on a conclusion or a premise.

Users can also choose to support the conclusion or premises of an argument. As explained
in Section 6.1, if the supported claim is the premise of an argument, this claim is both the
conclusion of the supporting argument and the premise of the supported argument; thus creating
a chain of arguments. Users can also undercut (see Section 3.3) an argument by undermining
an existing assumption or supporting an existing exception of an argument.

After the user has specified the claim and the type of action (attack or support) he wants to
perform on the argument, he is forwarded to the next step to add a new argument in order to
facilitate the desired action. Creation of the argument follows the same routine explained in the
previous section: the users are presented with a list of argument schemes to choose from and
then fill out the conclusion, premises, assumptions and exceptions that adhere to that scheme.
If the user has chosen to support a claim, or support an exception to create a new attack on
the argument, that claim will automatically be designated as the conclusion of the argument
and can not be changed. Upon confirming the addition of the new argument, a new argument
instance is added under the related scheme class as explained in previous section; moreover,
in case of attacks, the appropriate conflict related properties (attacks, isAttacked, confAttacks,
confIsAttacked and underMinesAssumption) or in case of support, the (supports) property are
used to associate the original argument and the newly created instance according to Figures
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5.1 (a to d) and 6.1.

As the system allows re-using of existing claims while authoring new arguments as well as
supporting and attacking different claims that are part of an existing argument, interlinked and
dynamic argument networks are created - a central feature provided by the underlying ontology
design.

7.3.5 Retrieving attacking/supporting arguments of a claim

Viewing different types of attacks on a premise or conclusion is also available through set of
icons displayed on the right hand side of the claim. Users can view the different claims that are
attacking / or being attacked by the claim and then view the arguments that those claims are
part of. When the user chooses to view the attacks made against a certain claim, he has the
option of choosing among three different options: to view the claims that this claim attacks, or
the claims that attack this claim and finally the claims that attack this claim and are attacked
by it at the same time (symmetric attack). These options are illustrated in Figure 7.7.

Figure 7.7: Conflict Category

The result of choosing any of the options is displaying the list of claims that are involved in a
conflict relationship with the initial claim. Figure 7.8 shows the list of claims that are attacking
the claim ‘Brazil has the best football team.’ By clicking each claim, the users can view the
arguments in which the claim is utilized.

Figure 7.8: Claims attacking ‘Brazil has the best football team’

Users can also query the network to view different arguments that support a certain premise or
conclusion; the transitivity feature of the supports property is used to return all the arguments
supporting the claim whether directly or indirectly (as depicted in Figure 6.1). Figure 7.9 shows
the arguments that support the claim ‘Tipping lowers self esteem’; the argument ‘Dr. Phil is
one of the best Psychiatrists’ indirectly supports the claim (since it supports an argument which
in turn supports a premise of the argument with conclusion ‘Tipping lowers self esteem’).

The undercut attacks on each argument (through undermining assumptions or supporting ex-
ceptions) can also be queried in the same way.

7.3.6 Retrieving scheme details

Users can view the details of each of the existing scheme classes by accessing Scheme Detail
from the navigation menu. Figure 7.10 illustrates the details of “appeal to expert opinion.” A
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Figure 7.9: Claims supporting ‘Tipping lowers self esteem’

number of queries are used to retrieve the information which consists of the scheme conclusion,
premises, asserted assumptions and exceptions as well as its inferred super-classes and sub-
classes in the scheme hierarchy.

Figure 7.10: Scheme Details of Argument From Position to Know

7.3.7 Displaying the scheme hierarchy and the statement hierarchy

The system is also able to display the inferred scheme hierarchy (see Figure 7.11) and the
inferred statement hierarchy (see Figure 7.12 for a partial snapshot of the hierarchy). As can
be seen from both figures, Pellet infers Nothing (or ⊥) to be the sub-class of all classes.

7.3.8 Creation of new schemes

Users with administrative privileges are able to extend the underlying ontology by adding new
argument scheme classes (accessible through Add Scheme option on the navigation menu). In
creation of the new scheme definition they might re-use existing statement classes, or define
new ones as specialisation or generalization of existing statement classes.

Addition of the new scheme is carried out in several stages. At the first stage (Figure 7.13)
the user is asked to enter a name for the scheme. A validation check is performed to make sure
the name is unique and not existing in the database. As an example, a new argument scheme
named “Argument from Appearance” [55] will be added to the repository.
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Figure 7.11: Presumptive Argument Hierarchy

In the next stage the user should define the conclusion of the argument scheme. As explained
earlier, the user has the choice of utilizing any of the already defined statements, or defining a
new one. In case of “argument from appearance,” the conclusion statement is already available
in the system and does not need to be created. Figure 7.14 depicts this stage.

In the subsequent stage the user should define the premises. “Argument from appearance” has
a single premise which is not defined in the system. Therefore, a new statement class should be
created and its name, description, sub-classes and super-classes should be defined accordingly.
To define all the sub-classes (or super-classes) of a new statement class, a list of available
statements are provided. The user can check all the statements that are specialisations (or
generalizations) of the new statement. Figure 7.15 shows this process for defining sub-classes
(the same process is used for defining super-classes). In this example, this new statement class
does not have any specialisations or generalizations. Therefore the user only defines the name
and the description. This is illustrated in Figure 7.16.

In the next stages, the user is presented with forms to create the assumptions and exceptions.
“Argument from appearance” contains two exceptions (and no assumptions) which are defined
using the exceptions forms.

At each stage, the system enables the user to edit/delete his previous choices or add a new
statement class. The user can access his previous choices through a small menu displayed on
the right side of each form. Figure 7.17 shows this menu from exception definition form. Figure
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Figure 7.12: Declarative Statement Partial Hierarchy

Figure 7.13: First stage in creating a new scheme

7.18 shows this menu in a larger view.

After the user has finished defining different parts of the argument, a summary of those parts
are displayed as can be seen in Figure 7.19. He also has the ability to edit/delete any of his
previous options from this screen or extend the definition of the argument by adding new parts
(statements).
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Figure 7.14: Defining the conclusion of a new scheme using an existing statement

Figure 7.15: Defining sub-classes of a new statement class

Figure 7.16: Defining a new statement class (Property Appearance Statement)

Upon confirming the addition of the new scheme to the ontology, the new statement classes
(if existing) are created and annotated with their names and descriptions. After that their
appropriate super-classes and sub-classes are defined. The argument scheme class is then created
with all the annotations (author, creation date, scheme name, etc.) and the necessary and
necessary-and-sufficient conditions using the related statements. A default instance of this
scheme is also created to assist in reasoning purposes (as explained in Section 7.3.3)
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Figure 7.17: Accessing previous choices from exception definition form

Figure 7.18: Accessing and editing previous statements in the process of new scheme definition

Figure 7.19: Summary of new argument scheme: Argument From Appearance

7.3.9 Searching for arguments based on keywords, authors, schemes
and date range

By choosing Argument Search from the navigation menu, the user is able to search for specific
arguments. Two modes of basic and advanced search are available in the system. In basic
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search, users can query the argument network based on a keyword existent in a claim. This
option is shown in Figure 7.20.

Figure 7.20: Basic keyword search

In advanced mode, users are able to query the network using any combination of keyword, ar-
gument author, date range and argument scheme. When searching for arguments of a specific
scheme type, inference is used to return all the arguments that are instances of that specific
scheme as well as instances that belong to any of its sub-classes. This is a key new feature pro-
vided by the underlying ontology and the inference mechanism of the description logic reasoner.
Figure 7.21 illustrates the advance search screen.

Figure 7.21: Advanced Search Mode

The result of both modes of searches is a list of arguments. Figure 7.22 shows the results of
an advanced search with the following parameters: To find all arguments which contain the
keyword tipping, dated between January 2nd to January 12th, 2008 and are of scheme type
“argument from position to know.” Two arguments - one of type “appeal to expert opinion”
and the other of type “legal argument from expert opinion” - are returned; the details of each
argument can be viewed by clicking each argument title.

Figure 7.22: Advanced Search Results

7.4 Summary

This chapter explained the architecture of the Web-based system utilizing the new proposed
ontology. I outlined a comparison of the different available tools required for each part of
this architecture and explained the reasons for choosing Protégé as the ontology editor, Jena
as the RDF repository, Pellet as the description logic reasoner, Java as the core language of
the Website and SQL server as the database. The main features of the system were also
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highlighted in this chapter. These features include: listing available arguments, creation of
new arguments, attacking/supporting arguments, listing the attacking/supporting arguments,
displaying scheme details and scheme hierarchy, basic and advanced search modes and creation
of new schemes.

56



Chapter 8

Evaluation

This chapter re-visits a number of key requirements for building large-scale argumentation
systems on the Web to assess whether the implemented ontology and the Web-based system
(Avicenna) fulfils those requirements. I also compare the main features of the system with other
argumentation tools discussed in Chapter 2. Finally, some of the limitations of the system are
discussed.

8.1 Re-visiting the Desiderata

Section 2.3 outlined a number of features deemed essential by Rahwan et al [38] to allow for
development of a large-scale argument annotation on the Web. These features are re-visited
again and the subsequent parts of this section explain how each feature is realized in the system.

The WWAW must support the storage, creation, update and querying of argumentative struc-
tures:

Avicenna supports storage of arguments in persistent RDF storage (back-end database). It is
possible to create new arguments by introducing new claims or using any of the existing claims
in the system. While creating new arguments, the inferred critical questions on that scheme
are also added to the argument instance.

Apart from re-using existing claims while authoring arguments, the argument network can
be updated by attacking or supporting different claims. Attacks could be any of the following
types: Symmetric attacks, Asymmetric attacks, undermining assumptions or supporting an
exception. All of these different types of argument interactions are explicitly modelled in the
system.

Avicenna implements and uses queries in different tasks; for example: displaying the different
parts of an argument instance, displaying the details of an argumentation scheme and searching
for arguments in both basic and advanced modes (advanced search queries the argument network
based on different parameters; in case of searching for instances of a specific argumentation
scheme, inference is used to return the instances of inferred sub-classes of that argumentation
scheme as well). Queries are also utilized to return attacking or supporting arguments of a
given claim; searching for supporting arguments of a claim retrieves arguments that support
the claim both directly and indirectly.

The WWAW must have Web-accessible repositories:

Arguments are stored in a persistent RDF storage and can be accessed and queried on the Web
and by using different standard RDF query languages.

The WWAW language must be based on open standards, enabling collaborative development of
new tools:
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Avicenna is based on OWL and annotates arguments in RDF. Both OWL and RDF are open
standards and recommendations by the W3C. A variety of software development tools can
be used for exploiting this either by using the ontology directly or using any of the available
ontology mapping techniques.

The WWAW must employ a unified, extensible argumentation ontology:

The ontology represents a new reification of the Argument Interchange Format, which is the
most recent general specification for describing arguments and argument networks.

The WWAW must support the representation, annotation and creation of arguments using a
variety of argumentation schemes:

Avicenna not only preserves the AIFs emphasis on scheme-based reasoning patterns, but also
classifies schemes based on their constituent premises and conclusions; thus enabling automatic
classification of hierarchy of argument schemes. The system allows extension of the underlying
ontology by addition of new schemes from the interface.

8.2 Avicenna and current Web-based argumentation tools

Table 8.1 highlights the main features of Avicenna in comparison to other Web based argu-
mentation systems discussed in Chapter 2. In particular, the Description Logic-based OWL
reasoning over argument structures is exploited in number of system features to enhance analysis
and querying of arguments. An example of such features is automatic classification of schemes
which is unique to Avicenna. The system also enables addition of new argument schemes to the
underlying ontology. Semantic search is another feature utilizing Description logic-based OWL
reasoning for instance classification and inference of indirect support in chained arguments.

The design of the underlying ontology not only facilitates the supporting and attacking of
different arguments, but also enables formation of complex structures (e.g. divergent, conver-
gent, serial) among multiple inter-connected arguments.

8.3 Limitations

The proposed ontology and the Web-based system (Avicenna) are a work in progress; there are
several limitations and areas for future development. The following provides a list of some of
the points through which the work can be further enhanced.

The hierarchy of argument topic categories (such as sports, education, law, etc.) has not
been implemented in the ontology. The topic categories can offer a better structure to the
argument network and provide broader query options.

The current approach to definition of argument schemes (and therefore, the inference of
hierarchy of schemes) is based on the necessary-and-sufficient conditions on hasPremise and
hasConclusion properties of each scheme (as explained in detail in Section 6.2). Certain argu-
ment schemes exhibit somewhat complex structures; for example, “circumstantial ad hominem
argument” is a chain of argumentation based on combining “argument from inconsistent com-
mitment” with the “direct ad hominem argument” [56].

In this scheme, an intermediate conclusion is based on a conclusion of one scheme (argument
from inconsistent commitment), while its final conclusion is based on the conclusion of another
scheme (direct ad hominem argument); in this case, should this argument be considered as
several distinct arguments that are simply chained? Or it should be considered as a single
argument scheme? If this scheme is considered as a single argument scheme, should it be
inferred as a specialisation of all the different schemes it is made of? Or just the scheme with
which its final conclusion is shared (or a specialisation of)? Considering the different types of
argument schemes that the ontology must incorporate and the expected classification hierarchy
results, the necessary-and-sufficient conditions on each scheme might be re-defined by using a
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new property, hasPart, that stands for both hasPremise and hasConclusion properties, and
properties hasPremise and hasConclusion will become part of the necessary conditions.

A current limitation in the SPARQL query language in case of transitive properties is that
it is not possible to limit the depth of application of transitive properties. In current system,
when user queries to view the supporting arguments of a claim, it is not possible to limit the
returned results to those triples that provide indirect support up to two levels back (or any
arbitrary number specified by the user).

Content acquisition forms another future direction. Moreover, the integration of arguments
from other repositories into the system should be explored. Work is also needed on integrat-
ing effective argument visualisation techniques [25], which can help in acquisition as well as
interaction with the argument repository.

Another direction of future research is integrating reasoning about the acceptability of ar-
guments [17] based on various semantic criteria. However, in an open environment like the
Web, it is unlikely for traditional rigid approaches to be successful and/or scalable. New, more
approximate approaches are needed to reason about argument acceptability at such a large
scale.

8.4 Summary

In this chapter, I re-visited the WWAW requirements for development of large scale argumen-
tation on the Web and showed how Avicenna with support of its underlying ontology fulfils
these requirements and enhances them through reasoning. Some of the limitations of the sys-
tem were discussed and its main features were highlighted in comparison to other Web-based
argumentation systems.

59



S
y
st

e
m

F
ea

tu
re

s
D

e
ba

te
p
ed

ia
C
o
h
e
re

D
e
ba

te
m

a
p
p
e
r

P
a
r
m

e
n
id

e
s

T
ru

th
m

a
p
p
in

g
C
o
P
e

it
!

A
ra

u
ca

r
ia

D
is

co
u
r
se

D
B

A
rg

D
F

A
v
ic

e
n
n
a

U
n
d
e
rl

y
in

g
T

h
e
o
ry

P
ro

/
C

o
n

C
o
n
n
e
c
te

d
P

ro
p
ri

e
ta

ry
P
e
rs

u
a
si

o
n

P
ro

p
ri

e
ta

ry
IB

IS
A

rg
u
m

e
n
ta

ti
o
n

P
ro

p
ri

e
ta

ry
A

IF
,

A
IF

,
L
o
g
ic

T
re

e
Id

e
a
s

a
n
d

R
o
le

s
O

v
e
r

A
c
ti

o
n

S
ch

e
m

e
s

W
.
S
ch

e
m

e
sa

W
.
S
ch

e
m

e
s

D
o
m

a
in

G
e
n
e
ra

l
L
e
a
rn

in
g

G
e
n
e
ra

l
D

e
li
b
e
ra

ti
v
e

G
e
n
e
ra

l
G

e
n
e
ra

l
E

d
u
c
a
ti

o
n

P
o
li
ti

c
s

G
e
n
e
ra

l
G

e
n
e
ra

l
D

e
m

o
c
ra

c
y

A
rg

u
m

e
n
t

W
ik

i,
S
Q

L
D

B
,

S
Q

L
D

B
S
Q

L
D

B
S
Q

L
D

B
X

M
L

A
M

L
S
e
m

a
n
ti

c
R

D
F
/
R

D
F
S

R
D

F
/
O

W
L

R
e
p
re

se
n
ta

ti
o
n

L
o
g
ic

tr
e
e

X
M

L
M

e
d
ia

W
ik

i
V

is
u
a
li
sa

ti
o
n

-
C

o
n
n
e
c
ti

o
n

N
e
t

D
e
b
a
te

M
a
p
s

-
S
ta

te
m

e
n
t

IB
IS

A
rg

u
m

e
n
t

-
-

-
M

a
p
s

G
ra

p
h
s

D
ia

g
ra

m
s

E
v
a
lu

a
ti

o
n

-
-

R
a
ti

n
g

-
R

a
ti

n
g

R
a
ti

n
g

R
a
ti

n
g

-
-

-
(t

a
g
s)

M
ic

ro
A

rg
u
m

e
n
t

P
ro

/
C

o
n

Id
e
a
,
R

o
le

,
P

ro
/
C

o
n

P
e
rs

u
a
si

o
n

P
re

m
is

e
,

Is
su

e
S
ch

e
m

e
F
o
r,

A
g
a
in

st
,

W
.
S
ch

e
m

e
s

W
.
S
ch

e
m

e
s

S
tr

u
c
tu

re
P
o
si

ti
o
n

C
o
n
n
e
c
ti

o
n

A
rg

u
m

e
n
t,

O
v
e
r

C
o
n
c
lu

si
o
n

P
o
si

ti
o
n
,

B
a
se

d
b

M
ix

e
d

It
e
m

Is
su

e
,
P
o
si

ti
o
n

A
c
ti

o
n

S
ch

e
m

e
C

ri
ti

q
u
e

A
rg

u
m

e
n
t

O
n

a
P
o
si

ti
o
n

e
tc

.
1

R
e
b
u
tt

a
l

F
o
r

a
T
o
p
ic

M
a
c
ro

A
rg

u
m

e
n
t

-
L
in

k
e
d
,
S
e
ri

a
l

L
in

k
e
d
,
S
e
ri

a
l

-
L
in

k
e
d

I.
N

.A
.c

L
in

k
e
d
,
S
e
ri

a
l

-
L
in

k
e
d
,
S
e
ri

a
l

L
in

k
e
d
,
S
e
ri

a
l

S
tr

u
c
tu

re
D

iv
e
rg

e
n
t,

D
iv

e
rg

e
n
t,

S
e
ri

a
l

D
iv

e
rg

e
n
t

D
iv

e
rg

e
n
t,

D
iv

e
rg

e
n
t,

C
o
n
v
e
rg

e
n
t

C
o
n
v
e
rg

e
n
t

C
o
n
v
e
rg

e
n
t

C
o
n
v
e
rg

e
n
t

C
o
n
v
e
rg

e
n
t

E
x
te

n
si

b
le

O
n
to

lo
g
y

-
-

-
-

-
-

S
ch

e
m

e
s

-
S
ch

e
m

e
s

S
ch

e
m

e
s

(I
n
st

a
n
c
e
s)

(C
la

ss
e
s)

In
fe

re
n
c
e

O
v
e
r

-
-

-
-

-
-

-
S
u
b
c
la

ss
-

D
L

A
rg

u
m

e
n
t

N
e
tw

o
rk

H
ie

ra
rc

h
y

In
fe

re
n
c
e

C
re

a
ti

o
n

o
f

Y
e
s

Y
e
s

Y
e
s

R
e
st

ri
c
te

d
Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

Y
e
s

n
e
w

a
rg

u
m

e
n
ts

(A
lt

e
rn

a
ti

v
e
s)

R
e
-u

se
o
f

Y
e
s

Y
e
s

Y
e
s

-
Y
e
s

Y
e
s

-
Y
e
s

Y
e
s

Y
e
s

e
x
is

ti
n
g

c
la

im
s

S
u
p
p
o
rt

in
g

c
la

im
s

Y
e
s

Y
e
s

Y
e
s

(Y
e
s/

N
o

A
n
sw

e
rs

T
e
a
m

Y
e
s

-
Y
e
s

R
e
st

ri
c
te

d
Y
e
s

T
o

Q
u
e
st

io
n
s)

M
e
m

b
e
rs

A
tt

a
ck

in
g

c
la

im
s

Y
e
s

Y
e
s

Y
e
s

(Y
e
s/

N
o

A
n
sw

e
rs

Y
e
s

Y
e
s

-
Y
e
s

Y
e
s

Y
e
s

T
o

Q
u
e
st

io
n
s)

A
u
to

m
a
ti

c
c
la

ss
ifi

c
a
ti

o
n

-
-

-
-

-
-

-
-

-
Y
e
s

o
f
sc

h
e
m

e
s

S
e
a
rc

h
K

e
y
w

o
rd

K
e
y
w

o
rd

K
e
y
w

o
rd

-
K

e
y
w

o
rd

K
e
y
w

o
rd

A
d
v
a
n
c
e
d

S
e
m

a
n
ti

c
S
e
m

a
n
ti

c
S
e
m

a
n
ti

c
S
e
a
rc

h
S
e
a
rc

h
S
e
a
rc

h
S
e
a
rc

h
S
e
a
rc

h
S
e
a
rc

h
S
e
a
rc

h
S
e
a
rc

h
S
e
a
rc

h
(T

o
p
ic

,
(S

ch
e
m

e
,
d
a
te

,
K

e
y
w

o
rd

A
d
v
a
n
c
e
d

C
a
te

g
o
ry

)
a
u
th

o
r,

e
tc

.)
(S

ch
e
m

e
,
d
a
te

,
a
u
th

o
r,

e
tc

.)

T
ab

le
8.

1:
C

om
pa

ri
so

n
of

M
ai

n
Fe

at
ur

es
of

A
rg

um
en

ta
ti

on
Sy

st
em

s
a
W

a
lt
o
n

S
ch

em
es

[5
6
]

b
T

h
e

a
rg

u
m

en
t

is
st

ru
ct

u
re

d
a
cc

o
rd

in
g

to
th

e
sc

h
em

e;
fo

r
ex

a
m

p
le

,
if

a
rg

u
m

en
t

is
st

ru
ct

u
re

d
a
cc

o
rd

in
g

to
a

W
a
lt

o
n

sc
h
em

e,
it

co
n
ta

in
s

p
re

m
is

e(
s)

,
co

n
cl

u
si

o
n
,
a
ss

u
m

p
ti
o
n
(s

)
a
n
d

ex
ce

p
ti
o
n
(s

)
c
In

fo
rm

a
ti
o
n

is
n
o
t

a
v
a
il
a
b
le

.

60



Chapter 9

Conclusion and Further Work

In this thesis I introduced the design and implementation of an ontology that exploits the
Web Ontology Language (OWL) for creating, navigating and manipulating complex argument
structures. This ontology is based on a new reification of the Argument Interchange Format
[15], exploits Walton’s account of argumentation schemes [56] and follows the same key prin-
ciples as WWAW [38]. The various sections in the thesis outlined how this ontology enables
the use of automated description logic reasoning over argument structures. In particular, OWL
reasoning enables significantly enhanced querying of arguments through automatic scheme clas-
sifications, instance classification, inference of indirect support in chained argument structures
and inference of critical questions. This provides a seed for further work that combines tradi-
tional argument-based reasoning techniques [13] with ontological reasoning in a Semantic Web
environment. I also presented the implementation of a Web-based system for authoring and
querying argument structures in RDF which utilizes the developed OWL ontology.

The ontology introduced and the Web-based system presented in this thesis are a work in
progress; there are several areas for future development in the work undertaken in this thesis.
One of the most important areas through which the work can be further enhanced is acquisi-
tion of content and integration of arguments from other repositories. Argument visualisation
[25] is another significant advancement. But perhaps the most interesting direction of future
research is integrating reasoning about the acceptability of arguments [17] based on various
semantic criteria; specially since in an open environment like the Web, traditional approaches
are unlikely to be successful and new and more approximate approaches are needed to reason
about argument acceptability at such a large scale.
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Appendix A

The Semantic Web and OWL

A.1 The Semantic Web

The Semantic Web is at the center of Tim Berners-Lee’s vision for the future of the World
Wide Web. In his Roadmap document [7], Berners-Lee contrasts the Semantic Web with the
existing, merely human readable Web: “the Semantic Web approach instead develops languages
for expressing information in a machine processable form.” This is perhaps the best way of
summing up the Semantic Web: technologies for enabling machines to make more sense of the
Web, with the result of making the Web more useful for humans [16]. The Semantic Web is
intended to create a universal medium for information exchange by giving semantics to the
content of documents on the Web by means of defining ontologies and individuals.

The development of the Semantic Web proceeds in steps, each step building a layer on top
of another. Figure A.1 shows the “layer cake” of the Semantic Web. The purpose of each layer
is explained next [1, 28].

Figure A.1: Semantic Web Layer Cake [8]

URI/IRI (Uniform Resource Identifiers/Internationalized Resource Identifiers) provide an
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identification scheme for entities on the World Wide Web. XML provides customized tagging
schemes for content structure within documents, but without associating any semantics with
the meaning of the content. XML Schema is a language for describing and restricting the
structure and content of elements contained within XML documents.

RDF is a data model for describing objects (“resources”) and their relationships. Its basic
building block is an object-attribute-value triple, called a statement. A RDF-based model
can be represented in XML syntax. Since RDF does not make any assumptions about any
particular application domain or define the semantics of a domain, RDF Schema is used to
describe properties and classes of RDF-based resources, with semantics for hierarchies of such
properties and classes.

OWL improves the expressitivity of RDFS by adding more vocabulary for describing prop-
erties and classes; for example: local scope of properties, disjointness of classes, cardinality (e.g.
“exactly one”), boolean combination of classes, richer typing of properties and characteristics
of properties (e.g. symmetry), and enumerated classes.

SPARQL is a query language for Semantic Web data sources (in RDF format). Recent stan-
dardization efforts include Rule Interchange Format (RIF) as a format for interchange of rules
in rule-based systems on the Semantic Web. The Logic layer is used to enhance the ontology
language further and to enable the writing of application-specific declarative knowledge.

The Proof layer involves the actual deductive process as well as the representation of proofs
in Web languages (from lower levels) and proof validation. Finally the Trust layer will emerge
through the use of digital signatures and Cryptography. As this project is built on OWL, the
next section provides a more detailed description of this ontology language.

A.2 Web Ontology Language (OWL)

The Web Ontology Language (OWL) [28] (formerly known as DAML-OIL) is a language for
defining and instantiating Web ontologies; it is a W3C recommendation. OWL ontology includes
descriptions of classes, properties and their instances. OWL improves the expressivity power
of RDFS in several different ways, including: local scope of properties (restrictions on range),
disjointness of classes, Boolean combination of classes (building new classes through union,
intersection and complement of existing classes), cardinality restrictions (placing restrictions
on how many distinct values a property can take) and special characteristics of properties (such
as transitivity, symmetry, uniqueness, etc.).

OWL offers a set of formal semantics that are well-established in the domain of mathematical
logic; thus enabling reasoning to be performed about knowledge. Reasoning support allows
for checking consistency of the ontology and the knowledge, finding un-intended relationships
between classes and automatically classifying instances in classes.

OWL is (partially) mapped on a Description Logic (See Appendix C for a brief description).
W3C’s Web Ontology Working Group has defined OWL as three different sub-languages, each
to fulfil a different aspect of the set of requirements:

OWL Full: Supports maximum expressiveness and syntactic freedom of RDF, but with no
computational guarantees. For example, in OWL Full, a class can be treated simultaneously as
a collection of individuals and as an individual in its own right.

OWL DL (Description Logic): Supports the maximum expressiveness while retaining com-
putational completeness and decidability. OWL DL includes the entire OWL Full language
constructs under certain restrictions. This feature enables efficient reasoning support.

OWL Lite: An even further restriction limits OWL DL to a subset of the language construc-
tors; for example, OWL Lite excludes enumerated classes, disjoint statements and arbitrary
cardinality.
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Appendix B

Argument Structures

There are several types of argument structures that can be identified, depending on how the
inference is linked together in a chain of reasoning in a given case. Some of the most common
types of these argument structures are discussed next according to the descriptions provided
by Walton [56] and Rahwan [37].

The simplest argument structure is the single argument which has only one premise used as
basis for inferring a conclusion. Figure B.1(a) depicts this argument structure. Single arguments
are a special case of linked arguments in which a set of premises, together, lead to the conclusion
(see Figure B.1(b)).

Often, arguers present complex structures of multiple inter-connected arguments. For in-
stance, one may present multiple (individual) arguments in support of the same conclusion.
The resulting argument structure is referred to as convergent argument and is illustrated in
Figure B.1(c). The convergent argument is different from linked argument in that in conver-
gent arguments, each premise alone supports the conclusion (i.e., together with the conclusion,
it constitutes a single argument by itself).

Figure B.1(d) depicts another important structure of arguments, namely the divergent ar-
gument structure. In this type of structure, a single statement acts as a premise to support
multiple conclusions. The final argument structure explained in this section is the serial argu-
ment. In this structure, the conclusion of one argument acts as a premise of another, whose
conclusion could also form a premise of another argument, and so on; therefore, resulting in a
chain of arguments as shown in Figure B.1(e).

A

B

(a) Single

A

C

(b) Linked

B A

C

(c) Convergent

B A

C

(d) Divergent

B

A

B

C

(e) Serial

Figure B.1: Common Argument Structures
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Appendix C

Description Logics

Description Logics (DLs) [3] are a family of knowledge representation languages which can
be used to represent the terminological knowledge of an application domain. The idea is to
define complex concept hierarchies from basic (atomic) concepts, and to define complex roles
(or properties) that define relationships between concepts.

Table C.1 shows the syntax and semantics of common concept and role constructors. The
letters A, B are used for atomic concepts and C, D for concept descriptions. For roles, the
letters R and S are used and non-negative integers (in number restrictions) are denoted by n,
m and individuals (i.e. instances) by a, b. An interpretation I consists of a non-empty set
∆I (the domain of the interpretation) and an interpretation function, which assigns to every
atomic concept A a set AI ⊆ ∆I and to every atomic role R a binary relation RI ⊆ ∆I ×∆I .

A DL knowledge base consists of a set of terminological axioms (often called TBox) and a
set of assertional axioms or assertions (often called ABox). A finite set of definitions is called
a terminology or TBox if the definitions are unambiguous, i.e., no atomic concept occurs more
than once as left hand side.

Name Syntax Semantics

Concept & Role Constructors

Top > ∆I

Bottom ⊥ ∅
Concept Intersection C uD CI ∩DI

Concept Union C tD CI ∪DI

Concept Negation ¬C ∆I \ CI

Value Restriction ∀R.C {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}
Existential Quantifier ∃R.C {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}
Unqualified ≥ nR {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |≥ n}
Number ≤ nR {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |≤ n}
Restriction = nR {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |= n}
Role-value- R ⊆ S {a ∈ ∆I | ∀b.(a, b) ∈ RI → (a, b) ∈ SI}
map R = S {a ∈ ∆I | ∀b.(a, b) ∈ RI ↔ (a, b) ∈ SI}
Nominal I II ⊆ ∆I with | II |= 1

Universal Role U ∆I ×∆I

Role Intersection R u S RI ∩ SI

Role Union R t S RI ∪ SI

Role Complement ¬R ∆I ×∆I \ RI

Role Inverse R− {(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI}
Transitive Closure R+ ⋃

n≥1(R
I)n

Role Restriction R|c RI ∩ (∆I × CI)

Identity id(C) {(d, d) | d ∈ CI}
Teminological Axioms

Concept Inclusion C v D CI ⊆ DI

Concept Equality C ≡ D CI = DI

Role Inclusion R v S RI ⊆ SI

Role Equality R ≡ S RI = SI

Table C.1: Some Description Logic Role Constructors, Concept Constructors, and Terminolog-
ical Aximos
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To give examples of what can be expressed in DLs, we suppose that Person and Female
are atomic concepts. Then Person u Female is a DL concept describing, intuitively, those
persons that are female. If, in addition, we suppose that hasChild is an atomic role, we can
form the concept Person u ∃hasChild, denoting those persons that have a child. Using the
bottom concept, we can also describe those persons without a child by the concept Person u
∀hasChild.⊥. These examples show how we can form complex descriptions of concepts to
describe classes of objects.

The terminological axioms make statements about how concepts or roles are related to each
other. It is possible to single out definitions as specific axioms and identify terminologies as
sets of definitions by which we can introduce atomic concepts as abbreviations or names for
complex concepts.

An equality whose left-hand side is an atomic concept is a definition. Definitions are used
to introduce symbolic names for complex descriptions. For instance, by the axiom Mother ≡
Woman u ∃hasChild.Person, we associate to the description on the right-hand side the name
Mother. Symbolic names may be used as abbreviations in other descriptions. If, for example,
we have defined Father analogously to Mother, we can define Parent as Parent ≡ Mother t
Father. Table C.2 shows a terminology with concepts concerned with family relationships.

Name DL Syntax Example

Constructor / axiom
Concept Intersection C uD Woman ≡ Person u Female
Concept Union C tD Parent ≡ Mother t Father
Concept Negation ¬C Man ≡ Person u ¬Woman
Existential Quantifier ∃R.C Mother ≡ Woman u ∃hasChild.Person
Value Restriction ∀R.C MotherWithoutSons ≡ Mother u ∀hasChild.Woman
MinCardinality ≥ nR MotherWithAtLeastThreeChildren ≡ Motheru ≥ 3hasChild
Cardinality = nR FatherWithOneChild ≡ Fatheru = 1hasChild
Bottom ⊥ PersonWithoutAChild ≡ Person u ∀hasChild.⊥
Transitive Property R+ v R ancestor+ v ancestor

Role Inverse R ≡ S− hasChild ≡ hasParent−

Concept Inclusion C v D Woman v Person
Disjoint with C v ¬D Man v ¬Woman
Role Inclusion R v S hasDaughter v hasParent
Range > v ∀R.C > v ∀hasParent.Person

Domain > v ∀R−.C > v ∀hasParent−.Person

Table C.2: A terminology (TBox) with concepts about family relationships
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Appendix D

Scheme Definitions in
Description Logic

In this section, the definition of some of the argument schemes in Description Logic is provided.

Argument From Positive Consequences

ArgFromPosCons ≡ (PresumptiveArgument u

∃hasConclusion.EncouragedActionStmnt u

∃hasPremise.PositiveConsequenceStmnt)

ArgFromPosCons v ∃hasException.OppositeConsequencesStmnt

ArgFromPosCons v ∃hasAssumption.ConsequenceBackUpEvidenceStmnt

ArgFromPosCons v ∃hasAssumption.StrongConsequenceProbabilityStmnt

Argument From Correlation To Cause

ArgFromCorrelationToCause ≡ (PresumptiveArgument u

∃hasConclusion.CausalStmnt u

∃hasPremise.CorrelationStmnt)

ArgFromCorrelationToCause v ∃hasException.OtherCausalFactorsInvolvedStmnt

ArgFromCorrelationToCause v ∃hasAssumption.LackOfCoincidenceStmnt

Argument From Sign

ArgFromSign ≡ (PresumptiveArgument u

∃hasConclusion.PresumedCauseStmnt u

∃hasPremise.ExistanceOfSignStmnt u

∃hasPremise.IndicationBySignStmnt)

ArgFromSign v ∃hasException.SignFromOtherEventsStmnt

ArgFromSign v ∃hasException.SignEventCorrelationStmnt

Direct Threat Argument

DirectThreatArg ≡ (PresumptiveArgument u

∃hasConclusion.ForbiddenActionStmnt u
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∃hasPremise.BadConsequenceStmnt u

∃hasPremise.OppositeActionStmnt u

∃hasPremise.ThreatCommitmentStmnt)

DirectThreatArg v ∃hasAssumption.ThreatRelevancyStmnt

DirectThreatArg v ∃hasAssumption.CredibleThreatStmnt

Indirect Threat Argument

IndirectThreatArg ≡ (PresumptiveArgument u

∃hasConclusion.ForbiddenActionStmnt u

∃hasPremise.BadConsequenceStmnt u

∃hasPremise.OppositeActionStmnt)

IndirectThreatArg v ∃hasAssumption.ThreatRelevancyStmnt

IndirectThreatArg v ∃hasAssumption.CredibleThreatStmnt

Practical Reasoning

PracticalReasoning ≡ (PresumptiveArgument u

∃hasConclusion.EncouragedActionStmnt u

∃hasPremise.GoalStmnt u

∃hasPremise.GoalP lanStmnt)

PracticalReasoning v ∃hasException.OppositeConsequencesStmnt

PracticalReasoning v ∃hasException.AlternativeMeansStmnt

PracticalReasoning v ∃hasException.ConflictingGoalsStmnt

PracticalReasoning v ∃hasException.RealisticGoalStmnt

Argument From Analogy

ArgFromAnalogy ≡ (PresumptiveArgument u

∃hasConclusion.BaseOutcomeStmnt u

∃hasPremise.BaseStmnt u

∃hasPremise.SimilarityOfCasesStmnt)

ArgFromAnalogy v ∃hasException.DifferencesUndermineSimilarityStmnt

ArgFromAnalogy v ∃hasException.ExceptionSimilarityCaseStmnt
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Appendix E

Sample Queries

This section contains a number of SPARQL [35] queries used in the Web-based system Avi-
cenna. A brief explanation is provided before each query.

The following query is used to display the list of available arguments; except the default instance
(main), the rest of instances will be returned.

Query 1. (Retrieving list of argument instances)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

SELECT ?schemInd ?title

WHERE

{

?schemInd kb:argTitle ?title.

?schemInd rdf:type kb:PresumptiveArgument.

OPTIONAL { ?schemInd rdfs:comment ?comment. FILTER (?comment = ’Main’) }

FILTER(!bound(?comment))

}

Similarly, the next query is used to display the list of available arguments; however, it returns
only those arguments added after a specific date specified by

Query 2. (Retrieving list of argument instances from a specific date onwards)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>

SELECT ?schemInd ?title

WHERE

{

?schemInd kb:argTitle ?title.

?schemInd rdf:type kb:PresumptiveArgument.

?schemInd kb:creationDate ?date.

OPTIONAL { ?schemInd rdfs:comment ?comment. FILTER (?comment = ’Main’) }

FILTER(!bound(?comment))

FILTER (?date >= dateString ˆˆxsd:date)

}

The next query retrieves the list of existing argument schemes.
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Query 3. (Retrieving list of argument schemes)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

SELECT ?scheme ?text

WHERE

{

?scheme rdfs:subClassOf kb:PresumptiveArgument.

?scheme kb:schemeName ?text.

}

ORDER BY ?text.

When adding a new argument or displaying the details of each argument scheme, it is necessary
to retrieve the conclusion, premise, assumption and exception classes defined as restrictions on
a specific scheme. In subsequent queries, ArgSchemVar is a variable that could represent
any of the available schemes such as “argument from analogy”, “argument from negative con-
sequences”, etc. The MainInstance is also a variable that holds the default instance of an
argument scheme class.

Query 4. (Retrieving the premises defined on an argument scheme)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl:<http://www.w3.org/2002/07/owl#>

PREFIX list:<http://jena.hpl.hp.com/ARQ/list#>

SELECT DISTINCT ?premform ?premtext

WHERE

{

ArgSchemVar owl:equivalentClass ?eqiv.

?eqiv owl:intersectionOf ?collection.

?collection list:member ?member1.

?member1 owl:onProperty kb:hasPremise.

?member1 owl:someValuesFrom ?premform.

?premform kb:formDescription ?premtext.

}

Query 5. (Retrieving assumptions defined on an argument scheme)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl:<http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?presform ?text

WHERE

{

MainInstance rdf:type ?class.

?class rdfs:subClassOf ?restriction.

?restriction owl:onProperty kb:hasAssumption.

?restriction owl:someValuesFrom ?presform.

?presform kb:formDescription ?text.

}

The next 4 queries are used to retrieve information about conflicting claims. The variable
ClaimInstance is used to represent a specific claim instance and the variable ArgInstance
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symbolizes the argument instance.

Query 6. (Retrieving claims in symmetric attack with a specific claim instance)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?claimid ?text

WHERE

{

{ ClaimInstance kb:attacks ?conf.

?conf kb:confAttacks ?claimid.

?claimid kb:confIsAttacked ?conf.

?conf kb:isAttacked ClaimInstance.

?claimid rdf:type kb:Statement.

?claimid kb:claimText ?text. }

UNION

{ ?claimid kb:attacks ?conf.

?conf kb:confAttacks ClaimInstance.

ClaimInstance kb:confIsAttacked ?conf.

?conf kb:isAttacked ?claimid.

?claimid rdf:type kb:Statement.

?claimid kb:claimText ?text. }

}

Query 7. (Retrieving claims that are attacked by a specific claim)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?claimid ?text

WHERE

{

{ ClaimInstance kb:attacks ?conf.

?conf kb:confAttacks ?claimid.

?claimid rdf:type kb:Statement.

?claimid kb:claimText ?text. }

UNION

{ ClaimInstance kb:confIsAttacked ?conf1.

?conf1 kb:isAttacked ?claimid.

?claimid rdf:type kb:Statement.

?claimid kb:claimText ?text. }

}

Query 8. (Retrieving claims that attack a specific claim)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?claimid ?text

WHERE

{

{ ?claimid kb:attacks ?conf.

?conf kb:confAttacks ClaimInstance.

?claimid rdf:type kb:Statement.

?claimid kb:claimText ?text. }

UNION

{ ?claimid kb:confIsAttacked ?conf.

?conf kb:isAttacked ClaimInstance.
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?claimid rdf:type kb:Statement.

?claimid kb:claimText ?text. }

}

Query 9. (Retrieving claims that undermine an argument by attacking a specific
assumption)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?claimid ?text

WHERE

{

?claimid kb:attacks ?conf.

?conf kb:underMinesAssumption ClaimInstance.

?conf kb:confAttacks ArgInstance.

?claimid rdf:type kb:Statement.

?claimid kb:claimText ?text.

}

The following query is used to retrieve supporting arguments (direct and indirect) of a specific
claim (represented by ClaimInstance).

Query 10. (Retrieving arguments that support a claim)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?schem2 ?title

WHERE

{

{ ?schem1 kb:hasConclusion ClaimInstance.

?schem2 kb:supports ?schem1.

?schem2 kb:argTitle ?title. }

UNION

{ ?schem2 kb:hasConclusion ClaimInstance.

?schem2 kb:argTitle ?title. }

}

The next query retrieves the list of arguments that a claim (ClaimInstance) is utilized in.

Query 11. (Retrieving the list argument that a claim is utilized in.)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?arg ?title

WHERE

{

{ ?arg kb:hasConclusion ClaimInstance.

?arg kb:argTitle ?title. }

UNION

{ ?arg kb:hasPremise ClaimInstance.

?arg kb:argTitle ?title. }

}

The subsequent queries retrieve the list of sub-classes and super-classes of an argument scheme
represented by ArgSchem.
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Query 12. (Retrieving the list of super-classes of an argument scheme)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?super ?superschemeName

WHERE

{

ArgSchem rdfs:subClassOf ?super.

?super rdfs:subClassOf kb:PresumptiveArgument.

?super kb:schemeName ?superschemeName.

FILTER (?super != ArgSchem )

}

Query 13. (Retrieving the list of sub-classes of an argument scheme)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?sub ?subschemeName

WHERE

{

?sub rdfs:subClassOf ArgSchem

?sub rdfs:subClassOf kb:PresumptiveArgument.

?sub kb:schemeName ?subschemeName.

FILTER (?sub != ArgSchem )

}

The subsequent query performs a basic keyword search and retrieves any arguments that contain
that keyword (represented by SelKey) in their premises or conclusions.

Query 14. (Basic Search - Retrieving arguments based on keyword)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?schem ?title

WHERE

{

{ ?schem kb:argTitle ?title.

?schem kb:hasConclusion ?conc.

?conc kb:claimText ?text.

OPTIONAL ?schem rdfs:comment ?comment.

FILTER(!bound(?comment))

FILTER regex(?text, SelKey,’i’) }

UNION

{ ?schem kb:argTitle ?title.

?schem kb:hasPremise ?prem.

?prem kb:claimText ?text.

OPTIONAL ?schem rdfs:comment ?comment.

FILTER(!bound(?comment))

FILTER regex(?text, SelKey ,’i’) }

}

Advanced search mode offers the facility to search for any combination of keyword, argument
scheme, date range and author of an argument. Total of 15 queries are required for this mode.

73



The next 4 queries are selected from the total and detailed below. Variables SelKey, SelDate-
From, SelDateTo, SelAuthor and SchemeClass represent placeholders for Keyword, date
from, date to, author name and argument scheme respectively.

Query 15. (Advanced Search according to date range and argument scheme)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>

SELECT ?schem ?title WHERE

{

?schem kb:argTitle ?title.

?schem rdf:type SchemClass.

?schem kb:creationDate ?date.

OPTIONAL { ?schem rdfs:comment ?comment. }

FILTER(!bound(?comment))

FILTER (?date <= SelDateTo ˆˆxsd:date && ?date >= SelDateFrom ˆˆxsd:date)

}

Query 16. (Advanced Search according to author and keyword)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?schem ?title

WHERE

{

{ ?schem kb:argTitle ?title.

?schem kb:has-Author ?author.

?author kb:authorName ?name.

?schem kb:hasConclusion ?conc.

?conc kb:claimText ?text.

OPTIONAL { ?schem rdfs:comment ?comment. }

FILTER(!bound(?comment))

FILTER regex(?name, SelAuthor ,’i’)

FILTER regex(?text, SelKey ,’i’) }

UNION

{ ?schem kb:argTitle ?title.

?schem kb:has-Author ?author.

?author kb:authorName ?name.

?schem kb:hasPremise ?prem.

?prem kb:claimText ?text.

OPTIONAL { ?schem rdfs:comment ?comment. }

FILTER(!bound(?comment))

FILTER regex(?name, SelAuthor ,’i’)

FILTER regex(?text, SelKey + ,’i’) }

}

Query 17. (Advanced Search according to date range, argument scheme and key-
word)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?schem ?title
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WHERE

{

{ ?schem kb:argTitle ?title.

?schem rdf:type SchemClass.

?schem kb:creationDate ?date.

?schem kb:hasConclusion ?conc.

?conc kb:claimText ?text.

OPTIONAL { ?schem rdfs:comment ?comment. }

FILTER(!bound(?comment))

FILTER (?date <= SelDateTo ˆˆxsd:date && ?date >= SelDateFrom ˆˆxsd:date)

FILTER regex(?text, SelKey ,’i’) }

UNION

{ ?schem kb:argTitle ?title.

?schem rdf:type SchemClass.

?schem kb:creationDate ?date.

?schem kb:hasPremise ?prem.

?prem kb:claimText ?text.

OPTIONAL { ?schem rdfs:comment ?comment. }

FILTER(!bound(?comment))

FILTER (?date <= SelDateTo ˆˆxsd:date && ?date >= SelDateFrom ˆˆxsd:date)

FILTER regex(?text, SelKey ,’i’) }

}

Query 18. (Advanced Search according to date range, argument scheme, author
and keyword)
PREFIX kb:<http://www.ArgOWL.org#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?schem ?title

WHERE

{

{ ?schem kb:argTitle ?title.

?schem rdf:type SchemClass.

?schem kb:creationDate ?date.

?schem kb:has-Author ?author.

?author kb:authorName ?name.

?schem kb:hasConclusion ?conc.

?conc kb:claimText ?text.

OPTIONAL { ?schem rdfs:comment ?comment. }

FILTER(!bound(?comment))

FILTER regex(?name, SelAuthor ,’i’)

FILTER regex(?text, SelKey,’i’)

FILTER (?date <= SelDateTo ˆˆxsd:date && ?date >= SelDateFrom ˆˆxsd:date) }

UNION

{ ?schem kb:argTitle ?title.

?schem rdf:type SchemClass.

?schem kb:creationDate ?date.

?schem kb:has-Author ?author.

?author kb:authorName ?name.

?schem kb:hasPremise ?prem.

?prem kb:claimText ?text.

OPTIONAL { ?schem rdfs:comment ?comment. }

FILTER(!bound(?comment))

FILTER regex(?name, SelAuthor ,’i’)

FILTER regex(?text, SelKey ,’i’)
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FILTER (?date <= SelDateTo ˆˆxsd:date && ?date >= SelDateFrom ˆˆxsd:date) }

}
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