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Abstract

Multi-agent reinforcement learning is a common method for optimizing agents’ local decision
in a distributed and scalable manner. However, the study and analysis of the state-of-the-art
multi-agent reinforcement learning (MARL) algorithms have been limited to small problems
involving few number of learning agents.

The purpose of this project is to conduct an extensive evaluation and comparison of MARL
algorithms when used in networks that exhibit the scale-free property. The Internet and the
social network of collaboration in science are only few examples of real-world networks that
exhibit this property. Toward this goal, we developed a simulator that facilitates studying
combinations of MARL algorithms, strategic games and networks with control propagation via
tokens. These tokens are considered an opportunity for agents to play. Tokens also initiate a
factor of randomness in the environment given its probability distribution over agents. Prelim-
inary experimental results showed a significant reaction to the increase of tokens when agents
play battle of the sexes in Neural network; the increase in token transfer probability yields a
higher reward and a faster conversion.
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Chapter 1

Overview

1.1 Introduction

Multi-Agent reinforcement learning has been the focus of many recent scientific studies [8], [7].
The reinforcement learning problem in most of these studies concentrates on considerably small
number of learning agents. As the number of learning agents increases and agents are organized
in a network, understanding the dynamics of learning becomes increasingly complex.

The primary focus of this research paper is the creation of a multi-agent simulator that can
be used to study the dynamics of learning agents. In specific, the simulator allows studying
different combinations of learning algorithms, games and networks.

The concepts presented in this research paper are not revolutionary by themselves. The
innovation lies in the idea of combining multiple study variables (strategic game, learning
algorithm and network structure) that can possibly affect the performance of the agents and
the distribution of rewards. We can pair strategic games with one of the learning algorithms,
select a network and then let the simulation run for a given number of iterations to examine
the results.

Our proposed simulator is designed to facilitate simple change of configuration parameters
through a single centralized file. In addition, the simulator captures result in structured format
that allows for simple and quick analysis. Hence, the simulator provides us with a powerful
tool that remains abstract but at the same time very much extendable.

A key feature we introduce into the simulator is the idea of using tokens. These tokens
initiate a factor of randomness in the environment. A token is considered an opportunity for
agents to play the game. The goal is to recognize new dependencies between agents that go
beyond the simple one-hop connection. For example, it may become possible to observe the
impact of an agents interaction with a well connected powerful neighbor (and perhaps derive
some benefit from its association with such a neighbor). These tokens are assigned based on pre-
determined probability distribution of agents -a factor that is modifiable from the simulator’s
configuration file.

1.2 Design Consideration

The simulator is developed in Java environment since it is widely used and convenient for others
to run and understand its source code. The simulator’s source code will be posted online to
encourage others to enhance and utilize its functionality. The simulator uses the GML format.
The GML format is a standardized and widely-used file format for specifying networks (social
and physical). Configuration of the simulator is consolidated in one file for easy control of
different study factor of the simulation process. The output result captured data is in plain
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text comma separated format to ease export and import operation and to facilitate the use of
other data analysis applications.

1.3 Contribution

The contribution of the thesis are in the following two areas:

1. I created a new multi-agent simulator to facilitate studying combinations of MARL algo-
rithms, strategic games and networks with control propagation via tokens.

2. I presented preliminary analysis of Q-learning algorithm in scale-free networks and differ-
ent strategic games.
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Chapter 2

Background

In this chapter, we describe some of the necessary background for the dissertation. We also
summarize relevant research studies that have been conducted in the past.

2.1 Reinforcement Learning

Reinforcement learning (RL) allows an agent to maximize numeric reward base on continuous
interaction with the environment. We characterize the agent in this study as learning agent
-“the learner” that is simply not told what action to choose rather the agent is expected to
discover and learn which action is the best. The elements of Reinforcement learning comprise
of a policy, a reward function, a value function and an environment model [15].

A policy defines the agent’s behavior in a given state, mapping states to actions to be
performed. A policy can be described simply as a search algorithm and lookup tables. Oc-
casionally it can be complex involving extensive search queries and computational process. A
reward function maps state-action pair to numerical reward that tells the agent how desirable
the state is. A value function defines the long-term reward the agent can expect to accumulate
from the current state; given the policy the agent adapts. An environment model defines the
behavior of the environment in a sense that it might predict what the next state and reward
will be, in relation the current state and action. The concept of reinforcement learning is a
key feature we plan to apply on our proposed multi-agent simulator. We intend to capture the
effect of agents interactions and the learning process for each agent.

2.1.1 Learning Algorithm

Temporal Difference (TD) learning is a combination of Monte Carlo method and Dynamic
Programming (DP) method [15]. TD is similar to Monte Carlo approach in the sense that
it learns directly from a row of experience without the environment model. TD also updates
estimates partly using other existing learned estimates without waiting for the final reward.
This approach is similar to DP and is also called “bootstrapping”.

There are two methods of Temporal Difference learning, On-Policy and Off-Policy learning.
On-Policy learning focuses on learning the value of the policy used to make decisions. The value
function (of On-Policy learning) is updated using the result of the executed action. Off-Policy
learning focuses on learning the behavior of the policy [16]. The value function (of Off-Policy
learning) can be updated using hypothetical actions that have not been tried.
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2.1.2 Q-Learning

One of the challenges facing the learning agent in RL problem is the separation between ex-
ploitation and exploration. When the agent picks the best estimated value for an action, the
agent performs what is called a “greedy” selection. Agents that select “greedy” actions are
exploiting their current knowledge of estimated action [15]. However, agents are also expected
to explore other actions (none-maximum) to improve their policy. An agent may find others
(none-maximum) estimated actions to return higher reward in the future using exploration.
In this research paper, we address exploitation/exploration dilemma by using the e-greedy
method. The agent picks the best action (greedy) with probability “e” otherwise explores a
random action [11].

One of the most famous and important learning algorithms in reinforcement learning is Q-
Learning. Q-Learning is described as a breakthrough in the field of RL [15]. Q-Learning is an
off-policy Temporal Dereference control algorithm whereby it can tell the agent how good an
action is given a specific state. The algorithm is defined as follows [11], [16]:

- Let Qπ(s, a) be the value of performing action a is state s using policy p.

- Let α be the earning rate where 0 ≤ α ≤ 1.

1. Initialize Q(s,a) to small random values

2. Observe the current state, s

3. Pick an action using policy e-greedy

4. Perform the action, observe next state s′, and reward r

5. Q(s, a)← (1− a)Q(s, a) + a(r +maxa′Q(s′, a′))

6. repeat the process until state s is terminal

2.2 Game Theory

Game theory is the language of applied mathematics that is used in a wide variety of areas such
as social science, economy, political science, computer science and biology [3]. Game theory
is addressed in the form of a strategy game where individuals are presented with strategic
situations. For the purpose of this research paper, individuals in a game are considered agents.
The agents success in strategic situations is dependent on the agents actions. Our intention is
to capture agents behavior when playing games. There are three main forms of games in Game
Theory. The first is the Normal and extensive form which represents non-cooperative games.
Then there is the Characteristic function form which is used to describe cooperative games
[18]. Last but not the least is the Partition function form, which is similar to Characteristic
function however it does not ignore the fact that coalitions can also depend on the way players
are distributed. For the purposes of our study, we focus on Normal form. Normal form defines
games in payoff matrix structure which represents players choices and the reward for their
actions The game consist of two players, each represented by one position, row and column.

2.2.1 Prisoner’s Dilemma

One of the classical strategy games is “Prisoner’s Dilemma”. In this game players (prisoners)
can decide to either cooperate or defect. One such hypothetical situations is that of two suspects
who get arrested by the police for committing a crime. The lack of evidence forces the police
to put each suspect in a separate holding cell. Table 2.1 shows what sentence each suspect
will receive for their choices (cooperate or defect), each value represents jail-time in years. The
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Suspect-B cooperate Suspect-B defect
Suspect-A cooperate 4,4 0,5

Suspect-A defect 5,0 1,1

Table 2.1: prisoner’s dilemma reward matrix

dominant strategy for both “rational” suspects is to defect (safest bet for a suspect regardless
of the other suspect choice) [4].

Szolnoki presented an interesting case-study that demonstrated how to gain an effective pay
off for the prisoners dilemma game [2]. The study shows how the interaction of seemingly selfish
agents in a scale-free network eventually will lead to cooperative behavior. Even though agents
strive to maximize their personal reward. Strategies for maximizing personal benefits flow from
larger to smaller agents. A normalization parameter was introduced into the heterogeneous
network to encourage cooperation. The result showed a decrease of cooperative behavior to
a point where it reaches zero. The decrease however is completely overturned when fully
normalized payoff limit is reached. The study also compared strategies adopted by agents with
their degree and location/position in the network.

Stephen and Boyd argued that continuous version of iterated prisoner’s dilemma game is
better for many real-world situations [9]. In the discrete version of iterated prisoner’s dilemma,
agents are engaged in the game with two options, cooperate or defect. The continuous version
suggests that agents can choose any level of cooperation, from zero to one. Stephen showed that
agents adopting generous strategies leads to their achieving the maximum possible payoff. How-
ever, the generous strategy works as advertised to an extend but later the strategy experiences
a break point. The authors explained that the breaking point is influenced by un-cooperative
strategies and therefore they suggested a solution to destabilize non-cooperative equilibrium.

The two studies presented above are different from the aim of our research paper in the
following respect. Szolnoki case-study did not specify any use of learning algorithm. Stephen
and Boyd on the other hand did not specify the use of any networks. We attempt to allow agents
in different scale-free network structure to continuously play prisoners dilemma and observe the
behavior of cooperating/defecting using different learning algorithms. Hence in a manner of
speakingm we are combining both these theories into a single experiment in an effort to build
a complete picture and factor in the effects of all possible variables.

2.2.2 Battle of the Sexes & Chicken-Hawk

Other problems we also explore in this research paper are “Battle of the sexes” and “Chicken-
hawk”. Battle of the sexes is usually explained as a couples’ desire to attend an event(Opera or
Boxing match). The husband prefers to watch the boxing match and the wife prefers to watch
Opera. However, the couples wish to be together rather than ending up in separate events
[10]. Table 2.2 represents reward couples receive for their choices. The two pure strategy Nash
equilibria exist in (Opera, Opera) and (Boxing, Boxing). If the husband knew for certain that
his wife is going to the Opera, then the husband joins his wife. The opposite is true for the
wife, hence couples have no incentive to deviate from their partners plan. A mixed strategy
exists when couples differ and each goes to their preferred event. The mixed strategy for each
couple is inefficient in cases where a partner is better off going to his/her less favorite event
than going to a combined event.

Husband -Opera Husband- Boxing
Wife -Opera 3,2 0,0
Wife -Boxing 0,0 2,3

Table 2.2: battle of the sexes reward matrix

The “chicken-hawk” game also known as the game of “chicken” is expressed in a form of
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two drivers. The two drivers are traveling on a single lane road traveling in opposite directions.
If both drivers stay on course -“Dare”, they will crash (both receive no reward) Table 2.3.
If one driver moves out of the way-“Chicken”; the other driver will receive the most possible
reward [13]. The two pure strategy Nash equilibria are (Dare, Dare) and (Chicken, Chicken).
The mixed strategy exists when both drivers “Dare” with probability of 1/3 [17]. The game of
chicken differs from prisoners dilemma in the sense that mutual defection is the worst outcome.
In prisoners dilemma, the worst scenario results when one suspect cooperates while the other
suspects defects.

Dare Chicken
Dare 0,0 7,2

Chicken 2,7 6,6

Table 2.3: chicken reward matrix

2.3 Networks

There are number of networks that are significant and suitable to use with the simulator (net-
work must be of GML format). Networks such as small-world, random, social and scale-free
have a significant characteristics that can exhibit real-world problems [19]. The case study we
present focuses on scale-free networks.

2.3.1 Scale-Free Networks

In 1998, physicist Alber-Laszio Barabasi along with his colleagues at the University of Notre
Dame attempted to map the World Wide Web [5]. The physicists expected a notion of random
connectivity of the Web. Instead, they discovered a feature pattern within the connectivity of
the World Wide Web. The map revealed that a few highly connected WebPages were holding the
World Wide Web together. More investigation showed that the distribution between WebPages
follow the power law. Hence, Scale-Free network defines network whose degree distribution
follow the power law.

The discovery of Scale-Free networks was not limited to the World Wide Web. Scale-Free
networks can be leveraged to explain behaviors from business process models to complex organic
phenomenon. A Variety of complex systems share an important characteristic of Scale-Free
networks. The existence of heavily connected nodes (or hubs) that have an overbearing effect
on the way the network functions. It is important to note that the overall ratio of the existence
of these hubs remains constant when the network scales up. Hence the term “scale-free”.

Sandip and Airiau presented an interesting study of social learning through continuous
interactions between agents [14]. The study investigated a bottom-up process for the emergence
of social norms. The proposed learning frame work allowed agents to repeatedly interact with
other agents and eventually evolve a useful social norm. The study also investigated the effects
of population size and different learning algorithms. In one example, the study showed that the
higher the population is, the longer it takes for the population to converge using WoLF-PHE
learning algorithm. Sandip and Airiau did not specify the population structure or whether it
demonstrates a scale-free property. In this research paper, we would like to use different scale-
free networks to observe the performance of heavily connected nodes (agents) when playing a
strategic game. In addition, we intended to investigate the impact of agents on their neighbors
as well as determining whether the position of a heavily connected agent proves beneficial to
itself or its surrounding agents.

14



2.4 Previous Simulators

Several simulators were developed to study networked systems. The NS Network Simulator
is developed in C ++ and OTcl by UC Berkeley [6]. The simulator simulates a variety of
IP networks using different protocols and traffic behavior. In addition, it facilitates different
management techniques for router queues and routing algorithm. The simulator is discrete and
event driven, its main focus is the physical network infrastructure and hence it is mainly used
in communication network research. It worth to mention that NS simulator is also available
in Java but not as complete as its C++ version. The developers of the Java version whom are
independent of Berkeley hope to make it more accessible to programmers who are not familiar
with object TCl. The simulator is complex and concentrates on network communications that
are not suitable for MARL analysis. The Multi-Agent Coordination Simulator is one of the
state-of-the-art project developed by the Laboratory of Artificial Intelligence and Computer
Science at the University of Porto (LIACC) [12]. The simulator is used in areas of developing
methodologies for team coordination, such as robotic soccer, search and rescue and cyber-
mouse. However, the simulation does not support networks where we intend to evaluate network
properties with MARL algorithm. Abdalla and Lesser presented an interesting multi-agent
simulator that uses reinforcement learning [1]. A key feature they investigated is the change
of the underlying network during which the agent is expected to optimize the learning process.
The simulator uses MARL and supports networks but does not support strategy games. Our
proposed simulator intends to use large scale network and support different games.
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Chapter 3

The Simulator Architecture and
Flow

As part of this study we have developed a Token-Base Agent Network Simulator (TANS). It
is a new multi-agent simulator that supports different network structures, multi-agent learning
algorithms and different strategic games. In this chapter, we examine the main components of
the simulator and present their functionality. Figure 3.1 shows software block diagram.

3.1 Architecture

TANS consists of four classes, ConfGame, AGame, Agent and Knowledgeboard and uses three
input files, main.sim (which holds main configuration parameters), network.gml (which contains
information about network) and game.gm (which contains information about game played). The
output result of the simulation is written into folder specified in main.sim; the user can choose
to obtain different presentation of the simulation data by setting each available result option
to on or off. Refer to the block diagram of the simulator.

ConfGame

AGame

Agent

KnowledgeBoard

main.sim

game.gm

network.gml

Output 
result  
folder

TANS Block  Diagram

ClassesFiles Folder

Figure 3.1: Software Block Diagram

3.1.1 Game Configuration

The ConfGame class initializes the simulator based on the main.sim file. This class creates a
network of agents and loads a game board. After the successful upload of the game configura-
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tion, the simulation starts. Table 3.1 show list of properties for the simulator.

Term Description
game name of the file that consist game matrix

network name of the file that consist network structure in GML format
output output folder path for results

gprobability token generation probability (0.0 - 1.0)
tprobability transfer token to neighbor probability (0.0 - 1.0)

strategy strategy on agent or strategy on neighbor (a or n)
greedy percentage of time agent makes a greedy choice (0.0 - 1)

alfa Alfa variable used for learning algorithm (0.0 - 0.9)
Iterate number of iteration for the simulation (real number)

summary summary output result at every variable iteration (real number)
gameid seed number for random object when created (real number)

edge action print edge interaction information (on or off)
gml network print interaction result in GML structure (on or off)

game summary print game summary result (on or off)
agent summary print agent summary result (on or off)

agent interaction print agent interaction summary result (on or off)

Table 3.1: List of properties available for simulator

3.2 Simulation Process

The simulator begins by generating tokens and distributing them across agents in network with
a fixed probability distribution over agents specified in main.sim file, labeled as “gprobability”.
A token represents the agent’s right to pay the game, hence the simulator only selects agents
that have at least one token.

The selected agent chooses the best neighbor available to play with. The decision process
is explained in section 3.4. Both agents then choose their best action and their reward is
given accordingly. The greedy decision to choose the best neighbor/action is controlled by
“greediness rate” specified in main.sim file, labeled as “greedy”. The selected agent continues
to play until it has no more tokens. The simulator then chooses another agent and the former
process continues until there are no eligible agents (agents with at least one token) remain in
the network. The simulator regenerates tokens after all tokens with agents are consumed and
repeats the simulation process again. The regenerate-tokens process is considered a new time
step and continues to be active until the number of pre-specified iterations, labeled as “iterate”
in main.sim file is reached. Algorithm 3.1 explains the simulation process above.

The interaction of agents affects the distribution of tokens in the network. An agent that
has no token assigned to it may acquire a token from its neighbor. A fixed probability labeled as
“tprobability” specified in main.sim file is used to determine whether a token gets transferred
to a neighbor. Transferred tokens however do not give an agent the right to play within the
current time step, this temporary status is retained until the next time step where all transfer
tokens are considered real tokens. The distribution of tokens is deliberately unequal, and it is
meant to create an imbalance in the network to simulate a dynamic environment.

The concept of token exist in many real world domain, including packet routing (token is
a packet), distributed task allocation (token is a task request) and rumor spreader (token is a
rumor). We intend to analyze relationship between token transfer and the overall performance
of strategic games in different scale-free networks.
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Algorithm 3.1: Start Game

for number of iterations the user specified do
tokenExist← true
generateToken()
while tokenExist do
gameArray ← myGame.listIterator()
refAgent← null
tokenExist← false
while gameArray.hasNext() do
refAgent← gameArray.next()
while refAgent.getNumOfToken()>0 do
refAgent← playGame(refAgent)
tokenExist← true

end while
end while
if tokenExist← true then
createNewTimeStep()

end if
end while

end for

3.3 Game

The simulator accommodates both symmetric and asymmetric reward matrix structures. The
agent selected to play is considered a row player, and its chosen neighbor is considered a column
player. The game consists of a single reward matrix that is used throughout the simulation.
Table 3.2 shows an example of reward matrix

0 1

0 1,9 0,0

1 0,0 9,1

0 1 2 3

0 2,6 1,7 8,3 4,7

1 1,2 0,6 0,3 0,4

2 8,6 9,6 9,9 10,3

Table 3.2: Symmetric & Asymmetric matrix

3.4 Agent & Knowledgeboard

The “Agent” stores two types of information, general and specific. General information com-
prises of historic data updated after each game the agent plays -including number of games,
total reward received and number of times each action is performed. General information is
stored in the Agent class.

Specific information is data recorded when the agent interacts with other agents, interaction
data is stored in the knowledgeboard class. Every agent maintains an array of knowledgeboard
objects, each representing one of its neighbors and additional players. For example, Agent-A
has neighbors B, C, D, and Agent-B has no neighbors. Agent-A creates three knowledgeboard
object instances for each neighbor during the initialization process where as Agent-B will have
none. Agent-B will create the knowledgeboard record of Agent-A if and only if Agent-A selects
Agent-B to play with. As a result, all agents will have an equal opportunity to learn and yield
maximum rewards.

Each agent can play either as a “row player” (if the agent has a token and is selected to
play) or as a “column player” (if the agent is chosen by one of its neighbor to play). Therefore,
the knowledge board contains two array of values, one for playing as a “row player” and the
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Figure 3.2: Object view of Agent-23 that contains a list of five knowledgeboard object, each
representing a neighbor. Agent-23 records interaction information about each neighbor in its
corresponding object.

other for playing as a “column player”. These arrays hold learning values for each action that
agents may select when playing with the specific neighbor.

Figure 3.2 illustrates the knowledgeboard of an agent in TANS. Agent-23 has a knowledge-
board list of five items. Each points to a knowledgeboard object which contains two set of arrays;
a row array and a column array. The knowledgeboard represents players with whom Agent-23
interacted. Agent-23 has played with neighbor-12, neighbor-14, neighbor-7 and neighbor-9.
Each array position of this object corresponds to the action performed by Agent-23. The val-
ues assigned to these positions are learning values. Row arrays represent variables for which
Agent-23 played as a row player (Agent-23 had a token) and column arrays represent when
variables for which Agent-23 is chosen by a neighbor. Suppose that Agent-23 has a token and
was selected to play. Agent-23 chooses Agent-14 as best neighbor to play with and selects action
2 while Agent-14 selects action 1. Learning value for action chosen by Agent-23 is 0.4, hence
Agent-23 updates the row array of the knowledgeboard-14, action 2 value to 0.4. Simultane-
ously, Agent-14 updates column array of knowledgeboard-23, action 1 value to its corresponding
action learning value of 0.6. Figure 3.3 shows visual view of learned values.
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Figure 3.3: Object view of Agent-23 and Agent-14 after interaction. Values in objects are
learning values from playing the game.
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3.4.1 Strategy Level

There are two strategy options for agents in TANS, strategy on agent and strategy on neighbor.
When strategy is set on neighbor, an agent finds the best neighbor to play with by examining
all array learning values in the knowledgeboard list. The knowledgeboard object that returns
maximum value is considered the best neighbor, and maximum value array position is considered
best action number. On the other hand, strategy on agent suggests that agents use the sum
of learning values attached to each knowledgeboard object for best neighbor decision. However,
the choice for best action will be in accordance with the agent local decision array in the
knowledgeboard object belonging to the agent itself. Therefore agents learn one strategy for all
neighbors regardless of which neighbor the agents are playing with.

When strategy level is set on agent -labeled as “strategy” in main.sim file, another learning
value is assigned to each knowledgeboard object. This value (circle shape object in Figure 3.2)
is the sum of all learning values of the knowledgeboard regardless of action number. In addition
each agent creates a knowledgeboard object by itself (colored in yellow, refer to Figure 3.2)
that contains only one array. Refer to Figure 3.3 and the example explained from the pre-
vious section (interaction between Agent-23 and Agent-14). Agent-23 updates learning value
assigned to the knowledgeboard-14 to 1.2 and updates the array that is under its knowledge-
board (knowledgeboard-23), action 2 to 0.4. Hence, when strategy is set for an agent, it uses
one array to determine which action is the best action for all its neighbors regardless of agents
role as a “row player” or “column player”.

From Figure 3.3, suppose that the strategy level is set on agent. Agent-23 has a token and
is selected to play. The best neighbor for Agent-23 is neighbor-14 since the maximum value for
all learning arrays (considering row array only) is 1.2 which resides in knowledgeboard-14. The
best action for Agent-23 is action number 1, the array position of the maximum value 1.2. When
strategy is set on neighbor, Agent-23 examines learning values of each knowledgeboard (circle
shape object in Figure 3.3), hence the best neighbor is neighbor-9 with maximum value 1.5.
For best action, Agent-23 only examines its own knowledgeboard-23, the maximum learning
value is 0.4, hence the best action is action 2.

3.5 Result Data

TANS provides the capability to output five different structured data as a result of running
the simulator. The user can choose to select which result data to obtain by setting print values
to “on” or “off”. In Table 3.1, the last five items correspond to output options. In addition
to summary data about agent interaction and overall performance, TANS facilitates output
data per user specific interval during simulation. Table 3.3 shows example of GML formatted
network result created after the simulator terminates. See Appendix A for all output structure.
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File Name networkout.gml
Summary show result of simulation in gml format

parent Item Format Description
.. graph object graph structure of network in gml format

graph node object object represent agent
graph edge object object represent edge
node id Integer Agent ID
node label String Agent Label
node play Integer Number of games Agent ID played
node actionR0 Double Percentage of action row 1 Agent ID chose
node actionR1 Double Percentage of action row 2 Agent ID chose
node actionC0 Double Percentage of action column 1 Agent ID chose
node actionC1 Double Percentage of action column 2 Agent ID chose
node reward Integer Total reward Agent ID received
edge source Integer Source Agent of the edge
edge target Integer Target Agent of the edge
edge value Integer Number of games source agent played using this edge
edge reward Integer Total reward Agent ID received using this edge

Table 3.3: Network output values in GML format
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Chapter 4

Experiments & Results

In this chapter, we show number of experiments conducted using TANS and present some
preliminary analysis that should be subject to further study.

4.1 Experimental Setup

There are several factors that can affect the overall performance result of the simulation, these
factors are:

- Learning algorithm used

- The games played

- The network structure

- Token transfer probabilities (transfer and generation)

- The exploration rate

- The learning rate α

- The Strategy level on (agent or neighbor)

The parameters used in the experiments presented in this chapter are the following:

1. Two Network Structure: Neural and NetScience

2. One Learning Algorithm: Q-Learning

3. Three Games: Prisoner’s dilemma, Battle of the sexes and chicken-hawk. Table 4.1

4. The exploration rate: is set to%10

prisoner’s dilemma

4,4 0,5

5,0 1,1

battle of the sexes

3,2 0,0

0,0 2,3

chicken-hawk

0,0 7,2

2,7 6,6

Table 4.1: Games used in experiment
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4.2 The effect of learning rate and strategy level

The following experiment examines the effect of learning rate (0 ≤ α ≤ 0.9) on average reward
received when playing games. Figure 4.1 plots the average reward received at pulse 100,000 as a
function of learning rate with strategy level set on neighbor. Agents playing battle of the sexes
and chicken-hawk return a higher reward with learning rate > 0. Agents playing prisoners
dilemma yield the maximum reward with no learning. The maximum reward received when
playing battle of the sexes is at learning rate 0.1 and 0.4. The maximum reward received when
playing chicken-hawk is at learning rate 0.2 and 0.3 where then the average reward decreases as
the learning rate increase. Figure 4.2 plots the same experiment but with strategy level set on
agent. The effect of learning rate on average reward received appears to be closely similar with
the two different strategy levels. However, agents playing battle of the sexes yield a significantly
higher average reward when agents adopt strategy level on neighbor.
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Figure 4.1: Change in average reward over learning rate, neighbor strategy
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4.3 The effect of token transfer probability and strategy
level

The following experiment examines the effect of token transfer probability (0 ≤ token ≤ 0.9)
on average reward received when playing games. Figure 4.3 plots the average reward received
at pulse 100,000 as a function token transfer probability with strategy level set on neighbor.
We notice a slight decrease in average reward as token transfer probability increases when
playing chicken-hawk. On the other hand, agents playing prisoners dilemma received slightly
higher reward as token transfer probability increase. Figure 4.4 plots the same experiment but
with strategy level set on neighbor. Figure 4.5 plots the average reward at pulse 100,000 as
function of token transfer probability with both strategy levels. The difference in strategy level
is significant when playing battle of the sexes; agents that adopt strategy level on neighbor yield
higher average reward. This interesting observation suggests an important effect of strategy
level on battle of the sexes game.

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

A
v

e
ra

g
e

 R
e

w
a

rd

Transfer Token Probability

Neighbor Strategy at pulse 100,000 - Neural

prisoner's dilemma 

battle of the sexes

chicken-hawk

Figure 4.3: Change in average reward over transfer token, neighbor strategy

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

A
v

e
ra

g
e

 R
e

w
a

rd

Transfer Token Probability

Agent Strategy at pulse 100,000 - Neural

prisoner's dilemma 

battle of the sexes

chicken-hawk

Figure 4.4: Change in average reward over transfer token, agent strategy

24



0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1
A

v
e

ra
g

e
 R

e
w

a
rd

Transfer Token probability

Average Reward at pulse 100,000 - Neural

prisoner's dilemma - A

prisoner's dilemma - N

battle of the sexes - A

battle of the sexes - N

chicken-hawk - A

chicken-hawk - N

Figure 4.5: Chane in average reward over Agent and neighbor strategy, Neural

4.4 The effect of token transfer and generation probability
in neural network

In previous experiments, the average rewards values were plotted at pulse 100,000 as a function
of learning rate and token transfer probability. In this section, we examine the effect of token
transfer probability over time. Figure 4.6 plots the average reward over 100,000 pulses as
function of the pulse with setting the following properties; token generation probability = %7,
token transfer probability = %50 and strategy level on agent. The figure shows that agent
playing battle of the sexes converges at approximately pulse 12,000 pulses. To save simulation
time, the next experiments are run for 25,000 pulses (since the experiment showed a fairly stable
average reward after pulse 15,000).

We experiment the effect of token transfer probability using three strategy games in neural
network. The token generation probability is set to %7, token transfer probabilities are set to
%0, %50 and %90, learning rate is set to 0.1 and strategy level is set on agent.

Figures 4.7, 4.8 and 4.9 plot games average rewards over 25,000 pulses as function of pulse
with the different token transfer probabilities. Figure 4.9 showed a significant change in the
average reward when transfer token probability increases. However, after pulse 10,000; the
average reward when probability is at %50 is higher. To confirm this finding, we run three
more simulations with different seeds (of the random generator) to obtain a clearer view of the
effect (change in token transfer probability on average reward). Figure 4.10 plots the result
of the three simulations. It is clear that there are certain properties in battle of the sexes or
neural network that reacts greatly to the change of token transfer probability.

4.5 The effect of token transfer and generation probability
in netscience network

In the following experiments, we examine another network (netscience) and compare it to the
same experiment conducted using neural network. Figures 4.11, 4.12 and 4.13 plot games aver-
age rewards over 25,000 pulses as a function of pulse with different token transfer probabilities.
The figures show no significant reaction to the change of transfer token probability. Unlike
battle of the sexes in neural network Figure 4.9, the game here showed no noteworthy change
in average reward as a result of increase in transfer token probability.
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Figure 4.7: Change in average reward over transfer token, Neural

4.6 Constant number of tokens

An increase in transfer token probability is a direct increase in number of games played. We
would like to keep the average number tokens constant over different probability, suppose that:
Probability of generating token = γ
Probability of transferring token = β
Exact number of tokens generated per agent that are still active is
= [1 + β2 + β3 + ...] =

∑∞
i=0 β

i

= [ γ
1−β ]

The previous simulation parameters we used, game probability= 0.07 and transfer probability=
0.8
= [ 0.07

1−0.8 ]
= 0.35, i.e on average %35 of agent had a token to play
Consider for directed network, only agents with outgoing edges can play with other agents,
therefore agents with no outgoing edges cannot be chosen to play. Thus, the average number
of games cannot be constant because tokens have to disappear one reaching a leaf agent.

Figure 4.14 and 4.15 plot the average reword over 25,000 pulse as a function of pulse using
neural directed and undirected network. We examine agents playing battle of the sexes while
‘trying’ to keep number to tokens in the game constant. We observe that directed neural network
converges faster than undirected neural network. The properties used in this experiment were
the following:
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- token generation probability = %35 and transfer token probability = %0

- token generation probability = %17.5 and transfer token probability = %50

- strategy level on agent
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0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5000 10000 15000 20000 25000 30000

A
v

e
ra

g
e

 R
e

w
a

rd

Pulse

battle of the sexes - Neural - directed

token = 0

token = 0.5

Figure 4.14: Change in average reward over transfer token playing battle of the sexes, Neural
-directed

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5000 10000 15000 20000 25000 30000

A
v

e
ra

g
e

 R
e

w
a

rd

Pulse

battle of the sexes - Neural - indirected

token = 0

token = 0.5

Figure 4.15: Change in average reward over transfer token playing battle of the sexes, Neural
-undirected

29



Chapter 5

Conclusion and Future Work

In this thesis, we developed a new multi-agent network simulator that provides the facility
to study a combination of MARL algorithms, strategic games, and networks. We introduced
the technique of using tokens in the simulator. Tokens are considered the agent’s right to
play the game. Tokens are assigned based on a pre-determined probability distribution over
agents. The concept of tokens exists in many real-world domains, including distributed task
allocation (token is a task request) and packet routing (token is a packet). The token helps us
to recognize new dependencies between agents that go beyond the simple one-hop connection.
The simulator is also designed to facilitate simple change of configuration parameters through
a single centralized file. In addition, the simulator captures all useful interaction data in a
structured format that allows for easy and quick analysis.

We conducted a preliminary analysis of Q-learning algorithm in two scale-free networks (neu-
ral and netscience) and three different strategic games (battle of the sexes, prisoners dilemma
and chicken-hawk). The results showed a significant reaction to the increase of tokens when
agents play battle of the sexes in neural network. The increase in token transfer probability
yielded a higher reward and a faster conversion. It is interesting that this observation was only
examined when agents played battle of sexes in a neural network.

Our preliminary analysis focused mainly on the reward agents received. However, there are
many other promising areas that the simulator can assist by providing useful data for analysis.
For example, it can be leveraged to help evaluate decisions made by agents regarding which
neighbors to play with over time.

One theory we can then postulate based on our observations is that well-connected agents
will always select poorly-connected agents within the network under the presumption that the
later has less experience and hence, provides an opportunity to gain maximum reward. However
this interaction can prove to be mutually beneficial; if we conclude that the poor-agents stands
to increase its own experience through these interactions regardless of the fact that it will most
likely lose in the first few rounds. We hence put forth the idea that the poor-agent in fact
can be in a better suited position to win compared to a medium connected agent; by virtue
of gaining a transfer token from the highly connected agent. While still un-proven, there is a
good chance our simulator can be used to run enough statistical experiments so as to test the
validity of these claims. This in fact can serve as a good starting point to continue conducting
more analysis.
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Appendix A

Result Data Structure

The following tables represent output data after running ’bfTANS, each table is considered a
separate file. Except for result 3.3 on page 21, output result format is in plain text where rows
are separated by newline and columns by comma.

A.1 Game Summary

Table A.1 presents game summary information per user specific pulse, check property summary
in Table 3.1 on page 17

File Name summaryGame.txt
Summary Show average reward over period at every time-step user specified

row N. Item Format Description
1 pulse Integer Time step when result obtained from total iteration
2 reward Integer Total game reward received
3 game Integer Total number of games player
4 average Double Averaged reward

Table A.1: Game simulation summary values

A.2 Agent Summary

Table A.2 presents summary information for each agent created after the simulator terminates.

A.3 Agent Interaction

The simulator outputs Table A.3 for all agent in network. Information are written per user
specific pulse to monitor agents overall performance during simulation process.

A.4 Edge Action

The simulator outputs Table A.3 for all edges in network. Information are written per user
specific pulse to record edges interaction history and knowledgeboard information used during
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File Name summaryAgent.txt
Summary Show average reward of all Agents in network

row N. Item Format Description
1 agent Integer Agent ID
2 degree-out Integer Agent ID degree-out
3 degree-in Integer Agent ID degree-in
4 games Integer Number of games Agent ID played
5 reward Integer Total reward Agent ID received
6 average Double Average Reward of Agent ID

Table A.2: Agent simulation summary values

File Name Agent-agentID.txt
Summary Show information about agents and their number with total reward

row N. Item Format Description
1 pulse Integer Time step when result obtained from total iteration
2 agent Integer Agent ID
3 neighbor Integer Agent ID’s neighbor
4 neighbor-LV Double Learning value for neighbor Agent ID recorded
5 reward Integer Total reward Agent ID received when play neighbor

Table A.3: Agent interaction values during simulation process

simulation process.
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File Name edge-source-destination.txt
Summary Show information about edge usages, destination Agent and

recorded knowledgeboard

row N. Item Format Description
1 pulse Integer Time step when result obtained from total iteration
2 source Integer Source Agent ID of the edge
3 destination Integer Destination Agent ID of the edge
4 degree-out Integer Source Agent degree-out
5 degree-in Integer Source Agent degree-in
6 Games Integer Number of games source Agent played
7 source-row player Integer Number of games source Agent played as row player
8 source-col. Player Integer Number of Games source Agent played as column

player
9 source-row Vs. des. Integer Number of time source Agent played with destina-

tion Agent as row player
10 source-col. Vs. des. Integer Number of time source Agent played with destina-

tion Agent as column player
KnowledgeBoard about destination Agent source Agent recorded when using edge-S-D

11 LV-R1 Double Learning value for action row one
12 N. R1 Integer Number of times action row one used
13 sum-LV-R1 Double Sum of all learning value for action row one
14 LV-R2 Double Learning value for action row two
15 N. R2 Integer Number of times action row two used
16 sum-LV-R2 Double Sum of all learning value for action row two
17 LV-R1 > LV-R2 Character Learning value row action one is greater than row

action two (T or F)
18 LV-R2 > LV-R1 Character Learning value row action two is greater than row

action one (T or F)
19 LV-C1 Double Learning value for action column one
20 N. C1 Integer Number of times action column one used
21 sum-LV-C1 Double Sum of all learning value for action column one
22 LV-C2 Double Learning value for action column two
23 N. C2 Integer Number of times action column two used
24 sum-LV-C2 Double Sum of all learning value for action column two
25 LV-C1 > LV-C2 Character Learning value column action one is greater than col-

umn action two (T or F)
26 LV-C2 > LV-C1 Character Learning value column action two is greater than col-

umn action one (T or F)

Table A.4: Edge action values during simulation process

33



Appendix B

Software Architecture

B.1 Simulation Flow

Figure B.1 illustrates game simulation flow which begins by generating token across network,
this process is considered a new time step. The simulator looks for eligible agents and allow
them to play until there are no more agents with token. If number of iteration user specified
has no reached, the cycle continues with new time step.

Figure B.1: Game simulation flow

B.2 Functional Model

B.2.1 Game configuration

ConfGame class handles setup configuration of the simulation. It read simulation properties
from main.sim file the user specifies. It also read in network structure in GML format and
creates all necessary nodes and properties to start the simulation. Figure B.2
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ConfGame

readGame

readNetwork

createNode

setNodeNeighbor

getNode

setGameMatrix

createRandom

getRandomObj

addEdgeToNetwork

edgeExist

Figure B.2: ConfGame class function

B.2.2 Agent Game

AGame class starts the simulation, generate tokens, select player, ask player to choose action,
calculate result and continue cycle until no agent with token exist in the network. Figure B.3

AGame

createNewTimeStep

startGame generateToken

getAgent movePlayerToken

printNetworkGML printGameMatrix

printAgentInteractionprintEdgeSummary

printGameSummary

playGame

printControlgetFileName

printAgentSummary

Figure B.3: AGame class function

B.2.3 KnowledgeBoard

Knowledgeboard class contains information about each action the agent played with a corre-
sponding neighbor. The learning value for each action is recorded in an array structure. Class
Agent creates this class for each of its neighbor.

B.2.4 Agent

Agent class represent agent in social network, it contains an object of knowledgeboard for each
neighbor where all interaction information is recorded.
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Figure B.4: KnowledgeBoard class function
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Figure B.5: Agent class function
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