Abstract

Existing literature on double-skin facades is reviewed, including classifications and its transferability to hot and humid climates. The analysis led to evaporative cooling spray, where objectives are drawn to quantify its benefit.

For research tools, selection process for appropriate software is undergone followed by training to achieve proficiency. Basic software validation is conducted using an actual building consumption comparison.

The simulation parameters are established by changing a Prototype configuration to determine its energy consumption, mass air flow and CFD patterns. Governing equations are explained and utilized for manual calculations together with the Psychrometric chart that plots values against various air conditions. Simulation results are post processed and integrated into the equation to achieve values not covered in the software capability.

Results show 5% energy consumption savings utilizing double skin facades. There are little energy savings with the tested variables in configuration. Air mass flow is generally improved by increase of width and height while orientation air flow results vary. Using the proposed spray on the double skin façade, Prototype day design savings on an office building is improved by 3% while a residential building could benefit from 50 – 90% reduction.

The dissertation concludes with limitations and suggestions for future studies.

Acknowledgement

I would like to acknowledge the following who have been instrumental for the accomplishment of this thesis:

To BUiD and Atkins who have established this institution and provided aspiring individuals like myself to progress in their careers.

To my mentors, Dr. Bassam Abu –Hijleh, Dr. Ahmad Okeil, and Dr. Gisella Loehlin who pioneered this institute and provided the students direction throughout this course.

To my employer, RMJM Robert Matthew – Johnson Marshall who has been very enthusiastic in my academic endeavor and involving me into the direction of this field of study.

To the my parents, brother and sisters and friends, whose presence inspired be to improve myself in every aspect.

To Mr. Enda Tuomey for the enlightening my interests and help make them achievable.

To God Almightly, the ultimate source of inspiration and goodness whose diving intervention, knows how to bring out the best in me.

TABLE OF CONTENTS

Acknowledgement

Abstract

List of Tables and Figures

Chapter 1: Introduction

1.1.	Introduction	2
1.2.	UAE Sustainability Scenario	4
1.3.	Importance of the Study	7

Chapter 2: Literature Review

2.1.	Definitions and History of Double Skin Facades	10
2.2.	Classifications and Typologies	14
2.3.	Technical Description	19
2.4.	Other Applications	.23
2.5.	Double Skin Façade Examples	.30
2.6.	UAE Climatic Profile	38
2.7.	Examples in the Desert Climate and UAE	42
2.8.	Findings of Literature Review - Water Spray	51
2.9.	Dissertation Aims and Objectives	.70

Chapter 3: Methodology

3.1. Building Physics	64
3.2. Spray Components	67
3.3. Research Methodology	70
3.4. Selection of Software and Training	85

Chapter 4: Computer Simulation

4.1. Software Validation	90
4.2. Simulation Results .	

Chapter 5: Results and Discussion

5.1. Calculation Results: Water S	Spray Effect	124
5.2. Energy Reduction Synopsis		130

Chapter 6: Conclusions and Recommendations

6.1 Conclusions135	
6.2 Recommendations137	
eferences146	
ppendix A	
ubai Resolution No. 66149	
ppendix B	
S Modules152	
ppendix C	
S Training158	
ppendix D	
WTC Plans for Software Validation160	
ppendix E	
mulation 1 Configuration References 164	ŀ

Appendix F

Appendix G

Appendix H

Simulation 4 Height from Build	ding Top17	79
Simalation i noight nom Balla	ang top	

Appendix I

Latent Heat and Water Spray Calculation Spreadsheets	s186
--	------

List of Figures:

Figure 1.1	UAE's energy consumption per capita compare
	to other regions from 1980 to 2003 (Kazim, 2005)
Figure 1.2	UAE's carbon emission in comparison to other
-	regions from 1980 to 2003 (Kazim, 2005)5
Figure 2.1a	Double Skin Façade as Central Plan Pre-Heater of
	Supply Air, Stec et al (2003 cited in Poirazis, 2004)24
Figure 2.1b	Double Skin as Exhaust Duct, Stec et al (2003 cited
	in Poirazis, 2004)24
Figure 2.1c	Double Skin as Supply of Pre-Heated Air, Stec et al
	(2003 cited in Poirazis, 2004)24
Figure 2.1d	Double Skin as Central Exhaust Duct for Ventilation
	System, Stec et al (2003 cited in Poirazis, 2004)24
Figure 2.2	DSF with Plants (Stec et al, 2004)27
Figure 2.3	Lab test facility of double skin with plants
	(Stec et al, 2004)23
Figure 2.4a	Atriplex halimus
	http://en.wikipedia.org/wiki/Atriplex halimus
Figure 2.4b	Lantana camara
	http://en.wikipedia.org/wiki/Lantana camara
Figure 2.5ab	Figure 2.5 a & b Occidental Chemical Building Exterior, (Harrison, 2001)

Figure 2.6	Occidental Chemical Building Floor Plans	
	(Harrison, 2001)30	
Figure 2.7	Occidental Chemical Building Materials	
	(Harrison, 2001)31	
Figure 2.8	Occidental Chemical Building Details	
	(Harrison, 2001)31	
Figure 2.9	Occidental Chemical Building Exterior	
	(Harrison, 2001)31	
Figure 2.9a	RWE AG Headquarters	
	http://www.josef-gartner.de/referenzen/images/heidel.gif	
Figure 2.9b F	RWE AG Headquarters	
	http://en.structurae.de/photos/index.cfm?JS=11478133	
Figure 2.10a	RWE AG Headquarters Façade Features	
	(Nippon, 1999) 33	
Figure 2.10b RWE AG Headquarters Façade Features		
	(Nippon, 1999)33	
Figure 2.11 GSW Headquarters		
	http://www.archidose.org/Jul01/071601.html35	
Figure 2.12 C	SW Headquarters Façade Features	
	http://gaia.lbl.gov/hpbf/casest_f.htm35	
Figure 2.13 GSW Headquarters Floor Plan		
	http://gaia.lbl.gov/hpbf/casest_f.htm	

Figure 2.14 GSW Headquarters Section showing cross ventilation

	http://gaia.lbl.gov/hpbf/casest_f.htm
Figure 2.15	UAE map
	http://www.alhiba.com/images/MiddleEastMap1.JPG 38
Figure 2.16	Ecotect Abu Dhabi Climate Summary40
Figure 2.17	Ecotect Abu Dhabi Prevailing Winds
	Date: 1 st Jan – 31 st December
Figure 2.18	Sowwah Square Façade (Soberg, 2008)44
Figure 2.19	ADNEC Section (RMJM, 2007)46
Figure 2.20	ADNEC Façade (RMJM, 2007)47
Figure 2.21	ADNEC Option 1 Double Façade (RMJM, 2007)50
Figure 2.22	ADNEC Option 2 Single Façade (RMJM, 2007)50
Figure 2.23	Façade CFD (RMJM, 2007)52
Figure 2.24	Schematic Air Flow (RMJM, 2007)53
Figure 3.1	Prototype Specification73
Figure 3.2	June 21 Design Day Solar Path (Ecotect)74
Figure 3.3	December 21 Design Day Solar Path (Ecotect)74
Figure 3.4a	June 21 Design Day Weather Readings (IES)75
Figure 3.4b	June 21 Design Day Weather Readings (IES)
	showing Wind75
Figure 3.5a	December 21 Design Day Weather Readings (IES)76
Figure 3.5b	December 21 Design Day Weather Readings
	showing Wind (IES)76
Figure 3.6	Simulation Matrix77
Figure 3.7	Ecotect Psychro Tool – Psychrometric Chart80
Figure 3.8	Software Selection Matrix (RMJM, 2008) 86

Figure 4.1	DWTC Office Block Image (RMJM)	92
Figure 4.2	Google Sketchup – VE Building Properties	93
Figure 4.3	DWTC IES Simulation model	94
Figure 4.4	DWTC Energy Consumption (IES)	96
Figure 4.5	Prototype IES Model (IES)	97
Figure 4.6:	Simulation1 Configuration References Diagram	99
Figure 4.7:	Simulation1 Configuration Reference	
	Annual Energy Consumption1	00
Figure 4.8:	Simulation1 Configuration Reference	
	Monthly Energy Consumption1	00
Figure 4.9	Prototype Air flow (June 21) (IES)1	02
Figure 4.10	Prototype Air flow (December 21) (IES)1	03
Figure 4.11:	External Wind CFD (IES)1	05
Figure 4.12 :	Y Axis (South Facade) (IES)10)6
Figure 4.13 :	Cavity Air Flow Y Axis (South Facade) (IES)10	17
Figure 4.14 :	Y Axis (North Façade) (IES)10)8
Figure 4.15 :	X Axis (IES)10)9
Figure 4.16:	Simulation2 Orientation Diagram1	10
Figure 4.17:	Simulation2 Orientation Annual Energy	
	Consumption (IES)1	10
Figure 4.18:	Simulation2 Orientation Monthly	
	Energy Consumption (IES)1	11

Figure 4.19	Simulation 2 Orientation Net Mass Air Flow113
Figure 4.20:	Simulation 3 Cavity Depth115
Figure 4.21	Simulation 3 Cavity Depth Annual
	Energy Consumption (IES)115
Figure 4.22	Simulation 3 Cavity Depth Monthly
	Energy Consumption (IES)116
Figure 4.23	Simulation 3 Depth Net Mass Air Flow (IES) 117
Figure 4.24:	Simulation4 Height from Top118
Figure 4.25:	Simulation4 Height from Top Annual Energy
	Consumption Total (IES) 119
Figure 4.26:	Simulation4 Height from Top Monthly Energy
	Consumption Total (IES)119
Figure 4.23	Simulation 4 Height from Top Net Mass Air Flow
	(IES)120
Figure 5.1	Energy Consumption Breakdown (kW)125
Figure 5.2	Energy Absorbed through Spray Application –
	Prototype model (kW)126
Figure 5.3	Water Consumed through Spray Application –
	Prototype model (liters)127
Figure 5.4	Energy Absorbed through Spray Application –
	1.5m Cavity (kW)128
Figure 5.5	Energy Absorbed through Spray Application – 1
	.5m Cavity (kW)

List of Tables:

Table 2.1	Primary Identifiers Arons (2000)14
Table 2.2	Secondary Identifers Arons (2000)15
Table 2.3	Classification on Cavity Geometry by Saelens (2002)15
Table 2.4	Five Primary Types by Battle McCarthy
	(cited in Poirazis, 2004)16
Table 2.5	Classification by Uutu
	(2001 cited in Poirazis, 2004)16
Table 2.6	Categories by Magali
	(2001 cited in Poirazis, 2004)17
Table 2.7	Wall types by Kragh
	(2000 cited in Poirazis, 2004) 17
Table 2.8	Classification by BBRI
	(2002 cited in Poirazis, 2004)17
Table 2.9	UAE Temperature
	http://www.wordtravels.com/Cities/United+Arab+Emirates/ Abu+Dhabi/Climate
Table 3.1	Simulation Materials IES VE 5.972
Table 4.1	DWTC Simulation Validation results (IES)95
Table 5.1	Energy Reduction – Prototype130
Table 5.2	Energy Reduction – 1.5m Cavity Depth131