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Abstract 

 

 

An investigation into multivariable control of propeller shaft system of marine vessels is 

introduced in this study. Two motors drive the shaft with two input voltages to produce torques 

which overcome the inertia of the load as well as the inertia of internal components of propeller 

shaft system in order to generate a rotational movement with two different angular speeds. In 

order to find the best response, best performance and the lowest power consumption by the 

controller of propeller shaft system, two approaches of control theory is presented; H-infinity 

control as well as Looping shaping.  This paper shows how to reduce energy consumption, hence 

reduce tear of system’s internal component, the noise generated by system and maintenance 

cost. This research provides a comparison between the two control strategies in order to 

determine the pros and cons of each method and find the suitable controller based on application 

may be targeted later.  
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 خلاصة البحث

 

 

 

سفينة ذات ل لداسر محور حركةالتحكم في نظام متعدد المتغيرات  كيفية دراسة تم القيام بها لتقديم بحث مفصل في

عزم دوران  "فولتية" و ذلك لتوليديتم تزويدها بمصدري طاقة كهربائية مختلفين  يتم استخدام محركين كهربائيين .محركين

جزاء الأخرى في للأ عزم القصور الذاتي السفينة بالإضافة الى لداسر محور حركةيجب أن يتغلب على عزم القصور الذاتي 

. للحصول على أفضل استجابة السفينة بسرعتين مختلفتين داسر محور حركةحركة دورانية في النظام و ذلك لتمكينه من توليد 

و أقل استهلاك للطاقة من قبل المتحكم؛ تم تقديم طريقتين للتحكم في نظام السفينة السفينة؛ أفضل إنجاز  لداسر محور حركةلنظام 

م كيفية تقليل الاستهلاك في الطاقة تم تقدي البحث هذا فيو هما ال اتش اللانهائية بالإضافة الى طريقة تشكيل الدائرة المغلقة. 

آكل, تقليل الضجيج المولد من النظام, تقليل الت و الداخلية للنظام للأجزاءلي تقليل الحرارة االمستخدمة من قبل المتحكم و بالت

المستخدمتين  الطريقتينزيادة عمر مكونات نظام شافت السفينة و بالتالي تقليل الكلفة التشغيلية. يقدم البحث دراسة مقارنة بين كلتا 

السفينة ذات المحركين, و يتم الوقوف على الإيجابيات و السلبيات لكل طريقة للوصول الى  داسر محور حركةللتحكم في نظام 

  التطبيق المستخدم له النظام.   بتناسب معكم الذي حالمت

 

 

 

 

 

 

 

 



BUID  MSc in System Engineering 

 

 
Page 5 

 

  

 

 

 

 

 

 

Acknowledgments 

 

I would like to express my limitless gratitude to my supervisor Professor Robert Whalley for his 

guidance, patience and contribution to complete this research. It really has been a great honor 

to be one of his students. A special thank is extended as well to Dr. Alaa Abdul Ameer for the 

encouragement, suggestions and brilliant inputs he has given.   

 

 

 

 

 

 

 

 

 

 

 



BUID  MSc in System Engineering 

 

 
Page 6 

 

  

 

 

Table of Content  

 Abstract  2 

الأطروحة خلاصة   3 

 Acknowledgements 4 

 List of notations and abbreviations  5 

 List of figures  7 

 List if tables 8 

 Index 9 

   

1. Chapter one: Introduction 12 

  1 Research background 12 

  2 Problem statement 16 

  3 Study aims and objectives 17 

  4 Dissertation Organization 17 

   

2. Chapter two: Literature Review 20 

  1 Introduction  20 

  2 Development of control concept overview 21 

  2.1 First control idea, control of water and oil level 21 

  2.2 Control development during the industrial revolution  22 

  2.3 Development of control theory in the 20th century  24 

  2.4 Modern control system and automation era 25 

  3 Basic control theory 25 

  3.1 Definition of control theory  25 

  3.2 Open loop and closed loop control systems  27 

  3.3 Controllability and obervability  28 



BUID  MSc in System Engineering 

 

 
Page 7 

 

  

  3.4 stability 29 

  3.5 Eigen values and Eigen victors  30 

  3.6 Robust control  31 

  4 Classical control theory  32 

  4.1 PID controller  32 

  4.2 Routh Hurwitz theory  34 

  5 Multi variable system controller representation American school  34 

  5.1 State space representation  34 

  5.2 Optimal controller  37 

  6 Multi variable system controller representation British school  40 

  6.1 Nyquist stability theory  40 

  6.2 Inverse Nyquist array theory  41 

  6.3 Least effort theory  42 

   

3. Chapter three: Research Methodology 46 

  1 Modeling of Propeller shaft system  46 

  2 Propeller shaft design  49 

  2.1 Selected systems parameters  49 

  2.2 General equation of torsional motion  51 

  3 Study of open loop response of propeller shaft system 57 

           4       Control methods superimposed  in the study                                               60 

 

4. Chapter four: Control of propeller shaft system using H-infinity method 61 

  1 Introduction  61 

  2 Theory of H-Infinity Controller 61 

  3 Design of h-infinity controller  65 

  4 Simulation of H-infinity controller  66 

  4.1 Closed loop response  66 

  4.2 Disturbance rejection  69 



BUID  MSc in System Engineering 

 

 
Page 8 

 

  

 

 

 

 

 

 

 

 

 

 

 

   

5. Chapter five: Control of propeller shaft system using L- shaping method 71 

  1 Introduction  71 

  2 Theory and design of loop shaping Controller 72 

  3 Simulation of loop shaping controller 76 

  3.1 Closed loop response 76 

  3.2 Disturbance rejection 78 

   

6 Chapter  six: Results discussion and comparison  80 

 6.1 Energy consumption  80 

 6.2 Disturbance rejection 82 

 6.3   Other specifications  82 

   

7 Chapter  eight: Conclusions and Recommendations 83 

   

 References 85 

 Appendix 88 

     



BUID  MSc in System Engineering 

 

 
Page 9 

 

  

 

 

 

 

List of Illustrations:  

Figure  Page 

Figure 1.1 Bee with propulsion system  12 

Figure 1.2 Ship propulsion system  13 

Figure 1.3 Pressurized-water Naval Nuclear Propulsion System 14 

Figure 1.4 Propulsion System Main Components 14 

Figure 2.1 Voltage Modulation    21 

Figure 2.2 Water Clock 22 

Figure 2.3 Watt’s flyball governor 23 

Figure 2.4 System basic components 26 

Figure 2.5 Simple control system 26 

Figure 2.6 Block diagram of open loop control system 27 

Figure 2.7 Block diagram of closed loop control system  28 

Figure 2.8 Controllability and Observability conditions 29 

Figure 2.9 Poles location on S-plane and stability   30 

Figure 2.10 Block diagram representing PID controller 33 

Figure 2.11 PID controller impact on step input   34 

Figure 2.12 Block diagram representing the state space modeling 36 

Figure 2.13 Diagram of optimal Controller 40 

Figure 2.14  General Form of Multivariable Control System 41 

Figure 2.15   Inputs/Outputs representation of a multivariable system 42 

Figure 2.16 Closed loop representation of multivariable system 43 

Figure 2.17 Closed loop representation of least effort 45 

Figure 3.1   Block diagram of propeller shaft system 46 



BUID  MSc in System Engineering 

 

 
Page 10 

 

  

Figure 3.2   Propeller shaft system mass presentation   49 

Figure 3.3   Mass Moment of Inertia of Some Shapes 50 

Figure 3.4  Particular angular displacement with time   55 

Figure 3.5   Transient complementary solution of angular displacement 56 

Figure 3.6 General solution of angular displacement   56 

Figure 3.7 Open loop response of propeller shaft system    59 

Figure 4.1   General structure of control system   62 

Figure 4.2   Block diagram of control system   62 

Figure 4.3   Block diagram of control system showing weighting functions     64 

Figure 4.4   Closed Response with H-infinity controller (in 1=1, in2=0)    67 

Figure 4.5  Closed Response with H-infinity controller (in 1=0, in2=1)    68 

Figure 4.6   Disturbance rejection by H-infinity controller (in 1=1, in2=0)    69 

Figure 4.7 Disturbance rejection by H-infinity controller (in 1=0, in2=1)    70 

Figure 5.1 General Specification of loop shaping   71 

Figure 5.2   Target loop shaping    72 

Figure 5.3 Actual loop shape with target loop shape    73 

Figure 5.4 Singular values with different frequencies     75 

Figure 5.5   Closed loop response with loop shaping controller    77 

Figure 5.6  Disturbance rejection by loop shaping controller (in 1=1, in2=0)       78 

Figure 5.7   Disturbance rejection by loop shaping controller (in 1=0, in2=1)       79 

Figure 6.1 Energy Consumption by h-infinity controller     81 

Figure 6.2 Energy Consumption by loop shaping controller     81 

 

List of Tables: 

Table  Page 

Table 4.1 Different values of gamma for H-infinity controller 64 

  

 

 



BUID  MSc in System Engineering 

 

 
Page 11 

 

  

 

 

List of definitions and/or Abbreviations 

 

𝐺(𝑠)  Transfer function    matrix 

𝑑(𝑠)  Denominator of 𝐺(𝑠)    function 

𝑉(𝑠)  Input voltage signal      scalar 

𝐿(𝑠)  Inductance       scalar 

𝑅  Resistance         scalar 

𝑇(𝑠)  Torque signal       scalar 

𝜃(𝑠)  Angular deflection       scalar 

𝜔(𝑠)  Angular speed       scalar 

𝐾  Stiffness        scalar 

𝐽  Inertia        scalar 

𝐶  Damping        scalar 

𝑀(𝑡)  Moment       scalar 

Λ  Eigen value matrix      scalar 

U  Eigen vector matrix      scalar 

𝑢(𝑡)  Reference input signal     scalar 

𝑒(𝑡)  Error signal       scalar 

𝑣(𝑠)  Input voltage signal      scalar 

𝑔𝑖𝑗(𝑠)  Elements of 𝐺(𝑠),                          function 



BUID  MSc in System Engineering 

 

 
Page 12 

 

  

𝐼  Identity matrix               matrix 

𝑚  Number of inputs and outputs  scalar 

𝑃(𝑠)  Pre-compensator    matrix 

𝑊(𝑠)  Weighting function     matrix 

𝐅𝐜(𝐬)  H-infinity transfer function                        matrix 

𝐝(𝐬)  Disturbance signal                               scalar 

𝐄(𝐭)  Energy consumption                               scalar   

(𝑠)  Finite time delays    matrix 

𝑣(𝑠)  Disturbances                  vector 

𝜏 Time constant   scalar 

𝑦(𝑠) Transformed output  vector  

ℎ𝑗(𝑠)             Feedback path compensator                function 

 

 

 

 

 

 

 

 

 

 

 

 



BUID  MSc in System Engineering 

 

 
Page 13 

 

  

 

 (1) 

Introduction 

1.1 Research background:   

Without a driven mechanism, Ships would be just floating objects on the water surface; it 

wouldn’t be useful for cargo carrying, passenger’s transport, oil transport as tankers, containers 

trading and many other functions. Movement of all marine ships and vessel on water is 

accomplished through a mechanism called “propulsion”.  

In general, Propulsion means creating a force pushing a mass to move. The force is called thrust 

and it changes the state of a working fluid from static and accelerates it for movement. The 

amount of thrust depends basically on two factors: the amount of displaced mass and the velocity 

of the displacement of that mass. Propulsion examples are available everywhere; Airplanes, jet 

fans and rocket engines which mainly passes gas or steam through nozzles and create a repulsive 

force. Furthermore, it can be found in some internal systems of cars and trains, and it’s an obvious 

example in birds and insects like bees in figure (1.1). 

 

Figure 1.1: Bee with propulsion system  
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Based on working material, there are various types of propulsion systems like air, gas, nuclear, 

fuel, steam, jet water and diesel propulsion which is the most common type used in naval field. 

In 1897 Charles Algernon Parsons developed the first propulsion system through a steam turbine 

fueled with coal, and this system was used later in merchant ships and warships.  

 

Figure 1.2: Ship propulsion system 

 

Figure (1.3) shows nuclear propulsion system whereas the nuclear reactor is considered as the 

heart of the system, hence it generates the mechanical force moving the vessel and the heat 

generated from the reactor is used to generate the electrical power to supply the vessel. Nuclear 

reactors are more complex and efficient for long distance trips and it is used in specific functions.  



BUID  MSc in System Engineering 

 

 
Page 15 

 

  

 

Figure 1.3: Pressurized-water Naval Nuclear Propulsion System 

For naval propulsion systems, water is considered as the working fluid, and the action force is the 

mechanism of propelling the water opposite to the required movement direction, whereas the 

reaction force is the one pushing the ship forwards through the sea. The propeller is connected 

to a shaft and the shaft is connected to the motor/engine to produce a rotational movement. 

The main components of electrical propulsion system are shown in figure (1.4) as following:  

 

Figure 1.4: Propulsion System Main Components 
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1. Battery: batteries exist in propulsion system to store the required energy and feed it to 

motors during the whole trip. There are different types of batteries like lead-acid, nickel 

metal hybrid, lithium ion and fuel cell batteries.  

2. Prime mover “Motor”: motors convert the input voltage to rotational movement. It is the 

source of mechanical force connected to the gear box. In general, Motors have two type 

of supply; AC and DC, whereas there are many types of motors based on power 

connection methods between stators and rotors.   

3. Reduction gear: the output rotational speed of the motor/engine is usually high; hence 

the reduction gear reduces the speed and transmits it to the shaft. The shaft now rotates 

with low speed and accordingly higher toque.  

4. Shaft: it’s the interconnection element between the gearbox and the propeller, and it 

transmits the reduced rotational movement to the propeller. Proper design and 

manufacturing should be considered for the shaft to withstand the different types of 

dynamic and static forces that will be applied. 

5. Bearings: it is the interconnection between loads and shaft and it enables the shaft to 

move freely. There are different types of bearings, but one of the most commonly used 

in ships shaft propeller systems stave bearings which is a normal journal bearings. 

6. Propeller: according to newton’s third law, the rotational movement of this part 

generates a water column cause the water to be displaced backwards of the movement 

direction of the ship and generates a force called thrust. The thrust is the action force 

here and the reaction force moves the ship forward. Propellers are widely used in aircraft 

systems but propellers in marine system are usually called “screw propellers” since it acts 
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like screwing the water through the device. Propellers consists of number of discs or 

helicoidal blades “two or more but usually three to five”; hence a proper design should 

be done to ensure the best efficiency and to get the maximum propulsion force. Based 

on the required application; three types of marine propellers are available: controllable 

pitch propeller, skewback propeller and modular propeller. 

1.2 Problem statement:  

Investigation of controlling the propeller shaft system for a marine vessel is introduced in this 

study. The propeller shaft system is a multivariable system having two inputs represented by two 

motors 𝑚1 and 𝑚2 powered by two input voltages 𝑣1 and 𝑣2 respectively. The motors are the 

motive forces for the shaft propeller. The outputs are represented by two rotational speeds 𝜔1 

and 𝜔2 generated from the two motors 𝑚1 and 𝑚2respectively, in order to get the open loop 

response of the propeller shaft system. The physical parameters of system like shaft diameter, 

stiffness, length of shaft, material ultimate strength and etc. are applied, and the system’s 

transfer function is derived. Once a unit step input is applied for the system transfer function; it 

is found that the output is poor and needs to be enhanced. The overshoot, settling time and 

steady state error will be considered. Controller will be designed to improve the performance. 

Since it is not single input single output system SISO, outputs interaction is examined in this study 

as well, since it has a direct impact on system stability in some cases.  

Disturbances are inputs for all systems but the impact is varying from negligible to major causing 

failure of the system in extreme cases. Noise and heat is a common result of disturbance inputs.   
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Improper Control of speed leads to high energy consumption, whereas systems get rid of this 

energy as a heat. Heat reduces the effect of internal components life like bearings, seals, 

electrical component etc. Sometimes, improper speed control might even cause uncomfortable 

behavior and in some rare cases shaft failure.  

1.3 Study aims and objectives:  

The drives in this dissertation review two control theories in order to utilize and improve the 

propeller shaft system response. H infinity and loop shaping are the two control techniques 

where will be used in this research. 

The performance of the propeller shaft system with both methodologies will be highlighted 

considering transient and steady state conditions including overshoot, input/output decoupling, 

settling time and steady state error.  

The energy consumption by the controllers will be computed for both techniques and results will 

be compared. One important property of systems is the disturbance rejection; hence a unit input 

disturbance signal will be injected into the system in order to consider both controllers ability to 

eliminate the error signals and consider the performance accordingly.  

1.4 Dissertation organization:  

The structure of the dissertation is organized in order to provide detailed presentation for the 

control of techniques used to regulate the speed of the propeller shaft system. The structure is 

in 7 parts, as following:  
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Part one gives a general information and background of a propeller shaft system with major 

components, functions, operations, application and the development of the system. Part one 

explains as well the purposes of controlling the speed as well as the methodology will be used.  

Part two comprises a literature review of the marine propeller system, and the history of the 

development of control theory through the years. It explains as well the main control concept, 

terms, mythologies and theories which are available to improve the systems output. Some details 

about material properties and strength of materials are provided also in this part. 

Part three presents the mathematical model of propeller shaft system and derives the transfer 

function of the propeller shaft system. Selections for the system’s parameters are accomplished 

here and the design is carried out for the diameter of the shaft to insure avoiding system’s failure. 

Moreover, an open loop response simulation is presented based on selected parameters. 

Part four present H-infinity control theory used in this paper to improve the system performance, 

with mathematical derivation of the controller equations. After applying the H-infinity controller, 

simulation for system response is presented and discussed.  

Part five presents loop shaping control theory as well with mathematical derivation of controller 

equations. Simulation for system response with loop shaping controller is provided.  

Part six is a comparison study between the two control methods used in this paper. The 

comparison based on main system performance parameters, energy consumption a disturbance 

rejection characteristics.  
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In the last part, number 8, the conclusions are detailed; references and some appendix are 

provided.  
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(2) 

Literature Review 

2.1 Introduction:  

To enable the drive system for any ship to operate normally, a simple control technique is 

required to drive the vessel forward, backward or stop it. To reverse the movement of the ship, 

a gear box is utilized to reverse the direction of rotation the whole system, while a simple push 

bottom is used to switch on/off. To control the direction of a vessel while moving, a flat metal 

object called a rudder changes its direction to tilt left and right by a steering mechanism. 

The power supply for the motors can be controlled through a conventional, common technique 

which called a pulse-width modulation. This technique is a switching mechanism used to cut the 

power supplied to the load through different intervals to manage the delivered power. As shown 

in figure (2.1) the red wave is the input power to the load and the blue wave is the control signal, 

input voltage. As shown, once the power signal is constant, the input voltage will be zero “hence 

the input power “. On other direction, once the control signal “wave” changes with time, it 

switches the input voltage to the load.  

Switching should be accomplished at a high frequency to avoid impact on the load ”motor” and 

the whole system.  
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Figure 2.1: Voltage Modulation 

The required power supply will be known through feeding back the output signal and compare it 

with the set value. Two convenient control theories will be applied to the error signal to improve 

the output signals which are H infinity and the loop shaping method. Comparison will be carried 

out between both techniques to understand the pros and cons of each mythology.  

2.2 Development of control concept overview:  

The need to control the output of many processes has existed for several decades. People from 

Greek, Hellenic, Arabs, and Europeans countries wanted to control the level of water, oil, and 

movement of objects. 

2.2.1 First control idea, control of water and oil level: 

The first feedback control system was presented by Greek in 300B.C. when Ktesibois designed a 

clock working by water shown in figure (2.2). A floating valve was utilized to keep the water level 
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at the supply container constant all time. Water drops to another container which indicates the 

time. 

 

Figure 2.2: Water clock  

A Greek engineer and inventor Philo of Byzantium “280B.C - 220B.C” introduced the “oil lamp” 

which main function is to keep the oil in level the same at all times. The water clock was 

developed and re-introduced later by an Arab engineer Al Jazari ”1136 –1206” who wrote about 

the control of the liquid level. 

2.2.2 Control development during the industrial revolution: 

During 16th century Industry got more developed during the Europe industrial revolution and 

along with those new challenges raised for the need to control functions. 

Temperature control was introduced for the first time in Europe by the Holland inventor Comelis 

Drebbel “1572 1633”, he presented an oven which can kept the temperature within certain limits 

through a feedback control mechanism. A few years later, in 1681, Denis Papin innovated the 

first pressure release valve which was used to keep the pressure in a boiler at certain level. It was 



BUID  MSc in System Engineering 

 

 
Page 24 

 

  

a simple idea of putting a certain object above the boiler orifice. Once the pressure inside boiler 

overcame the object weight, then the orifice opened and released the steam pressure. 

In the eighteenth century, steam engines were developed, to convert heat to evaporate the 

water and then generate steam force. The steam force was then then converted to rotary motion. 

Steam engines can’t be functional without controlling speed. 

In 1769 Speed control was introduced for the first time for an industrial application. The 

controller for the speed of engine was called “Watt’s Flyball Governor”. As shown in below figure 

(2.3), the output rotational velocity is fed back to the governor. Once the speed increases, the 

distance between the metal sphere increases due to the centrifugal force effect and the 

connection with boiler valve is released to decrease “or close” the steam valve opening then the 

engine speed reduce accordingly.  

 

Figure 2.3: Watt’s flyball governor 
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In 1765 a Russian inventor I. Polzunov “1728 –1766” introduced a simple feedback system 

through the design of a controller for a boiler which keeps the water level within the set limits. A 

floating object pulls an arm which then covers and closes the water supply orifice. 

In 1868 differential equations were used for the first time to represent the physical system and 

develop a controller by the British scientist and mathematician J.C. Maxwell “1831-1879”. He 

applied differential equations to control the governor of a steam engine. 

2.2.3 Development of Control in the 20th century: 

Breakthrough in control theory occurred and took a place in untied state during the World War 

II, when AT&T Company was working on the improvement of a telecommunication system and 

enhancement of the performance of a telephone system. Since the signal generated and 

transmitted though thousands of kilometers; it was a crucial challenge to get the best 

performance of communication system. In 1932 American physicist Nyquist “1889 - 1976” 

introduced a new theory of determining the stability of negative feedback systems called the 

“Nyquist Stability Theorem” which gave control feedback systems during the World War II. 

In World War II, David B. Parkinson who was hired by an American company “Bell Telephone 

laboratories” in United States of America, visualized an airplane with potentiometer and gun. 

Pointing at other planes the gun hit all perfectly. Parkinson believed its application was good idea 

and worked to make this dream true. In 1941 and Parkison introduced a feedback control system 

whereas the potentiometer measures the distance and create a signal which is fed back to be 

compared with a radar signal. The error signal was he fed to the controller which controls the 

position of the gun to hit the target. 
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2.2.4 Modern control system and automation era: 

Control theory has a direct impact on our life. Controllers are in touch with our daily life when 

we use air conditions, cars, lifts, pumps, microwave and etc. on other hand, controller might be 

more distant like industrial controllers, state space methods and the weapons industry.  

Energy consumption is one of the biggest challenges worldwide. Achieving the required output 

with best energy performance is the aim of all end users and manufacturers; actually it is an 

international target. Saving in energy reduces the carbon foot print, saves earth’s natural 

resources, lessens greenhouse effects, and protects the future of next generations.  

2.3 Basic Control Theory:  

2.3.1 Definition of control system: 

R.C. Doof & R.H. Bishop described the control system as “A control system is an interconnection 

of components forming a system configuration that will provide a desired system response”. The 

basic components of any system are: 

1. The input which is the physical source entering to system. Inputs may be called set point, 

or desired output response. 

2. The process which is a set of items bounded to each other with relations. 

3. The output which is the measured value which results from the whole process. The main 

purpose of control a system is to make the output has the same value as the input. The 

mathematical equation describes the relation between input “after it enters the process” 

and the relation between input and output is called the transfer function.  
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Figure 2.4: System basic components 

Dorf and Bishop described the relationship between components as a cause and effect 

relationship.  

 

 

Figure2.5: Simple control system 

 

The main purpose of controllers is to monitor, adjust and improve the behavior and operation of 

a certain system (Albertos.P and Sala.A 2004). Since controllers have inputs and outputs, it can 

be described as a system that controls other systems. 

Systems might be single input single output “SISO” or it might has more than one input/output 

or both (input and output and called MIMO). Practically, systems are not so simple and many 

items have a direct impact of the on the process. Hence systems usually are multiple input, 

multiple outputs. On other side, due to environment or system conditions, unwanted signal is 

fed to systems are called called disturbance. The better control system, the less disturbance 

effect on system output and the ideal controller eliminates the disturbance and leads to zero 

“disturbance rejection”. 

2.3.2 Open and closed loop control systems: 
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Open loop control system means that the input is not affected by the output signal and the 

control is carried out through pre-set values feeding to the system.  

One of most common examples of an open loop system is the washing machine. In this simple 

system, the washing process continues regardless of the clothes being clean or not, until the set 

finish time. On other hand the washing will stop also regardless the clothes still being dirty or 

not.  

 

Figure2.6: Block diagram of open loop control system  

Advantages of this control system are simplicity in manufacturing and maintenance. Less cost, 

doesn’t need transducers for measuring output and usually is stable. The reliability and accuracy 

are the main disadvantages.  

Closed loop control systems make a comparison between the input signal and output to give 

information to the controller. This can be done through measuring the output signal and feeding 

it back to system as shown in figure (2.7).  
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Figure2.7: Block diagram of closed loop control system  

Advantages of this system are the accuracy since the system keeps rectifying the error. Another 

advantage is the noise rejection. The closed loop feedback is complicate to design and construct. 

2.3.3 Controllability and Observability:  

These control properties was introduced for this first time by R. Kalman in 1960. For a system 

with inputs 𝑢(𝑠) in state space form, if any of state variables 𝑧(𝑠) can be changed to a required 

condition through changing the input signal, then this state is controllable. Whereas if all states 

in the system are controllable; then the system will be called completely controllable. On other 

hand, if a state variable can be recognized and measured in the output signal𝑦(𝑠), then that state 

variable is called to be observable. If all state variables are observable, then the system is called 

completely observable. Figure (2.8) shows different conditions of observabilty and controllability 

of system.  
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Figure 2.8: Controllability and Observability conditions  

Some years later, Chen, C.T. introduced a mathematical check-up producers through equations 

and matrices to determine the observability as well as the controllability of a given system.  

2.3.4 Stability: 

“A stable system is defined as a system with a bounded (limited) system response. That is, if the 

system is subject to a bounded input or disturbance the response is bounded in magnitude, the 

system is said to be stable” (modern control system by Richard C. Dorf &  Robert H. Bishop- page 

357).   
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Unstable system may cause damage and failure. One of the main purposes of controllers is to the 

dynamics of the systems.  

There are mythologies to examine the stability of system, but one of the most common is root 

locus criteria. Consider a transfer function 𝐺(𝑠) which has poles 𝑃(𝑠) and zeros (𝑠) , hence If any 

of those poles in the right side of the S-Plane, the system is unstable. All poles should be in the 

left hand side of the S-plane. Another condition is that if one or more poles are on the imaginary 

part axis, then the system would be called marginally stable.  

 

Figure 2.9: Poles location on S-plane and stability   

2.3.5 Eigen values and Eigen victors:  

For a square matrix  𝑛𝑥𝑛 called  “𝐴” , there is a scalar ”λ“ which satisfy the equation:  

𝐴𝑥 = λx                                                                                                                              (2.1) 

There will be a vector  "x"  which makes the matrix determinant is equal a scalar if both sides are 

multiplied by the same vector “x”. The scalar "λ" is called Eigen value and the vector "x" called 

the Eigen Vector. From equation (2.1) then 

 (𝐴 − λ)x = 0 
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Since   x ≠ 0; the equation becomes: 

𝑑𝑒𝑡 (A –  λI) =  0                                                             (2.2) 

The scalar λ is called an Eigen value for the matrix “A”, and “I” is an identity matrix with the same 

rank of matrix “A”. Since there are two Eigen values satisfy equation (2.2) Then Eigen vector can 

be determined as following:  

AU = UΛ  

Whereas: U = [u1:  u2]  and Λ = Diag (λ1, λ2). 

2.3.6 Robust control 

The main purpose of robust concept is to keep the system stable despite disturbances. A robust 

concept was introduced and developed rapidly after the 1980s, where in this technique it’s 

required utilizing a number of feedbacks as well as forward loops to reduce disturbance 

impacts. One of the vital purposes of controllers is to make the system “Robust” and the design 

techniques are mostly developed to achieve this property. 

 

 

2.4 Classical Control Theory:  

2.4.1 PID controller: 
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In 1930 the concept of PID was introduced for the first time as a trial and error or tuning 

methodology. PID controller refers to three term “proportional, integral, derivative”, and it is 

used mainly to get an output with minimum error value, acceptable overshoot and limits time 

delay.  

Basically, PID controllers are based on measuring the output signal of the system and comparing 

it with a desired set point signal through a simple summation “𝒆(𝒕) = 𝒓(𝒕) − 𝒚(𝒕)”. Since the 

action of the controller is based on the error signal, hence the transfer function of the PID 

controller can be given by the following equation: 

𝑮𝒄(𝑺) = 𝑲𝑷 + 𝑲𝑰

𝟏

𝑺
+ 𝑲𝑫𝑺 

Accordingly, the output response in time domain can be explained by the equation:  

𝒖(𝒕) = 𝑲𝑷𝒆(𝒕) + 𝑲𝑰 ∫𝒆 (𝒕) + 𝑲𝑫 𝒆̇(𝒕) 

Figure (2.10) below shows a block diagram of a PID controller, whereas the 𝒓(𝒕) is the set point 

signal, 𝒆(𝒕) is the error signal and 𝒚(𝒕) is the output measured signal. 

 

Figure 2.10: Block diagram representing PID controller  
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A proportional strategy means that the controller output will be in proportion to the error signal; 

it may be used for speed up or to slow systems and to decrease settling time. If the overshoot is 

too high of the output signal, from the proportional controller may cause system instability. 

An integral strategy means that the controller output will act in proportion to the error signal 

integral as well as the duration of error signal too. This controller slows down the response of 

system and reduces the steady state error. 

A derivative strategy means that the controller output will act in proportion to the slope of output 

error value over the time.  

The three control strategies may work together as PID, or as PI, PD or individually. Based on the 

application, the required output is specified and the proper controller would be used. The figure 

below (2.11) shows an example of different impact of the controller on the output signal.  

 

Figure 2.11: PID controller impact on step input   

2.4.2 Routh Hurwitz Theory: 
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This theory was initiated by the British mathematician E. John Routh (1876) and then represented 

individually by the German scientist Adolf Hurwitz (1895). The theory provides a mathematical 

check for the stability of a system. 

 For a linear time invariant system, the Physical systems parameters are represented through a 

polynomial. Hurwitz suggested arranging the coefficient of polynomial in a matrix, and the 

determinate of the matrix should not be negative. Routh stated that the system will be stable if 

the real roots of the characteristic equation should be negative. Hence once allocating the roots 

on the S-plane, all the roots would be in the left hand side.  

2.5 Multi Variable system controller representation by American school:  

2.5.1 State Space Representation: 

In addition to inputs and outputs, and in order to study as well as understand the behavior of 

multivariable system, another vector to be considered relates to the internal 

parameters/variables which have a direct impact on the output of the system, it’s called state 

variables. Before world war II, after the year 1930, Leroy MacColl presented this control approach 

for the first time, and then it was developed by Kalman.  

The equations show the relation between inputs, outputs and state space variables are given by 

the equations:  

𝑋̇(𝑡) = 𝐴. 𝑋(𝑡) + 𝐵.𝑈(𝑡)                                               (2.3) 

𝑌(𝑡) = 𝐶. 𝑋(𝑡) + 𝐷.𝑈(𝑡)           (2.4) 
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And if there is no direct mapping between input and output, the 𝐷 matrix becomes zero, hence 

equation (2.4) can be written as: 

𝑌(𝑡) = 𝐶. 𝑋(𝑡)        (2.5) 

The input vector is represented by 𝑈(𝑡) and its related matrix is 𝐵, output victor 𝑌(𝑡) and it’s 

related to matrix is 𝑈  and the state space vector 𝑋(𝑡) and it’s related matrix is 𝐴. The block 

diagram of a state space model in the time domain is shown below (figure (2.12)). 

 

Figure 2.12: Block diagram representing state space modeling  

If the above state space equations are converted to Laplace form, the equation below can be derived: 

𝑆. 𝑋(𝑠) = 𝐴. 𝑋(𝑠) + 𝐵.𝑈(𝑠) 

𝑌(𝑠) = 𝐶. 𝑋(𝑠) + 𝐷.𝑈(𝑠) 

Accordingly, the transfer function of the system can be written as following:  

𝑌(𝑠) = [𝐶. (𝑆𝐼 − 𝐴)−1 . 𝐵 + 𝐷. ]𝑈(𝑠) 
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𝐺(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
=  𝐶. (𝑆𝐼 − 𝐴)−1 . 𝐵 + 𝐷 

If there is a direct mapping between input and output, the transfer function will be given by: 

𝐺(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
=  𝐶. (𝑆𝐼 − 𝐴)−1 . 𝐵 

 

 

2.5.2 Optimal Controller: 

“Optimal Control is the process of determining the state trajectories for a dynamic system over 

a period of time to minimize the performance index” Victor M. Becerra (2008). Since this design 

technique is a mathematical approach, a number of mathematicians contributed to the 

development of this theory over years started from the seventeenth century, until 1950s when 

R. Bellman introduced the dynamic equations of LTI systems and Lev Pontryagin presented the 

theory individually.  

Optimal controller treats and solves the issues related to systems performance like overshoot as 

well as settling time. These issues are in direct relation to the energy consumption of the system, 

and the minimum energy of system reduces the maintenance of internal parts and accordingly 

the operational cost. The subject controller reduces the quadratic index to be at the minimum to 

achieve the best system performance.  A number of constraints are defined to get the minimum 

value of the performance index given by the equation:   
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𝐉 = ∫(𝐱(𝐭)𝐓𝐐𝐱(𝐭) + 𝐮(𝐭)𝐓𝐑𝐮(𝐭)). 𝐝𝐭

∞

𝟎

 

The lowest value of performance index change according to time and state, hence  

𝐉 = 𝐬(𝐱 , 𝐭) 

And when applying Hamilton Jacobi equation to the above, the following will be derived:  

𝒅

𝒅𝒕
(𝐬(𝐱 , 𝐭)) = 𝑴𝒊𝒏 {

𝜹𝒔

𝜹𝒕
+ 

𝜹𝒔

𝜹𝒙𝒐
𝒙𝒐̇ +  

𝜹𝒔

𝜹𝒙𝟏
𝒙𝟏̇ + ⋯+

𝜹𝒔

𝜹𝒙𝒏
𝒙𝒏̇ } 

𝒙𝟏̇ = 𝒇𝟏(𝒙, 𝒖) 

𝒙𝟐̇ = 𝒇𝟐(𝒙, 𝒖) 

: 

𝒙𝒏̇ = 𝒇𝒏(𝒙, 𝒖) 

Where:  

𝒙𝒐̇ = 𝐱(𝐭)𝐓𝐐𝐱(𝐭) + 𝐮(𝐭)𝐓𝐑𝐮(𝐭) 

Since the Hamilton function is given by the equation:  

𝐻 = 𝑷𝒐𝒇𝒐 + 𝑷𝟏𝒇𝟏 + ⋯ +  𝑷𝒏𝒇𝒏  

And  

𝟃𝑯

𝟃𝑷𝒊
= 𝒇𝒊 (𝒙, 𝒖, 𝒕) 
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𝟃𝑯

𝟃𝒙𝒊
=  𝑷𝒐

𝟃𝒇𝒐

𝟃𝒙𝒐
+ 𝑷𝟏

𝟃𝒇𝟏

𝟃𝒙𝟏
+ ⋯+ 𝑷𝒏

𝟃𝒇𝒏

𝟃𝒙𝒏
 =  ∑𝑷𝒊

𝟃𝒇𝒊

𝟃𝒙𝒊

𝒏

𝒊=𝟎

 

𝐻(𝑥, 𝑢, 𝑝, 𝑡) =
𝟏

𝟐
 (𝐱(𝐭)𝐓𝐐𝐱(𝐭) + 𝐮(𝐭)𝐓𝐑𝐮(𝐭)) + 𝑷𝟏𝒇𝟏 + ⋯ +  𝑷𝒏𝒇𝒏 

𝐻(𝑥, 𝑢, 𝑝, 𝑡) =
𝟏

𝟐
 (𝐱(𝐭)𝐓𝐐𝐱(𝐭) + 𝐮(𝐭)𝐓𝐑𝐮(𝐭)) + 𝑷𝑻(𝑨𝒙 + 𝑩𝒖) 

𝑷𝑻 = ( 𝑷𝟏, 𝑷𝟐, … . , 𝑷𝒏) 

𝟃𝑯

𝟃𝒖
=

𝟏

𝟐
 (𝟐𝑹𝒖) + 𝑩𝑻𝒑 = 𝟎  

𝒖 = −𝑹−𝟏𝑩𝑻𝒑 

𝑯𝒎𝒊𝒏 = (𝐱(𝐭)𝐓𝐐𝐱(𝐭) + 𝐮(𝐭)𝐓𝐑𝐮(𝐭)) + 𝑷𝑻(𝑨𝒙 + 𝑩𝒖)|
𝒖= −𝑹−𝟏𝑩𝑻𝒑

  

𝑯𝒎𝒊𝒏 = 
𝟏

𝟐
 (𝐱(𝐭)𝐓𝐐𝐱(𝐭) + 𝑷𝑻𝑩 (𝑹−𝟏)𝑻𝑹𝑹−𝟏𝑩𝑻𝒑 ) + 𝑷𝑻𝑨𝒙 − 𝑷𝑻𝑩𝑹−𝟏𝑩𝑻𝒑 

The matrix 𝑅 is symmetrical, hence (𝑅−1)𝑇 = 𝑅−1, then the above equation (4.2) becomes 

accordingly: 

𝑯𝒎𝒊𝒏 = 
𝟏

𝟐
 (𝐱(𝐭)𝐓𝐐𝐱(𝐭)) + 𝑷𝑻𝑨𝒙 −

𝟏

𝟐
𝑷𝑻𝑩𝑹−𝟏𝑩𝑻𝒑 

Deriving equation (4.3) under the condition that− 
𝟃𝑯𝒎𝒊𝒏

𝟃𝒙𝒊
= −𝑸𝒙 − 𝑨𝑻𝑷 = 𝑷̇(𝒕), the the following 

will be concluded: 

𝑲𝒐𝒑𝒕 = −𝐑−𝟏𝐁𝐓𝐏 

And the steady state solution of system will be: 
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𝟎 = (𝑸 + 𝑨𝑻𝑷 + 𝑷𝑨 − 𝑷𝑩𝑅−1𝐵𝑇𝑷)𝒙 

Accordingly, The design of optimal controller starts with selecting the matrices 𝑄 and  𝑅 , and 

then obtaining the 𝑃 matrix to calculate the gain of the controller. Figure (2.14) shows the block 

diagram representation of optimal controller.  

Figure 2.14: diagram of optimal Controller 

( Whalley R., “lecture notes”, 2015) 

 

2.6 Multi Variable system controller representation British school:  

2.6.1 Nyquist Stability theory:   
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This theory is a stability checking methodology for SISO systems, and it was presented for the 

first time in 1932 by a Swedish, born American engineer, Harry Nyquist. This approach doesn’t 

need to determine the closed loop poles neither zeros to check the stability of SISO systems. 

Nyquist used a plot to determine the stability of SISO systems. If the poles of the open loop 

system located on the left hand side of the S-plane, the system would be stable while the system 

called unstable if any of system open loop poles all located on the right hand side of the S-plane. 

The system is called marginally stable if one “or more” poles are located on the imaginary axes 

of the S-plane while no poles may be located on the right hand of s-plane.  

2.6.2 Inverse Nyquist array theory:   

This control theory of the design of multivariable systems controllers was presented in 1969 by 

the English engineer H. Rosenbrock (16 December 1920 – 21 October 2010), and it is an 

improvement on Nyquist theory of SISO system. Multivariable system is supposed to be 

described by a transfer function "𝑚𝑥𝑚" matrix, whereas 𝐾(𝑠) is the controller of the system as 

shown in figure (2.15). A unity feedback loop is compared with input signal to produce the error 

signal “𝑒”.  

 

Figure 2.15: General Form of Multivariable Control System 
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In order to reduce the coupling of the outputs, and turn the open loop transfer function to 

diagonal dominance, a List of assumption should be considered: 

 In 𝑠 domain, the transfer function as well as controller is considered to be rational 

polynomial.  

 The open loop transfer function is considered to be stable. 

 The controller transfer function is considered to be stable, and the zeros are in the left hand 

side of the S plane as well. 

 The matrices represent both systems’ transfer function and controller is invertible matrices.  

If the coupling between outputs of the system are ignorable; an independent transfer function 

can describe the relation between each input and output; hence the original transfer function 

could be replaced with a number of SISO transfer functions. Figure (2.16) shows representation 

of a multivariable system, and considering no coupling between input and output, there will be 

a transfer function between 𝑈1 and 𝑌1 and another between 𝑈2 and 𝑌2 and so on.  

 

Figure 2.16: Inputs/Outputs representation of a multivariable system  



BUID  MSc in System Engineering 

 

 
Page 43 

 

  

Figure below (2.17) shows a block diagram representation of closed loop multivariable system, 

whereas 𝐹(𝑠) is a diagonal matrix and the closed loop transfer function of the system can be 

given by: 

𝑯(𝒔) = (𝑰 + 𝑮(𝒔)𝑲(𝒔)𝑭) − 𝟏 𝑮(𝒔)𝑲(𝒔) 

 

Figure 2.17: closed loop representation of multivariable system  

In order to consider the system stable, all the poles of the transfer function 𝑯(𝒔) should be 

in the left side of the 𝑆-plane. The system can be considered stable if the transfer function H(s) 

has all poles located on the left hand side of the s-plane. Gershgorin bands are used to assess the 

stability of the systems. 

2.6.3 Least effort theory: 

Least effort method is a new multivariable system regulation technique produced by Robert 

Whalley and M Ebrahimi in 2006. Base on the minimum effort of controller using the closed loop 

technique. This technique is a useful tool to reduce the generated heat, wear and system noise 

making the implementation of the least effort controller easy to be implemented and 

maintained. 
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The closed loop technique in least effort relies on calculating the inner and outer loop to obtain 

the required steady state value with minimum output interaction to achieve the required output. 

The equation of the open loop is: 

𝒚(𝒔) = 𝑮(𝒔)𝒖(𝒔) + 𝜹(𝒔) 

Ad for the closed loop is: 

𝒖(𝒔) = 𝒌(𝒔)[ŕ(𝒔) − 𝒉(𝒔)𝒚(𝒔)] + 𝑷(𝒓(𝒔) − 𝑭𝒚(𝒔)) 

The inputs in the open and closed loop equations are represented by m where the F: 

𝑭 = 𝑫𝒊𝒂𝒈(𝒇𝟏. 𝒇𝟐. ………𝒇𝒎). 0 < 𝑓𝑗 < 1. 1 ≤ 𝑗 ≤ 𝑚 

The transient part of the output which obtained from the inner loop as per the following 

equation: 

𝒌(𝒔)[ŕ(𝒔) − 𝒉(𝒔)𝒚(𝒔)] 

The steady state part of the output obtained from the following: 

𝑷(𝒓(𝒔) − 𝑭𝒚(𝒔)) 

Then doing the inner loop calculation using the general transfer function equation: 

𝑮(𝒔) = 𝑳(𝒔)
𝑨(𝒔)

𝒅(𝒔)
𝑹(𝒔)𝚪(𝒔) 

Where equation elements of 𝐿(𝑠). 𝐴(𝑠), 𝑅(𝑠), Γ(𝑠) and  
𝐴(𝑠)

𝑑(𝑠)
    𝜖 𝐻∞. 𝑠 ∈ ℂ 
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The following figure (2.18) showing the inner and outer closed system used in least effort 

controller representation. 
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Figure 2.18: closed loop representation of least effort 

Using the following controller energy equation: 

𝑬(𝒕) = ∫ (𝒖𝟏(𝒕)
𝟐 + 𝒖𝟐(𝒕)

𝟐
𝒕=𝟏

𝒕=𝟎

)𝒅𝒕 

To prove that the least effort controller has less consumed energy which will be produced as a 

heat and noise. Least effort has the lowest controller functions and algorithms orders, 

simplifying the controller production and implementation.  
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(3) 

Research Methodology 

3.1 Modeling of Propeller Shaft System: 

Figure (3.1) shows the block diagram representation of propeller shaft system.  

 

 

Figure 3.1: Block diagram of propeller shaft system  

 

In order to generate rotational movement; the toque generated by the motor should overcome 

the inertia of the motor itself, inertia of shaft, damping of motors and propeller, the stiffness of 
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the elements in propeller system. Accordingly, the following represents the equilibrium equation 

of forces: 

𝑇1 = (𝐽1𝐷
2 + 𝐶1𝐷)𝜃1 + 𝐾1(𝜃1 − 𝜃2)   

⇒ 𝑇1 = (𝐽1𝐷
2 + 𝐶1𝐷 + 𝐾1)𝜃1 − 𝐾1𝜃2              (3.1) 

𝐾1(𝜃1 − 𝜃2) +  𝑇2 = (𝐽2𝐷
2 + 𝐶2𝐷)𝜃2 + (𝐽𝐿𝐷

2 + 𝐶2𝐷)𝜃2    

⇒  𝑇2 = −𝐾1𝜃1 + ((𝐽2+𝐽𝐿)𝐷
2 + (𝐶2)𝐷 + 𝐾1)𝜃2        (3.2) 

From equations (3.1) 𝑎𝑛𝑑 (3.2), a derivation of the equation describes the mathematical relation 

between input torque and the angular velocity is given by: 

[
𝑇1

𝑇2
] =  [

𝐽1𝐷
2 + 𝐶1𝐷 + 𝐾1 −𝐾1

−𝐾1 𝐽3𝐷
2 + 𝐶2𝐷 + 𝐾1

] . [
𝜃1

𝜃2
] 

Whereas 𝐽3 = 𝐽2 + 𝐽𝐿. Accordingly, the deflection angle” 𝜃” can be given by the equation: 

[
𝜃1

𝜃2
] =   

[
𝐽3𝐷

2 + 𝐶2𝐷 + 𝐾1 𝐾1

𝐾1 𝐽1𝐷
2 + 𝐶1𝐷 + 𝐾1

]

𝐽1𝐽3𝐷
4 + (𝐽3𝐶1 + 𝐽1𝐶2)𝐷

3 + (𝐽3𝐾1 + 𝐶1𝐶2 + 𝐽1𝐾1)𝐷
2 + (𝐾1𝐶1 + 𝐾1𝐶2 )𝐷 + 𝐾1

2 − 𝐾1
2 . [

𝑇1

𝑇2
] 

In order to derive the equation represents the relation between angular velocity and torque, both 

sides of equation are derived, and the equation becomes: 

[
𝜔1

𝜔2
] =  

[
𝐽3𝐷

2 + 𝐶2𝐷 + 𝐾1 𝐾1

𝐾1 𝐽1𝐷
2 + 𝐶1𝐷 + 𝐾1

]

𝐽1𝐽3𝐷
3 + (𝐽3𝐶1 + 𝐽1𝐶2)𝐷

2 + (𝐽3𝐾1 + 𝐶1𝐶2 + 𝐽1𝐾1)𝐷 + (𝐾1𝐶1 + 𝐾1𝐶2 )
. [

𝑇1

𝑇2
]            (3.3) 

The above equation describes the system transfer function between the input torques produced 

by both of motors and the output angular velocities for the two rotors.  
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Moreover, the source of force drives the propeller is represented by two motors 𝑚1 and 𝑚2 

whereas the inputs for the motors are the applied voltages  𝑣1  and 𝑣2 on the windings of the 

motors. Applied voltages on motors produce the torques 𝑇1and 𝑇2 as per the following equations:  

𝑇1 = 𝑉1/(𝐿1𝐷 + 𝑅1)   

𝑇2 = 𝑉2/(𝐿2𝐷 + 𝑅2)   

[
𝑇1

𝑇2
] =  

[
 
 
 
 

𝑉1

𝐿1𝐷 + 𝑅1
0

0
𝑉2

𝐿2𝐷 + 2]
 
 
 
 

=

[
 
 
 
 

1

𝐿1𝐷 + 𝑅1
0

0
1

𝐿2𝐷 + 2]
 
 
 
 

. [
𝑉1

𝑉2
]                                  (3.4)  

Accordingly, from the equation (3.3) and (3.4), the relationship between the input of propeller 

shaft system “voltage” and the output of the system “angular velocity” can be given by the 

equation:  

[
𝜔1

𝜔2
]

=  

[
𝐽3𝐷

2 + 𝐶2𝐷 + 𝐾1 𝐾1

𝐾1 𝐽1𝐷
2 + 𝐶1𝐷 + 𝐾1

]

𝐽1𝐽3𝐷
3 + (𝐽3𝐶1 + 𝐽1𝐶2)𝐷

2 + (𝐽3𝐾1 + 𝐶1𝐶2 + 𝐽1𝐾1)𝐷 + (𝐾1𝐶1 + 𝐾1𝐶2 )
𝑥 

[
 
 
 

1

𝐿1𝐷 + 𝑅1
0

0
1

𝐿2𝐷 + 𝑅2]
 
 
 

. [
𝑉1

𝑉2
] 

accordingly, 

[
𝜔1

𝜔2
] =  

[

𝐽3𝐷
2 + 𝐶2𝐷 + 𝐾1
𝐿1𝐷 + 𝑅1

𝐾1
𝐿2𝐷 + 𝑅2

𝐾1
𝐿1𝐷 + 𝑅1

𝐽1𝐷
2 + 𝐶1𝐷 + 𝐾1
𝐿2𝐷 + 𝑅2

]

𝐽1𝐽3𝐷
3 + (𝐽3𝐶1 + 𝐽1𝐶2)𝐷

2 + (𝐽3𝐾1 + 𝐶1𝐶2 + 𝐽1𝐾1)𝐷 + (𝐾1𝐶1 + 𝐾1𝐶2 )
 . [

𝑉1

𝑉2
] 

 

The transfer function 𝐺(𝑠)  which discribes the relationship between input volatge and output 

angular speed of propeller shaft system is given by the equation:   
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𝐺(𝐷) =  

[

𝐽3𝐷
2 + 𝐶2𝐷 + 𝐾1
𝐿1𝐷 + 𝑅1

𝐾1
𝐿2𝐷 + 𝑅2

𝐾1
𝐿1𝐷 + 𝑅1

𝐽1𝐷
2 + 𝐶1𝐷 + 𝐾1
𝐿2𝐷 + 𝑅2

]

𝐽1𝐽3𝐷
3 + (𝐽3𝐶1 + 𝐽1𝐶2)𝐷

2 + (𝐽3𝐾1 + 𝐶1𝐶2 + 𝐽1𝐾1)𝐷 + (𝐾1𝐶1 + 𝐾1𝐶2 )
                         (3.5) 

3.2 Propeller Shaft design: 

3.2.1 Selected system’s parameters: 

Figure (3.2) shows the representation of propeller shaft system schematic diagram.  

 

 

Figure 3.2: Propeller shaft system mass presentation   

Accordingly, the following points could be concluded: 

 The rotors of the two motors are represented by two discs. The rotor of motor one has 

disc diameter 𝐷1 = 0.80 𝑚𝑒𝑡𝑒𝑟  and width 𝑤1 = 0.60 𝑚𝑒𝑡𝑒𝑟 whereas the rotor of motor 

two has disc diameter 𝐷2 = 0.60 𝑚𝑒𝑡𝑒𝑟  and width𝑤2 = 0.60 𝑚𝑒𝑡𝑒𝑟. On other hand, the 
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load is also represented as a disc with diameter 𝐷3 = 0.80 𝑚𝑒𝑡𝑒𝑟  and width  𝑤3 =

080 𝑚𝑒𝑡𝑒𝑟. 

 Shaft diameter considered to be the same along the whole system 𝑑𝑠 = 0.055 𝑚𝑒𝑡𝑒𝑟. 

The length of shaft between the two motors is𝐿 = 1.6 𝑚𝑡𝑒𝑟𝑒, whereas the length of 

shaft between second motor and the load is considered to be very short and it will be 

negligible in the coming calculations and accordingly the masses of second motor and the 

load can be lumped together in the calculations as one mass.  

 All materials in propeller shaft system shown in figure no. considered as steel with density 

ρ = 7800 𝐾𝑔/𝑚3 and shear modulus is𝐺 =  8𝑥1010𝑁/ 𝑚2.  

 The input torques generated from the first motor and second motor are supposed to be 

𝑇1 = 12000 𝐾.𝑁.𝑚 and 𝑇1 = 8000 𝐾.𝑁.𝑚 respectively.  

As illustrated in below figure (3.3), the rotors and the shaft comprise a semi-definite system that 

has no stiffness or inertia element connected to ground.  

 

Figure 3.3: Mass Moment of Inertia of Some Shapes  
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3.2.2 General equation of torsional motion: 

Generally, the equation describes the torsional motion for any system can be given by: 

𝐽𝑛 Ӫ𝑛 + 𝐶𝑡 𝑛 Ȯ𝑛 + 𝐾𝑡𝑛 𝜃𝑛 = 𝑀𝑜𝑛 cos𝜔𝑜𝑛𝑡  

The mass torsional inertia matrix is given by:  

𝐽 =  
ρ.𝜋 

32
 [
ℎ1𝐷1

4 0

0 ℎ2𝐷2
4 + ℎ3𝐷3

4]  

𝐾𝑡2 =
𝐺

𝐿2
 (  

𝜋. 𝑑𝑠
4

32
 ) 

The stiffness matrix  

𝐾𝑡 = [
𝐾𝑡2 −𝐾𝑡2

−𝐾𝑡2 𝐾𝑡2
] 

The eigenvalue of the system is: 

𝜆 = 𝑠𝑜𝑟𝑡(𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 (𝐽−1. 𝐾𝑡)) =  (
0

383.356
) 

𝜆 =  (
|𝜆1|

|𝜆2|
) =  (

0

383.356
) 

And hence the angular natural frequency can be given by:  

𝜔 = √𝜆 =  (
0

19.579
) 

The first natural frequency is zero, which means in semi definite system no oscillating is occurring 

in the first mode, and the shaft design is based on second mope only. 
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Hence for 𝑖 = 1,2  

𝛷‹i› = 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑎 ( 𝐽−1. 𝐾𝑡 . 𝜆𝑖)  

The mode shape matrix is: 

𝛷 = [
0.707 −0.855
0.707 0.518

] 

And the torque frequencies of the system are: 

𝜔01 = 0 𝑎𝑛𝑑 𝜔02 = 0 

For constant torque, the torque frequency should be zero and the design of the shaft is governed 

by static analysis, and the torque matrix could be described by: 

𝑀0 = (
𝑀01

𝑀02
) 

𝑀1(𝑡) =  (
𝑀01. cos (𝑡. 𝜔01)

𝑀02. cos (𝑡. 𝜔02)
) 

The evaluation of damping matrix is shown in the next modal analysis. 

 

3.2.3 Model equations for torsional Vibration: 

The modal forced damped equations for two modes 𝑛 = 1, 𝑛 = 2 and the modal matrices are as 

shown below:  

𝐼𝑛 𝑞̈𝑛 + 𝐶 𝑛 𝑞̇𝑛 + 𝐾𝑡𝑛 𝑞𝑛 = 𝑇𝑜𝑛 cos𝜔𝑜𝑛𝑡  

The modal torsional inertia matrix is given by: 
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𝐼 =  𝛷𝑇 . 𝐽. 𝛷 = [
249.333 0

0 221.05
] 

Whereas the stiffness matrix is given by: 

𝐾 = 𝛷𝑇 . 𝐾𝑡. 𝛷 = [
0 0
0 8.474 𝑥 104 

] 

 

Hence the damping ratio for first and second mode is: 

Ϛ =  (
0.01

0.11
) 

Obtained classical damping matrix through using superposition method: 

Ϛ =  
2 . Ϛ1. 𝜔1 

𝐼1,1
. 𝐽. 𝛷1.  𝛷1

𝑇 . 𝐽 +
2 . Ϛ2. 𝜔2 

𝐼2,2
. 𝐽. 𝛷2.  𝛷2

𝑇 . 𝐽 

𝐶𝑡 = [
504.71 −504.71

−504.71 504.71
] 

The formula to approve the damping matrix is classical damping matrix is: 

𝐶𝑡. 𝐽
−1. 𝐾𝑡 − 𝐾𝑡. 𝐽

−1. 𝐶𝑡 = [
0 0
0 0

] 

𝐶 = 𝛷𝑇 . 𝐶𝑡. 𝛷 =  [
0 −0

−0 952.17
] 

The modal damping matrix is: 

𝐶 = [
|𝐶1,1| |𝐶1,2|

|𝐶2,1| |𝐶2,2|
]  =  [

0 −0
−0 952.17

] 
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𝑇0 = (
𝛷‹1›𝑇𝑀𝑜

𝛷‹2›𝑇𝑀𝑜
) =  (

1.414 𝑥 104

−6.115 𝑥 103
) 

The modal torque matrix is: 

𝑇(𝑡) =  (
𝑇01. cos (𝜔01)

𝑇02. cos (𝜔02)
) 

For first mode:  

𝐼1 = 𝐼1,1 = 249.333 

𝐾1 = 𝐾1,1 = 0 

𝜔𝑛1 = √
𝐾1

𝐼1
= 0 

Hence, no oscillation and relative angular displacement by this mood, so it’s neglected.  

For Second mode:  

𝐼2 = 𝐼2,2 = 221.05 , model torsional mass inertia  

𝐶2 = 𝐶2,2 = 952.169, Mode damping coefficient  

𝐾2 = 𝐾2,2 = 8.474 𝑥 104Mode stiffness value  

𝑇02 = 𝑇2,2 = −6.115 𝑥 103, mode torque magnitude  

𝜔02 = 0 , mode torque frequency   

𝜔𝑛2 = √
𝐾2

𝐼2
= 19.579 , angular natural frequency  

𝐶𝑐2 = 2. 𝐼2. 𝜔𝑛2 = 8.656 𝑥 103, mode critical damping coefficient 
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𝑄2
, = 

𝑇02

√(𝐾2− 𝐼1 .𝜔02
2 )2+𝐶2 .

2  𝜔02
2

= −0.072  

𝛷2
, = atan(

𝐶2 .
2  𝜔02

2

𝐾2− 𝐼2 𝜔02
2 ) = 0 𝑑𝑒𝑔 , mode Shift angle.   

𝑞𝑝2(𝑡) = 𝑄2
, . cos( 𝜔02 . 𝑡 −  𝑄2

, ), mode particular solution for angular displacement  

Figure (3.4)_below showing the particular angular displacement with time, the time range of 

plotting is 𝑡 = 0, 2.1 𝑥 10−5 𝑡𝑜 10𝑥10−1  

 

Figure 3.4: Particular angular displacement with time   

Ϛ2 = 
𝐶2

𝐶𝑐2
= 0.11, The mode damping ratio 

𝜔𝑑2 = 𝜔𝑛2 . √1 − Ϛ2
2 = 19.461, mode damped natural frequency  

Assuming that the intial condition of system at time 𝑡 = 0  for 𝑄0 = 0 , 𝑎𝑛𝑑 𝑉0 = 0 for angular 

displaceemnt and velocity, then the mode maximum transient angulkar dislacement is given by:  
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𝐷 =  √𝑄0
2 + (𝑉0 + 

Ϛ2 . 𝜔𝑛2. 𝑉0 .

𝜔𝑑2
)2 = 0.01 

 And the transiant shift angle is 𝛷 = atan ( 
𝜔𝑑2 .𝑄0

Ϛ2 .𝜔𝑛2.𝑉0
 ) , 𝛷 = 90 

And  𝑞𝑐2(𝑡) = 𝐷. (𝑒𝑠𝑝(−𝑡. Ϛ2 . 𝜔𝑛2). sin(𝑡.  𝜔𝑑2 +  𝛷)) is the transiant complemantry solution 

for angular displacement, as shown in the figure (3.5) below: 

 

Figure 3.5: Transient complementary solution of angular displacement  

The equation which showing the general solution of angular displacement is shown in figure (3.6)  

and given by the equation: 

𝑞2(𝑡) =  𝑞𝑐2(𝑡) + 𝑞𝑝2(𝑡) 
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Figure 3.6: General solution of angular displacement   

From the above figure no. , it is noticed that at t=0.16 seond from the start time, the maximum 

amplitude is 𝑞𝑚𝑎𝑥 = 𝑞2(0.16) =  −0.0786. the maximum angular amplitude in nodal system is 

given by:  

𝛩 ‹2› = 𝛷‹2›. 𝑞𝑚𝑎𝑥 = (
0.067

−0.041
) 

𝛩1,2 = (𝛷‹2›)1 = 0.067 

𝛩2,2 = (𝛷‹2›)2 = −0.041 

The maximim relative angular displacement in the shaft is: 

𝛥𝛩 = 𝛩1,2 − 𝛩2,2 = 0.108 

And , the maximum torsional shear outmost fiber of the shaft in 𝑁/𝑚2 is : 

𝑆 =  
𝐺. 𝑑𝑠 . (𝛥𝛷)

2. 𝐿2
= 1.484 𝑥 108 

⥤ 𝑆𝐻𝐸𝐴𝑅 =  
|𝑆|

106
= 148.409 
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The allaoed shear stress is 𝑆𝑎 = 267 𝑁/𝑚𝑚2, and if the factor of safety considered will be: 

𝐹𝑆 =  
𝑆𝑎

𝑆𝐻𝐸𝐴𝑅
= 1.799 

If the required factor of sfaty is 1.5, then shaft diameter is under acceptable levels.  

3.3 Study of open loop response of propeller shaft system: 

The derived transfer function of proppeller shaft system was derived in section (3.1) and given 

by the equation:   

𝐺(𝐷)

=  

[

𝐽3𝐷
2 + 𝐶2𝐷 + 𝐾1

𝐿1𝐷 + 𝑅1

𝐾1

𝐿2𝐷 + 𝑅2

𝐾1

𝐿1𝐷 + 𝑅1

𝐽1𝐷
2 + 𝐶1𝐷 + 𝐾1

𝐿2𝐷 + 𝑅2

]

𝐽1𝐽3𝐷3 + (𝐽3𝐶1 + 𝐽1𝐶2)𝐷2 + (𝐽3𝐾1 + 𝐶1𝐶2 + 𝐽1𝐾1)𝐷 + (𝐾1𝐶1 + 𝐾1𝐶2 )
                              (3.5) 

 

After appllying the parametrs provided in section 3.2 for of transfer function 𝐺(𝑠), and 

considering the dapming coffeciants to be  𝐶1 = 20, 𝐶2 = 250 , then follwing formula will be 

concluded:   

𝐺(𝑆) =  
[188.0𝑆2 +  250.0 𝑆 + 8.474𝑥104 8.474𝑥104

8.474𝑥104 310.0𝑆2 +  20.0 𝑆 + 8.474𝑥104]

2.914 𝑥104𝑆3 + 5.249 𝑥107𝑆2 + 3.789𝑥 1010𝑆 + 2.058𝑥1010
,  

 

The transfer function can factorized to be written in the following form:   
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𝐺(𝑆)

=  

[
0.0064516(𝑆2 + 1.33 𝑆 + 450.5) 2.9067

2.9067 0.010638(𝑆2 +  0.06452 𝑆 + 273.2)
]

(𝑆 + 1800)(𝑆 + 0.5425)(𝑆2 + 0.8519𝑆 + 723.4)
                   (3.6) 

 

In order to study the open loop reponse of the propeller shaft system, a unit step input change 

in angular velocity is applied from both motors to the transfer function. Using MATLAB 

simulation, the output of the system is shown in figure (3.7) for both motors, putting  into 

considertain that both reponses are exmamind for a duration of 20 seconds. 
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Figure 3.7: Open loop response of propeller shaft system    

Considering the open loop response in figure (3.7),  the transfer function can be re-written as 

follwoings: 

𝐺(𝑆) = [

4.11

2.34𝑆 + 1

4.11

2.43𝑆 + 1
4.11

2.45𝑆 + 1

4.11

2.36𝑆 + 1

] 

Open loop respose in figure (3.7) shows two major problems should be resolved:  
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1. Input/output interaction: since each inputs has a direct impact on both outputs, 

whereas systems should show a minimum coupling reponse between inputs, i.e. and 

outputs and each inputs control the signal of one output only. 

2. The output is not reaching the input value at anytime.  

The response require improvement, minimum coupling of outputs, reonable settling time and 

fast response. System mathmatical model after applying the controller should have the ability to 

reduce and eliminate the impact of input disturbcnes. Energy consubtion by controller itself is an 

important aspect will be considred in chapter (6).  

3.4 Control methods superimposed in the study: 

Improving the reponse of open loop response is acomplished in this research using two 

techniques, H infinity control as well as loop shaping. The pros and cones of each methodlogy 

will be highligted to choose the proper controler based on requirements.  
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(4) 

Control of Propeller Shaft System using H-Infinity Method  

4.1 Introduction: 

As a part of frequency domain analysis, the H-infinity contol teqneque was introduced for the 

first time in the late 1970s by the polish physist and mathmatitian George Zames “born 1934 – 

1997” . This controller came up to resolve some problems related to system stability, rebustness 

and preformaance. H- infinity controller is effective  for those problems related to system output 

coupling in the case of multi varibale systems. The main disadvantage of this teqnieqe is that it is 

not necessary to produce the best performace of the controlled system, moreover it requires a 

high order controller.  

The charachtarictic equation of H infnity controller is given by the equation (4.1):  

𝟏 + 𝑮(𝒔)𝑲(𝒔) = 𝟎                                          (4.1) 

The system is stable once all the poles of above equation located in the lift hand side of the S 

plane. The below equation (4.5) discribes the performace of the system, whereas the 

performance is getting better when the sensitivity is minimum at any given frequency.  

4.2 Theory of H-Infinity Controller: 

Figure (4.1) shows block diagram of H inanity controller. 
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Figure 4.1: General structure of control system   

The controller of H-infinity can be represented by the following matrix: 

𝐅𝐜 = [
𝐀𝐟

⋯
⋮ −𝐙𝐋
⋯ ⋯

𝐅 ⋮ 𝟎
] 

𝐀𝐟 = 𝐀 + 𝛄−𝟐𝐁𝟏𝐁𝟏
𝐓𝐗 + 𝐁𝟐𝐅 + 𝐙𝐋𝐂𝟐 , 𝐅 = −𝐁𝟐

𝐓𝐗  , 𝐙 = (𝐈 − 𝛄−𝟐𝐘𝐗)−𝟏 and    𝐋 = −𝐘𝐂𝟐
𝐓   

The configuration shows the robust process is shown in figure (4.2). The plant 𝑝(𝑠) with two 

inputs, the first represents both the reference input and the outside disturbances and denoted 

by the symbol𝐮𝟏(𝒕), whereas the second input represents manipulated variables and denoted 

by the symbol𝐮𝟐(𝒕). On other side, there are two outputs for this process; first the error signal  

𝐲𝟏(𝒕) generated by the process and the variables 𝐲𝟐(𝒕) with measured variables. 𝐲𝟐(𝒕) is 

multiplied by 𝐹(𝑠) matrix to get manipulated variables.   

 

Figure 4.2: Block diagram of control system   
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The matrix equation describes the process shown in figure (4.2) can be given by: 

[

𝒔𝒙̇(𝒔)

𝒚𝟏(𝒔)

𝒚𝟐(𝒔)
] = 𝑷(𝒔) [

𝒙(𝒔)

𝒖𝟏(𝒔)

𝒖𝟐(𝒔)
] 

And, 

𝑷(𝐬) = [
𝐀 𝐁𝟏 𝐁𝟐

𝐂𝟏

𝐂𝟐

𝐃𝟏𝟏

𝐃𝟐𝟏

𝐃𝟏𝟐

𝐃𝟐𝟐

] 

𝐬𝐱(𝐬) = 𝐀𝐱(𝐬) + [𝐁𝟏 𝐁𝟐] [
𝐮𝟏(𝒔)
𝐮𝟐(𝒔)

]  

[
𝐲𝟏(𝐬)
𝐲𝟐(𝐬)

] = [
𝐂𝟏

𝐂𝟐
] 𝐱(𝐬) + [

𝐃𝟏𝟏

𝐃𝟐𝟏

𝐃𝟏𝟐

𝐃𝟐𝟐
] [

𝐮𝟏(𝐬)
𝐮𝟐(𝐬)

] 

Whereas 𝑷(𝐬) is the transfer function of the plant, 𝐱(𝐬) represent state space variables equation 

and 𝐲(𝐬) represent system output. The relation between input and output can be presented by 

the equation:  

𝐓𝐲𝟏𝐮𝟏(𝐬) = 𝐏𝟏𝟏(𝐬) + 𝐏𝟏𝟐(𝐬)[𝐈 − 𝐅(𝐬)𝐏𝟐𝟐(𝐬)]
−𝟏𝐅(𝐬)𝐏𝟐𝟏(𝐬) 

 

The property of H-infinity property is described by the equation:  

‖𝐓(𝐬)𝐲𝟏𝐮𝟏‖∞
< 𝟏 

On other hand, figure (4.3) shows 3 blocks which makes filtration for the signals from three 

different areas. The first makes filtration for the error signal, the second makes filtration for the 
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controlled signal before feeding it to plant and the third make filtration for the output signal. The 

three blocks are called the weighting functions.   

 

Figure 4.3: Block diagram of control system showing weighting functions   

 

The equation describes the represent the integration between plant equations and block diagram 

shown in figure (4.3) can be given by:   

𝑷(𝐬) =

[
 
 
 
 
𝐖𝟏(𝒔) ⋮ −𝐖𝟏(𝐬)𝐆(𝐬)

𝟎
𝟎…
𝐈

⋮
⋮
⋮
⋮

𝐖𝟐(𝒔)
𝐖𝟑(𝐬)𝐆(𝐬)

…
−𝐆(𝐬) ]

 
 
 
 

 

𝐓𝐲𝟏𝐮𝟏 = [

𝐖𝟏(𝐬)𝐒(𝐬)
𝐖𝟐(𝐬)𝐅(𝐬)𝐒(𝐬)

𝐖𝟑(𝐬)𝐓(𝐬)
] 

𝑺(𝐬) = [𝐈 + 𝐅(𝐬)𝐆(𝐬)]−𝟏 

𝑻(𝐬) = 𝐈 − 𝐒(𝐬) = 𝐅(𝐬)𝐆(𝐬)[𝐈 + 𝐅(𝐬)𝐆(𝐬)]−𝟏 
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4.3 Design of H-Infinity Controller: 

H-infinity design starts with choosing weighting functions as following:  

𝐖𝟏(𝐬) = [

𝟏𝟎𝟎𝟎

𝐬 + 𝟎. 𝟓
𝟎

𝟎
𝟏𝟎𝟎𝟎

𝐬 + 𝟏

] 

𝐖𝟐(𝐬) = [𝟏𝟎−𝟓 𝟎
𝟎 𝟏𝟎−𝟓

] 

𝐖𝟑(𝐬) = [

𝐬

𝟏𝟎𝟎𝟎
𝟎

𝟎
𝐬

𝟐𝟎𝟎

] 

 

Table 4.1: Different values of gamma for H-infinity controller  

 

If the chosen value of gamma is 7.7734𝑥10−1, then the H-infinity controller transfer function 

𝐹(𝑐) can be given by:  

𝐅𝐜(𝐬) = [
𝐅𝟏𝟏(𝐬) 𝐅𝟏𝟐(𝐬)

𝐅𝟐𝟏(𝐬) 𝐅𝟐𝟐(𝐬)
] 
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And each element in the above matrix can be given by following equations:  

F11(s) =
8.29𝑒06𝑠5 + 5.25𝑒09𝑠4 + 1.18𝑒10𝑠3 + 9.23e09𝑠2 + 3.08e09s + 3.74e08

𝑠6 + 204𝑠5 + 8.94𝑒05𝑠4 + 1.71𝑒06𝑠3 + 1.00𝑒06𝑠2 + 1.86𝑒05𝑠 + 5.40
 

F12(s) =
−7.98𝑒06𝑠5 − 5.06𝑒09𝑠4 − 1.14𝑒10𝑠3 − 9.03e09𝑠2 − 3.05e09s − 3.74e08

𝑠6 + 204𝑠5 + 8.94𝑒05𝑠4 + 1.71𝑒06𝑠3 + 1.00𝑒06𝑠2 + 1.86𝑒05𝑠 + 5.40
 

F21(s) =
−1.61𝑒06𝑠5 − 2.28𝑒09𝑠4 − 4.00𝑒09𝑠3 − 2.63e09𝑠2 − 7.68e08s − 8.38e07

𝑠6 + 204𝑠5 + 8.94𝑒05𝑠4 + 1.71𝑒06𝑠3 + 1.00𝑒06𝑠2 + 1.86𝑒05𝑠 + 5.40
 

F22(s) =
1.67𝑒06𝑠5 + 2.36𝑒09𝑠4 + 4.11𝑒09𝑠3 + 2.68e09𝑠2 + 7.74e08s + 5.38e07

𝑠6 + 204𝑠5 + 8.94𝑒05𝑠4 + 1.71𝑒06𝑠3 + 1.00𝑒06𝑠2 + 1.86𝑒05𝑠 + 5.40
 

After factorizing H-infinity transfer function, the equation can be written as below:  

F11(s) =
8.288e06 (s + 631.5) (s + 1.0) (s + 0.4255) (s + 0.4115)(s + 0.4082)

(s + 1.409e03)  (s + 631.4)(s + 1.0) (s + 0.5) (s + 0.4172) (s + 2.91e − 05)
 

F12(s) =
−7.9837e06 (s + 631.5) (s + 1.0) (s + 0.4255) (s + 0.4237) (s + 0.4115)

(s + 2.14e04) (s + 631.4) (s + 1) (s + 0.5) (s + 0.4172) (s + 2.91e − 05)
 

F21(s) =
−1.6133e06 (s + 1411) (s + 0.5) (s + 0.4255) (s + 0.4237) (s + 0.4082)

(s + 2.14e04) (s + 631.4) (s + 1) (s + 0.5) (s + 0.4172) (s + 2.91e − 05)
 

F22(s) =
1.6685e06 (s + 1411) (s + 0.5) (s + 0.4237) (s + 0.4115) (s + 0.4082)

(s + 2.14e04) (s + 631.4) (s + 1) (s + 0.5) (s + 0.4172) (s + 2.91e − 05)
 

The controller is of high, and hence it is difficult to implement practically.  

4.4 Simulation of H-Infinity Controller: 

4.4.1 Closed Loop Response: 
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Once applying H-infinity controller which has been designed to the propeller shaft system; the 

response improves as shown in below in figures (4.4) and (4.5). 

  

Figure 4.4: Closed loop response with H-infinity controller (in1=1, in2=0) 
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Figure 4.5: Closed loop response with H-infinity controller (in1=0, in2=1) 

Response Cleary shows slight acceptable overshoot, and the system reaches steady state rapidly 

“approximately after 0.15 seconds”. Accordingly, the settling time as well ad time constant are 

obviously improved. System interaction which was occurring in the open loop response are 

effectively eliminated by the controller. 
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4.4.2 Disturbance Rejection: 

In order to consider the disturbance rejection exhibited by the controller, the two inputs are set 

to be 𝑉1(𝑡) = 0 𝑎𝑛𝑑 𝑉2(𝑡) = 0, and unit step disturbance inputs is injected to the system as 

shown in appendix (A2) 𝑑1(𝑡)𝑎𝑛𝑑 𝑑2(𝑡). Figures (4.6) and (4.7) show the response of shaft 

propeller system with loop shaping controller ability to eliminate the disturbance.  

 

Figure 4.6: Disturbance rejection by H-infinity controller (d1=1, d2=0)   
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Figure 4.7: Disturbance rejection by H-infinity controller (d1=0, d2=1)   

 

Above figures showing that loop shaping controller exhibits a rapid elimination of disturbance 

and drives to equal approximately “after only 0.007 seconds for input 1 and after 0.02 seconds 

for input 2”.  
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(5) 

Control of Propeller Shaft System using Loop Shaping Method  

5.1 Introduction: 

As a part of frequency domain analysis, this technique is based on shaping the open loop reponse 

of a multuvariable system with a transfer frunction 𝑮(𝒔) to a required loop shape which satisfy 

the performace as well as rubstness.  Figure (5.1) shows the general spacification of loop shaping 

technique.  

 

Figure 5.1: General Specification of loop shaping   

As shown in above figure (2.1), 𝑮𝒅(𝒔)  represents the desired open loop shape, which should be 

identified as a first step in the controller design. Three spacifications determine the required loop 

shape, first is performance bound, which can be satisfied when the loop shape is less than 0𝐷𝐵 
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at high frequency. Second is robustness bound whcig means that the loop shape should have 

large gain at the areas of performance. And the last is desired crossover which means that 𝑮𝒅(𝒔)  

must go through the 0𝐷𝐵 when comes between the performance bound an robustness bound. 

The equation represent the required loop shape can be given by: 

𝑮𝒅(𝒔) =  
𝑾𝒄

𝒔
 

whereas 𝑊𝑐 represent the crosover point. 

5.2 Theory and design of Loop Shaping controller: 

In order to get the design of controller througth this techinque, the precdures should be started 

with understading the plant itself with all dynamic parametres, resposes and the location of poles 

and zeros. Identifying the required loop shape 𝑮𝒅(𝒔) is second, including the required rise time 

and croseover frequency piont. Figure (5.2) show that 8 is the chosen frequency.   
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Figure 5.2: Target loop shaping    

A proper controoller should be designed so the “the open loop” 𝐺(𝑠)𝐾(𝑠) reponse will satisfy 

the  required loop shape Gd(s). The following code can be used on matlab: 

[K,CL,GAM] = loopsyn(G,Gd); 

GAM 

The following code can be used on MATLAB to make comparison between the required loop 

shape and the actual loop shape of the propeller shaft system: 

L = G*K;              % form the compensated loop L 

sigma(Gd,'b',L,'r--',{.1,100}); 

grid 

legend('Gd (target loop shape)','L (actual loop shape)'); 

 

Figure 5.3: Actual loop shape with target loop shape    
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At the last step of loop shaping controller design, the following code is utilized on MATLAB to 

generate a comparasion between all system charachtaristics as following:   

T = feedback(L,eye(2)); 

T.InputName = {'alpha command','theta command'}; 

S = eye(2)-T; 

 

% SIGMA frequency response plots 

sigma(inv(S),'m',T,'g',L,'r--',Gd,'b',Gd/GAM,'b:',... 

 Gd*GAM,'b:',{.1,100}) 

legend('1/\sigma(S) performance',... 

 '\sigma(T) robustness',... 

 '\sigma(L) open loop',... 

 '\sigma(Gd) target loop shape',... 

 '\sigma(Gd) \pm GAM(dB)'); 

% Make lines wider and fonts larger 

 

% set(findobj(gca,'Type','line','-not','Color','b'),'LineWidth',2); 

h = findobj(gca,'Type','line','-not','Color','b'); 

set(h,'LineWidth',2); 

 

Figure (5.4) shows the comparisons between system’s characteristics.  
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Figure 5.4: Singular values with different frequencies     

 

Acoordingly, The transfer function of loop shaping controller 𝐊(𝐬) is given by the following matrix 

equation: 

𝐊(𝐬) = [
𝐊𝟏𝟏(𝐬) 𝐊𝟏𝟐(𝐬)

𝐊𝟐𝟏(𝐬) 𝐊𝟐𝟐(𝐬)
] 

 Where:  

K11(s) =
8.1673e06  (𝑠2 + 3.815s + 340.20) 

s(s + 4112) (s + 0.002106) 
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K12(s) =
0.005379(s + 8.07e05) (s − 6.401e05) 

s(s + 4112) (s + 0.002106) 
 

K21(s) =
0.18683(s + 1.247e05) (s − 1.192e05) 

s(s + 4112) (s + 0.002106) 
 

K22(s) =
7.2489e06 (𝑠2 + 3.62s + 383.3) 

s(s + 4112) (s + 0.002106) 
 

Accordingly, 

 

𝐊(𝐬) =

[
8.1673e06  (𝑠2 + 3.815s + 340.20) 0.005379(s + 8.07e05) (s − 6.401e05)

0.18683(s + 1.247e05) (s − 1.192e05) 7.2489e06 (𝑠2 + 3.62s + 383.3)
]

s(s + 4112) (s + 0.002106) 
 

5.3 Simulation of Loop Shaping Controller: 

5.3.1 Closed Loop Response: 

Once applying loop shaping controller which designed earlier in previous section to propeller 

shaft system; the response gets improved as shown in below Figure (5.5). 
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Figure 5.5: closed loop response with loop shaping controller    

  

Response Cleary shows that there is no overshoot occur to the system, and the system reaches 

the steady state rapidly “approximately after 0.3 seconds”. Accordingly, the settling time as well 

as time constant is obviously improved. System interaction which occurred in the open loop 

response are effectively eliminated by the controller. 
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5.3.2 Disturbance Rejection: 

In order to consider the disturbance rejection exhibited by the controller, the two inputs are set 

to be 𝑉1(𝑡) = 0 𝑎𝑛𝑑 𝑉2(𝑡) = 0, and unit step disturbance inputs is injected to the system as 

shown in appendix (A2) 𝑑1(𝑡)𝑎𝑛𝑑 𝑑2(𝑡). Figures (5.6) and (5.7) show the response of shaft 

propeller system with H-infinity controller ability to eliminate the disturbance.  

 

 

Figure 5.6: Disturbance rejection by loop shaping controller (d1=1, d2=0)   
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Figure 5.7: Disturbance rejection by loop shaping controller (d1=0, d2=1)   

 

Above figures H-infinity controller exhibits a rapid elimination of disturbance and drives it to 

equal approximately “after only 0.8 seconds for input 1 and input 2”.  
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(6) 

Results Comparison and Discussion  

The two techniques developed in this study to control and improve the response of multivariable 

input/output propeller shaft system are compared thoroughly. The pros and cones of each 

technique is highlighted as a comparison to stand on the best controller which suits the 

application targeted by end user. Comparisons are done based on two aspects; energy 

consumption and disturbance rejection. 

6.1 Energy Consumption: 

Energy consumed by controller gives an indication of controller to work efficiently. High energy 

consumption leads to producing heat in internal parts of system, high level of noise, heat and 

wear of internal components and them high operational cost. R. Whalley and M. Ebrahimi, 2006 

present a formula for the calculation of energy consumption and given by the equation:   

𝑬(𝒕) = ∫ (𝒖𝟏(𝒕)
𝟐 + 𝒖𝟐(𝒕)

𝟐
𝒕=𝟏

𝒕=𝟎

)𝒅𝒕 

Simulation is carried out as shown in figures (6.1) and (6.2) to present the energy consumed by 

each controller as below: 
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Figure 6.1: Energy consumption simulation of H-infinity controller  

 

Figure 6.2:  Energy consumption simulation of loop shaping controller 
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H-infinity controller consumes a very high energy compared with loop shaping controller, due 

to the high order of controller transfer functions. 

6.2 Disturbance rejection comparison: 

Refer to figures to previous figures in chapter 4 and 5; it is shown obviously that H-infinity exhibits 

very rapid of disturbance elimination.  H-infinity suppresses the disturbance impact on system 

and returns the system to its steady state conditions effectively. Compared with H-infinity 

controller, Loop shaping controller requires much more time to eliminate the disturbance totally.  

6.3 Other specifications: 

Both controllers are showing good decoupling characteristics between inputs/outputs, hence no 

interaction between inputs and outputs signals. H-infinity shows a slight acceptable overshoot 

while loop shaping shows no any overshoot at transient state. Both techniques eliminate the 

steady state error and lead it to zero, while both controllers speeding up the response of systems.  

 

 

 

 

 

 

(7) 
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Conclusion and Recommendation  

This research introduces a study for the design, modeling and control of a propeller shaft system 

of a marine vessel. The transfer function of the system was derived and the open loop response 

to unit step input was generated.  

The importance of using the controller appeared clearly once the open loop response signal was 

generated. The open loop response shows high steady state error, slow response system, and 

system input/output interaction. Accordingly, two techniques are introduces in this research to 

resolve these issues; H- infinity and loop shaping controllers. 

Derivation of H-infinity controller shows a high order transfer function, which indicates that the 

implementation of transfer function practically difficult. Moreover, and as shown in simulations, 

high order transfer function consumes a very high amount energy which reduces system life and 

increase operational cost. On other hand h-infinity shows an effective tool to eliminate the 

disturbance and steady state error with less settling time.  

The loop shaping technique shows a slow response regarding the rejecting of disturbance inputs, 

whereas the energy consumed by the controller is satisfactory. The implementation of this 

technique is impractical due to the high gains of the controller. Moreover, the loop shaping 

controller shows input/output interaction elimination, fast response, negligible steady state 

error and no overshoot.  

For both of the control techniques introduced in this research, the controllers are theoretically 

satisfactory. However, it is obvious that the implementation of those controllers are impossible 
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due to the high gains required and complexity. If reduced the transfer functions of both of the 

controllers would be unable to guarantee stability, let alone optimality. Obviously, the use of 

integrator affects the possibility of saturation if the error condition persists.  

Marine vessels work for long operational hours and maintenance is difficult to be carried out in 

heavy sea. Accordingly; Energy consumption by the controller is critical due to the impact of 

generating heat, noise and wear limiting the durability of the system.  
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s = tf('s'); 

  
J1= 310 
J3= 188 
C1= 20 
C2= 250 
k1= 8.47*10^4 

  
V1=1 
V2=1 
L1=.5 
L2=.5 
R1=900 
R2=900 

  
G=[J3*s^2+C2*s+k1 k1;k1 J1*s^2+C1*s+k1] 
Ge=[1/((L1*s)+R1) 0;0 1/((L2*s)+R2)]  
Gt1=(G*Ge)/((J1*J3)*s^3+((J3*C1)+(J1*C2))*s^2+((J3*k1)+(C1*C2)+(J1*k1))*s+((C

1*k1)+(k1*C2))) 

  
t = (0:.1:20)'; 

  
step(Gt1,t) 
title('Open Loop Response old') 
figure   
%tfsys = tf(sys) 

  
Gt=[4.11/(2.35*s+1) 4.11/(2.43*s+1);4.11/(2.45*s+1) 4.11/(2.36*s+1)] 
step(Gt,t) 
title('Open Loop Response new') 
figure   
%tfsys = tf(sys) 

  
step(Gt1,t) 
step(Gt,t) 
title('Open Loop Response old & new') 
figure 

  

  
[num,den] = tfdata(G,'v') 

  
gt11=tf(Gt(1,1)) 
gt12=tf(Gt(1,2)) 
gt21=tf(Gt(2,1)) 
gt22=tf(Gt(2,2)) 

  
Gtm=[gt11 gt12;gt21 gt22] 

  
sys=ss(Gtm) 

  
SS=ss(Gtm) 

  
%A=SS.a 
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%B=SS.b 
%C=SS.c 
%D=SS.d 

  

  
A=[0 1 0 0;-0.171497 -0.828331 0 0;0 0 0 1;0 0 -0.174374 -0.835251] 
B=[0 0;1 0; 0 0;0 1] 
C=[0.704853 1.72689 0.716677 1.69136;0.704853 1.67755 0.716677 1.74153] 
D=[0 0;0 0] 

  
[numGtm11,denGtm11] = tfdata(Gtm(1,1)) 
[numGtm21,denGtm21] = tfdata(Gtm(2,1)) 
[numGtm12,denGtm12] = tfdata(Gtm(1,2)) 
[numGtm22,denGtm22] = tfdata(Gtm(2,2)) 

  
set_param('desertation2full2ss2inf/TraFcn 

11','Numerator','numGtm11{1}','Denominator','denGtm11{1}'); % TF=H(s) 
set_param('desertation2full2ss2inf/TraFcn 

21','Numerator','numGtm21{1}','Denominator','denGtm21{1}'); 
set_param('desertation2full2ss2inf/TraFcn 

12','Numerator','numGtm12{1}','Denominator','denGtm12{1}'); 
set_param('desertation2full2ss2inf/TraFcn 

22','Numerator','numGtm22{1}','Denominator','denGtm22{1}'); 

  
set_param('desertation2full2ss2inf/IN1Step1','after','1') 
set_param('desertation2full2ss2inf/IN2Step2','after','0') 

  
set_param('desertation2full2ss2inf/d1','after','0') 
set_param('desertation2full2ss2inf/d2','after','0') 

  
W1=[1000/(s+0.5),0; 0,1000/(s+1)]; 
W2=[tf(1e-5),0; 0,tf(1e-5)]; W3=[s/1000,0; 0,s/200]; 
Tss=augtf(Gtm,W1,W2,W3); [g,Gc]=hinfopt(Tss); zpk(Gc(1,2)) 

  
Hs=Gc 

  
Hs(1,1) 

  
[numh11,denh11] = tfdata(Hs(1,1)) 
[numh21,denh21] = tfdata(Hs(2,1)) 
[numh12,denh12] = tfdata(Hs(1,2)) 
[numh22,denh22] = tfdata(Hs(2,2)) 

  
set_param('desertation2full2ss2inf/CTF11','Numerator','numh11{1}','Denominato

r','denh11{1}'); % TF=H(s) 
set_param('desertation2full2ss2inf/CTF21','Numerator','numh21{1}','Denominato

r','denh21{1}'); 
set_param('desertation2full2ss2inf/CTF12','Numerator','numh12{1}','Denominato

r','denh12{1}'); 
set_param('desertation2full2ss2inf/CTF22','Numerator','numh22{1}','Denominato

r','denh22{1}'); 

  
sim( 'desertation2full2ss2inf' ) 
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step(feedback(Gtm*Gc,eye(2)),0.1) 
title('H infinity') 
figure 

  
p=plot(tout,out1simout,'b--',tout,out2simout,'b-','LineWidth',2) 

  
legend('out 1','out 2') 
xlabel('time (sec)') 
ylabel('output Response') 
title('system response conventional H inf(IN1=1,IN2=0)') 
grid on 
figure 

  
set_param('desertation2full2ss2inf/IN1Step1','after','0') 
set_param('desertation2full2ss2inf/IN2Step2','after','1') 
sim( 'desertation2full2ss2inf' ) 

  
p=plot(tout,out1simout,'b--',tout,out2simout,'b-','LineWidth',2) 

  
legend('out 1','out 2') 
xlabel('time (sec)') 
ylabel('output Response') 
title('system response conventional H inf(IN1=0 & IN2=1)') 
grid on 

  
figure 

  
set_param('desertation2full2ss2inf/IN1Step1','after','0') 
set_param('desertation2full2ss2inf/IN2Step2','after','0') 
set_param('desertation2full2ss2inf/d1','after','1') 
set_param('desertation2full2ss2inf/d2','after','0') 
sim( 'desertation2full2ss2inf' ) 

  
p=plot(tout,out1simout,'b--',tout,out2simout,'b-','LineWidth',2) 

  
legend('out 1','out 2') 
xlabel('time (sec)') 
ylabel('output Response') 
title('system response conventional H inf(IN1=0,IN2=0,d1=1,d2=0)') 
grid on 

  
figure 

  
set_param('desertation2full2ss2inf/IN1Step1','after','0') 
set_param('desertation2full2ss2inf/IN2Step2','after','0') 
set_param('desertation2full2ss2inf/d1','after','0') 
set_param('desertation2full2ss2inf/d2','after','1') 
sim( 'desertation2full2ss2inf' ) 

  
p=plot(tout,out1simout,'b--',tout,out2simout,'b-','LineWidth',2) 

  
legend('out 1','out 2') 
xlabel('time (sec)') 
ylabel('output Response') 



BUID  MSc in System Engineering 

 

 
Page 92 

 

  

title('system response conventional H inf(IN1=0,IN2=0,d1=0,d2=1)') 
grid on 

  
figure 

  
set_param('desertation2full2ss2inf/IN1Step1','after','1') 
set_param('desertation2full2ss2inf/IN2Step2','after','1') 
set_param('desertation2full2ss2inf/d1','after','0') 
set_param('desertation2full2ss2inf/d2','after','0') 
sim( 'desertation2full2ss2inf' ) 

  
p=plot(tout,Esimout,'b--',tout,2) 

  
legend('Energy consumption H') 
xlabel('time (sec)') 
ylabel('output Response') 
title('Energy consumption H inf(IN1=0,IN2=0,d0=0,d2=0)') 
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grid on 

Loop shaping 

s = tf('s'); 

  
J1= 310 
J3= 188 
C1= 20 
C2= 250 
k1= 8.47*10^4 

  
V1=1 
V2=1 
L1=.5 
L2=.5 
R1=900 
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R2=900 

  
G=[J3*s^2+C2*s+k1 k1;k1 J1*s^2+C1*s+k1] 
Ge=[1/((L1*s)+R1) 0;0 1/((L2*s)+R2)]  
Gt1=(G*Ge)/((J1*J3)*s^3+((J3*C1)+(J1*C2))*s^2+((J3*k1)+(C1*C2)+(J1*k1))*s+((C

1*k1)+(k1*C2))) 

  
t = (0:.1:20)'; 

  
step(Gt1,t) 
title('Open Loop Response actual') 
figure   
%tfsys = tf(sys) 

  
Gt=[4.11/(2.35*s+1) 4.11/(2.43*s+1);4.11/(2.45*s+1) 4.11/(2.36*s+1)] 
step(Gt,t) 
title('Open Loop Response reduced') 
figure   

 
step(Gt1,t) 
step(Gt,t) 
title('Open Loop Response actual and reduced') 
figure 

  

  
[num,den] = tfdata(G,'v') 
gt11=tf(Gt(1,1)) 
gt12=tf(Gt(1,2)) 
gt21=tf(Gt(2,1)) 
gt22=tf(Gt(2,2)) 

  
Gtm=[gt11 gt12;gt21 gt22] 

  
sys=ss(Gtm) 

  
SS=ss(Gtm) 
A=SS.a 
B=SS.b 
C=SS.c 
D=SS.d 

  
G = ss(A,B,C,D); 
G.InputName = {'elevon','canard'}; 
G.OutputName = {'alpha','theta'}; 

  
clf 

 
plant_poles = pole(G) 
plant_zeros = tzero(G) 

  
clf, sigma(G,'g',{.1,100}); 
title('Singular value plot for aircraft model G(s)'); 
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s = zpk('s'); % Laplace variable s 
Gd = 8/s; 
sigma(Gd,{.1 100}) 
grid 
title('Target loop shape Gd(s).') 

  
% create textarrow pointing to crossover frequency Wc 
hold on; 
plot([8,35],[0,21],'k.-'); 
plot(8,0,'kd'); 
plot([.1,100],[0 0],'k'); 
text(3,23,'Crossover Frequency \omega_c = 8'); 
hold off; 

 
[K,CL,GAM] = loopsyn(G,Gd); 
GAM 

  
L = G*K;              % form the compensated loop L 
sigma(Gd,'b',L,'r--',{.1,100}); 
grid 
legend('Gd (target loop shape)','L (actual loop shape)'); 

  
T = feedback(L,eye(2)); 
T.InputName = {'alpha command','theta command'}; 
S = eye(2)-T; 

  
% SIGMA frequency response plots 
sigma(inv(S),'m',T,'g',L,'r--',Gd,'b',Gd/GAM,'b:',... 
    Gd*GAM,'b:',{.1,100}) 
legend('1/\sigma(S) performance',... 
    '\sigma(T) robustness',... 
    '\sigma(L) open loop',... 
    '\sigma(Gd) target loop shape',... 
    '\sigma(Gd) \pm GAM(dB)'); 
% Make lines wider and fonts larger 

  
% set(findobj(gca,'Type','line','-not','Color','b'),'LineWidth',2); 
h = findobj(gca,'Type','line','-not','Color','b'); 
set(h,'LineWidth',2); 

  
step(T,8) 
title('Responses to step commands for alpha and theta()'); 

  
%Controller Simplification 

  
size(K) 
hsv = hankelsv(K); 
semilogy(hsv,'*--') 
grid 
title('Hankel singular values of K') 
xlabel('Order') 

  
Kr = reduce(K,9); 
order(Kr) 
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sigma(K,'b',K-Kr,'r-.') 
legend('K','error K-Kr') 

  
Tr = feedback(G*Kr,eye(2)); 
step(T,'b',Tr,'r-.',8) 
title('Responses to step commands for alpha and theta ()'); 
legend('K','Kr') 

  
figure 

  
[numGtm11,denGtm11] = tfdata(Gtm(1,1)) 
[numGtm21,denGtm21] = tfdata(Gtm(2,1)) 
[numGtm12,denGtm12] = tfdata(Gtm(1,2)) 
[numGtm22,denGtm22] = tfdata(Gtm(2,2)) 

  
set_param('desertation2full2ss2/TraFcn 

11','Numerator','numGtm11{1}','Denominator','denGtm11{1}'); % TF=H(s) 
set_param('desertation2full2ss2/TraFcn 

21','Numerator','numGtm21{1}','Denominator','denGtm21{1}'); 
set_param('desertation2full2ss2/TraFcn 

12','Numerator','numGtm12{1}','Denominator','denGtm12{1}'); 
set_param('desertation2full2ss2/TraFcn 

22','Numerator','numGtm22{1}','Denominator','denGtm22{1}'); 

  
set_param('desertation2full2ss2/IN1Step1','after','1') 
set_param('desertation2full2ss2/IN2Step2','after','0') 

  
set_param('desertation2full2ss2/d1','after','0') 
set_param('desertation2full2ss2/d2','after','0') 
Hs=Kr  
Hs(1,1) 

  
[numh11,denh11] = tfdata(Hs(1,1)) 
[numh21,denh21] = tfdata(Hs(2,1)) 
[numh12,denh12] = tfdata(Hs(1,2)) 
[numh22,denh22] = tfdata(Hs(2,2)) 

  
set_param('desertation2full2ss2/CTF11','Numerator','numh11{1}','Denominator',

'denh11{1}'); % TF=H(s) 
set_param('desertation2full2ss2/CTF21','Numerator','numh21{1}','Denominator',

'denh21{1}'); 
set_param('desertation2full2ss2/CTF12','Numerator','numh12{1}','Denominator',

'denh12{1}'); 
set_param('desertation2full2ss2/CTF22','Numerator','numh22{1}','Denominator',

'denh22{1}'); 
sim( 'desertation2full2ss2' ) 
p=plot(tout,out1simout,'b--',tout,out2simout,'b-','LineWidth',2) 
legend('out 1','out 2') 
xlabel('time (sec)') 
ylabel('output Response') 
title('system response LOOP SHAPING(IN1=1,IN2=0)') 
grid on 
figure 
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set_param('desertation2full2ss2/IN1Step1','after','0') 
set_param('desertation2full2ss2/IN2Step2','after','1') 
sim( 'desertation2full2ss2' ) 
p=plot(tout,out1simout,'b--',tout,out2simout,'b-','LineWidth',2) 
legend('out 1','out 2') 
xlabel('time (sec)') 
ylabel('output Response') 
title('system response LOOP SHAPING (IN1=0 & IN2=1)') 
grid on 
figur  
set_param('desertation2full2ss2/IN1Step1','after','0') 
set_param('desertation2full2ss2/IN2Step2','after','0') 
set_param('desertation2full2ss2/d1','after','1') 
set_param('desertation2full2ss2/d2','after','0') 
sim( 'desertation2full2ss2' ) 

  
p=plot(tout,out1simout,'b--',tout,out2simout,'b-','LineWidth',2) 

  
legend('out 1','out 2') 
xlabel('time (sec)') 
ylabel('output Response') 
title('system response LOOP SHAPING (IN1=0,IN2=0,d1=1,d2=0)') 
grid on 

  
figure 

  
set_param('desertation2full2ss2/IN1Step1','after','0') 
set_param('desertation2full2ss2/IN2Step2','after','0') 
set_param('desertation2full2ss2/d1','after','0') 
set_param('desertation2full2ss2/d2','after','1') 
sim( 'desertation2full2ss2' ) 

  
p=plot(tout,out1simout,'b--',tout,out2simout,'b-','LineWidth',2) 

  
legend('out 1','out 2') 
xlabel('time (sec)') 
ylabel('output Response') 
title('system response LOOP SHAPING(IN1=0,IN2=0,d1=0,d2=1)') 
grid on 

  
figure 

  
set_param('desertation2full2ss2/IN1Step1','after','1') 
set_param('desertation2full2ss2/IN2Step2','after','1') 
set_param('desertation2full2ss2/d1','after','0') 
set_param('desertation2full2ss2/d2','after','0') 
sim( 'desertation2full2ss2' ) 

  
p=plot(tout,Esimout,'b--',tout,2) 

  
legend('Energy consumption H') 
xlabel('time (sec)') 
ylabel('output Response') 
title('Energy LOOP SHAPING(IN1=0,IN2=0,d0=0,d2=0)') 
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grid on 

  

  


