
Multi-Agent Learning of Strategies

in Abstract Argumentation

Mechanisms

Rama Nemer

Master of Science in Information Technology
Faculty of Informatics

The British University in Dubai

2009

Abstract

Argumentation has been studied extensively in the field of Artificial Intelligence, however we
know very little about its strategic aspects. This thesis aims to contribute to this general prob-
lem by examining the behavior of adaptive self-interested agents, in a multi-agent environment,
over repeated encounters using game-theoretic techniques. I extended an existing simulation
tool to implement argumentation games and used it to run repeated game experiments us-
ing combinations of characteristic argumentation games, adapted from literature, and types of
adaptive agents under different conditions. The theme used was that of a court setting whereby
there is a judge listening to arguments from different agents. Once all arguments have been
presented, the judge must make a ruling: i.e decide which arguments are valid and hence which
agents win by presenting them. Agents are assumed to be self-interested and adaptive so they
may have conflicting preferences about which arguments they want the judge to accept and
they can learn different strategies in order to achieve goals that reflect those preferences. The
results indicate that the agents use a multitude of different strategies to influence the judge
and maximize their payoff, thereby revealing different combinations of arguments with different
frequencies, depending on the Nash equilibria of the game, the dominance of the pure strategies
and the Pareto efficiency of the pure strategies in a game. These are dependent on aspects
inherent in the argumentation game. While truth revelation was a dominant strategy in some
games, interestingly in other cases the agents were able to gain a payoff that is higher than
that of all the individual Nash equilibria by playing strategies involving combinations of the
Nash equilibria. As for the effect of the learning algorithm on the choice of strategy, the results
confirm that WPL is biased toward mixed strategies while GIGA is faster in convergence to
pure strategy Nash equilibria. The importance of this kind of work lies in the fact that it com-
bines two aspects of multi-agent systems that have been quite separate to-date: argumentation
protocols and multi-agent learning in games.

2

Acknowledgment

I would like to express my sincere thanks and appreciation to my supervisors, Dr. Iyad Rahwan
and Dr. Sherief Abdallah, for their inspiration, support and encouragement throughout the
process of completing this thesis.

I am also grateful for the love and support provided by my parents and sister, along with
other family members and friends who have all made an invaluable contribution each in his/her
own special way.

3

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own
except where explicitly stated otherwise in the text, and that this work has not been submitted
for any other degree or professional qualification except as specified.

(Rama Nemer)

4

Contents

Abstract 2

1 Overview 7

1.1 Introduction . 7

1.2 Problem Statement . 8

1.3 Research Questions . 8

1.4 Contribution . 8

1.5 Scope . 9

1.6 Organisation of Thesis . 9

2 Background 10

2.1 Argumentation in Artificial Intelligence . 10

2.2 Abstract Argumentation Frameworks . 10

2.3 Game Theory . 13

2.4 Argumentation Games . 15

2.5 Multi-Agent Learning of Strategies . 16

2.5.1 Generalized Infinitesimal Gradient Ascent (GIGA) [29] 17

2.5.2 Weighted Policy Learner (WPL) [1] . 17

3 Specification and Implementation 19

3.1 Basic Simulator Architecture . 19

3.1.1 Existing Tool . 19

3.1.2 Extension of Existing Tool . 19

3.1.3 Game Parameters and Output . 22

3.2 Technical Limitations . 23

4 Experimental Design and Results 24

4.1 Introduction . 24

4.2 Parameter Design . 24

4.3 Benchmark Games . 24

4.3.1 Case 1: The “Nixon Diamond” Argumentation Game 24

4.3.2 Case 2: Contradicting Arguments . 28

5

4.3.3 Case 3: Indirect Support . 33

4.3.4 Case 4: “Argumentative Battle of The Sexes” Game 37

4.3.5 Case 5: The Floating Defeater Game . 41

4.4 Discussion and Conclusion . 52

5 Conclusion and Further Work 54

A Technologies and Tools 56

A.1 Introduction . 56

A.1.1 Java . 56

A.1.2 Eclipse . 56

A.1.3 Matlab . 56

A.1.4 Gambit . 56

B Sample Game Run 57

B.1 Introduction . 57

B.2 Game Parameters File . 57

B.3 Game Output . 58

B.3.1 Game Initiation Output . 58

B.3.2 Log File . 58

B.3.3 Sample Graphs . 62

C Additional Results 64

6

Chapter 1

Overview

1.1 Introduction

In its most fundamental form, Argumentation is defined as a the act of using reason to control
the acceptability of a standpoint by “putting forward a set of propositions (i.e. arguments)
intended to support (or refute) the standpoint before a rational judge” [27]. Over a decade
ago, Dung introduced the theory of abstract argumentation frameworks, to study the mech-
anisms humans use in argumentation, which placed the foundations of many studies into the
implementation of argumentation mechanism on computers [9]. In this theory, arguments are
represented on a very abstract level with binary defeat relations between them and there are
rules for the acceptability of these arguments. Since then, argumentation systems have been
further developed within research work in Artificial Intelligence [3], amongst other inter-related
disciplines, that benefit the study and application of argumentation theory.

The most recent publication on Multi-Agent Systems loosely defines them as “systems that
include multiple autonomous entities with either diverging information or diverging interests,
or both” and attributes the capacity to learn in this context as “a key facet of intelligent
behavior” [23]. This is to encompass the multitude of disciplines, besides computer science,
over which the field spans, such as economics, philosophy and linguistics, and cover concepts
such as logic, probability theory, game theory and optimization.

Imagine a court setting whereby there is a judge listening to arguments form different
agents. Once all arguments have been presented, the judge must make a ruling: i.e decide
which arguments are valid and hence which agents win by presenting them. The interesting
part is that these agents are self-interested and adaptive so they may have conflicting preferences
about which arguments they want the judge to accept and they can learn different strategies
in order to achieve goals that reflect those preferences.

Within this scenario some interesting questions arise, the answers of which will contribute
to the research in this field, such as how, and how well, agents learn argumentation strategies
over repeated encounters with the judge and other agents.

This work combines two interesting aspects of multi-agent systems and hence raises new
questions and potential areas of study. Specifically, learning of argumentation strategies amongst
agents in a multi-agent environment, in terms of both theory and applications, which is sup-
ported by a growing interest within the field of Artificial Intelligence and amongst the Agents
and Multi-Agents community.

7

1.2 Problem Statement

While argumentation has been studied extensively, we know very little about strategic aspects of
argumentation. A substantial amount of work has been done on each of abstract argumentation
and multi-agent learning of strategies, of which an overview is given in Chapter 2. This work
is unique, in that it is an attempt at linking them together in an experimental study that
allows quantitative experimentation, as well as shedding light on some interesting conclusions
regarding their intersection.

Recently, Rahwan and Larson began addressing this issue by studying Dung’s framework
using game-theoretic techniques. They considered conditions under which agents have an in-
centive to tell the truth by revealing all their arguments. They presented the Argumentation
Mechanism Design (ArgMD) [18] of which the details and significance are discussed in sec-
tion 2.4.

However, there are situations in which these conditions do not hold an example being when
multiple equilibria of strategies exist. Moreover, Rahwan and Larson considered single-shot
games and did not study issues that arise when agents can be adaptive.

This thesis aims to contribute to the general problem of trying to understand strategic
behavior in argumentation over repeated encounters when agents are adaptive.

1.3 Research Questions

This thesis addresses the following questions:

1-What kind of strategies the agents might use to influence the “judge”, which is essentially
the game itself, or the mechanism?

2-Will the agents learn over time to successfully manipulate the judge by lying or is the best
strategy to always tell the truth?

3-Does the kind of adaptive agent, in terms of learning algorithm, have an effect on the
strategies used by the agent in the same game? If so, what could that be attributed to?

1.4 Contribution

The contributions of this thesis to the general problem of trying to understand strategic be-
havior in argumentation over repeated encounters when agents are adaptive are (1) to provide
a simulation tool to allow quantitative experimentation with a framework for implementing
argumentation games and (2) to provide some insight by running argumentation games and
analyze their results. This section outlines the answers to the research questions that were
reached through these contributions.

1-What kind of strategies the agents might use to influence the “judge”, which is essentially
the game itself, or the mechanism?

To answer this question the argumentation game simulation tool was used to run a few games
designed based on different scenarios by changing the parameters that define the argumenta-
tion game such as the argumentation graph, the assignment of arguments to the agents and
distribution of utilities over the arguments. These parameters in turn define the game-theoretic
aspects of the game and result in a multitude of different strategies that the agents will use
depending on the Nash equilibria of the game, the dominance of the pure strategies strategies
and the Pareto efficiency of the pure strategies. Intuitively this means revealing different com-
binations of arguments with different frequencies. In essence, the agents aim to maximize their
pay so they either play the Nash equilibrium, either pure or mixed, or a combination of Nash
equilibria that will achieve that goal. It is interesting to note that by playing a combination of

8

Nash equilibria, in some cases the agents were able to gain a pay that is higher than that of all
the Nash equilibria.

2-Will the agents learn over time to successfully manipulate the judge by lying or is the best
strategy to always tell the truth?

As mathematically proved by Rahwan and Larson [19], the results, across all games where
the agents are not self defeating, are consistent with the conclusion that the game is indeed
strategy proof and the dominant strategy equilibrium is to reveal all the arguments. From the
agents perspective however, this is only one pay maximising strategy, amongst others, they
might learn. With the exception of being under these conditions, the agents do learn strategies
that involve lying, or hiding some of their arguments, in order to manipulate the judge. To
answer the question of what motivates agents to use certain strategies over others, extensive
experimentation beyond the scope of this thesis is required.

3-Does the kind of adaptive agent, in terms of learning algorithm, have an effect on the
strategies used by the agent in the same game? If so, what could that be attributed to?

To determine whether different Multi-Agent Reinforcement Learning (MARL) algorithms
converge to different equilibria in the same game, and the attributes of the algorithms that
might cause this, the same games were ran using the two algorithms WPL and GIGA with
different learning parameters. The results obtained were specific to the game, in some cases
both algorithms converged to the same strategy under all circumstances while in others the
same algorithm converged to different strategies when the learning parameters where changed.
Generally however, WPL was found to be biased toward mixed strategies, even in games which
had only pure strategy Nash equilibria, while GIGA was faster in convergence to pure strategy
Nash equilibria.

1.5 Scope

The work in this thesis is an initial attempt at exploring strategic aspects of argumentation in
games involving adaptive agents in a multi-agent system. The implemented tool and resulting
games examined are only a basic subset of the infinite possibilities of scenarios that can be
created. Essentially, in addition to the learning algorithms and variable learning parameters
that were implemented in the existing tool, the grounded extension and a few parameters,
reflecting the assignment of arguments to agents and utilities to winning these arguments, were
added to define argumentation games.

Aside from the results achieved and contributions made, many more research questions arise
that are beyond the scope of this thesis but worth investigating. Answering these questions will
involve either partial mathematical proof, extensive experimentation and the extension of the
simulation tool to implement more parameters that allow the representation of a wider variety
of characteristics in games.

1.6 Organisation of Thesis

From this point on, this thesis is organised as follows: Chapter 2 provides some background
on the relevant concepts used, in this study, in argumentation in general and in the field of
Artificial Intelligence, abstract argumentation frameworks, game theory, argumentation games
and multi-agent learning of strategies. Following that, Chapter 3 defines the specifications of
the argumentation game and discusses the details of its implementation based on the existing
tool. The experimental design and results of the five cases that were used as benchmark games
are then discussed in Chapter 4. The conclusions of the thesis are finally stated in Chapter 5
along with a discussion of recommendations for further work. Appendices A, B and C give
details of the technologies and tools used for implementation, an analysis and a sample run of
the argumentation game and additional results that may be of interest, respectively.

9

Chapter 2

Background

2.1 Argumentation in Artificial Intelligence

Intuitively the term Argumentation is very broad and Argumentation Theory is an interdis-
ciplinary field of research into which, amongst others, fields as diverse as philosophy and lin-
guistics, alongside artificial intelligence have contributed to and benefited from. Many logic
systems, ranging in levels of abstraction, with some similarities nonetheless, have been devel-
oped to formalize the reasoning behind “defeasible argumentation” which is the term referring
to the process of logically evaluating the tenability of a claim by assessing arguments produced
for and against it [17].

An excellent survey of the work achieved in the field of argumentation thus far with rel-
evance to artificial intelligence is presented in a paper by Bench-Capon and Dunne [3]. The
paper begins by examining the history of classical argumentation within philosophy through an
overview of argumentation themes starting with the philosophical investigations by Aristotle to
those by present day philosophers. A comparison is then made between argumentation and the
traditional concepts of logical reasoning and mathematical proof, which are essentially acknowl-
edged more by scientists in the field of artificial intelligence. The major contributions, such as
Dung’s extension based semantics as an argumentation model are discussed in significant detail
and a presentation of the current trends in research concerning these topics is also made.

Recently a number of applications have emerged that rely on the use of argumentation
amongst autonomous agents [21]. In some applications agents use argumentation amongst each
other to persuade each other of certain actions, to negotiate and reach agreement regarding
resource distribution [15]. Additionally, applications have been implemented, as an extension
to expert systems, whereby agents formulate arguments to persuade humans to eat healthier
food [14] or to give doctors advice based on medical expertise [10]. Research efforts are also
being invested into defining argumentation schemes to allow for agent communication on the
semantic grid [26] to allow for distributed argumentation amongst agents.

2.2 Abstract Argumentation Frameworks

An argument is a conclusion and a set of premises that can be used to derive it using some
inference rules. A statement in the English language can therefore be represented as a sequence
of sub-statements making up the premises and conclusion of an argument. It is defined formally
as:

Definition 1 (Argument [4]). An argument is a pair 〈Ψ, ψ〉 such that: (1) Ψ ⊆ ∆; (2) Ψ 6`⊥
(3) Ψ ` ψ; and (4) there is no Ψ′ ⊂ Ψ such that Ψ′ ` ψ. We say that 〈Ψ, ψ〉 is an argument
for ψ. We call ψ the claim of the argument and Ψ the support of the argument (we also say
that Ψ is a support for ψ).

10

Dung’s argumentation framework [9] is the most abstract of these argumentation systems
and is described in detail in section 2.2 because this work heavily relies on it. Concepts from
Prakken and Sartor’s system were also used in this study to formulate the natural language
(English) versions of the arguments, in the examples used in the experimentation, because
it is inspired by legal reasoning and defines attack, or defeat, between arguments using the
concepts of rebutting and undercutting [16]. These concepts, which provide a logical method
for formulating arguments in the English language that are intuitive yet conform to the defeat 1

relations in an abstract argumentation graph, are defined intuitively as follows:

Definition 2 (Rebut). An argument 〈Ψ, ψ〉 rebuts argument 〈Φ, φ〉 iff ψ ≡ ¬φ.

Hence, an argument A rebutts an argument B if and only if A conclusion-to-conclusion
attacks B and rebutting is symmetric in the sense that if two arguments have contradicting
conclusions then they mutually rebutt each other. This is used in cases where two arguments
defeat each other.

Definition 3 (Undercut [12]). An undercut for an argument 〈Φ, φ〉 is an argument 〈Ψ,¬ (θ1 ∧ . . . ∧ θn)〉
where {θ1, . . . , θn} ⊆ Φ .

An argument A undercuts an argument B if and only if A conclusion-to-premises attacks B.
Undercutting is used to formulate arguments with a one way defeat relation using statements
in English whereby the conclusion of one; the defeater, attacks the premises of the other; the
defeated argument.

Definition 4 (Defeat [16]). If one argument undercuts the other, and the other does not un-
dercut but only rebutts the first, the first defeats the second but the second does not defeat the
first.

Therefore, it is not true that if A undercuts B, then B undercuts A and neither is it true
that if A undercuts B, then B does not undercut A. In some cases if A rebuts B, then B rebuts
A but it this does not always hold.

Since the publication of the paper titled “On the acceptability of arguments and its fun-
damental role in non monotonic reasoning, logic programming and n-person games” [9] over a
decade ago, Dung’s introduction of the theory of abstract argumentation frameworks has placed
the foundations of many studies of implementing argumentation mechanism on computers. Es-
sentially, such an argumentation framework is a logic-programming based model for reasoning
about argumentation whereby arguments are represented on a very abstract level with binary
defeat relations between them and there are rules for the acceptability of these arguments.

A brief outline of a few key concepts and definitions in Dung’s argumentation system that
are relevant to this study is given below beginning with the definition of an argumentation
framework:2

Definition 5 (Argumentation framework [18]). An argumentation framework is a pair AF =
〈A,⇀〉 where A is a set of arguments and ⇀⊆ A × A is a defeat relation. We say that an
argument α defeats an argument β iff (α, β) ∈⇀ (sometimes written α ⇀ β).

α3 α2

α4

α1

α5

Figure 2.1: A simple argument graph
1Defeat and Attack are used interchangeably throughout this thesis.
2The definitions have been quoted from the referenced papers [18, 19, 9, 7].

11

Figure 2.1 above is an example of a representation of an argumentation framework as a
graph whereby vertices are arguments and directed arcs are defeat relations among them. Ar-
gument α1 has two defeaters α2 and α4, which are themselves defeated by arguments α3 and
α5 respectively.

The notion of defense amongst arguments follows the intuition that an argument defends
another argument if it defeats one of its defeaters. Thus in the above example, α3 and α5 both
defend α1. Furthermore, it can be implied that a set of arguments defends a given argument
if it defeats all its defeaters: {α3, α5} defends α1. A set of arguments is defined to be conflict
free if none of its arguments defeat each other.

As for the acceptability of arguments within a framework, the semantics are defined as
follows [18]:

Definition 6 (Characteristic function). Let AF = 〈A,⇀〉 be an argumentation framework.
The characteristic function of AF is F : 2A → 2A such that, given S ⊆ A, we have F(S) =
{α ∈ A | S defends α}.

Definition 7 (Acceptability semantics [18]). Let S be a conflict-free set of arguments in frame-
work 〈A,⇀〉.

• S is admissible iff it is conflict-free and defends any element in S (i.e. if S ⊆ F(S)).

• S is a complete extension iff S = F(S).

• S is a grounded extension iff it is the minimal (w.r.t. set-inclusion) complete extension
(or, alternatively, if S is the least fixed-point of F(.)).

• S is a preferred extension iff it is a maximal (w.r.t. set-inclusion) complete extension
(or, alternatively, if S is a maximal admissible set).

• S is a stable extension iff S+ = A\S.

• S is a semi-stable extension iff S is a complete extension of which S ∪ S+ is maximal.

Each of these semantics has the following intuition:

• A set of arguments is admissible if it is conflict-free set in which all the arguments are
acceptable with respect to the set.

• If and only if a set contains all the arguments defended by it then it is a complete extension.
There may be more than one complete extension.

• A grounded extension is a ‘minimal’ complete extension and contains the arguments which
are not defeated by any other arguments and the arguments that are defended by them.
There exists only one grounded extension.

• A preferred extension includes the grounded extension but further maxi mises the accepted
arguments as long as there is no inconsistency created by doing that.

• A set of arguments is a stable extension when it is a preferred extension that defeats each
argument outside of it.

• A semi-stable extension is a preferred extension that maximizes the number of defeated
arguments outside of it.

The determination of which arguments are accepted, rejected or the status of which can
not be decided, within an argumentation framework, is carried out by Argument Labeling [7]
defined as:

Definition 8 (Argument Labeling). Let 〈A,⇀〉 be an argumentation framework. An argument
labeling is a total function L : A → {in, out, undec} such that:

12

Semantics Restriction on
Labeling

Extension-based Description

complete all labelings conflict-free fixpoint of F
grounded minimal in minimal fixpoint of F

minimal out minimal complete extension
maximal undec

preferred maximal in maximal admissible set
maximal out maximal complete extension

semi-
stable

minimal undec admissible set with max. S ∪
S+

complete ext. with max S∪S+

stable empty undec S defeating exactly A\S
conflict-free S defeating A\S
admissible set S defeating A\S
complete ext. S defeating A\S
preferred ext. S defeating A\S
semi-stable ext. S defeating
A\S

Table 2.1: An overview of admissibility based semantics

• ∀α ∈ A : (L(α) = out ≡ ∃β ∈ A such that (β ⇀ α and L(β) = in)); and

• ∀α ∈ A : (L(α) = in ≡ ∀β ∈ A : (if β ⇀ α then L(β) = out))

In other words, an argument is labeled in if and only if all its defeaters are labeled out and
it is labeled out if and only if one of its defeaters is labeled in. The remaining arguments will
be labeled undecided.

Table 2.1 summarizes the correspondence between argument labelings and extensions estab-
lished by Caminada [7].

2.3 Game Theory

Game theory uses mathematics to provide tools for the analysis of the phenomena that occur
when autonomous entities interact by providing a suitable set of concepts for analyzing strate-
gic behavior and learning of strategies by self-interested agents3. Hence, it has been used in
experimental studies on convergence in MARL [2] in addition to the mechanism design of the
abstract argumentation mechanism for self-interested agents in a multi-agent environment [18],
on which the experimental work in this thesis is based. Similarly, in the multi-agent environ-
ment presented in the context of this work, the same concepts are applied through modeling
the agents’ decisions using a repeated stochastic, from the perspective of one agent due to the
uncertainty introduced by the other agents’ actions [2], strategic/normal form game which cap-
tures the essence of interaction within a multi-agent system. These key concepts, taken from a
more thorough field of Economics [13], will be introduced in this section along with correlation
to their applicability within this context.

A game is a matrix that specifies the payoff that the players get in each of the different
combinations of actions that they collectively play. For example, a normal form game with n
players with the set of actions Ai, and the reward Ri : A1 × ... × An → < based on the joint
action of all the players, for each player i is represented by the tuple 〈n,A1, ..., An, R1, ..., Rn〉.
A 2-player 2-action game can be represented as 2 by 2 payoff matrix whereby in each cell (i, j)
is the payoffs player 1 (row) and player 2 (column) receive, respectively, if they play actions
i and j respectively. Consequently, additional actions will be included as additional rows and
games with 3 players or more can not be represented in a 2 dimensional matrix. Table 2.2
shows a general 2-player 2-action game and examples of classic game theory benchmark games.

3Agent and player are used interchangeably, to mean the same thing, throughout this thesis.

13

(a) 2-player-2-action game

a1 a2
a1 r11, c11 r12, c12
a2 r21, c21 r22, c22

(b) coordination

a1 a2
a1 2,1 0,0
a2 0,0 1,2

(c) matching pennies

H T
H 1,-1 -1,1
T -1,1 1,-1

(d) tricky

a1 a2
a1 0,3 3,2
a2 1,0 2,1

Table 2.2: Benchmark 2-player 2-action games

If I denotes a set of self-interested agents, then θi ∈ Θi denotes the type of agent i, out of the
set of possible types Θi, which defines the agent’s preferences over outcomes o ∈ O in the set of
all possible outcomesO. The utility function ui(o, θi) represents the agent’s preferences whereby
if ui(o1, θi) > ui(o2, θi) then the agent prefers outcome o1 over o2. In strategic games amongst
self-interested agents, the agents select actions that maximize their payoffs while competing
against each other. This selection of actions is referred to as the agent’s strategy, si(θi) for
agent i, which is in essence a plan of what actions the agent will take each time it is required
to act based on the information the agent has at that time. Hence, if Σi is the set of all
possible strategies for agent i then si(θi) ∈ Σi. When each agent i is playing strategy si(θi) the
outcome is the strategy profile, also referred to as joint policy, s = (s1(θ1), . . . , sI(θI)). Note
that s−i(θ−i) = (s1(θi), . . . , si−1(θi−1), si+1(θi+1), . . . , sI(θI)) so s = (si, s−i) and therefore
ui((si, s−i), θi) is the utility of agent i, of type θi, when the agents play strategies specified by
strategy profile (si(θi), s−i(θ−i)).

In game theory solution concepts are used to determine and examine the outcomes when
rational strategic agents interact and in turn how self-interested agents choose their strategies
to maximize their own utilities and collectively determine not only their own but other agents’
outcomes as well. The Nash equilibrium is the most well known of these solution concepts and
is defined intuitively as the strategy profile in which each agent is maximizing its own utility
given the strategies of the other agents in the game [13], and formally in this context as:

Definition 9 (Nash Equilibrium [18]). A strategy profile s∗ = (s∗1, . . . , s
∗
I) is a Nash equilibrium

if no agent has incentive to change its strategy, given that no other agent changes. Formally,

∀i, ui(s∗i , s∗−i, θi) ≥ ui(s′i, s∗−i, θi),∀s′i.

Hence, referring again to the games in table 2.2, the coordination game has two pure
Nash equilibria: [(0, 1)r, (0, 1)c] and [(1, 0)r, (1, 0)c]. Both the matching-pennies and the tricky
games have one mixed Nash equilibrium where the actions are played with equal probability
[(1

2 ,
1
2)r, (1

2 ,
1
2)c]. Since a game can have multiple, and combinations of pure and mixed strategy,

Nash equilibria agents will be uncertain toward which one to play and that is assuming they are
able to determine them since that requires the agents to know all other agent’s preferences. A
solution concept that does not have this constraint is the dominant-strategy equilibrium which is
a strategy profile in which each agent is playing its dominant strategy [13], which is the strategy
that maximizes an agent’s utility regardless of the strategies played by the other agents and in
this context is formally defined as:

Definition 10 (Dominant Strategy [18]). Strategy s∗i is dominant if

ui(s∗i , s−i, θi) ≥ ui(s′i, s−i, θi) ∀s−i, ∀s′i

This is the weak form of dominance whereby the dominant strategy results in a greater
utility in at least one action and equal utility in the rest. A more strict notion of dominance
is when ui(s∗i , s−i, θi) > ui(s′i, s−i, θi) ∀s−i, ∀s′i in which case s∗i is said to strictly dominate s′i
since it results in a greater utility for the agent in every case. A dominant strategy is therefore
a Nash equilibrium but not necessarily the opposite. Additionally, there are strategic games in
which no agent has a dominant strategy.

Another solution concept which is used to analyze the results of this experimentation is that
of Pareto dominance [13] (and optimality) defined formally in this context as:

14

Definition 11 (Pareto Dominance [19]). An outcome o1 ∈ O Pareto dominates outcome o2 6=
o1 iff ∀i ∈ I, o2 �i o1 and ∃j ∈ I, o2 �j o1.

Definition 12 (Pareto Optimality [19]). An outcome o1 ∈ O is Pareto optimal (or Pareto
efficient) if there is no other outcome o2 6= o1 such that ∀i ∈ I, o2 �i o1 and ∃j ∈ I, o2 �j o1.

An outcome is Pareto dominated, by another outcome, if the agent will make an improve-
ment by choosing another outcome over it without making any of the other agents worse off.
Therefore, an outcome is Pareto optimal if it is not Pareto dominated by any other outcome.

2.4 Argumentation Games

Mechanism design is a framework initially developed as part of economic theory to addresses
the problem of ensuring that a desirable system-wide outcome is reached as a result of the
interaction of several parties that have different preferences over the outcome. This section
explains an Argumentation Game that is developed based on this framework.

Rahwan and Larson’s research introduces argumentation mechanism design (ArgMD) to
fill the niche for a method for the purpose of “understanding the strategic aspects of abstract
argumentation among self-interested agents” [18]. This takes into account not only the rules of
argument acceptability or labeling but also covers the possible scenario whereby agents follow
strategies when deciding what arguments to present or hide, thereby ‘lying’, while competing
amongst other agents which have conflicting interests over the arguments they want to be
accepted. The work relies on a few concepts from game theory and mechanism design that are
applied in the context of multi-agent argumentation to define an Argumentation game.

In such an environment, the type of an agent represents the private information (known
only by the agent) and the preferences of the agent over a possible set of outcomes. These
preferences are expressed by a utility function that depends on the agent type and outcome to
give utility values to each outcome.

Definition 13 (Agent Type [18]). Given an argumentation framework 〈A,⇀〉, the type of
agent i, Ai ⊆ A, is the set of arguments that the agent is capable of putting forward.

An agent’s strategy is the plan that the agent follows to determine its actions at each time
it is required to act during a game. Since the agents are self-interested, their goals will be to
maximize their own utility, and they will choose strategies accordingly.

Thus an Argumentation game whereby a group of self-interested agents interact, in the
context of this work, is defined as a mechanism whereby each of the agents involved will simul-
taneously decide on the subset of the set of their arguments that they wish to reveal, hence
hiding the rest, and then the mechanism will label the accepted arguments based on the argu-
ment acceptability criterion used. This is further extended based on the sceptical evaluation
mechanism [18] to define the skeptical direct argumentation game which will calculate the
grounded extension given all the arguments presented by all the agents.

Definition 14 (Sceptical Argumentation Game). A sceptical argumentation game for argu-
mentation framework 〈A,⇀〉 is (Σ1, . . . ,ΣI , g(.)) where:

– Σi ∈ 2A is the set of strategies available to each agent;

– g : Σ1 × · · · ×ΣI → 2A is an outcome rule defined as: g(A◦1, . . . ,A◦I) = Acc(〈A◦1 ∪ · · · ∪
A◦I ,⇀〉,Sgrnd) where Sgrnd denotes sceptical acceptability semantics.

Rahwan and Larson prove this mechanism to be strategy-proof under the condition that the
agents don’t have arguments that directly/indirectly attack each other and when all the agents
have acceptability maximizing preferences (their aim is to get the maximum number of their
arguments accepted) [19]. If LAB is the set of all possible legal labelings of all arguments put
forward by participating agents, then acceptability maximising preferences is defined as follows:

15

Definition 15 (Acceptability maximising preferences [19]). An agent i has individual accept-
ability maximising preferences iff ∀L1, L2 ∈ LAB such that |in(L1) ∩ Ai| ≥ |in(L2) ∩ Ai|, we
have L1 �i L2.

In other words, even though agents have an incentive to lie, by hiding arguments in order
to maximize their utility, under this mechanism, and the condition that each agents’ arguments
do not self defeat, the dominant strategy is for an agent to reveal all of its arguments.

2.5 Multi-Agent Learning of Strategies

In the case of single-agent learning only one agent is interacting, and learning from, a dynamic
and unknown environment. A Markov Decision Process [11], consisting of a set of states, a set
of actions, a transition function and a reward function, is an adequate representation of the
single agent situation and a rational reinforcement learning algorithm such as Q-Learning [28]
can find the required optimal policies in MDPs.

In a multi-agent system however, due to the presence of other adaptive agents, from the
perspective of any one agent, the best action to be taken at any time will depend on the actions
and changing policies of the other agents that are unknown [23]. Game theory, using concepts
explained in detail in section 2.3, is an appropriate model and has been used extensively to
test the performance of Multi-Agent Reinforcement Learning (MARL) algorithms by modeling
them as repeated stochastic strategic/normal form games.

Bowling and Veloso defined Rationality and Convergence as required properties of a MARL
algorithm and used them to rate the performance of different algorithms in a spectrum of
stochastic games.

Definition 16 (Rationality [6]). If the other players’ policies converge to stationary policies
then the learning algorithm will converge to a policy that is a best response to the other players’
policies.

Definition 17 (Convergence [6]). The learner will necessarily converge to a stationary policy.
This property will usually be conditioned on the other agents using an algorithm from some
class of learning algorithms.

Greedy learners [8], the collective name for Independent Learners (IL), which ignore other
agents and use Q-learning, and Joint Action Learners (JAL), which estimate other agent’s
policy using fictitious play, have not performed as well in multi-agent environments as they do
for single-agents [6]. Regardless of the fact that these algorithms only learn pure Nash equilibria
and their convergence in competitive games has not been formally proved, they require that
the agents have, or have the ability to acquire, some background knowledge of the other agents
and the structure of the game itself. This is not the case in more realistic applications where
the world is not visible to the agents and the domain is competitive [2].

Based on this need for an algorithm that learns a stochastic policy in iterated games in an
open domain, Singh, Kears and Mansour introduced the Gradient Ascent algorithm whereby
a player will move toward a strategy following the gradient with a step size δ [24]. The study
proved that the algorithm is rational but not convergent. They further examined the algorithm
using an infinitesimal step size, to see the effects on convergence as δ approaches 0 and called
the refined algorithm Infinitesimal Gradient Ascent (IGA) which was further generalized to
produce the Generalized IGA (GIGA) algorithm [29]. The observed convergence of either does
not suffice since both of them did not consistently converge to a Nash Equilibrium especially
in games with only mixed Nash Equilibria [2].

Hence, to improve convergence, Bowling and Veloso introduced the concept of a variable
learning in IGA, whereby the size of the steps taken toward the policy varies, and a new learning
technique named the “Win or Learn Fast” (WoLF) principle, , which uses a variable learning
rate [6]. In WoLF the size of the step is dependent on whether the player is winning or losing.

16

It increases as the player in losing and decreases as the player in winning which translates
intuitively into the notion that when the player is doing well and winning half the job is done
since it’s on the right track so it can slow down while if it is losing it needs to change it’s
direction, or strategy, faster.

Abdallah and Lesser examined the same issue of convergence through experimentation with
different learning algorithms resulting in the introduction of the “Weighted Policy Learner”
(WPL) which is gradient ascent learning algorithm that they show to converge in a variety
of games, including the challenging Shapley’s game [2]. The algorithm, when implemented in
2-action games, slows down learning if agents are moving towards a pure policy thus damping
policy oscillation until the joint policy gradually stabilizes to the Nash quilibrium.

In this analysis, attention was limited to GIGA and WPL as a sample subset of MARL
algorithms. Both of the algorithms share the four parameters below:

• The policy of an agent i denoted by πi.

• The value-learning-rate α is used to compute the expected reward of an action a at time t,
or rt(a) using the equation rt+1(a)← αRt + (1−α)rt(a), where Rt is the sample reward
received at time t and 0 ≤ α ≤ 1 [25].

• The policy-learning-rate δ (δ → 0) is the size of the step used to update the policy π.

• The exploration rate ε (ε→ 0) is the minimum rate at which the algorithm deviates to a
random action to explore.

The details of the way these two algorithms work differently are discussed in the following
two sections.

2.5.1 Generalized Infinitesimal Gradient Ascent (GIGA) [29]

GIGA is a gradient ascent algorithm an agent i’s policy πi is updated based on the the value
function ri(t), which is the gradient of expected payoffs, as in the following equations:

∆πt+1
i ← δ

∂ri(t)
∂πi

πt+1
i ← projection(πti + ∆πt+1

i)

The generalization of IGA that GIGA introduces is through defining the projection function
as projection(x) = argminx′:valid(x′)|x−x′|, where |x−x′| is the Euclidean distance between x
and x′. The projection function projects an invalid policy to the closest valid policy within the
unit simplex [2] that fulfills the constraints ∀a ∈ A : 1 ≥ π(a) ≥ 0 and

∑
π =

∑
a∈A π(a) = 1.

2.5.2 Weighted Policy Learner (WPL) [1]

WPL uses the policy gradient ∆ to update policy πi, and a projection function adopted from
that of GIGA with the modification ∀a : 1 ≥ π(a) ≥ ε, as shown in the following update
equations:

∆πi(a)← ∂Vi(π)
∂πi(a)

· δ ·

{
πi(a) if ∂Vi(π)

∂πi(a)
< 0

1− πi(a) otherwise

πi ← projection(πi + ∆πi)

Intuitively, this means that, the probability of choosing an action increases, if it is a good
choice, or decreases, if it is a bad choice, at a rate that decreases as the algorithm moves toward

17

or away from it respectively. So the algorithm slows down gradually as long as it is moving
toward an action but starts to learn fast as soon as it starts moving away from it.

18

Chapter 3

Specification and Implementation

3.1 Basic Simulator Architecture

The Java-based simulation tool is an extension of the tool implemented by Abdallah and
Lesser in order to experiment with the convergence properties of the “Weighted Policy Learner”
(WPL) [1], which is discussed in detail in section 2.5.

3.1.1 Existing Tool

The main requirement that the specification of the existing tool calls for is the provision of the
possibility to examine the way the policies of multiple learning agents evolve over time as the
agents learn, as opposed to just showing the final result. Hence, the results can be analyzed to
reveal how the learning algorithm moves toward convergence.

In terms of games, this tool implements the classic games that are commonly studied in
Game Theory. Namely, matching pennies, the coordination game and the tricky game, which are
2-player-2-action games, in addition to rock-paper-scissors and Shapley’s, which are 2-player-
3-action games and Jordan’s, which is a 3-player-2-action game. As for learning algorithms,
the tool implements players that will learn using either the Generalized Infitismal Gradient
Ascent (GIGA), GIGA-Win or Learn Fast (GIGA-WoLF) [5] or the Weighted Policy Learner
(WPL) learning algorithm. The number of steps in a game (number of encounters) and the
initial policy π of the players are variable and can be set as parameters when running a game
in addition to several parameters specific to the algorithm such as the value learning rate α,
the policy learning rate δ and the exploration rate ε.

The tool comprises of the controller class which initializes the game, sets up the log, creates
the game and the players, based on all the input parameters and, in essence, runs the game by
pulsing through the time steps. In each step, the actions of each player are gathered and the
payoff of each player is determined from the game’s payoff matrix. The games, in their payoff
matrix representation, are implemented in the game class, that extends a game interface, and
the different types players, as learning algorithms, are implemented in a separate class each.
The action, pay and updated policy of each player at each step is logged in a log file for later
graphing and analysis.

3.1.2 Extension of Existing Tool

The major part of the extension of the tool was the realization of the Argumentation game.
This was done as an extension of the game interface by implementing the class GameArgue
along with a few peripheral classes. The argumentation game takes into account the provision
of the capability of the representation of the concepts of abstract argumentation frameworks

19

and argumentation mechanism design as discussed in sections 2.2 and 2.4 respectively.

For instance, the representation of the argumentation framework as a collection of argu-
ments with defeat relations between them is applied using an object, an instance of the class
ArgumentGraph, that is a set of objects, instances of the class Argument, which have vectors
of other Arguments as defeaters and victims (instance variables of an Argument object). Each
argument also has an instance variable to hold its status once the graph is analyzed and its
arguments labeled according the grounded extension.

The agent type, defined as the set of arguments that the agent is capable to put forward,
or reveal, is determined as an input parameter and maintained as a variable in the game class.
From it the set of all possible combinations of the agent’s assigned arguments, the power set of
the set of arguments, is calculated and also reserved as the agent’s set of actions.

For each agent, the utility of winning each argument, or in other words getting that argument
accepted, is also an input parameter. This allows the manipulation of the agents’ incentives
and preferences. A higher utility allocated to an argument, for an agent, will motivate the
rational agent to essentially value it’s acceptance more than another argument with lower
utility. A negative utility would, in turn, prompt an agent to adopt a strategy that inhibits the
said argument’s acceptance. Hence, the concept of acceptance maximizing preference would
correspond to all arguments having positive utilities.

Algorithm 3.1 describes how the game uses the input parameters to simulate the interaction
of the agents and produce output logs. It is apparent from the cases discussed in Chapter 4
that each of the argumentation games can be represented as a generic matrix game and hence,
instead of using a configuration file to initialize the each game and go through this algorithm,
it could have been manually computed and hardcoded into the tool. While this may seem more
efficient in the simple cases involving a few agents and a few arguments, the argumentation game
tool was designed to account for further extension for use in more complex cases involving
a larger number of agents and more complicated argumentation graphs. In that case this
algorithm, whereby the sub-graph, extension and pay are calculated at each step, is definitely
more appropriate.

20

Algorithm 3.1: The Argumentation Game
Input: ArgGameParams.txt: configuration file (arguments, attacks, agents and

utilities)
log: Log file-base
p: Player(Learning Algorithm)
s: No of Steps
π: Initial policy
α: Learning rate
δ: Policy learning rate
ε: Exploration rate
Output: Log of policy and pay per agent per step
Create Argumentation Game(log,s)
Get Arguementation Game Parameters(”ArgGameParams.txt”);
Create Argumentation Graph(arguments, attacks);
foreach Agent a do

Create Player(p, π, α, δ, ε);
Create Actions(agents, arguments, utilities);

end
foreach Step s do

foreach Agent a do
Get Action;

end
Create ActionGraph;
Compute Extenstion(ActionGraph);
foreach Agent a do

Calculate Pay;
Update Policy;

end
Log Policy and Pay (log, s);

end

Dung’s Grounded Extension

As defined in section 2.2, the grounded extension includes arguments which neither have any
direct defeaters nor are defeated by any accepted arguments. Algorithm 3.2, used to label
the arguments in an argumentation graph based on the grounded extension, is adapted from
Dung’s conclusion [9] that the grounded extension can be obtained by applying the characteristic
function to the empty set iteratively [18].

21

Algorithm 3.2: The Grounded Extension of an Argumentation Graph
Input: Argumentation Graph
Output: Labeling of Argument Nodes to in, out and undec according to Grounded

Extension
while Change = True do

Change = False;
foreach Argument αi do

Get Defeaters(αi);
if Defeaters(αi) ≡ 0 then

Change = True;
Status(αi) = in;
foreach Argument αj defeated by αi do

Status(αj) = out;
Remove αj from the defeaters list of its own victims;
Remove αj from the graph;

end
Remove αi from the defeaters list of its own victims;
Remove αi from the graph;

end
end

end
foreach Remaining Argument αk do

Status(αk) = undec;
Remove αk from the graph;

end

3.1.3 Game Parameters and Output

The purpose and use of each of the parameters required and employed in the argumentation
game is discussed here. The game utilizes the variable input parameters in the original multi
agent learning tool in addition to a few other parameters that are specific to the argumentation
and argumentation mechanism design aspect of the game. Refer to Appendix B for the details
of how these parameters are formatted as input into the game and the resulting format and
method of interpretation of the output.

General Game Parameters

The following are the general game parameters that are required to run the general multi agent
learning tool.

• Game: Essentially, the name of the game to be played. This would be either “argue” for
the argumentation game or a different corresponding name for one of the other supported
games.

• Player: The player (learning algorithm); WPL, GIGA or GIGA-WoLF.

• Steps: The number of times (encounters) that the game is played.

• π: The initial policy of the players.

• α: The value learning rate of the learning algorithm which is the size of the step used to
update the action values.

• δ: The policy learning rate of the learning algorithm which is the size of the step used to
update the policy.

22

• ε: The exploration rate which is the minimum rate at which the algorithm deviates to a
random action to explore.

Argumentation Game Parameters

The following are the Argumentation Game specific parameters which are read from an input
configuration file.

• The arguments in the game.

• The argumentation framework of the game.

• The agents in the game.

• The agent’s assigned arguments and their associated utilities.

3.2 Technical Limitations

The tool is Java-based and Eclipse SDK, an open source integrated development environment
(IDE), was used to develop the extension also in Java. Matlab was used for the plotting, and
further analysis, of the output data into results and Gambit was used for the game-theoretic
analysis of the games. Refer to Appendix A for the details of, and justification for, the tech-
nologies used.

The technical limitations of the argumentation game tool for the most part be resolved given
more time since they only require the extension of the simulation tool by implementing more
parameters. Had these been implemented many characteristics of agents and judges could be
modeled resulting in a wider variety of interesting scenarios worth studying as mentioned in
chapter 5 as suggestions for further work.

Two particular limitations that impacted the work in this thesis are; Firstly the fact that
utilities are assigned to the acceptability of individual arguments and not combinations of
arguments. This forced the representation of the “Argumentative Battle of the Sexes” game
using the general game tool, as a matrix game, for an accurate representation of the true
intuition of the game. Secondly, a more intuitive user interface would have immensely helped
by making the parameterization of games easier and decreased the chance of error and the need
for double checking.

23

Chapter 4

Experimental Design and Results

4.1 Introduction

This chapter presents five cases of argumentation games each with different interesting char-
acteristics and discusses the results achieved when these games are run using the implemented
simulation tool under different conditions.

4.2 Parameter Design

In addition to using characteristic argumentation graphs from literature, that highlight differ-
ent properties, to experiments with different argumentation scenarios, parameters such as the
utilities assigned to the arguments, the assignment of the arguments to the agents, the learning
algorithms used and their inherent learning parameters were all used as parameters to design
the cases.

To ensure that the analysis is not tied to a particular algorithm two learning algorithms,
WPL and GIGA, which have been discussed in detail in section 2.5 were used to evaluate the
argumentation games.

4.3 Benchmark Games

4.3.1 Case 1: The “Nixon Diamond” Argumentation Game

The argument graph shown in figure 4.1 represents the argumentation framework of a famous
and commonly studied scenario in non monotonic reasoning known as the “Nixon Diamond”.
In natural language α1 represents the argument “Richard Nixon is anti-pacifist since he is a
republican”, and α2 represents the argument “Richard Nixon is a pacifist since he is a quaker”.
Based on the knowledge that quakers are pacifist, republicans are not pacifist and Richard Nixon
is both a quaker and a republican, the arguments attack each other. This framework, along
with a natural language assignment to the arguments is used as an example to demonstrate
the mutually inconsistent conclusions that result from default assumptions and thereby links
the difference between the two preferred extension, in which one of the arguments is accepted
each (credulous semantics), versus the grounded extension which is empty and rejects both
arguments (skeptical semantics), using the complete extension [9].

Table 4.1 shows the argument assignments of the two agents in the “Nixon Diamond” and
table 4.2 is its representation as a two player argumentation game. Each agent is given one
argument, agent 1 given argument α1 and agent 2 given argument α2, with an acceptance utility

24

of 1 each. For each agent the action Hide is to hide its argument, in other words reveal the
empty set {}, and Show is to reveal the assigned argument {α1} for agent 1 and {α2} for agent
2.

1 2

Figure 4.1: Game 1 - Arg Graph

Player Argument (Utility)
p0 α1 (1)
p1 α2 (1)

Table 4.1: Game 1

Hide Show
Hide 0 0 0 1
Show 1 0 0 0

Table 4.2: Game 1 Representation

For both agents the action Show weakly dominates the action Hide and the game has three
pure Nash equilibria:

• [(0, 1)p1, (1, 0)p2]

• [(1, 0)p1, (0, 1)p2]

• [(0, 1)p1, (0, 1)p2]

Two of the Nash equilibria are when one agent chooses to Show and the other to Hide, and
vice versa, and the third in which both will choose to Show. This third Nash equilibrium is
not Pareto efficient/optimal because by moving to one of the other two one of the agents will
gain more utility without decreasing the utility of the other, in other words it does not achieve
maximum welfare. However, since the agents are self interested and utility maximising, each
only cares about its own utility and not maximum welfare, they do not favor the first two Nash
equilibria over the third because a Pareto improvement might have been a motivation only as
a result of collaboration, which is not the case here.

As seen in the graphs below, both WPL and GIGA converge to the pure Nash equilibrium
[(0, 1)p1, (0, 1)p2] but under different parameters, specifically different values of the learning rate
α. It can also be stated that GIGA converges better and faster than WPL and this is because
WPL is biased against pure Nash equilibria and prefers mixed strategies.

Figures 4.2, 4.3 and 4.4 show how the convergence of WPL gets closer to the pure Nash
equilibrium [(0, 1)p1, (0, 1)p2] as α decreases. When α is 0.1 it converges to a mixed strategy of

25

[(1
5 ,

4
5)p1, (1

5 ,
4
5)p2] and the pay of both agents converges to a value of roughly (0.15,0.15), then

when α is 0.01 it converges to [(1
10 ,

9
10)p1, (1

10 ,
9
10)p2] and the pay to (0.15,0.15) which is closer

to the pure Nash equilibrium [(0, 1)p1, (0, 1)p2]. When α is further decreased to 0.001 it gets
even closer by converging to [(1

20 ,
19
20)p1, (1

20 ,
19
20)p2] with the pay converging to (0.05,0.05). It

is interesting to note here that for the Nash equilibrium, the payoff is actually (0,0), which is
lower than the equilibrium reached by WPL.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
WPL Pay

Agent 1

Agent 2

(c) Pay

Figure 4.2: Game 1: WPL α=0.1 δ=0.002 ε=0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
WPL Pay

Agent 1

Agent 2

(c) Pay

Figure 4.3: Game 1: WPL α=0.01 δ=0.002 ε=0.01

26

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
WPL Pay

Agent 1

Agent 2

(c) Pay

Figure 4.4: Game 1: WPL α=0.001 δ=0.002 ε=0.01

GIGA, on the other hand, performs better when α is larger and worse as it decreases. As
seen in figures 4.5, 4.6 and 4.7 the agents’ policies converge to the pure Nash Equilibrium
[(0, 1)p1, (0, 1)p2] accurately enough when α is 0.1 and 0.01 along with the pay converging to
almost (0,0). However when α is decreased to 0.001 at some point the policies start to deviate
away from this Nash equilibrium for some time before they return, creating dips in the policy
graphs and oscillations in the pay graphs. This behavior is due to the fact the policy should
actually follow the value, so the value learning rate α should be lower than the policy learning
rate δ.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
GIGA Pay

Agent 1

Agent 2

(c) Pay

Figure 4.5: Game 1: GIGA α=0.1 δ=0.002 ε=0.01

27

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
GIGA Pay

Agent 1

Agent 2

(c) Pay

Figure 4.6: Game 1: GIGA α=0.01 δ=0.002 ε=0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
GIGA Pay

Agent 1

Agent 2

(c) Pay

Figure 4.7: Game 1: GIGA α=0.001 δ=0.002 ε=0.01

4.3.2 Case 2: Contradicting Arguments

John is being prosecuted as one of the suspects in a bank robbery that occurred last week based
on the prosecutor’s argument that the characteristics of the robbery indicate that John is a
prime suspect. The prosecutor also has proof that John has been in jail for the past month
serving a sentence for a previous similar bank robbery. This does not directly support his
argument that John is guilty, it actually contradicts it and thus attacks it directly, but it is
proof of his previous involvement in such crimes and hence indirectly attacks John’s lawyer’s
argument that he has a clear criminal record. In addition to claiming that John has a clean
criminal record, which the lawyer uses to defeat the prosecutor’s claim that John is the prime
suspect, the lawyer can also make the argument that John indeed has been previously charged
with robbery but serving his sentence in jail has made him learn his lesson.

Using the following statements:
q: “John has been in jail for the past month”
p: “John was in jail the day of the robbery”

28

r: “John has a clean criminal record”
s: “John is a prime suspect of the robbery”
v: “John is deterred by jail after serving previous sentence”
t: “John is a very honorable man in the community”
u: “There is evidence of John’s involvement in the robbery”

The following explicit arguments were constructed then further summarized into shorter
arguments that carry their implicit meaning.
α1: q, q → p ` p
“John has been in jail for the past month, if he was in jail for the past month then he was in
jail on the day of the robbery. Hence he was in jail on the day of the robbery”
α2: (¬p ∧ t), (¬p ∧ t)→ (r ∧ ¬s) ` (r ∧ ¬s)
“John was not in jail on the day of the robbery and is a very honorable man, people who are not
in jail and are known to be honorable have clean criminal records and are not prime suspects of
crimes. Hence he has a clean criminal record and he is not the prime suspect of the robbery”
α3: (s ∧ u), (s ∧ u)→ ¬p ` ¬p
“John is the prime suspect of last week’s bank robbery and there is evidence of his involvement
in it, if someone is a prime suspect in a crime and there is evidence of their involvement in it
then they were not in jail at the time it occurred. Hence he was not in jail on the day of the
robbery”
α4: v, v → ¬r ` ¬r
“John is deterred by jail (he has learned his lesson after his last sentence), if someone is deterred
by jail then they have been jailed before and so they don’t have a clean criminal record. Hence
he does not have a clean criminal record”

Figure 4.8 shows the argumentation graph corresponding to this scenario and these are
simply shorter versions of the above detailed arguments:
α1: “John has been in jail for the past month and hence was in jail on the day of the robbery”
α2: “John was not in jail on the day of the robbery and is a very honorable man, hence he has
a clean criminal record and he is not the prime suspect of the robbery”
α3: “John is the prime suspect of last week’s bank robbery and there is evidence of his involve-
ment in it hence not in jail on the day of the robbery”
α4: “John is deterred by jail, he has learned his lesson after his last sentence, hence he does
not have a clean criminal record”

Agent 1, representing the lawyer, is given arguments α2 and α4, which attack each other,
and agent 2, the prosecutor, is given arguments α1 and α3, which also attack each other.
Additionally argument α1 attacks α2 which itself attacks α3. Table 4.4 shows the agent types
and the utilities of winning each of the arguments. A higher utility of 2 is given to α2 than 1 to
α4 because assuming that the lawyer’s preferred outcome is that John’s reputation is reclaimed
then winning the argument that he has a clean criminal record would be ideal. However, because
the prosecutor might use his argument to attack it, the argument that John has learned his
lesson is a backup argument that is weaker in terms of proving John’s innocence but more is
more likely to be won because none of the prosecutor’s arguments attack it. So the lawyer has
to weigh out whether to reveal that John does have a past criminal record, but has learned
his lesson after his last sentence, or to stay quiet about that and directly use the argument
that John has a clean criminal record and running the risk of it being attacked. Likewise, the
prosecutor is more interested in winning the argument that John is the prime suspect, and only
using the proof that he’s been in jail to reinforce it, higher utility of 3 is given to α3 than 1 to
α1.

29

α1 α2

α3

α4

Figure 4.8: Game 2 - Arg Graph

Player Argument (Utility)
p0 α2 (2), α4(1)
p1 α1 (1), α3(3)

Table 4.3: Game 2

{} {α3} {α1} {α1,α3}
{} 0 0 0 2 0 1 0 0
{α4} 1 0 1 2 1 1 1 0
{α2} 2 0 2 0 0 1 0 0
{α2,α4} 0 0 0 0 1 1 0 0

Table 4.4: Game 2 Representation

As can be deduced from table 4.4, for agent 1, the lawyer, (1,0,0,0) is strictly dominated
by (0,1,0,0), which means that he is always better off revealing only α4 than if he stays quiet
and does not say anything. In addition (0,0,0,1) is weakly dominated by (0,1,0,0) which means
that in some cases he is better off revealing only α4 and not α2 rather than revealing both. For
player 2, the prosecutor, (1,0,0,0) and (0,0,0,1) are strictly dominated by (0,0,1,0) and weakly
dominated by (0,1,0,0) which means that he is always better off revealing α1 than keeping quiet
or revealing both his arguments, and in all cases he is either the same or better off revealing
only α3 than keeping quiet or revealing both his arguments.

This leads to an interesting combination of Nash equilibria whereby one is pure, one is a
mixed strategy and one is a combination whereby agent 1 has a mixed strategy while agent
2 has a pure strategy. The pure Nash Equilibrium [(0, 0, 0, 1)p1, (0, 0, 1, 0)p2], however, is not
a dominant strategy equilibrium because for agent 1 (0,0,0,1), revealing both arguments, is a
weakly dominated strategy.

• [(0, 0, 0, 1)p1, (0, 0, 1, 0)p2]

• [(0, 1
2 ,

1
2 , 0)p1, (0, 1

2 ,
1
2 , 0)p2]

• [(0, 1
2 , 0,

1
2)p1, (0, 0, 1, 0)p2]

Intuitively, it is apparent that a good plan for each would be to mix between revealing each
of their two arguments equally and this translates to the mixed strategy Nash equilibrium.
The prosecutor prefers to win α3, which is the more powerful argument that is assigned higher
utility, but needs to defend it using α1 and so has the option of giving it up and just settling
for α1 which is weaker and had less utility but is better than zero utility. The lawyer prefers to
win α2 but has to settle for α4 because α2 is defeated by the prosecutor’s argument α1 which

30

he will reveal. This explains the other two Nash equilibria whereby the prosecutor reveals only
α1 and the lawyer either reveals all his arguments and expects the prosecutor to defeat α2 or
mixes between revealing his two arguments equally.

Expectedly, it is obvious from the graphs below that both WPL and GIGA are converging to
the mixed Nash equilibrium [(0, 1

2 ,
1
2 , 0)p1, (0, 1

2 ,
1
2 , 0)p2]. However, when δ is 0.002 both agents’

policies oscillate between (0,1,0,0) and (0,0,1,0), GIGA more ?aggressively? than WPL, as seen
in figures 4.9 and 4.11. This is because if we take out the dominated strategies the game is
focused around two actions per agent as shown in the sub-game in table 4.5 which has only one
mixed Nash equilibrium [(1

2 ,
1
2)p1, (1

2 ,
1
2)p2]. Initially each of the players want to maximize his

utility so for example player 1 will start to move toward a pure policy (0,1) in order to try to
get a utility of 2. Player 2 will notice this and try to maximize his own utility based on player
1’s choice to reveal α2 by revealing α1 and going toward (0,1) which will give him a utility of
1. Player 1 will in turn start getting utility 0 and will learn that if player 1 is revealing α1 then
he should start revealing α4 and change his policy to (1,0) to get utility 1. Again player 2 will
start realizing that if player 1 is revealing α4 he can increase his utility to 2 if he changes his
policy to (1,0). And the cycle continues.

The update equation of WPL dampens these oscillations because the rate of increase of prob-
ability toward choosing the better action decreases as that probability increases so it prevents
the fast, intuitively more haste, move toward the better action that GIGA does.

{α3} {α1}
{α4} 1 2 1 1
{α2} 2 0 0 1

Table 4.5: Game 2 Sub-game

When δ is decreased to 0.0001 the algorithms do not oscillate anymore because the steps to
update the policy are small and so both move slower and stabilize at the mixed Nash equilibrium
before either player gets a chance to try to deviate toward a pure policy as seen in figures 4.10
and 4.12. GIGA converges faster and WPL might just need more iterations of the game, or
time steps, because in addition to the policy learning rate being really small, it is more cautious
and so it takes more time to increase enough to reach the equilibrium policy and stabilize.

This accurately mimics the behavior of a lawyer a prosecutor in real life which usually entails
formulating arguments that, regardless of having a true basis, are not completely true and build
on what the opponent reveals. The agents in this simulation base their choice of actions on the
goal of maximising their utilities based on the other agent’s policy.

31

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
WPL Pay

Agent 1

Agent 2

(c) Pay

Figure 4.9: Game 2: WPL α=0.01 δ=0.002 ε=0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
WPL Pay

Agent 1

Agent 2

(c) Pay

Figure 4.10: Game 2: WPL α=0.01 δ=0.0001 ε=0.01

32

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
GIGA Pay

Agent 1

Agent 2

(c) Pay

Figure 4.11: Game 2: GIGA α=0.01 δ=0.002 ε=0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
GIGA Pay

Agent 1

Agent 2

(c) Pay

Figure 4.12: Game 2: GIGA α=0.01 δ=0.0001 ε=0.01

4.3.3 Case 3: Indirect Support

John has been ruled guilty of the bank robbery. In a segment of the court hearing the issue is
determining when he did it, based on which his sentence will be issued.

The prosecutor is claiming, and wants to prove, that it was carried out on Monday, during
daytime, while the bank was open for business, while John’s lawyer wants to prove that it was
carried out on Monday, which was Bank Holiday, at night. The sentence for a night robbery
on a holiday would not be as harsh because the bank is closed all day, and due to decreased
visibility at night time and less passers-by which means less planning and mischief involved, it
is easier. From the prosecutor’s point of view, the goal is to prove that the robbery occurred
on Monday during the day but depending on the lawyer’s stance, he can either argue that it
was early morning or at noon. Proving that it happened early morning by saying that this is
when the evidence was found and the robbery was reported to the police would probably get
John a harsher sentence since that means that most of the bank staff were there rather than
him taking advantage of some being on lunch break but the lawyer can counter argue that by

33

stating that Monday was a bank holiday and the bank was closed on that day. According to
the lawyer, a stronger argument to make would be that the bank was closed on Monday, since
it overrules the prosecutor’s claim that the staff were present, but he places more importance
on winning the argument that the evidence was found on Monday night, which is what he is
interested in proving.

The argumentation graph representing this case, as shown in figure 4.13, is similar to that of
case 2 above but without the contradicting, or mutually defeating, arguments. For each agent
only one of the arguments given to it defeats the other one. The arguments are as follows:
v: “The day of the robbery was Monday which is a Bank Holiday”
p: “The bank was open for business on the day of the robbery”
q: “There was staff in the building at the time of the robbery”
r: “The robbery occurred at night time”
s: “The robbery occurred during lunchtime”

Leading to the following explicit arguments:
α1: v, v → ¬p ` ¬p
“The day of the robbery is Monday which is Bank Holiday, the bank is closed on Bank Holiday.
Hence the bank was closed on the day of the robbery”
α2: p, p→ q ` q
“The bank was open on the day of the robbery, when the bank is open there is staff in the
building. Hence there were staff in the building”
α3: (p ∧ ¬q), (p ∧ ¬q)→ r ` r
“The bank was open on the day of the robbery and there were no staff in the building at the
time, on days when the bank is open for business the staff are only there during the day. Hence
the robbery happened at night after business hours”
α4: ¬q,¬q → s ` s
“There were no staff at the time of the robbery, the staff leave the building to go for lunch
during lunch time. Hence the robbery happened during lunch time”

Summarized to the following:
α1: “The day of the robbery is Monday which is Bank Holiday so the bank was closed”
α2: “The bank was open on the day of the robbery so there were staff in the building”
α3: “The bank was open on the day of the robbery and there were no staff in the building at
the time so it happened at night after business hours”
α4: “There were no staff at the time of the robbery so it happened during lunch time”

The lawyer has arguments α1 and α3 with utilities of 1 and 5 respectively, his main goal
is to prove that the robbery occurred at night. The prosecutor has arguments α2 and α4 with
utilities 4 and 1 respectively since he places higher priority on winning α2 but would settle for
winning α4 in case α2 was defeated by the lawyer.

α1 α2

α3

α4

Figure 4.13: Game 3 - Arg Graph

34

Player Argument (Utility)
p0 α1 (1), α3(5)
p1 α2 (4), α4(1)

Table 4.6: Game 3

{} {α4} {α2} {α2,α4}
{} 0 0 0 4 0 4 0 4
{α3} 5 0 5 1 0 4 0 4
{α1} 1 0 1 1 1 0 1 1
{α1,α3} 1 0 1 1 1 0 1 1

Table 4.7: Game 3 Representation

In the representation of the game in table 4.7 it can be deduced that for player 1, representing
the lawyer, (1,0,0,0) is strictly dominated by (0,0,1,0) and (0,0,0,1) and weakly dominated by
(0,1,0,0). Hence, the lawyer is always better off revealing something rather than staying quiet:
either revealing only α3 and hiding α1 which defeats it or revealing α1 are the best options. In
other words either using the argument that the robbery occurred on a holiday which means the
bank was closed or the argument that there were no staff in the bank at the time of the robbery
so it occurred at night time. Revealing both arguments, in which case α3 will be defeated
by α1 and α1 will be won is the same as revealing only α1 since there is no cost to revealing
arguments or punishment for revealing arguments that get rejected. For player 2, representing
the prosecutor, (1,0,0,0) is strictly dominated by (0,1,0,0) and (0,0,0,1),in addition, (0,1,0,0)
and (0,0,1,0) are both weakly dominated by (0,0,0,1). This means the prosecutor is also better
off saying something than staying quiet and getting 0 utility but, on the other hand, he is
better revealing both his arguments because α2 is the argument he prefers to win, and it has
higher utility than α4. Therefore, he reveals both arguments and if α2 is undefeated he wins
it, otherwise it is defeated and he wins α4. He can also play the mixed strategy (0, 1

5 , 0,
4
5)

whereby one fifth of the time he hides α2 since that is how much weight is given to hiding it.
The following Nash equilibria result:

• [(0, 0, 1, 0)p1, (0, 0, 0, 1)p2]

• [(0, 0, 0, 1)p1, (0, 0, 0, 1)p2]

• [(0, 0, 1, 0)p1, (0, 1
5 , 0,

4
5)p2]

• [(0, 0, 0, 1)p1, (0, 1
5 , 0,

4
5)p2]

Neither of the learning algorithms converge to any of the Nash equilibria but, interestingly
so, each one converges to a combination of two of the equilibria. Using both algorithms, Player
1’s policy converges to (0, 0, 1

2 ,
1
2) which is a combination of the dominant strategies (0,0,1,0)

and (0,0,0,1). This is because as mentioned above, from the lawyer’s perspective, revealing
both arguments is the same as revealing only α1 in that both actions will get him a guaranteed
utility of 1 so mixing between the two actions in any proportion will also get him a utility of
1. As for the prosecutor, WPL converges to the mixed strategy (0, 1

5 , 0,
4
5) where as GIGA

converges to the pure strategy strategy (0,0,0,1). This also confirms previous results that WPL
prefers mixed strategies. In both cases the pay of both agents converges to 1.

When α is 0.001 WPL oscillates for a little bit in the beginning but eventually converges
leading to an even smoother graph than when α is 0.01 as seen in in figures 4.14 and 4.15.
GIGA’s performance, on the other hand, is better when α is 0.01 as seen in in figures 4.16
and 4.17.

35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
WPL Pay

Agent 1

Agent 2

(c) Pay

Figure 4.14: Game 3: WPL α=0.01 δ=0.002 ε=0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.5

1

1.5

2

2.5

3
WPL Pay

Agent 1

Agent 2

(c) Pay

Figure 4.15: Game 3: WPL α=0.001 δ=0.002 ε=0.01

36

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.8

1

1.2

1.4

1.6

1.8

2

2.2
GIGA Pay

Agent 1

Agent 2

(c) Pay

Figure 4.16: Game 3: GIGA α=0.01 δ=0.002 ε=0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.5

1

1.5

2

2.5

3
GIGA Pay

Agent 1

Agent 2

(c) Pay

Figure 4.17: Game 3: GIGA α=0.001 δ=0.002 ε=0.01

4.3.4 Case 4: “Argumentative Battle of The Sexes” Game

This game is based on the well known Battle of The Sexes game [22] with an argumentative
element [20]. A couple is planning their day, in other words arguing, in an attempt to decide
on whether they will go to a soccer match or to the ballet. They use the following arguments:
α1: “We should go to the soccer”
α2: “We should go to the ballet”
α3: “Alice is too sick for the outdoors”
α4: “Brian’s ex-wife will be at the ballet”
Brian, the husband, would like to go to the soccer, and states that using α1, while Alice, the
wife, prefers to go to the ballet, and states that using α2. Therefore α1 and α2 attack each
other since, due to time constraints, they can only go to one. The other alternative for each
one of them is less desirable hence Alice also has the argument α3 that she is too sick for the
outdoors, which attacks α1, and Brian also has the argument α4 that his ex-wife will be at the
ballet, which attacks α2. The least desirable option for both of them is to not go anywhere, so

37

each of them would still rather go to the other’s choice rather than stay at home. The resulting
argumentation graph to represent this game is shown in figure 4.18.

1 2

3 4

Figure 4.18: Game 4 - Arg Graph

Player Argument (Utility)
p0 α2 (1), α3(1)
p1 α1 (1), α4(1)

Table 4.8: Game 4

{} {α4} {α1} {α1,α4}
{} 0 0 0 1 0 1 0 2
{α3} 1 0 1 1 1 0 1 1
{α2} 1 0 0 1 0 0 0 2
{α2,α3} 2 0 1 1 2 0 1 1

Table 4.9: Game 4 Representation

When each of the arguments is given an equal utility of one as shown in table 4.8, the
resulting game representation that is formulated by the argumentation game simulator, shown
in table 4.9, is a little bit different from the intuition of the original game. Here, the utility
of winning both arguments is the sum of utilities of winning each argument, since there is no
provision for assigning utilities for winning combinations of arguments in the current version
of the simulator, and so the utility gained by Brian and Alice is related to the number of
arguments won by each and not where they end up going. However, the game in this form is
worth examining before moving on to the original game.

The strategies of Alice and Brian turn out to be symmetric because of the symmetric
nature of the graph, for both of them (1,0,0,0) and (0,0,1,0) are strictly dominated strategies
and (0,1,0,0) is weakly dominated by (0,0,0,1). In other words, for both of them staying quiet
or only saying their first option is definitely the worst they can do and only arguing against
the other’s choice is better but not as good as using both arguments. This game has four Nash
equilibria: Nash Equilibria:

• [(0, 1, 0, 0)p1, (0, 1, 0, 0)p2]

• [(0, 1, 0, 0)p1, (0, 0, 0, 1)p2]

• [(0, 0, 0, 1)p1, (0, 1, 0, 0)p2]

• [(0, 0, 0, 1)p1, (0, 0, 0, 1)p2]

38

which are the four possible combinations of joint strategies between each saying only where
they would like to go or revealing both arguments, in other words saying their preference but
also using the other argument to attack the other’s choice. All four Nash equilibria gain each
one of them a utility of one.

As seen in figures 4.19 and 4.20, WPL does almost converges to
[(0, 0.37, 0, 0.63)p1, (0, 0.37, 0, 0.63)p2] and GIGA to [(0, 0.45, 0, 0.55)p1, (0, 0.45, 0, 0.55)p2] and
both with the pay converging to (1,1). This is because interestingly any combination of the two
strategies (0,1,0,0) and (0,0,0,1) by both players will lead to a pay of (1,1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
WPL Pay

Agent 1

Agent 2

(c) Pay

Figure 4.19: Game 4: WPL α=0.01 δ=0.0001 ε=0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
GIGA Pay

Agent 1

Agent 2

(c) Pay

Figure 4.20: Game 4: GIGA α=0.01 δ=0.0001 ε=0.01

As mentioned earlier, the utilities in the original game are dependent on where the couple
ends up going. For Brian the utility of going to the soccer match is the highest followed by
going to the ballet followed by staying at home. For Alice, on the other hand, the utility of
going to the ballet is the highest followed by going to the soccer game followed by staying at
home. So a utility of two is assigned to each of them for their first choice, one for the second
choice and zero for staying at home. There are three cases where Alice gets her way, and they

39

go to the ballet: she either says that she want to go to the ballet and Brian stays quiet or she
says that and also attacks the soccer match option, in anticipation of his argument, and he
either stays quiet or only suggests going to the soccer match but does not use the argument
that his ex-wife will be at the ballet. Similarly there are three cases where Brian gets his way
and they end up going to the soccer match. The rest of the cases they end up staying at home.
The representation of this game which was examined as a generic 2-player 4-action game in the
simulator is shown in table 4.10.

{} {α4} {α1} {α1,α4}
{} 0 0 0 0 1 2 1 2
{α3} 0 0 0 0 0 0 0 0
{α2} 2 1 0 0 0 0 1 2
{α2,α3} 2 1 0 0 2 1 0 0

Table 4.10: Game 4 Representation - Original Game

For both husband and wife (0,1,0,0), which is to only use the argument that attack’s the
partner’s suggestion, is a weakly dominated strategy obviously because playing it will guarantee
staying at home whatever the other plays and the following Nash equilibria result:

• [(0, 1, 0, 0)p1, (0, 1, 0, 0)p2]

• [(1, 0, 0, 0)p1, (0, 0, 0, 1)p2]

• [(0, 0, 1, 0)p1, (0, 0, 0, 1)p2]

• [(0, 0, 0, 1)p1, (1, 0, 0, 0)p2]

• [(0, 0, 0, 1)p1, (0, 0, 1, 0)p2]

• [(1, 0, 0, 0)p1, (0, 0, 1
2 ,

1
2)p2]

• [(1
7 , 0,

2
7 ,

4
7)p1, (1

7 , 0,
2
7 ,

4
7)p2]

• [(0, 0, 1
2 ,

1
2)p1,(1, 0, 0, 0)p2]

Interestingly enough though their joint strategy when they both play, and end up staying at
home with a joint utility of (0,0), is a Nash equilibrium. The mixed strategy Nash equilibrium
[(1

7 , 0,
2
7 ,

4
7)p1, (1

7 , 0,
2
7 ,

4
7)p2] gets them a joint utility of (6

7 ,
6
7) which means that they end up

staying at home some of the time. The rest of the Nash equilibria are Pareto optimal and ensure
that the couple ends up going somewhere leading to a higher utility of either (1,2), if Brian wins
and they go to the soccer match, or (2,1), if Alice is more convincing and they go to the ballet.
This , of course happens if either one of them stays quiet and the other at least suggests his/her
idea and possibly argues against the other’s , or mixes between these two strategies (0,0,1,0)
and (0,0,0,1), so whoever speaks out gets their way. It also happens when one of them only
makes an initial suggestion while the other attacks it and makes his/her suggestion in which
case the one who uses both arguments gets his/her way over the one who used only one.

As seen in figures 4.21 and 4.22, when α=0.01 and δ=0.002 WPL converges to the strategy
[(1

3 , 0,
2
3 , 0)p1,(0, 0, 0, 1)p2] and pay (1,2) which means they go to the soccer match, and GIGA

converges to [(0, 0, 0, 1)p1,(0, 0, 1, 0)p2] and pay (2,1) which means they go to the ballet. Again,
WPL’s bias against pure strategies causes the agent representing Alice to mix between the
strategies (1,0,0,0) and (0,0,1,0) proportionally to their expected payoff of 2 and 3 respectively
but also maximizing the collective pay of both agents and is therefore Pareto optimal.

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
WPL Pay

Agent 1

Agent 2

(c) Pay

Figure 4.21: Game 4 Original Game: WPL α=0.01 δ=0.002 ε=0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.5

1

1.5

2
GIGA Pay

Agent 1

Agent 2

(c) Pay

Figure 4.22: Game 4 Original Game: GIGA α=0.01 δ=0.002 ε=0.01

4.3.5 Case 5: The Floating Defeater Game

This game simulates a segment of a court hearing where John is appealing the ruling convicting
him of committing a murder. The prosecutor instigating that John is guilty of committing
the murder is present along with John’s two defenders who are have conflicting reasons for his
innocence but they are both interested in the judge pronouncing him innocent and defeating
the prosecutor’s accusation. One of them claims, and has proof, that John was not present at
the crime scene but rather at his brother’s house at the time of the murder. The other also
claims, and has proof, that John was at the park during the execution of the crime and he was
the person who called the police and reported it as a witness.

The Floating Defeater game is adopted from a characteristic argumentation graph that is
used in argumentation literature to demonstrate various concepts in argumentation [17]. As
seen in figure 4.23, α1 and α2 defeat each other and they both defeat α3 which itself defeats
α4.

Given that:

41

r: “John was at his brother’s house at the time of the murder”
q: “John was at the crime scene at the time of the murder”
v: “John is a witness of the murder”
p: “John committed the murder”
s: “John is the murderer”
t: “John’s sentence should be lifted”

Then the following explicit arguments can be constructed as follows:
α1: r, r → ¬q ` ¬q
“John was at his brother’s house, if he was at his brothers house then he was not at the park.
Hence he was not at the park where the crime scene was, at the time of the murder”
α2: v, v → (q ∧ ¬p) ` (q ∧ ¬p)
“John witnessed the murder, a witness is usually present at the crime scene but is not the
criminal. Hence he was at the crime where at the time of the murder but he did not perform
it”
α3: (q ∧ p), (q ∧ p)→ s ` s
“John was at the crime scene at the time of the murder and he committed the murder, the
person who was present at the crime scene and commits the murder is a murderer. Hence he is
a murderer”
α4: ¬s,¬s→ t ` t
“John is not a murderer, a person who is not the murderer should not be sentenced. Hence his
sentence should be lifted”

Hence, the arguments in the graph are an abstraction of the following statements:
α1: “John was at his brother’s house, and therefore not at the park where the crime scene was,
at the time of the murder”
α2: “John witnessed the murder therefore he was at the crime where at the time of the murder
but he did not perform it”
α3: “John was at the crime scene at the time of the murder and he committed the murder,
therefore he is a murderer”
α4: “John is not a murderer and therefore his sentence should be lifted”

There are three agents in this game. Agent 1, representing the first defender, has arguments
α1 and α4, agent 2, representing the second defender, has arguments α2 and α4 and agent 3,
the prosecutor, has argument α3 out of which they can reveal or hide. Intuitively, arguments
α1 and α2 mutually defeat each other (it is impossible for John to be at two places at the
same time) and they both defeat argument α3 since they both state facts that contradict the
possibility of John being the murderer. Hence, John’s innocence will be compromised if both
α1 and α2 were revealed since neither one will be won and instead α3 will be undefeated and
will be won by the prosecutor.

It is important to note that none of the agents in the game are self-defeating, i.e. have
arguments that defeat each other, so each agent’s Pareto optimal strategy should be to reveal
all his arguments since they have utility maximizing preferences [19].

Argument α3 defeats argument α4 but not the other way around. This is because the
defendant is already convicted of the crime and this is an appeal so simply claiming his innocence
will not overrule the conviction whereas the court ruling stating that he is guilty does defeat
any claim of his innocence.

Player 1 and player 2, representing the two lawyers, have two arguments, and hence four
actions, each. P1 can choose to reveal {}, {α4}, {α1} or {α1,α4} and P2 can choose to reveal
{}, {α4}, {α2} or {α2,α4}. Player 3, representing the prosecutor, has only one argument and so
he can either hide it by choosing action {} or reveal it by choosing action {α3}. The strategic
game representation of this game is best illustrated in the form of two tables, one when player
3 hides his argument and the other when he reveals it. For each action combination chosen
amongst the three players the corresponding utilities are given for p1, p2 and p3 respectively.

42

1

3

2

4

Figure 4.23: Game 5 - Arg Graph

Variant 1: Collaborative

This variant of the game is a case where the two lawyers are equally interested in John’s
innocence but have no motivation to win their respective backing arguments. In other words,
the utility to the defendants of winning α1 and α2 respectively is 0 and so they are indifferent
toward the reason for John’s innocence or who’s argument proves it but winning α4 is given a
utility of 1 for both. A utility of 1 is given to α3 for the prosecutor.

Player Argument (Utility)
p1 α1 (0), α4 (1)
p2 α2 (0), α4 (1)
p3 α3 (1)

Table 4.11: Game 5 Variant 1

Intuitively, in this variant of the game, one would expect that the two lawyers would eventu-
ally adopt a strategy whereby one would reveal his backing argument while the other withholds
his, in order to get it to be accepted and defeat the prosecutor’s argument, and both would
claim John’s innocence for utility. The prosecutor is expected to reveal his argument all the
time since that will maximize his utility.

As seen in the strategic game translation in table 4.12, the two lawyers, represented by
p1 and p2, are in exactly the same situation in terms of the best strategy to maximize their
respective utilities. Staying quiet, by hiding both arguments and choosing action {}, or revealing
only the backing argument, by choosing {α1} or {α2} respectively, will get each lawyer 0 utility
because they each only care about winning the final argument {α4}. Hence, revealing α4 is the
only chance at gaining any utility for each of the lawyers and so the two strategies (1,0,0,0) and
(0,0,1,0) are weakly dominated by (0,1,0,0) and (0,0,0,1).

As for the prosecutor, p3, whose aim is obviously to prove that John is guilty of the murder,
out of his two actions staying quiet is weakly dominated by revealing his argument α3 which,
if undefeated, will get him a utility of 1.

Additionally, revealing all arguments is indeed a Pareto optimal strategy for each of the
agents but not sometimes not a dominant strategy.

43

(a)

{} {α4} {α2} {α2,α4}
{} 0 0 0 0 1 0 0 0 0 0 1 0
{α4} 1 0 0 1 1 0 1 0 0 1 1 0
{α1} 0 0 0 0 1 0 0 0 0 0 1 0

{α1,α4} 1 0 0 1 1 0 1 0 0 1 1 0

(b)

{} {α4} {α2} {α2,α4}
{} 0 0 1 0 0 1 0 0 0 0 1 0
{α4} 0 0 1 0 0 1 1 0 0 1 1 0
{α1} 0 0 0 0 1 0 0 0 0 0 0 0

{α1,α4} 1 0 0 1 1 0 0 0 0 0 0 0

Table 4.12: Game 5 Variant 1 Representation

Therefore, solving this game results in the following Nash equilibria: five pure and one
mixed as follows:

• [(0, 1, 0, 0)p1, (0, 0, 0, 1)p2, (1, 0)p3]

• [(0, 0, 0, 1)p1, (0, 1, 0, 0)p2, (0, 1)p3]

• [(0, 0, 0, 1)p1, (0, 1, 0, 0)p2, (1, 0)p3]

• [(0, 1, 0, 0)p1, (0, 0, 0, 1)p2, (0, 1)p3]

• [(0, 0, 0, 1)p1, (0, 0, 0, 1)p2, (1, 0)p3]

• [(0, 1
2 , 0,

1
2)p1, (0, 1

2 , 0,
1
2)p2, (0, 1)p3]

The Nash equilibria represent the expected intuitive behavior of the three agents in terms
of joint strategies. In the first four Nash equilibria each lawyer either plays (0,1,0,0), reveals
only α4, or plays (0,0,0,1), reveals both his arguments, while the other does the opposite. The
prosecutor either hides or reveals. In addition, when the prosecutor hides his argument, both
the lawyers can reveal all their arguments and that will be a Nash equilibrium since they don’t
have to worry about defending the final argument by having an undefeated backing argument
to attack the prosecutor’s argument. Finally, the last Nash equilibrium is when the prosecutor
shows his argument and the lawyers adopt a mixed strategy of revealing their respective backing
arguments, along with the final argument, half the time and revealing only the final argument
the rest of the time. In other words their joint strategy is to take turns to reveal their backing
arguments.

When δ, the policy learning rate, is 0.002, both WPL and GIGA converge to one of the
pure Nash equilibria gaining the lawyers a pay of 1 and the prosecutor a pay of 0 as seen in
figures 4.24 and 4.25. The strategies of agents 1 and 2, the two lawyers, are more definite but
agent 3, the prosecutor, learns to reveal his argument, even though it is defeated and he gets
no utility, because there is no cost to doing that. WPL’s convergence is more accurate as α
decreases, again confirming previous results, and achieving very smooth graphs when α is 0.001.
GIGA converges faster than WPL when α is 0.1 and decreasing α only slows it down (refer to
Appendix C for additional graphs).

44

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 3 - Actions

a1

a2

(c) Agent 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Pay

Agent 1

Agent 2

Agent 3

(d) Pay

Figure 4.24: Game 5v1: WPL α=0.001 δ=0.002 ε=0.01

45

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 3 - Actions

a1

a2

(c) Agent 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Pay

Agent 1

Agent 2

Agent 3

(d) Pay

Figure 4.25: Game 5v1: GIGA α=0.1 δ=0.002 ε=0.01

When δ is decreased to 0.0001 the learning algorithms head toward the mixed strategy Nash
equilibrium [(0, 1

2 , 0,
1
2)p1, (0, 1

2 , 0,
1
2)p2, (0, 1)p3] but do not converge. The policies of the agents

representing the lawyers do actually converge in GIGA as seen in figure 4.27 but their pay does
not converge because the prosecutor’s strategy is changing and needs more time to reach (0,1).

46

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 3 - Actions

a1

a2

(c) Agent 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
WPL Pay

Agent 1

Agent 2

Agent 3

(d) Pay

Figure 4.26: Game 5v1: WPL α=0.01 δ=0.0001 ε=0.01

47

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 3 - Actions

a1

a2

(c) Agent 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Pay

Agent 1

Agent 2

Agent 3

(d) Pay

Figure 4.27: Game 5v1: GIGA α=0.01 δ=0.0001 ε=0.01

Variant 2: Self-interested

In this variant of the game the lawyers are self interested in the sense that they are more
interested in winning their backing arguments than in proving John’s innocence. This would
be the case if the two lawyers were competing, for example, for winning the case in order to
build a reputation for themselves rather than simply for the sake of John. Therefore for the
two agents representing the lawyers α1 and α2 are given a utility of 5 and α4 is given a utility
of 2. The prosecutor’s stance is the same as the first variant and so a utility of 1 is given to α3.

Player Argument (Utility)
p1 α1 (5), α4 (2)
p2 α2 (5), α4 (2)
p3 α3 (1)

Table 4.13: Game 5 Variant 2

The only difference between this variant of the game and the previous one is that in this
case there is a utility assigned to the agents representing the lawyers for winning the backing
arguments. From the strategic game representation shown in table 4.14 it can be deduced that

48

again for these two agents (1,0,0,0) is weakly dominated by all the other strategies and (0,0,1,0)
by (0,0,0,1) but still revealing all arguments is a Pareto optimal strategy.

(a)

{} {α4} {α2} {α2,α4}
{} 0 0 0 0 2 0 0 5 0 0 7 0
{α4} 2 0 0 2 2 0 2 5 0 2 7 0
{α1} 5 0 0 5 2 0 0 0 0 0 2 0

{α1,α4} 7 0 0 7 2 0 2 0 0 2 2 0

(b)

{} {α4} {α2} {α2,α4}
{} 0 0 1 0 0 1 0 5 0 0 7 0
{α4} 0 0 1 0 0 1 2 5 0 2 7 0
{α1} 5 0 0 5 2 0 0 0 0 0 0 0

{α1,α4} 7 0 0 7 2 0 0 0 0 0 0 0

Table 4.14: Game 5 Variant 2 Representation

The Nash Equilibria are expectedly also similar to those of the first variant except for the
mixed one where in this variant each lawyer will opt to reveal his backing argument more than
half the time, specifically seven out of nine times, because winning his backing argument is of
considerable value to him:

• [(0, 1, 0, 0)p1, (0, 0, 0, 1)p2, (1, 0)p3]

• [(0, 0, 0, 1)p1, (0, 1, 0, 0)p2, (0, 1)p3]

• [(0, 0, 0, 1)p1, (0, 1, 0, 0)p2, (1, 0)p3]

• [(0, 1, 0, 0)p1, (0, 0, 0, 1)p2, (0, 1)p3]

• [(0, 0, 0, 1)p1, (0, 0, 0, 1)p2, (1, 0)p3]

• [(0, 2
9 , 0,

7
9)p1, (0, 2

9 , 0,
7
9)p2, (0, 1)p3]

As seen in figures 4.28 and 4.29 the policies of the lawyers in both WPL and GIGA converge
very fast to the pure Nash equilibrium [(0, 0, 0, 1)p1, (0, 1, 0, 0)p2, (0, 1)p3] and the prosecutor
starts to head toward it but needs more time to reach it. This means that the lawyers quickly
learn to collaborate and one of them learns that he should hide his backing argument and let
the other one defend α4 using his argument and settle for a utility of 2, which is not as good
as 5 but better than 0.

49

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 3 - Actions

a1

a2

(c) Agent 3

Figure 4.28: Game 5v2: WPL α=0.001 δ=0.002 ε=0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 3 - Actions

a1

a2

(c) Agent 3

Figure 4.29: Game 5v2: GIGA α=0.001 δ=0.002 ε=0.01

Variant 3: Compromising

In this variant of the game one of the lawyers is self-interested and cares more about winning
his backing argument rather than in John’s innocence while the other actually prefers that his
backing argument is not accepted. However, they both equally care for John’s innocence. Hence
the second defender prefers that the other’s backing argument, rather than his own, is the one
that is accepted in order to defend John’s innocence. This would be the case, for example,
if the second lawyer was being forced to defend John, even though he is not convinced of his
innocence himself, but he is willing to lie in order to win the case and get his compensation.
Therefore agent 1, representing the first lawyer, gets a utility of 5 for winning α1 while agent
2, representing the second lawyer, gets a utility of -5 for winning α2 and both get a utility of 2
for winning α3. Again, a utility of 1 is given to the prosecutor’s argument α3.

50

Player Argument (Utility)
p1 α1 (5), α4 (2)
p2 α2 (-5), α4 (2)
p3 α3 (1)

Table 4.15: Game 5 Variant 3

In this variant since the second lawyer prefers not to use his backing argument, and he is
assigned a negative utility to winning α2, intuitively he should avoid revealing it. As expected,
through analysis of the game representation in table 4.16, it can be deduced that for the
first agent (1,0,0,0) is weakly dominated bu all the other strategies and (0,0,1,0) by (0,0,0,1)
while for the second agent (1,0,0,0) is weakly dominated by (0,1,0,0) and (0,0,1,0) is strongly
dominated by (0,1,0,0) making (0,1,0,0) is the weakly dominant strategy. Once again, revealing
all arguments is a Pareto optimal strategy for each of the agents.

(a)

{} {α4} {α2} {α2,α4}
{} 0 0 0 0 2 0 0 -5 0 0 -3 0
{α4} 2 0 0 2 2 0 2 -5 0 2 -3 0
{α1} 5 0 0 5 2 0 0 0 0 0 2 0

{α1,α4} 7 0 0 7 2 0 2 0 0 2 2 0

(b)

{} {α4} {α2} {α2,α4}
{} 0 0 1 0 0 1 0 -5 0 0 -3 0
{α4} 0 0 1 0 0 1 2 -5 0 2 -3 0
{α1} 5 0 0 5 2 0 0 0 0 0 0 0

{α1,α4} 7 0 0 7 2 0 0 0 0 0 0 0

Table 4.16: Game 5 Variant 3 Representation

The first two Nash equilibria reflect the expected behavior of the agents whereby the first
lawyer will reveal all his arguments, thus being the one who reveals the backing argument, while
the other lawyer compromises and only reveals α4.

• [(0, 0, 0, 1)p1, (0, 1, 0, 0)p2, (1, 0)p3]

• [(0, 0, 0, 1)p1, (0, 1, 0, 0)p2, (0, 1)p3]

• [(0, 0, 0, 1)p1, (0, 0, 0, 1)p2, (1, 0)p3]

Both learning algorithms converge to the same pure Nash equilibrium [(0, 0, 0, 1)p1, (0, 1, 0, 0)p2, (0, 1)p3]
as in variant 2 as seen in figures 4.30 and 4.31 for the two lawyers but in this case they converge
faster. This is because player 2, representing the second lawyer, actually prefers hiding his
backing argument.

51

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 3 - Actions

a1

a2

(c) Agent 3

Figure 4.30: Game 5v3: WPL α=0.001 δ=0.002 ε=0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 3 - Actions

a1

a2

(c) Agent 3

Figure 4.31: Game 5v3: GIGA α=0.001 δ=0.002 ε=0.01

4.4 Discussion and Conclusion

Each of the five cases discussed in this chapter contributed to the answers that this experimental
study intended to answer, some of which are common amongst all of the cases and some specific
to the game.

It can be concluded that the dominance of some strategies over others and the different
kinds of Nash equilibria in each game drove the agents to have preferences over the different
available strategies and in turn use the more effective strategies to maximize their utility and
influence the judge. Indeed in some cases hiding arguments, i.e. lying, as part of a strategy will
be preferred by agents. The exception, which was proved by Rahwan and Larson [19], is under
the condition the agents are not self defeating in which case the game is strategy proof and the
dominant strategy equilibrium is to reveal all the arguments, is apparent in cases 1, 4 and 5.
The agents in these cases actually do learn to reach the dominant strategy equilibrium in some
cases. In others, however they learn to play strategies that will maximize their payoff, equal

52

to or even greater than that at a dominant strategy equilibrium if one exists and this is due to
the nature of the learning algorithms inherent in the agents as discussed in detail in each case.

As for learning algorithms, the mechanism by which each updates the policy does make it
more suited to some types of games. For example WPL’s bias toward mixed strategies got the
agents in Case 1 a higher joint pay than the dominant strategy Nash equilibrium’s pay and
its decaying learning rate as it approaches a policy lead to the dampening of the oscillations
between the two dominant strategies in Case 2. This is effectively the same as using a smaller
policy learning rate, as seen when δ is decreased to 0.0001, but does not slow down the general
learning and convergence of the pay. GIGA on the other hand is generally faster than WPL
and is biased toward pure strategies.

53

Chapter 5

Conclusion and Further Work

Argumentation has been studied extensively in the field of Artificial Intelligence, however we
know very little about its strategic aspects. This thesis aims to contribute to the general
problem of trying to understand strategic behavior in argumentation, over repeated encounters
when self-interested agents, in a multi-agent environment, interact. As in any game-theoretic
setting, there may not be a single optimal strategy for each agent and so the outcome of the
game (i.e. its equilibrium) is not always uniquely predictable. This gives rise to the problem of
equilibrium selection [13]. Two typical approaches are usually taken to deal with this problem.
The first approach has to do with equilibrium refinement [13], that is, coming up with more
restricted equilibrium concepts in order to narrow down the possible outcomes of the game.
The second approach is by observing convergence through simulation. It is not intuitively clear
what variables, or conditions, the agents’ choice of equilibria is dependent on and therefore the
requirement for quantitative experimentation arises.

Hence the Java-based simulation tool developed by Abdallah and Lesser [1], to examine
the same issue through experimentation with different learning algorithms, was extended to
implement argumentation games for this purpose and used to run repeated game experiments
using combinations of characteristic argumentation games, adapted from literature, and types
of adaptive agents under different conditions. The designed experiments and the analysis of the
results produced formed the basis for general observations.

The agents use a multitude of different strategies to influence the judge and maximize
their pay, thereby revealing different combinations of arguments with different frequencies,
depending on the Nash equilibria of the game, the dominance of the pure strategies and the
Pareto efficiency of the pure strategies in a game. These are dependent on aspects inherent in
the argumentation game such as the argumentation graph, the assignment of arguments to the
agents and distribution of utilities over the arguments. While games where the agents were not
(directly or indirectly) self-defeating were strategy proof [19], interestingly in the other games,
by playing a combination of Nash equilibria in some cases, the agents were able to gain a payoff
that is higher than that of any of the individual Nash equilibria. As for the effect of the agent
type, in terms of learning algorithms, on the choice of strategy, WPL was found to be biased
toward mixed strategies while GIGA was faster in convergence to pure strategy Nash equilibria.

Many questions surface as a result of this initial attempt at exploring these argumentation
games. One question worth investigating is since every argumentation game can be represented
as a repeated strategic game, can every strategic game be implemented as an argumentation
game? Answering this question will involve at least partial mathematical proof.

Other questions such as that of what motivates agents to use certain strategies over others
or the characteristics of games that determine the kinds of strategies that result. The answers
to these are beyond the scope of this thesis and require extensive experimentation and the
extension of the simulation tool to implement more parameters that allow the representation of
a wider variety of characteristics in games. This can be done for example through the provision

54

of combined argument utilities, in other words the total utility of winning multiple arguments
is not limited to being the sum of the utilities of winning the individual arguments.

Additionally, aspects pertaining to the type of the “judge” and how strict or unforgiving
he/she is can also be easily implemented into the tool. Assigning a cost to revealing arguments,
assigning negative utilities for losing arguments and some form of punishment for lying or
hiding arguments like exclusion from some iterations of the game or deduction from the utility.
More substantial extensions are worthwhile and should also be implemented such as additional
acceptability semantics, a graphical user interface to make the input to the game and the display
of the results more intuitive.

55

Appendix A

Technologies and Tools

A.1 Introduction

A.1.1 Java

The argumentation game was developed in Java1 as an extension to the Java-Based multi-agent
learning simulation tool.

A.1.2 Eclipse

The Eclipse SDK2 is an open source integrated development environment (IDE) that was one
of the results of the Eclipse project which was started by IBM in November 2001 and developed
into a set of extensible frameworks and tools for building, deploying and managing software
across the life cycle. It is primarily used for Java and plug-in development but also supports
other programming languages.

The extension of the tool to include the argumentation game was developed using the Eclipse
SDK due to both the simple code editing tools it provides, with support for Java syntax, and
the automatic compiling feature whereby the classes are compiled as soon as they are saved.

A.1.3 Matlab

Matlab3 is a high-level technical computing language that provides tools in an interactive envi-
ronment for mathematical computation algorithm development to allow data visualization and
analysis. Matlab was used to write scripts for extracting data from the simulation tool’s output
log files and plotting the different graphs for visual analysis. It is suited for this purpose due
to its powerful and fast data manipulation abilities.

A.1.4 Gambit

Gambit4 is an open source library of tools with a graphical user interface that allows experimen-
tation with game-theoretic finite extensive and strategic games. It was used for the computation
and analysis of the dominant strategies and Nash equilibria of the strategic representation of
the argumentation games.

1http://java.sun.com/
2http://www.eclipse.org/
3http://www.mathworks.com/
4http://gambit.sourceforge.net/

56

Appendix B

Sample Game Run

B.1 Introduction

This section will provide a sample game run in order to demonstrate the use of the different
input parameters, the layout of a game parameters file and how the output results are read.

B.2 Game Parameters File

The game parameters file ArgGameParams.txt, a sample of which is shown in table B.1, is a
simple text file that contains the argumentation game parameters listed in section 3.1.3. This
is the actual parameters file of the argumentation game studied as Case 3 in Chapter 4.

Arguments,A,B,C,D
Links,A,B,B,C,A,C,B,D
Agent,a1,A,1,C,5
Agent,a2,B,4,D,1

Table B.1: A sample input parameter file

Each argument in the game is given a letter, in alphabetical order, to represent the name
of the argument. The links in the argumentation graph are listed as pairs of from-to defeat
relations, so the corresponding four arguments A, B, C and D and four defeat relations: A to
B, B to C, A to C and B to D, represent the argumentation graph in figure B.1.

α1 α2

α3

α4

Figure B.1: Sample Argumentation Graph

57

B.3 Game Output

B.3.1 Game Initiation Output

The following is the console output that reflects the interpretation of contents of the input
configuration file ArgGameParams.txt and the formulation of the argumentation graph and
action sets of the agents.

ARGUMENTATION GAME
Arguments,A,B,C,D
Links,A,B,B,C,A,C,B,D
Agent,a1,A,1,C,5
Agent,a2,B,4,D,1
The Arguments in this game are:
[A, B, C, D]
The Links in this game are:
AB
BC
AC
BD
The Agents in this game are:
[a1, a2]
The Utilities in this game are:
{a1C=5.0, a2D=1.0, a1A=1.0, a2B=4.0}
init action and pay
init actions for each agent from file
agent a1’s action set is
[[], [C], [A], [A, C]]
agent a2’s action set is
[[], [D], [B], [B, D]]
init graph from file
Argument A has status nil and defeaters:
Argument B has status nil and defeaters: A
Argument C has status nil and defeaters: A B
Argument D has status nil and defeaters: B

B.3.2 Log File

Below is an excerpt of the output file showing 20 steps, from 5060 to 5080, of the 200,000 in the
log. In each step the arguments revealed by each agent, the accepted arguments in the action
graph, the utility gained by each agent for each argument revealed that was accepted, the total
pay gained by each agent and the updated policy of each agent. The policy of each agent is in
the even numbered elements of the array, so for example in step 5060 the policies for agent 1
and agent 2, corresponding to P0 and P1 respectively, are (0.0636, 0.3804, 0.3090, 0.2467) and
(0.0283, 0.0842, 0.3184, 0.5689).

I::--- 5060 ---
D:: The args revealed by Agent 0 are [C]
D:: The args revealed by Agent 1 are [B, D]
D:: args revealed C
D:: args revealed B
D:: args revealed D
D:: The in Args are[B]
D:: Utility for a1 winning argument B is 4.0
I:: action 1; 3; pay 0.00; 4.00;
I::P0[0.5843; 0.0636; 0.7147; 0.3804; 0.7601; 0.3090; 0.7935; 0.2467;]

58

I::P1[1.9262; 0.0283; 1.9062; 0.0842; 2.0437; 0.3184; 2.0556; 0.5689;]
I::--- 5061 ---
D:: The args revealed by Agent 0 are [C]
D:: The args revealed by Agent 1 are [B]
D:: args revealed C
D:: args revealed B
D:: The in Args are[B]
D:: Utility for a1 winning argument B is 4.0
I:: action 1; 2; pay 0.00; 4.00;
I::P0[0.5815; 0.0636; 0.7076; 0.3804; 0.7540; 0.3090; 0.7915; 0.2468;]
I::P1[1.9280; 0.0283; 1.9121; 0.0841; 2.0632; 0.3185; 2.0731; 0.5689;]
I::--- 5062 ---
D:: The args revealed by Agent 0 are [A, C]
D:: The args revealed by Agent 1 are [B]
D:: args revealed A
D:: args revealed C
D:: args revealed B
D:: The in Args are[A]
D:: Utility for a0 winning argument A is 1.0
I:: action 3; 2; pay 1.00; 0.00;
I::P0[0.5833; 0.0636; 0.7102; 0.3804; 0.7557; 0.3090; 0.7936; 0.2469;]
I::P1[1.9265; 0.0283; 1.9072; 0.0841; 2.0426; 0.3185; 2.0563; 0.5689;]
I::--- 5063 ---
D:: The args revealed by Agent 0 are [C]
D:: The args revealed by Agent 1 are [B]
D:: args revealed C
D:: args revealed B
D:: The in Args are[B]
D:: Utility for a1 winning argument B is 4.0
I:: action 1; 2; pay 0.00; 4.00;
I::P0[0.5811; 0.0635; 0.7031; 0.3803; 0.7508; 0.3090; 0.7865; 0.2469;]
I::P1[1.9280; 0.0283; 1.9120; 0.0841; 2.0622; 0.3185; 2.0705; 0.5689;]
I::--- 5064 ---
D:: The args revealed by Agent 0 are [A, C]
D:: The args revealed by Agent 1 are [D]
D:: args revealed A
D:: args revealed C
D:: args revealed D
D:: The in Args are[A, D]
D:: Utility for a0 winning argument A is 1.0
D:: Utility for a1 winning argument D is 1.0
I:: action 3; 1; pay 1.00; 1.00;
I::P0[0.5825; 0.0635; 0.7058; 0.3803; 0.7523; 0.3091; 0.7886; 0.2470;]
I::P1[1.9274; 0.0283; 1.9029; 0.0841; 2.0526; 0.3185; 2.0635; 0.5689;]
I::--- 5065 ---
D:: The args revealed by Agent 0 are [C]
D:: The args revealed by Agent 1 are [B, D]
D:: args revealed C
D:: args revealed B
D:: args revealed D
D:: The in Args are[B]
D:: Utility for a1 winning argument B is 4.0
I:: action 1; 3; pay 0.00; 4.00;
I::P0[0.5807; 0.0634; 0.6987; 0.3802; 0.7483; 0.3091; 0.7815; 0.2470;]
I::P1[1.9286; 0.0283; 1.9218; 0.0840; 2.0684; 0.3185; 2.0829; 0.5690;]
I::--- 5066 ---
D:: The args revealed by Agent 0 are [A, C]

59

D:: The args revealed by Agent 1 are [B, D]
D:: args revealed A
D:: args revealed C
D:: args revealed B
D:: args revealed D
D:: The in Args are[A, D]
D:: Utility for a0 winning argument A is 1.0
D:: Utility for a1 winning argument D is 1.0
I:: action 3; 3; pay 1.00; 1.00;
I::P0[0.5819; 0.0634; 0.7014; 0.3802; 0.7495; 0.3091; 0.7837; 0.2471;]
I::P1[1.9281; 0.0283; 1.9143; 0.0840; 2.0606; 0.3185; 2.0720; 0.5690;]
I::--- 5067 ---
D:: The args revealed by Agent 0 are [A, C]
D:: The args revealed by Agent 1 are [B]
D:: args revealed A
D:: args revealed C
D:: args revealed B
D:: The in Args are[A]
D:: Utility for a0 winning argument A is 1.0
I:: action 3; 2; pay 1.00; 0.00;
I::P0[0.5830; 0.0634; 0.7039; 0.3802; 0.7505; 0.3091; 0.7859; 0.2472;]
I::P1[1.9272; 0.0283; 1.9004; 0.0840; 2.0400; 0.3185; 2.0534; 0.5690;]
I::--- 5068 ---
D:: The args revealed by Agent 0 are [A]
D:: The args revealed by Agent 1 are [B, D]
D:: args revealed A
D:: args revealed B
D:: args revealed D
D:: The in Args are[A, D]
D:: Utility for a0 winning argument A is 1.0
D:: Utility for a1 winning argument D is 1.0
I:: action 2; 3; pay 1.00; 1.00;
I::P0[0.5839; 0.0633; 0.7060; 0.3801; 0.7530; 0.3091; 0.7878; 0.2472;]
I::P1[1.9268; 0.0283; 1.8945; 0.0840; 2.0306; 0.3185; 2.0428; 0.5690;]
I::--- 5069 ---
D:: The args revealed by Agent 0 are [A, C]
D:: The args revealed by Agent 1 are []
D:: args revealed A
D:: args revealed C
D:: The in Args are[A]
D:: Utility for a0 winning argument A is 1.0
I:: action 3; 0; pay 1.00; 0.00;
I::P0[0.5848; 0.0633; 0.7080; 0.3801; 0.7553; 0.3091; 0.7899; 0.2473;]
I::P1[1.9075; 0.0283; 1.8833; 0.0840; 2.0142; 0.3185; 2.0245; 0.5690;]
I::--- 5070 ---
D:: The args revealed by Agent 0 are [C]
D:: The args revealed by Agent 1 are [B, D]
D:: args revealed C
D:: args revealed B
D:: args revealed D
D:: The in Args are[B]
D:: Utility for a1 winning argument B is 4.0
I:: action 1; 3; pay 0.00; 4.00;
I::P0[0.5837; 0.0633; 0.7009; 0.3800; 0.7491; 0.3091; 0.7828; 0.2474;]
I::P1[1.9264; 0.0283; 1.8945; 0.0839; 2.0287; 0.3186; 2.0442; 0.5690;]
I::--- 5071 ---
D:: The args revealed by Agent 0 are [C]

60

D:: The args revealed by Agent 1 are [B]
D:: args revealed C
D:: args revealed B
D:: The in Args are[B]
D:: Utility for a1 winning argument B is 4.0
I:: action 1; 2; pay 0.00; 4.00;
I::P0[0.5827; 0.0632; 0.6939; 0.3800; 0.7437; 0.3091; 0.7765; 0.2474;]
I::P1[1.9432; 0.0283; 1.9046; 0.0839; 2.0484; 0.3186; 2.0618; 0.5691;]
I::--- 5072 ---
D:: The args revealed by Agent 0 are [A]
D:: The args revealed by Agent 1 are [B, D]
D:: args revealed A
D:: args revealed B
D:: args revealed D
D:: The in Args are[A, D]
D:: Utility for a0 winning argument A is 1.0
D:: Utility for a1 winning argument D is 1.0
I:: action 2; 3; pay 1.00; 1.00;
I::P0[0.5833; 0.0632; 0.6966; 0.3800; 0.7462; 0.3091; 0.7781; 0.2475;]
I::P1[1.9363; 0.0283; 1.9007; 0.0839; 2.0389; 0.3186; 2.0512; 0.5691;]
I::--- 5073 ---
D:: The args revealed by Agent 0 are [A]
D:: The args revealed by Agent 1 are [B, D]
D:: args revealed A
D:: args revealed B
D:: args revealed D
D:: The in Args are[A, D]
D:: Utility for a0 winning argument A is 1.0
D:: Utility for a1 winning argument D is 1.0
I:: action 2; 3; pay 1.00; 1.00;
I::P0[0.5839; 0.0632; 0.6991; 0.3799; 0.7488; 0.3092; 0.7795; 0.2476;]
I::P1[1.9302; 0.0283; 1.8972; 0.0839; 2.0305; 0.3186; 2.0407; 0.5691;]
I::--- 5074 ---
D:: The args revealed by Agent 0 are [A]
D:: The args revealed by Agent 1 are [B, D]
D:: args revealed A
D:: args revealed B
D:: args revealed D
D:: The in Args are[A, D]
D:: Utility for a0 winning argument A is 1.0
D:: Utility for a1 winning argument D is 1.0
I:: action 2; 3; pay 1.00; 1.00;
I::P0[0.5844; 0.0631; 0.7013; 0.3799; 0.7513; 0.3092; 0.7808; 0.2476;]
I::P1[1.9247; 0.0282; 1.8941; 0.0838; 2.0230; 0.3186; 2.0303; 0.5691;]
I::--- 5075 ---
D:: The args revealed by Agent 0 are [C]
D:: The args revealed by Agent 1 are [B, D]
D:: args revealed C
D:: args revealed B
D:: args revealed D
D:: The in Args are[B]
D:: Utility for a1 winning argument B is 4.0
I:: action 1; 3; pay 0.00; 4.00;
I::P0[0.5838; 0.0631; 0.6943; 0.3799; 0.7445; 0.3092; 0.7767; 0.2477;]
I::P1[1.9357; 0.0282; 1.9007; 0.0838; 2.0360; 0.3186; 2.0500; 0.5691;]
I::--- 5076 ---
D:: The args revealed by Agent 0 are [A]

61

D:: The args revealed by Agent 1 are [B]
D:: args revealed A
D:: args revealed B
D:: The in Args are[A]
D:: Utility for a0 winning argument A is 1.0
I:: action 2; 2; pay 1.00; 0.00;
I::P0[0.5842; 0.0630; 0.6970; 0.3798; 0.7471; 0.3092; 0.7778; 0.2477;]
I::P1[1.9264; 0.0282; 1.8953; 0.0838; 2.0156; 0.3186; 2.0315; 0.5691;]
I::--- 5077 ---
D:: The args revealed by Agent 0 are [C]
D:: The args revealed by Agent 1 are [B, D]
D:: args revealed C
D:: args revealed B
D:: args revealed D
D:: The in Args are[B]
D:: Utility for a1 winning argument B is 4.0
I:: action 1; 3; pay 0.00; 4.00;
I::P0[0.5837; 0.0630; 0.6900; 0.3798; 0.7404; 0.3092; 0.7744; 0.2478;]
I::P1[1.9354; 0.0282; 1.9007; 0.0838; 2.0335; 0.3186; 2.0512; 0.5692;]
I::--- 5078 ---
D:: The args revealed by Agent 0 are [C]
D:: The args revealed by Agent 1 are [B]
D:: args revealed C
D:: args revealed B
D:: The in Args are[B]
D:: Utility for a1 winning argument B is 4.0
I:: action 1; 2; pay 0.00; 4.00;
I::P0[0.5832; 0.0630; 0.6831; 0.3797; 0.7344; 0.3092; 0.7714; 0.2479;]
I::P1[1.9434; 0.0282; 1.9055; 0.0838; 2.0532; 0.3186; 2.0687; 0.5692;]
I::--- 5079 ---
D:: The args revealed by Agent 0 are []
D:: The args revealed by Agent 1 are [B]
D:: args revealed B
D:: The in Args are[B]
D:: Utility for a1 winning argument B is 4.0
I:: action 0; 2; pay 0.00; 4.00;
I::P0[0.5774; 0.0629; 0.6770; 0.3797; 0.7290; 0.3092; 0.7687; 0.2479;]
I::P1[1.9505; 0.0282; 1.9098; 0.0837; 2.0726; 0.3186; 2.0844; 0.5692;]
I::--- 5080 ---
D:: The args revealed by Agent 0 are [A, C]
D:: The args revealed by Agent 1 are [B]
D:: args revealed A
D:: args revealed C
D:: args revealed B
D:: The in Args are[A]
D:: Utility for a0 winning argument A is 1.0
I:: action 3; 2; pay 1.00; 0.00;
I::P0[0.5812; 0.0629; 0.6796; 0.3796; 0.7308; 0.3092; 0.7710; 0.2480;]
I::P1[1.9444; 0.0282; 1.9062; 0.0837; 2.0519; 0.3186; 2.0692; 0.5692;]

B.3.3 Sample Graphs

Figure B.2 shows the graphs that are plotted in Matlab using data extracted from the log
file. The first two graphs are plots of the agents’ policies against the step number, hence each
graph has four plots corresponding to the probabilities of each of the four actions and shows
the convergence, in this case, to roughly (0, 0, 1

2 ,
1
2) for agent 1 and (0, 1

5 , 0,
4
5) for agent 2. The

62

third graph is a plot of the pay of each agent against the step number which roughly converges
to (1,1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
WPL Pay

Agent 1

Agent 2

(c) Pay

Figure B.2: Sample Graphs for resulting 2-player 4-action Game

63

Appendix C

Additional Results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 3 - Actions

a1

a2

(c) Agent 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
WPL Pay

Agent 1

Agent 2

Agent 3

(d) Pay

Figure C.1: Game 5v1: WPL α=0.1 δ=0.002 ε=0.01

64

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Agent 3 - Actions

a1

a2

(c) Agent 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Pay

Agent 1

Agent 2

Agent 3

(d) Pay

Figure C.2: Game 5v1: WPL α=0.01 δ=0.002 ε=0.01

65

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 3 - Actions

a1

a2

(c) Agent 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
WPL Pay

Agent 1

Agent 2

Agent 3

(d) Pay

Figure C.3: Game 5v1: GIGA α=0.01 δ=0.002 ε=0.01

66

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 1 - Actions

a1

a2

a3

a4

(a) Agent 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 2 - Actions

a1

a2

a3

a4

(b) Agent 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Agent 3 - Actions

a1

a2

(c) Agent 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GIGA Pay

Agent 1

Agent 2

Agent 3

(d) Pay

Figure C.4: Game 5v1: GIGA α=0.001 δ=0.002 ε=0.01

67

Bibliography

[1] Sherief Abdallah and Victor Lesser. Learning the Task Allocation Game. In 5th Inter-
national Joint Conference on Autonomous Agents & Multi Agent Systems, AAMAS’2006,
Hakodate, Hokkaido, Japan, 2006.

[2] Sherief Abdallah and Victor Lesser. A Multiagent Reinforcement Learning Algorithm
with Non-linear Dynamics. In Journal of Artificial Intelligence Research, volume 33, pages
521–549, 2008.

[3] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence.
Artificial Intelligence, 171(10–15):619–641, 2007.

[4] Philippe Besnard and Anthony Hunter. Elements of Argumentation. MIT Press, 2008.

[5] Michael Bowling. Convergence and No-regret in Multiagent Learning. In Annual Confer-
ence on Advances in Neural Information Processing Systems, pages 209–216, 2005.

[6] Michael Bowling and Manuela Veloso. Multiagent learning using a variable learning rate.
Artificial Intelligence, 136(2):215–250, 2002.

[7] Martin Caminada. A Gentle Introduction to Argumentation Semantics, 2007.

[8] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative
multiagent systems. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence, pages 746–752. AAAI Press, 1998.

[9] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–
358, 1995.

[10] John Fox, David Glasspool, Dan Grecu, Sanjay Modgil, Matthew South, and Vivek Patkar.
Argumentation-based inference and decision making–a medical perspective. IEEE Intelli-
gent Systems, 22(6):34–41, 2007.

[11] Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge
MA, USA, 1960.

[12] Anthony Hunter. Real arguments are approximate arguments. In Proceedings of the 22nd
Conference on Artificial Intelligence, pages 66–71. AAAI Press, 2007.

[13] Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeconomic Theory.
Oxford University Press, New York NY, USA, 1995.

[14] Irene Mazzotta, Fiorella de Rosis, and Valeria Carofiglio. Portia: A user-adapted persua-
sion system in the healthy-eating domain. IEEE Intelligent Systems, 22(6):42–51, 2007.

[15] Simon Parsons, Carles Sierra, and Nick R. Jennings. Agents that reason and negotiate by
arguing. Journal of Logic and Computation, 8:261–292, 1998.

[16] Henry Prakken and Giovanni Sartor. Argument-based extended logic programming with
defeasible priorities. In Pierre-Yves Schobbens, editor, Working Notes of 3rd ModelAge
Workshop: Formal Models of Agents, Sesimbra, Portugal, 1996.

68

[17] Henry Prakken and Gerard Vreeswijk. Logics for defeasible argumentation. In D.Gabbay
and F. Guenthner, editors, Handbook of Philosophical Logic, volume 4. Kluwer Academic
Publishers, Dordrecht etc, 2nd edition, 2002.

[18] Iyad Rahwan and Kate Larson. Mechanism Design for Abstract Argumentation. In
L. Padgham, D. Parkes, J. Mueller, and S. Parsons, editors, 7th International Joint Con-
ference on Autonomous Agents & Multi Agent Systems, AAMAS’2008, Estoril, Portugal,
2008.

[19] Iyad Rahwan and Kate Larson. Pareto Optimality in Abstract Argumentation. In Pro-
ceedings of the 23rd Conference on Artificial Intelligence, pages 150–155, California, USA,
2008. AAAI Press.

[20] Iyad Rahwan and Kate Larson. Argumentation and game theory. In Iyad Rahwan and
Guillermo R. Simari, editors, Argumentation in Artificial Intelligence. Springer, 2009.

[21] Iyad Rahwan and Peter McBurney. Guest editors’ introduction: Argumentation technol-
ogy. IEEE Intelligent Systems, 22(6):21–23, 2007.

[22] Eric Rasmusen. Games and Information: An Introduction to Game Theory. Blackwell,
4th edition, 2006.

[23] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, New York NY, USA,
2009.

[24] Satinder Singh, Michael Kearns, and Yishay Mansour. Nash Convergence of Gradient Dy-
namics in General-sum Games. In Proceedings of the Sixteenth Conference on Uncertainty
in Artificial Intelligence, pages 541–548. Morgan, 2000.

[25] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. MIT Press, 1998.

[26] Paolo Torroni, Marco Gavanelli, and Federico Chesani. Argumentation in the semantic
web. IEEE Intelligent Systems, 22(6):66–74, 2007.

[27] Frans H. van Eemeren, Rob F. Grootendorst, and Francisca S. Henkemans, editors. Fun-
damentals of Argumentation Theory: A Handbook of Historical Backgrounds and Contem-
porary Applications. Lawrence Erlbaum Associates, Hillsdale NJ, USA, 1996.

[28] Christopher J.C.H Watkins. Learning from delayed rewards. PhD thesis, University of
Cambridge, England, 1989.

[29] Martin Zinkevich. Online Convex Programming and Generalized Infinitesimal Gradient
Ascent. In Proceedings of the International Conference on Machine Learning, pages 928–
936, 2003.

69

