

A SMILING TREE

AN EMPIRICAL EVALUATION ON BINOMIAL TREE

METHODS FOR LOCAL VOLATILITY MODEL

By

Mouaz Abdul Ghani Al Alem

A thesis submitted in partial fulfilment of the

requirement for the degree of

MSc in Finance and Banking

Faculty of Business

British University in Dubai

September 2009

 2

Abstract

This study compares between the standard Black-Scholes model and two

local volatility models of implied binomial trees for PowerShare index

options with regards to the pricing accuracy when evaluated against actual

market prices. With Black, F. and M. Scholes (1973): The Pricing of

Options and Corporate Liabilities. Journal of Political Economy, volume:

81, pp. 637 – 59 model as a benchmark, two local volatility models were

analyzed: Derman and Kani's [Derman, E., & Kani, I., 1994. The Volatility

Smile and Its Implied Tree. Risk, 7, 32–39] and Barle and Ckici’s [Barle, S

and N. Cakici, (1998): How to Grow a Smiling Tree. The Journal of

Financial Engineering, Vol. 7, No. 2, June 1998]. The model suggested by

Barle and Cakici shows the best performance followed by Derman and

Kani. Black-Scholes performance on the other hands was significantly

lower than the two models. This is attributed to the fact that Black-Scholes

model adopts a constant volatility regardless of option’s strike price or time

to maturity. This finding is consistent at different moneyness levels and for

different maturity periods.

 3

 4

DISSERTATION RELEASE FORM

Student Name
Mouaz Alem

Student ID
60026

Programme
Finance and Banking

Date
30 September
2009

Title

A SMILING TREE

AN EMPIRICAL EVALUATION ON BINOMIAL TREE
METHODS FOR A LOCAL VOLATILITY MODEL

I warrant that the content of this dissertation is the direct result of my own
work and that any use made in it of published or unpublished copyright
material falls within the limits permitted by international copyright
conventions.

I understand that one copy of my dissertation will be deposited in the
University Library for permanent retention.

I hereby agree that the material mentioned above for which I am author
and copyright holder may be copied and distributed by The British
University in Dubai for the purposes of research, private study or
education and that The British University in Dubai may recover from
purchasers the costs incurred in such copying and distribution, where
appropriate.

I understand that The British University in Dubai may make that copy
available in digital format if appropriate.

I understand that I may apply to the University to retain the right to
withhold or to restrict access to my dissertation for a period which shall not
normally exceed four calendar years from the congregation at which the
degree is conferred, the length of the period to be specified in the
application, together with the precise reasons for making that application.

Signature

 5

A Smiling Tree

Table of Contents
Table of Contents ... 5

Chapter 1. Introduction .. 6

Chapter 2. Literature Review ... 10

2.1. Binomial and trinomial Trees models .. 11

2.2. Volatility ... 12

2.2.1 Historical Volatility .. 12

2.2.2 Implied Volatility.. 15

2.2.3 Local Volatility... 16

2.3. Volatility Smile ... 16

2.3.1 Concept and Discovery .. 16

2.3.2 Volatility Smile Example ... 17

2.4. Modelling the volatility smile .. 18

2.4.1. Local Volatility Models .. 19

2.4.2. Stochastic Volatility Models .. 19

2.4.3. Jump Diffusion Models ... 21

2.5. Implied Volatility Trees ... 21

2.5.1. Derman and Kani’s Implied Tree .. 22

2.5.2. Barle and Cakici’s model .. 26

Chapter 3. Methodology ... 28

3.1. Data Selection ... 29

3.2. Data Analysis ... 30

Chapter 4. Results ... 36

4.1. Comprehensive Analysis ... 37

4.2. Analyzing Results By Moneyness Level 39

4.3. Analyzing Results By Time To Expiry .. 41

4.4. Analyzing Results By Strike Price .. 43

Chapter 5. Conclusions .. 44

5.1. Suggestions for Future Researches .. 47

Bibliography ... 48

Appendix A. Dispersions For Different Moneyness Levels 50

Appendix B. Dispersions At Different Maturities Levels 53

Appendix C. Excel VBA Functions Specifications 57

Appendix D. Excel VBA Functions Code ... 60

 6

Chapter 1. Introduction

 7

Until 1970s, little was known about options pricing and the way for getting

fair valuation for options. In 1973, Fisher Black and Myron Scholes came

up with the first systematic approach for pricing options, which they have

described in their paper "The Pricing of Options and Corporate Liabilities”.

The new Black-Scholes method has largely contributed in putting a

consistent and easy-to-use way for pricing options. Both buyers and

sellers can use the model to give reliable and consistent results.

Additionally, it has laid the foundation for a later research by Cox – Ross

and Rubinstein published in year 1979 on using binomial trees models for

option pricing. Although using binomial and trinomial trees have become a

popular way for options pricing, this did not undermine Black-Scholes

importance. In fact, Scholes and Merton have both shared Nobel Prize in

economics in year 1997 to recognize the significance of their work.

While the main intention of Black-Scholes was finding a suitable way for

estimating options prices, traders have used the model in a different way.

Instead of starting with historical volatilities of options to get their Black-

Scholes prices, traders used the observed market prices and

reverse-engineered the model to obtain volatilities implied by actual

market prices. This has provided traders with a way to compare options

using implied volatilities rather than options prices.

In 1987, major securities markets around the world had crashed including

derivatives and options markets, and a big shortfall was discovered in

Black-Scholes. The model’s shortfall comes from its assumption of having

a unique constant volatility for all options related to one underlier

regardless of strike price or expiration. While this was generally accepted

before the crash, it was proven afterwards that the constant volatility is not

accurate, and volatility should depend on both strike price and maturity of

options. Consequently, the concept of implied volatility has emerged and

transformed the constant volatility of Black-Scholes into a skew shape

resembling to a smile and therefore it has been called volatility smile.

 8

To rectify Black-Scholes deficit, many researchers have suggested

modifying the model to embrace volatility smile. Others went to the extent

of wiping-out the whole model and replacing it with a more advanced

model that is sophisticated enough to emulate the smile. The efforts of

replacing Black-Scholes were unsuccessful due to model’s simplicity in

understanding, and efficiency in calculation. Thus econometricians and

financial engineers have soon left the idea of replacing the model and

turned their efforts into extending it to capture volatility smile. Their

attempts have resulted in the innovation of local volatility models;

stochastic volatility models and jump diffusion models.

Local volatility models stay near to Black-Scholes as much as possible,

and then introduce little modification to reflect the volatility smile. Volatility

here is a dependent variable that varies deterministically according to time

to expiry and random stock prices. In stochastic volatility models, the

volatility of the stock itself is considered an independent random variable

whose evolution is correlated with the stock price. Finally, jump diffusion

models add jumps and crashes to the standard Black-Scholes prices.

They allow stocks to make an arbitrary number of jumps in addition to

undergoing diffusions.

This study examines the usage of implied binomial trees as part of local

volatility models to enhance the Black-Scholes formula. It includes detailed

reviews for Derman and Kani’s model and the introduced enhancements

by Barle and Cakici to Derman and Kani.

 9

In their researches, neither Derman and Kani nor Barle and Cakici have

evaluated their model’s stabilities against real market data. Therefore, the

value of this study comes from applying real life options data derived from

Chicago Board Options Exchange (CBOE) to verify models validity and

check its accuracy level in predicting options prices and implied volatilities.

Options on PowerShare Exchange Traded Fund are used in this study for

testing purposes.

The main objectives of the study are:

 to verify that both Derman and Kani and Barle and Cakici models

outperform Black-Scholes model in predicting implied volatility in

the selected sample data

 to validate that the suggestions of Barle and Cakici have enhanced

the accuracy for Derman and Kani’s model

 to ensure that both prior assumptions are consistent at different

moneyness levels and for different time to expiration periods

The study uses Visual Basic for Applications functions (VBA) that are

specifically developed in Microsoft Excel for the testing purposes. These

VBA functions are used to derive options implied volatilities and compute

options prices according to Black-Scholes, Derman and Kani, and Barle

and Cakici models.

The remaining of the study is organized as per the followings: Section II

reviews the literature of options pricing and the main concepts behind it.

Section III describes sample data of CBOE index option prices and

explains the methodology undertaken in the tests. Section IV analyses the

results of applying real market data to models and assesses models

accuracy in estimating option prices through local volatility values. The

study concludes in Section V.

 10

Chapter 2. Literature Review

 11

This section will review some basic concepts in options valuation related to

binomial trees, historical, implied, local volatilities and volatility smile, and

then it will go into detailed study of Derman and Kani’s model followed by

Barle and Cakici’s model.

2.1. Binomial and trinomial Trees models

Since Cox, Ross, and Rubinstein published their research in year 1979 for

using binomial trees to price options; it has become a very popular

method. A diagram of binomial tree represents all possible paths that

might be taken by the stock price till the time of expiration of the option.

According to Cox, Ross, and Rubinstein (1979), the binomial tree’s model

has similar assumptions such as the ones of Black-Scholes. First, the

stock price follows a random walk. Second, in each movement, the stock

has a certain probability to move up by a certain percentage, and a certain

probability to move down by a certain percentage. As the number of steps

increases and the time of each step become shorter, the distribution of

stock prices takes lognormal shape identical to Black-Scholes model.

Trinomial trees on the other hands can be used as an alternative way to

binomial trees. While binomial trees account for only upward and

downward movement in each step, trinomial trees take into consideration

three different possible outcomes for stock price evolution; upward, middle

and downward. The calculations of trinomial trees are analogous to

binomial trees. In both cases, the work starts from the end of the tree

towards its beginning, and calculates at each step the value for exercising

the option and the value for continuing1.

1
 For more information regarding using trinomial trees in pricing options; refer to Dupire

(1994)

 12

2.2. Volatility

The Options Institute (1995) defines the volatility as the “measure of

uncertainty about the returns provided by the stock”. Typically, it falls in the

range of 15% to 60% per annum, and might reach over 100% per annum

for some stocks in certain periods of high fluctuations. Volatility reflects the

risk associated with holding or investing in a certain stock or option. Stocks

with higher volatilities might bring better returns than stocks with lower

volatility in favourable times, or it might be the source of deeper losses in

unfavourable periods. On the contrary, stocks with lower volatilities might

have lower gains but at the same time lower losses. It is crucial here to

mention that the volatility is an indicator to the magnitude of stock price’s

movement and not to the direction of that movement.

There are two main types of volatilities related to securities: historical

volatility and implied volatility. Additionally, a new type called local volatility

has emerged after 1987 markets crash. The following sections will provide

brief explanations for the three concepts.

2.2.1 Historical Volatility

Historical volatility is calculated as the average deviation from the average

price of a stock during a specific time period. It uses historical data of

stock price’s changes in order to predict future stock prices. Also, it

assumes that the volatility remains constant. Unfortunately, it is tricky to

know how much and how old data should be used. While it is partially true

that the more data is used the more volatility is accurate, however,

volatility might change over time, and an extreme cautious should be

exercised when choosing the time window of the selected data.

 13

Hull (2006, p.286) computes historical volatility based on “standard

deviation of the return provided by the stock in one year period when the

return is expressed using continuous compounding”, and he advises to

use historical data long enough to match the future period investors are

willing to invest for.

In the following section, an example of historical volatility for a stock will be

demonstrated. The example uses PowerShare, an Exchange Traded Fund

(ETF) that replicates NASDAQ 100 Index. PowerShare is traded on

NASDAQ and its options are traded on Chicago Board Options Exchange

(CBOE) and are among the most active options in the world. Figure 2.1

shows month-to-date stock prices of PowerShare as of 23 December

2008.

Figure 2.1: month-to-date stock prices of PowerShare as of 23 Dec 2008 (Yahoo
Finance)

The above figure shows that the price of the stock witnessed a period of

high fluctuations in the first week of December and then it went into a more

stable period in the second and third week of December. This fluctuation

can be measured by looking at the historical volatility of the stock for the

same period as in the following table.

 14

Table 2.1: Historical Volatility of PowerShare as of 23 Dec 2008
(www.ivolatility.com)

Current 1 WK AGO 1 MO AGO 52 wk Hi/Date 52 wk Low/Date

 HISTORICAL VOLATILITY

10 days 35.94% 45.87% 62.68% 95.22% - 20-Oct 12.21% - 28-Feb

20 days 49.31% 60.66% 68.13% 82.41% - 07-Nov 16.84% - 30-May

30 days 57.52% 61.37% 76.21% 76.21% - 21-Nov 17.80% - 04-Jun

Table 2.1 shows 10 days, 20 days and 30 days historical volatility values

of PowerShare stock as per 23 December 2008. Additionally, the table

compares the three volatility values (10 days, 20 days and 30 days) of the

stock to its prior values one week ago, one month ago, 52 weeks high and

52 weeks low. These values are exhibited in the following chart.

Figure 2.2: historical volatility comparison chart for PowerShare

Historical Volatility Comparison

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

52

Weeks

High

1 Month

Ago

1 Week

Ago

Current

10 days volatility

20 days volatility

30 days volatility

Figure 2.2 presents a chart for rolling historical volatility values presented

in table 2.1. The figure shows a declining trend in historical volatilities for

PowerShare stock which is consistent with the declining trend in stock

fluctuations as in figure 2.1. It is interesting to see that 10 days volatility

declines faster than 20 days and 30 days volatility values.

http://www.ivolatility.com/

 15

2.2.2 Implied Volatility

Black-Scholes model was originally designed to calculate option’s price

starting from underlying stock price, exercise price, risk free rate, time to

expiration and the volatility of stock. However, the model is used in reality

in a different fashion. Traders are using observed market prices of options

and reverse-engineer Black-Scholes to find out equivalent volatility values.

This is commonly referred to as “implied volatility” of the option as it is

implied by actual market prices rather than theoretical values.

Implied volatility reflects investors’ future expectations of stock movement

instead of what has happened in the past. While historical volatility is

affected by the previous performance of the stock, it is the implied volatility

that reveals the coming events to the stock such as earnings

announcement or mergers and acquisitions events. Implied volatility has

become so important that options are quoted in terms of volatility rather

than price between professional traders. An example of implied volatility is

presented in the table below.

Table 2.2: Implied Volatility of PowerShare as of 23 December 2008
(www.ivolatility.com)

Current 1 WK AGO 1 MO AGO 52 wk Hi/Date 52 wk Low/Date

 IMPLIED VOLATILITY

IV Index call 41.64% 45.68% 67.74% 79.19% - 20-

Nov 18.67% - 30-May

IV Index put 39.94% 48.56% 66.22% 75.77% - 20-

Nov 19.32% - 30-May

IV Index mean 40.79% 47.12% 66.98% 77.48% - 20-

Nov 18.99% - 30-May

Table 2.2 shows the implied volatility for PowerShare as of 23 December

2008. Like historical volatility, there is a downward trend in implied

volatility. For example, the mean implied volatility for PowerShare index

recorded 66.98%, 47.12% and 40.79% for one month ago, one week ago

and current value respectively on 23 December 2008.

http://www.ivolatility.com/

 16

2.2.3 Local Volatility

Unlike Black-Scholes model which assumes a constant historical volatility,

in local volatility models local volatility represents a function that is

dependent on both strike price and time to maturity of the option and is

consistent with market prices for all option prices on a given underlier.

Detailed discussion on local volatility models comes at a later section.

2.3. Volatility Smile

2.3.1 Concept and Discovery

According to Rubinstein (1994), volatility smile phenomenon was first

documented and recognized after security markets crash in 1987. Before

the crash, all options on one stock had the same implied volatility

regardless of strike price or exercise date. However, since 1987, implied

volatility of options on one stock took a U-shape resembling a smile. Deep

In-The-Money (ITM) options and deep Out-The-Money (OTM) options

have higher implied volatilities than At-The-Money (ATM) options. The

closer you get to ATM strikes, implied volatility decreases, and the more

you move far-of ATM in both directions implied volatility increases. In

recent years, the volatility smile has mostly disappeared from all markets

and implied volatility surface has taken the shape of skew. Figure 2.3

demonstrates volatility smile for S&P options market as of Jan 31, 1994.

 17

Figure 2.3: Implied Volatilities of S&P 500 Options on Jan 31, 1994. Derman (1994)

Volatility smile or skew tells that Black-Scholes, with its over-simplicity, is

incapable of capturing all the facts regarding options prices. Black-Scholes

claims that all options concerning a single stock have the same volatility

regardless of its strike or time to expiry. Yet, reality tells us a different

story. Reality says that each option has its own implied volatility value

depending on strike price; exercise date and the type of the option (call or

put) despite the fact that all options are laying on the same underlier.

2.3.2 Volatility Smile Example

Table 2.3 and Figure 2.4 show implied volatilities for options on

PowerShare expiring on 19 Dec 2008 as of 5 Dec 2008. The values were

calculated by reverse-engineering Black-Scholes and finding implied

volatility values that make the model’s theoretical options’ prices equal to

market prices. The closing price for PowerShare stock on 5 Dec 2008 was

28.94

Table 2.3: implied volatilities for options on QQQQ expiring on 19 Dec 2008 as of 5
Dec 2008

 Implied Volatility

Strike Price Calls Puts

25 78.00% 70.10%

26 67.00% 66.50%

27 61.60% 63.20%

28 58.80% 59.50%

29 56.20% 56.70%

30 53.50% 54.30%

31 51.30% 54.50%

32 49.60% 54.40%

 18

Figure 2.4: implied volatilities for options on PowerShare stock, expiring on 19 Dec
2008 as of 5 Dec 2008 (Yahoo Finance)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

25 26 27 28 29 30 31 32

Strike Price

Im
p

li
e
d

 V
o

la
ti

li
ty

Calls

Puts

The above figure shows that options with different strikes have different

implied volatilities, even though these options are on the same underlier.

ITM calls for instance, have higher implied volatilities than ATM calls, and

the latter has a higher volatility than OTM calls. Similarly, ITM puts have

higher implied volatility than ATM puts, which in turn have higher volatility

than OTM puts.

2.4. Modelling the volatility smile

As discussed earlier, the main problem with Black-Scholes model is the

assumption of having a constant volatility for all options underlying the

same stock. While efforts to replace the model failed; some attempts to

enhance the model to embrace the volatility smile were more successful.

These attempts can be organized in three groups: local volatility models,

stochastic volatility models and jump-diffusion models. The following

sections briefly discuss these three groups of models.

ATM Options

 19

2.4.1. Local Volatility Models

These are among the first to model the smile. They try to stay as close to

the standard Black-Scholes as possible, and then slightly alter the model

to reflect the volatility smile. In its essence, local volatility models

generalize the assumption behind Black-Scholes of having lognormal

process with constant volatility and therefore, volatility is allowed to vary

deterministically as a function of future time and future random stock

prices. In local volatility models, the evolution of stock price is provided by

the equation:

In 2.a, denotes a deterministic function of a stochastic variable S,

S denotes underlying stock price and t denotes time to expiry of the option.

Section 2.5 will discuss in more details two studies related to local volatility

models2.

2.4.2. Stochastic Volatility Models

Local volatility models are considered a special case of stochastic volatility

models. While the first have variable volatilities based on underlying stock

price and time to maturity, the latter considers “the volatility of the stock

itself as an independent random variable whose evolution is correlated

with that of the stock price”. According to Derman (2003), stochastic

volatility models can be thought of as of having two (or more) stock price

evolutions, each with its own volatility as in figure 2.5, and option price is

the average of Black-Scholes values for high and low volatilities.

2
 For more information regarding local volatility models, refer to Derman (Lectures)

reference

 20

Figure 2.5: stochastic volatility models. Derman (2003)

When the correlation between underlying stock price and volatility is zero,

the result appears as a pure symmetric smile similar to the one found in

equal strength currencies. This is demonstrated in figure 2.6.

Figure 2.6: the smile in uncorrelated stochastic volatility models. Derman (2003)

The main feature of stochastic volatility models is that the smile is stable

and does not change over time and therefore it is more realistic and

resembles real-world smiles. However, as volatility is stochastic, it is not

possible to perfectly replicate option’s payoff and it is not possible to

hedge against it, and therefore the stochastic models are filled up with

unknowns and have to go a long way before they become easily usable. A

detailed discussion on stochastic volatility is out of the scope of this study3.

3
 For more details refer to Derman (2003) and Derman (Lectures)

 21

2.4.3. Jump Diffusion Models

One of the non-realistic assumptions of Black-Scholes is the continuous

movement of stock prices. Jump diffusion models have come up to rectify

this flaw by adding jumps and crashes to the standard Black-Scholes

prices. They allow stocks to make an arbitrary number of jumps in addition

to undergoing diffusions. Jump diffusion models realistically take into

account jumps such the ones happened in 1987 and 1997. Additionally,

they can fit the smile reasonably. Unluckily, these models are not complete

in terms of replication, and cannot be hedged with the stock alone or even

with an additional option4.

2.5. Implied Volatility Trees

According to Barle and Cakici (1998), recombining and constructing

binomial and multinomial trees might be one of the simplest, and yet, most

initiative and powerful tools available for the valuation of derivative

securities. These trees are built from the known prices of European

options, and should be consistent with the observed volatility smile.

Afterwards, options can be priced in a consistent way with the market.

Implied trees should satisfy three criteria:

 it must correctly reproduce the volatility smile

 negative node transition probabilities are not allowed

 the branching process must be risk-neutral at each step

The following sections will study two approaches for constructing implied

binomial trees.

4
 More information is available at Derman (2003) and Derman (Lectures) references

 22

2.5.1. Derman and Kani’s Implied Tree

Emanual Derman and Iraj Kani have published a research in year 1994

with the title “The Volatility Smile and Its Implied Tree”. The main objective

of their research was to systematically extract from the observed volatility

smile a unique binomial tree for the index corresponding to the empirical

relationship between stock’s volatility and the stock price and maturity date

of the option. Derman and Kani (1994) have suggested that from the

resulting binomial tree, both the distribution can be calculated as well as

the volatility of the index at future times and market levels as implied by

option prices. Additionally, the tree can be used for the valuation of other

derivatives whose prices are not readily available in the market, such as

illiquid European options, American options and exotic options that depend

on the details of the index distribution.

According to Black-Scholes theory, stock prices evolve log-normally with a

constant volatility at any time and market level. This evolution can be

described by the stochastic differential equation 2.b.

Stochastic differential equation of Black-Scholes

Where S is the stock price, is its expected return and is a Wiener

process with a mean of zero and variance equal to dt. The implementation

of Cox-Ross-Rubinstein binomial tree of equation 2.b is represented in

figure 2.7. Notice that stock price evolves with equal logarithmic stock

price spacing.

 23

Figure 2.7: Schematic risk-neutral stock tree with constant volatility. Derman (1994)

Unfortunately, the volatility smile that was discovered after market crash in

1987 has caused a flaw in Black-Scholes model and since then, the

implied volatility has taken a shape similar to a smile or a skew as

explained earlier. It is natural to replace the static volatility in equation 2.b

above with a stochastic volatility that is related to both stock price (S) and

time to maturity (t) of the option. This is shown in equation 2.c:

Stochastic differential equation with a volatility function

Where represents the local volatility function that depends on both

stock price and time to expiry.

In their paper, Derman and Kani have deduced the numerically

from the observed smile rather than involving a special parameter form of

the as applied by other researchers. Hence, a more distorted

implied tree should replace the standard binomial tree demonstrated in

figure 2.7. The resulting tree is illustrated in figure 2.8.

 24

Figure 2.8: The implied tree. Derman (1994)

In the above figure, option prices for all strikes and expirations would

decide the position and probability of reaching each node in the implied

tree. Let us assume that the first n levels have already been constructed to

match the implied volatilities of all options with all strikes out to that time

period. Figure 2.9 demonstrates the nth level of the tree at time tn, with n

implied tree nodes and their already known stock prices si.

Figure 2.9: constructing the (n+1)
th

 level of the implied tree. Derman (1994)

 25

Next the tree is used as in figure 2.9 to calculate theoretical values of 2n

known quantities - the values of n forwards and n options all expiring at

time tn+1 – and requiring that these theoretical values match market values.

Then, depending on the number of nodes, the central node of the standard

Cox-Ross-Rubinstein tree can be chosen. In the case number of nodes is

odd, the central node’s stock price is set to equal today’s spot. Otherwise,

the average of the natural logarithms of the two central nodes stock prices

should be made equal to the logarithm of today’s spot price. Finally, the 2n

equations for the theoretical values of the forwards and the options are

derived.

The equation 2.d can be used to get the risk-neutral transition probability

from node (n, i) to (n+1, i+1).

Risk neutral transition probability from a lower node to a higher one

The initial node’s stock price and the higher node’s stock price are

obtained using equations 2.e and 2.f respectively.

Obtaining upper node stock price

Obtaining the lower node stock price from a known upper one

These are in brief the steps required to build the binomial tree according to

Derman and Kani’s model.

 26

2.5.2. Barle and Cakici’s model

The main objective of Stanko Barle and Nurset Cakici (1998) paper with

the title “How to Grow a Smiling Tree” was to extend Derman and Kani’s

implied tree, which - according to Barle and Cakici - reproduces the

volatility smile accurately in certain circumstances, however it fails in other

scenarios such as when the interest rates are high. In addition to solving

the problem of high interest rates, Barle and Cakici suggested additional

improvements to the implied tree of Derman and Kani.

Barle and Cakici have suggested two major enhancements to Derman and

Kani’s work. The first major enhancement is related to the way strike price

is calculated. Since negative transition probability among tree nodes is

forbidden, Derman and Kani uses inequality formula to restrict stock price

Si+1 as per equation 2.g.

Derman and Kani’s inequality equation

11  siSisi 2.g

However, according to Barle and Cakici, the previous inequality is not

necessary true for a given node. The suggested correct inequality formula

by Barle and Cakici is 2.h.

Suggested correction to Derman and Kani’s inequality equation

11  FiSiFi 2.h

In formulas 2.g and 2.h, Fi, Fi+1 denotes the forward price; Si+1 and Si are

the prices corresponding to the nodes at the (n+1)-th level connected to

the node with the price si, with K being the strike price. Occasionally, the

calculated value of Si+1 will fall between si and Fi or between si+1 and Fi+1.

Additionally, Derman and Kani have chosen K=si instead of K=Fi. This

might cause small errors in Derman and Kani’s tree, which may

accumulate and cause serious discrepancies.

 27

The second major improvement is related to how to choose the centre of

the tree. Derman and Kani uses the current stock price S similar to Cox-

Ross-Rubinstein binomial tree. Barle and Cakici have suggested allowing

the tree to bend along with the interest rate, setting the centre to Se(r-q)tn+1.

This is to allow the tree to follow the most probable movement of the

underlying stock-exponential increase at the risk-free interest rate.

Furthermore, Barle and Cakici have suggested two additional minor

enhancements. Sometimes the price Si+1 rise outside the interval

determined by equation 2.k., leading to a negative transition probability. In

such case, Derman and Kani override the price Si+1 and set it by hand.

The problem is that the overridden price Si+1, may still be violating the

inequality as per equation 2.k. Barle and Cakici have suggested choosing

any point between Fi and Fi+1. i.e: the average of Fi and Fi+1 to save the

tree from negative probabilities. The second minor enhancement proposed

is the use of Black-Scholes formula in writing any serious computer

program for the implied tree, rather than using Cox-Ross-Rubinstein tree

for calculations purposes. Black-Scholes model is much faster, more

accurate and requires very light computing power when compared to Cox-

Ross-Rubinstein binomial trees.

 28

Chapter 3. Methodology

 29

3.1. Data Selection

Options prices of PowerShares are employed to carry out the testing part

of this study. Daily prices (bid / ask price midpoints) of PowerShare

options are used for the period 11 February 2002 till 29 May 2002. Data

was obtained from web site http://www.historicaloptiondata.com/ which

provides historical daily prices for all options traded on Chicago Board

Options Exchange (CBOE). However, the following data are excluded:

 None-liquid PowerShare options that have a volume of less than 10

trades per day are excluded.

 Deep-in-the-money and deep-out-of-the-money options are

excluded as well, as these options have little trading activities.

Deep-in-the-money options are defined as those options that are

less than 75% of ATM options prices, and deep out-of-the-money

options are those options that are more than 125% of ATM options

prices

 Finally, options that expire on the same date are excluded

For historical volatility calculation, historical stock prices of PowerShare

were obtained from Yahoo Finance for the period 2 April 2001 till 10

February 2002. It is assumed that the total trading days are 252 days per

year. The calculated historical volatility is used as the constant volatility of

Black-Scholes and it equals to 48% throughout the testing period.

The risk free rate used within this study is the three-month treasury bills

rate with constant maturities which was obtained from Federal Reserve

web site. Since risk free rate has little effect on the results, 11 February

2002 rate of 1.75% was used and it was assumed that it remains constant

throughout the testing period for all maturities. Additionally, it was

assumed that PowerShare stocks pay no dividend in the sample period.

Finally, Derman & Kani and Barle and Cakici models were run for five

steps throughout this study.

http://www.historicaloptiondata.com/

 30

3.2. Data Analysis

In the remaining of this study, Black-Scholes, Derman and Kani, and Barle

and Cakici models will be referred to as BS, DK and BC respectively.

Given the described PowerShare options data, the study will estimate how

well BS, DK and BC models predict options prices. This is done through

measuring the mean difference (absolute mean difference) of models local

volatilities and the volatilities implied by market prices of the options. The

mean difference was selected because it measures the dispersion or the

spread out of two independent variables or series, and it is used here as

an indicator for the dispersion of BS, DK and BC models’ local volatilities

from market implied volatility.

A Lower dispersion or a lower mean difference indicates less difference

between predicted local volatility and actual market volatility, and hence

the model is performing better in predicting market values. On the

contrary, a high dispersion or a high mean difference signifies a bigger

difference between predicted local volatility and actual market volatility,

and hence the model is under-performing in predicting market values.

One of the major issues during the study was the selection of the local

volatility function that will be used to fit the smile. In order to keep the

study simple, the volatility is assumed to be dependent on strike price

solely and it is derived from Hardle (2002, p.156), and then tuned to fit

observed market prices for the first two weeks in the data sample.

Equation 3.a represents the volatility function that is used for the data

analysis.

44.0 






 


S

KS
imp 3.a

 31

In the previous equation, S refers to stock price and K refers to strike

price. This function is used to evaluate the prediction power of both DK

and BC models and then to compare it with the standard BS model.

For the evaluation process, seven Visual Basic for Applications functions

(VBA) for Microsoft Excel was developed to automate the calculations of

Black-Scholes, Cox-Ross-Rubinstein, Derman & Kani and Barle and

Cakici models. These functions are listed in table 3.1 with brief explanation

regarding each function.

Table 3.1: Excel VBA Function used in analysis.

ID Function
Name

Usage

1 DK Calculates option price according to Derman and Kani model

2 BC Calculates option price as per Barle and Cakici model

3 BS_Call Calculates call option price according to Black and Scholes

4 BS_Put Calculates put option price according to Black and Scholes

5 CRR Calculates option price according to Cox-Ross-Rubinstein
(CRR)

6 BS_IV Calculates implied volatility from option price

7 Vol_Smile Calculates options volatility according to volatility function as
in 3.e function

The Excel VBA functions used in this study were mostly derived from

Rebel (2004) project and from XploRe Software handbook available

online. The code has to undergo many modifications to fit the purposes of

study. Full specification of these functions is listed in Appendix A. Actual

code comes in Appendix B.

PowerShare options data covers a period of 16 weeks. For testing

purposes, the data were divided into eight bands, each band spans a

period of two weeks. The details of the resulting bands are listed in table

3.2.

 32

Table 3.2: shows how data was divided into eight bands and details of each band

Band ID

(B)
Weeks Start Date End Date

Number of

Options

(N)

1 Week 1 + 2 11 Feb 2002 22 Feb 2002 855

2 Week 3 + 4 25 Feb 2002 8 Mar 2002 1232

3 Week 5 + 6 11 Mar 2002 22 Mar 2002 1253

4 Week 7 + 8 25 Mar 2002 5 Apr 2002 1061

5 Week 9 + 10 8 Apr 2002 19 Apr 2002 1115

6 Week 11 + 12 22 Apr 2002 3 May 2002 1270

7 Week 13 + 14 6 May 2002 17 May 2002 1320

8 Week 15 + 16 20 May 2002 31 May 2002 855

 Total 8961

The detailed steps used in analysing data are as per the followings:

Step 1: Data Organizing

Table 3.3 shows a snapshot of PowerShare data that were obtained from

Chicago Board Options Exchange (CBOE) and used for calculations. The

data were organized in one Excel sheet to facilitate the calculations and

results collection.

Table 3.3: a snapshot of PowerShare data used in the calculations

 33

Step 2: Calculating Options Prices using BS, DK and BC Models

In the second step, options prices are calculated according to BS, DK and

BC models as explained earlier in sections 2.5.1 and 2.5.2. Excel VBA

code is used here to automate the calculations of these models as detailed

in Appendixes C. and D. Table 3.4 below shows a sample of the

calculated prices.

Table 3.4: Calculating BS, DK and BC models prices

Step 3: Calculating Implied Volatilities for DK and BC models

Rather than comparing prices, models implied volatilities were used to

compare and evaluate models correctness and preciseness. In the third

step we used models prices calculated in step 2 as input and reversed

engineered the standard Black-Scholes model to calculate their implied

volatilities. A sample of the results appears in table 3.5 below. Note that

historical volatility of 48% was used for Black-Scholes.

 34

Table 3.5: shows an extraction of data sheet used for calculation

Step 4: Calculating Mean Difference (Absolute Mean Difference)

Models implied volatilities calculated in step 3 are then subtracted from

market implied volatility to compute models error in predicting market

implied volatility. This is done by taking the absolute value of the difference

between models and market implied volatilities and then taking the

average across each band (two weeks period) and finally across all eight

bands in the data sample. A screen snapshot is shown in table 3.6.

Table 3.6: shows an extraction of data sheet used for calculation

 35

Equation 3.b below is used to calculate the mean difference in the

previous step.

N

N

impels 
1

mod 

 3.b

In the previous equation imp
 refers to market implied volatility and elsmod

denotes volatilities of BS, DK and BC models implied by calculated

theoretical prices as in step two. Finally, the symbol N refers to

PowerShare option’s number across the specific band. For instance, band

1 contains 855 options; band 2 contains 1232 options and so forth.

 36

Chapter 4. Results

 37

 4.1. Comprehensive Analysis

First, the study will examine the mean difference of options local volatilities

of BS, DK and BC models and the volatility implied by market throughout

our testing period. Figures 4.1 and 4.2 illustrate BS, DK and BC local

volatilities dispersions from implied market volatility for each time band

within our study.

Figure 4.1: Call Options Mean difference of BS, DK and BC’s local volatilities and market’s

implied volatility

Band ID BS DK BC

1 12.99% 7.56% 7.26%

2 10.31% 4.80% 3.88%

3 14.46% 7.28% 5.79%

4 13.58% 5.60% 3.95%

5 14.33% 7.27% 5.90%

6 12.35% 4.60% 3.26%

7 11.80% 7.00% 6.66%

8 10.48% 2.62% 1.71%

 Average 12.54% 5.84% 4.80%

Calls Mean Difference

of Market and Models IVs

0.00%

5.00%

10.00%

15.00%

20.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

Figure 4.2: Put Options Mean difference of BS, DK and BC’s local volatilities and market’s

implied volatility

Band ID BS DK BC

1 8.93% 4.42% 3.93%

2 9.52% 4.55% 3.56%

3 12.38% 6.75% 5.11%

4 14.05% 7.16% 5.43%

5 12.91% 8.35% 7.01%

6 12.00% 6.05% 4.64%

7 10.34% 6.74% 6.00%

8 9.86% 3.77% 2.65%

Average 11.25% 5.97% 4.79%

Puts Mean Difference

of Market and Models IVs

0.00%

5.00%

10.00%

15.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

It is clear in figures 4.1 and 4.2 that both DK and BC models have

significantly outperformed BS model in predicting market prices for both

call and put options by scoring lower in the mean difference test.

Additionally, BC model has performed slightly but consistently better than

DK across all bands as well.

 38

The mean difference of BS constant historical volatility of 48% and implied

market volatility in the testing period was within the range of 10.31% to

14.46% with an average of 12.54% for call options. The same range was

8.93% to 14.05% with the average of 11.25% for put options. In DK’s

model, the mean difference of the model’s local volatility and implied

market volatility was within the range of 2.62% to 7.56% with an average

of 5.84% for call options. The range was 3.77% to 8.35% with the average

of 5.97% for put options. The BC’s model was the best and the lowest in

the prediction as the mean difference of its local volatility and the volatility

implied by the market was within the range of 1.71% to 7.26%, with an

average of 4.8% for call options and in the range of 2.65% to 7.01% with

the average of 4.79% for put options.

The dispersion of BC model’s local volatility and market implied volatility

was 1% lower than the dispersion of DK’s local volatility and market

implied volatility. This is consistent with the theory, as the enhancements

suggested by BC model have brought better results to DK.

 39

4.2. Analyzing Results By Moneyness Level

In the second test, data is tested at different moneyness levels. As

mentioned earlier, deep-in-the-money and deep-out-of-the-money options

were excluded and only options within the range of +/- 25% of ATM are

included. Based on moneyness level, the data were divided into three

categories, ITM options that are less than 5% than ATM, OTM options that

are more than 5% than ATM and NTM options in between. The

moneyness levels are illustrated in figure 4.3.

Figure 4.3: Moneyness Levels

Deep ITM

(Excluded)
ITM

N
T

M OTM
Deep OTM

(Excluded)

0 0.5 1 1.5 2

(Strike / Stock Price)

Moneyness

75% 95%105% 125%

Appendix A. lists detailed tables and charts of mean differences for models

local volatilities and market-implied volatility of both call and put options for

ITM, NTM and OTM moneyness levels. Table 4.1 provides summary for

these observations.

 40

Table 4.1: DK and BC models average mean difference of local volatilities and market

implied volatility

Moneyness

BS DK BC

Call Put Call Put Call Put

ITM 11.57% 14.39% 9.67% 7.04% 8.72% 6.08

NTM 11.08% 11.76% 5.49% 6.21% 4.04% 4.71

OTM 13.97% 8.41% 3.29% 4.96% 2.43% 3.08

Table 4.1 shows that both DK and BC models have considerably

outperformed BS model in predicting options prices and market implied

volatility at the three moneyness levels for both call and put options.

Additionally, BC model has also slightly outperformed DK model in the

prediction at all moneyness levels for both call and put options. It was also

interesting to see that both DK and BC models have performed the best at

OTM calls and puts. The dispersion of DK and BC Models from the market

at NTM calls and puts came higher than OTM but still lower than ITM

options. ITM options dispersion for both models was the highest and at the

same time the least accurate among moneyness levels; although it is still

lower than BS dispersion.

For example, the dispersion of DK model was 9.67%, 5.49% and 3.29%

for ITM, NTM and OTM call options respectively. In the same manner, the

dispersion of BC local volatility’s and implied market volatility was 8.72%,

4.04% and 2.34% for ITM, NTM and OTM call options respectively.

 41

4.3. Analyzing Results By Time To Expiry

Next, data will be tested at three maturity levels: short maturity for options

with expiry less than 30 days, medium maturity for options expiring within

30 to 90 days and long maturity for options expiring after 90 days.

Appendix B. lists detailed tables and charts of mean differences for models

local volatilities and market-implied volatility of both call and put options for

long, medium and short maturities as per previous maturity definitions.

Table 4.2 provides a summary for these observations.

Table 4.2: DK and BC models average MD local volatilities and market implied volatility

Maturity

BS DK BC

Call Put Call Put Call Put

More than 90 days 12.28% 12.65% 4.01% 5.79% 2.49% 4.00

30 – 90 days 11.02% 9.98% 3.50% 3.77% 2.75% 2.96%

Less than 30 days 17.74% 10.54% 18.42% 12.74% 18.31% 12.50%

11 – 29 days 8.88% 9.61% 6.77% 7.88% 6.21% 7.46%

Table 4.2 shows that dispersions of both DK and BC local volatilities from

market implied volatility were significantly lower than BS dispersion at long

and medium maturities for both call and put options. Additionally, the

dispersion of BC model was slightly lower than DK’s dispersion for long

and medium maturity levels for both call and put options. However, it is

noticeable that the dispersion of BS from market came lower than DK and

BC dispersions for shorter maturities in both call and put options.

The results for long and medium maturities were not conclusive. DK model

has performed the best in medium maturities, followed by long maturities

for both call and put options. DK dispersion of local volatilities from market

implied volatility came as high as 18.42% and 12.74% for call and put

options respectively.

 42

The lowest dispersion of BC model was in long maturity calls and medium

maturity puts. This is followed by medium maturity calls and long maturity

puts. Short maturities registered the highest dispersion in BC model as it

scored 18.31% and 12.50% for call and put options respectively.

Apparently, there is a wide dispersion in both DK and BC local volatilities

compared to market implied volatility for options with less than 30 days to

expiry. This large dispersion has provoked us to make another

investigation about its cause. In order to track the reason behind this large

dispersion for shorter maturities, an additional test is performed for options

with maturities between 11 and 29 days to expire after excluding options

with maturities between one and 10 days. The result is illustrated in

Appendix B. and is summarized in Table 4.2.

After excluding options that matures within 10 days of the data date, the

average dispersion has been significantly reduced from the range of

12.50% - 18.42% to the range of 6.21% - 7.88%. This result goes well

along with theoretical studies, and both DK and BC models dispersions

have returned to their previous performance that is significantly lower than

BS. This behaviour is explained by Dumas (1995), as options with little

time to expiry “have relatively small time premia, hence the estimation of

volatility is extremely sensitive to no-synchronous option prices and other

possible measurement errors”.

Based on the previous analysis, it can be generalized that both DK and BC

options provide lowest dispersion in options maturing within 30 – 90 days,

with the exception of BC’s model prediction of call options. The next lowest

dispersion is for options with maturities longer than 90 days, followed by

maturities of 11 to 29 days. Models’ dispersion of options with expiry of 10

days or less was large and inaccurate.

 43

4.4. Analyzing Results By Strike Price

Finally, local volatilities of BS, DK and BC shall be examined and

compared to market implied market for call options with 42 days to expiry

as of 8 March 2002. The result is illustrated in figure 4.4.

Figure 4.4: BS, DK, BC local volatilities compared to market IV for calls maturing after 42

days as of 8 March 2002

BS, DK, BC Local Volatilities Compared to Market IV

As of 8 March 2002, 42 Days Maturity Calls

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

 3
3

 3
4

 3
5

 3
6

 3
7

 3
8

 3
9

 4
0

 4
1

 4
2

 4
3

 4
4

 4
5

 4
6

 4
7

Strike

V
o

la
ti

li
ty

BS IV

DK_IV

BC_IV

MKT_IV

Figure 4.4 demonstrates that local volatilities of DK and BC models were

closer to market implied volatility than BS model, and that BC’s local

volatility was the closest to market implied volatility at most strike prices,

and especially with out-of-the-money strikes higher than PowerShare

asset price of 38.67. This is consistent with our previous finding that BC

model performs the best in OTM options, followed by NTM and ITM

options respectively.

 44

Chapter 5. Conclusions

 45

Since its first discovery after stock markets crash in 1987, volatility smile

has invaded all options markets worldwide and has entered into all types

of options markets from stock options to foreign exchange options. It was

soon realized after the 1987 crash, that the Black-Scholes model is not

perfect and holds a significant deficiency by assuming that stock volatility

is constant regardless of time to maturity or strike price. The crash-phobia

sentiment of traders has led them to use options as an insurance policy

against similar crashes and hence traders have become ready to pay

higher prices to hedge their portfolio using options.

Financial engineers, econometricians and risk officers have tried to come

up with a replacement to Black-Scholes that fixes its big shortfall.

However, they have recognized that Black-Scholes has its own unique

advantages, which made it almost impossible to entirely replace the

model. Therefore, replacing the model was substituted by attempts to

enhance the model for capturing the smile. Three approaches for

improving Black-Scholes model were introduced, local volatility models,

stochastic volatility models and jump diffusion models. Each of these

approaches has its advantages and disadvantages.

This study has examined Derman and Kani’s model and its suggested

enhancements by Barle and Cakici. These two approaches are considered

part of local volatility models, and they both use Cox-Ross-Rubinstein

method of binomial trees with some modifications to capture volatility

smile. The study used PowerShare Exchange Traded Fund (ETF) options

to test both Derman and Kani and Barle and Cakici models. Mean

difference of models predicted local volatilities and implied market

volatilities were used as indicator for models performance.

 46

The results of tests came consistent with theoretical studies for both the

Derman and Kani’s and Barle and Cakici’s models. First, Derman and Kani

and Barle and Cakici models have significantly and consistently

outperformed Black-Scholes model. This is expected as both models

adopt a function dependent on asset price in determining option’s volatility.

Black-Scholes model on the other hands adopt a constant volatility

regardless of strike price or time to expiry. Second, Barle and Cakici’s

model has slightly and consistently outperformed Derman and Kani’s

model. This is the result of the enhancements suggested by Barle and

Cakici. Third, the three models were tested at three different moneyness

levels: out-of-the-money, near-the-money and in-the-money. Moreover,

the models were tested at three maturity levels: 11 to 29 days, 30 to 90

days and more than 90 days of maturity.

Both Derman and Kani and Barle and Cakici models have outperformed

Black-Scholes model at all levels of moneyness and maturities.

Additionally, Barle and Cakici’s model has slightly outperformed Derman

and Kani at all moneyness and maturity levels as well.

Furthermore, the study has showed that the best performance for implied

trees models according to their moneyness level was in out-the-money

options, followed by near-the-money and in-the-money options

respectively. In the same manner, the best performance for implied trees

models according to their maturity levels was in options with maturity of 30

– 90 days, followed by options maturing after 90 days, followed by options

with 11 and 29 days to expiry.

 47

5.1. Suggestions for Future Researches

Future studies might adopt a more complex function for volatility

depending on strike price and time to maturity. i.e: studies can adopt

quadratic function of strike and maturity. This might reduce the dispersion

between models’ local volatilities and market implied volatility further and

increase the accuracy of both Derman and Kani and Barle and Cakici

models. Another suggestion is related to the usage of different steps

levels. Within this study, binomial trees models were limited to 5 steps

trees. However, it is encouraged in future researches to run the tests for

10, 20 and 100 steps trees in order to get more precise calculations.

One of the problems faced during the research was the use of Microsoft

Excel VBA functions. While Excel VBA is flexible and easy to-develop

programming language, it is known to be very slow when executing some

complex mathematical operations. The usage of Excel VBA did not

considerably slow Barle and Cakici’s model as it uses Black-Scholes to

calculate options prices. However, the performance of Excel VBA

functions was deeply affected by increasing the number of steps to 20 for

Derman and Kani’s model.

The final suggestion might be the use of faster development languages

such as C++ to rewrite similar functions that could achieve much faster

results and enable to run Derman and Kani at higher steps levels of 10, 20

and 100 steps trees.

 48

Bibliography

 49

Barle, S and N. Cakici, (1998): How to Grow a Smiling Tree. The Journal of Financial Engineering,

Vol. 7, No. 2, June 1998.

Black, F. and M. Scholes (1973): The Pricing of Options and Corporate Liabilities. Journal of

Political Economy, volume: 81, pp. 637 – 59.

Chance, D. (2008). The volatility smile. Web article:

http://www.bus.lsu.edu/academics/finance/faculty/dchance/Instructional/TN04-01.pdf

Cox, J., Ross, S. and Rubinstein, M. (1979). Option Pricing: A simplified Approach, Journal of

Financial Economics 7: 229-263.

Derman, E. and I. Kani (1994): The Volatility Smile and Its Implied Tree. Risk 7 no2, 32-39.

Derman, E. (2003). Laughter in the Dark – The Problem of the Volatility Smile. Web article:

http://www.ederman.com/new/docs/euronext-volatility_smile.pdf

Derman, E. (Lectures): Laughter in the dark – An introduction to volatility Smile. A set of

unpublished lecture notes from the Master’s in the Financial Engineering Program at

Columbia University. Web reference: http://www.ederman.com/new/docs/laughter.html

Dumas, B., Fleming, J., and Whaley, R. (1995): Implied Volatility Functions: Empirical Test.

Features and Options Research Center at the Fuqua School of Business, Duke University.

Dupire, B. (1994): Pricing with a Smile. Risk 7 no1, 18-20.

Hardle, W., Kleinow, T., and Stahl, G. (2002): Applied Quantitative Methods: Theory and

Computational Tools. Springer e-book. See www.xplore-stat.de.

Hull, J. (2005): Fundamentals of Futures and Options Markets. 5
th
 Edition. PEARSN, Prentice Hall.

Hull, J. (2006): Options, Futures, and Other Derivatives. Sixth Edition. PEARSN, Prentice Hall.

Rebel, G. (2004): Numerical Methods Project Report, Implied Binomial Trees. ICMA Center, The

University of Reading. www.bgisl.com/Rebel_NM1P_Project_2004-04-19.pdf

Rubinstein, M. (1994): Implied Binomial Trees. Journal of Finance, 69, pp. 771-818.

Summa, J. (2004): Trading Against The Crowd, Profiting from Fear and Greed in Stock, Futures,

and Options Markets. John Wiley & Sons.

The Options Institute - Multiple Authors (1995): Options: Essential Concepts And Trading

Strategies. Second Edition. The Educational Division of The Chicago Board Options

Exchange. IRWIN Professional Publishing.

Ward, R. (2004): Options and Options Trading: A Simplified Course That Takes You From Coin

Tosses To Black-Scholes. McGraw Hill.

XploRe software handbook is available on the web site: http://fedc.wiwi.hu-berlin.de/xplore/tutorials/

http://www.bus.lsu.edu/academics/finance/faculty/dchance/Instructional/TN04-01.pdf
http://www.ederman.com/new/docs/euronext-volatility_smile.pdf
http://www.ederman.com/new/docs/laughter.html
http://www.xplore-stat.de/
http://www.bgisl.com/Rebel_NM1P_Project_2004-04-19.pdf
http://fedc.wiwi.hu-berlin.de/xplore/tutorials/

 50

Appendix A. Dispersions For Different Moneyness
Levels

 51

Figure A.1: ITM Call Options Mean difference of BS, DK and BC’s local volatilities and market’s

implied volatility

Band ID BS DK BC

1 18.42% 19.18% 18.98%

2 7.26% 8.53% 7.83%

3 14.04% 10.99% 9.64%

4 9.16% 4.80% 3.20%

5 15.06% 12.30% 10.86%

6 8.33% 4.78% 3.48%

7 13.65% 13.90% 13.61%

8 6.63% 2.89% 2.13%

 Average 11.57% 9.67% 8.72%

ITM Calls Mean Difference

of Market and Models IVs

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%
16.00%
18.00%
20.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

Figure A.2: NTM Call Options Mean difference of BS, DK and BC’s local volatilities and market’s

implied volatility

Band ID BS DK BC

1 8.30% 3.99% 3.30%

2 9.86% 3.57% 2.07%

3 12.78% 7.00% 5.20%

4 13.64% 7.08% 5.06%

5 12.43% 7.17% 5.80%

6 12.13% 5.70% 4.02%

7 9.55% 5.55% 4.72%

8 9.95% 3.83% 2.15%

Average 11.08% 5.49% 4.04%

NTM Calls Mean Difference

of Market and Models IVs

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

Figure A.3: OTM Call Options Mean difference of BS, DK and BC’s local volatilities and market’s

implied volatility

Band ID BS DK BC

1 12.11% 1.55% 1.43%

2 13.32% 2.34% 1.59%

3 15.76% 4.63% 3.21%

4 16.20% 5.14% 3.69%

5 15.20% 4.38% 3.06%

6 14.75% 3.82% 2.67%

7 11.76% 2.58% 2.48%

8 12.68% 1.86% 1.27%

Average 13.97% 3.29% 2.43%

OTM Calls Mean Difference

of Market and Models IVs

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%
16.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

 52

Figure A.4: ITM Put Options Mean difference of BS, DK and BC’s local volatilities and market’s

implied volatility

Band ID BS DK BC

1 12.93% 5.24% 4.95%

2 13.06% 6.24% 5.29%

3 16.27% 8.15% 6.52%

4 16.77% 6.98% 5.58%

5 15.68% 10.98% 10.02%

6 13.91% 6.13% 5.04%

7 13.98% 9.35% 8.77%

8 12.49% 3.28% 2.48%

 Average 14.39% 7.04% 6.08%

ITM Put Options Mean Variance

of Market and Models IVs

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%
16.00%
18.00%

1 2 3 4 5 6 7 8

Bands

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

Figure A.5: NTM Put Options Mean difference of BS, DK and BC’s local volatilities and market’s

implied volatility

Band ID BS DK BC

1 9.04% 4.37% 3.45%

2 10.41% 4.05% 2.51%

3 13.17% 7.63% 5.84%

4 14.86% 8.35% 6.29%

5 13.02% 8.00% 6.58%

6 12.61% 6.29% 4.64%

7 10.35% 6.50% 5.66%

8 10.61% 4.47% 2.71%

Average 11.76% 6.21% 4.71%

NTM Put Options Mean Variance

of Market and Models IVs

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%
16.00%

1 2 3 4 5 6 7 8

Bands

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

Figure A.6: OTM Put Options Mean difference of BS, DK and BC’s local volatilities and market’s

implied volatility

Band ID BS DK BC

1 5.74% 3.83% 3.49%

2 6.32% 3.68% 3.05%

3 9.56% 5.40% 3.83%

4 11.18% 6.40% 4.65%

5 10.15% 6.08% 4.46%

6 9.67% 5.79% 4.24%

7 7.35% 4.75% 3.93%

8 7.33% 3.74% 2.74%

 Average 8.41% 4.96% 3.80%

OTM Put Options Mean Variance

of Market and Models IVs

0.00%

5.00%

10.00%

15.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

 53

Appendix B. Dispersions At Different Maturities
Levels

 54

Figure B.1: Call Options expiring after 90 days - Mean difference of BS, DK and BC’s local

volatilities and market’s IV

Band ID BS DK BC

1 9.99% 1.95% 1.27%

2 10.91% 2.89% 1.62%

3 13.08% 4.96% 3.20%

4 14.10% 5.70% 3.76%

5 13.98% 5.43% 3.53%

6 13.62% 5.19% 3.35%

7 10.89% 2.86% 1.60%

8 11.65% 3.14% 1.60%

Average 12.28% 4.01% 2.49%

 Call Options With more than 90 days to

expiration

Mean Variance of Market and Models IVs

0.00%

5.00%

10.00%

15.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

D
if

fe
re

n
c
e

BS

DK

BC

Figure B.2: Call Options expiring between 30 and 90 days - Mean difference of BS, DK and BC’s

local volatilities and market’s IV

Band ID BS DK BC

1 8.16% 2.13% 2.60%

2 9.54% 2.58% 2.06%

3 12.28% 4.53% 3.17%

4 14.24% 5.95% 4.28%

5 12.96% 4.42% 2.97%

6 12.80% 4.07% 2.77%

7 8.40% 2.31% 2.57%

8 9.78% 2.02% 1.60%

Average 11.02% 3.50% 2.75%

 Call Options with 30 - 90 days to expiration

Mean Variance of Market and Models IVs

0.00%

5.00%

10.00%

15.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

Figure B.3: Call Options expiring within less than 30 days - Mean difference of BS, DK and BC’s

local volatilities and market’s IV

Band ID BS DK BC

1 25.98% 27.97% 27.84%

2 10.29% 15.10% 14.24%

3 32.91% 34.15% 33.81%

4 11.06% 4.61% 3.53%

5 18.81% 19.54% 19.79%

6 8.19% 4.19% 4.02%

7 26.65% 39.26% 40.68%

8 8.03% 2.55% 2.53%

Average 17.74% 18.42% 18.31%

 Call Options With less than 30 days to expiry

Mean Variance of Market and Models IVs

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

 55

Figure B.4: Put Options expiring after 90 days - Mean difference of BS, DK and BC’s local

volatilities and market’s IV

Band ID BS DK BC

1 10.05% 3.31% 1.96%

2 11.17% 4.17% 2.52%

3 13.19% 6.71% 4.76%

4 15.22% 8.38% 6.41%

5 14.67% 7.75% 5.73%

6 14.03% 6.95% 5.00%

7 11.33% 4.39% 2.76%

8 11.54% 4.69% 2.91%

Average 12.65% 5.79% 4.00%

Put Options With more than 90 days to

expiration

Mean Variance of Market and Models IVs

0.00%

5.00%

10.00%

15.00%

20.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

D
if

fe
re

n
c
e

BS

DK

BC

Figure B.5: Put Options expiring between 30 and 90 days - Mean difference of BS, DK and BC’s

local volatilities and market’s IV

Band ID BS DK BC

1 6.86% 2.54% 3.03%

2 8.20% 2.58% 1.97%

3 11.11% 4.55% 3.07%

4 13.75% 6.42% 4.64%

5 12.26% 4.78% 3.28%

6 11.68% 4.24% 2.93%

7 7.52% 2.52% 2.78%

8 8.46% 2.57% 2.02%

Average 9.98% 3.77% 2.96%

 Call Options With 29 - 11 days to expiry

Mean Variance of Market and Models IVs

0.00%

5.00%

10.00%

15.00%

20.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

Figure B.6: Put Options expiring within less than 30 days - Mean difference of BS, DK and BC’s

local volatilities and market’s IV

Band ID BS DK BC

1 8.40% 8.85% 9.38%

2 8.00% 9.35% 9.28%

3 13.15% 17.07% 16.65%

4 12.27% 6.23% 5.10%

5 10.58% 17.26% 17.73%

6 7.78% 7.28% 7.01%

7 16.37% 31.84% 31.22%

8 7.78% 4.01% 3.60%

Average 10.54% 12.74% 12.50%

Put Options With less than 30 days to expiry

Mean Variance of Market and Models IVs

0.00%

10.00%

20.00%

30.00%

40.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

 56

Figure B.7: Call Options expiring within 11 to 29 days - Mean difference of BS, DK and BC’s

volatilities and market’s IV

Band ID BS DK BC

1 6.98% 3.42% 3.80%

2 8.89% 10.77% 10.51%

3 12.94% 6.67% 5.29%

4 11.06% 4.61% 3.53%

5 11.47% 4.58% 3.47%

6 8.19% 4.19% 4.02%

7 3.46% 17.35% 16.56%

8 8.03% 2.55% 2.53%

Average 8.88% 6.77% 6.21%

 Call Options With 29 - 11 days to expiry

Mean Variance of Market and Models IVs

0.00%

5.00%

10.00%

15.00%

20.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

Figure B.8: Put Options expiring within 11 – 29 days - Mean difference of BS, DK and BC’s

volatilities and market’s IV

Band ID BS DK BC

1 7.59% 4.90% 5.13%

2 7.63% 6.60% 6.54%

3 14.37% 6.89% 5.39%

4 12.27% 6.23% 5.10%

5 11.40% 5.84% 4.90%

6 7.78% 7.28% 7.01%

7 8.04% 21.27% 22.01%

8 7.78% 4.01% 3.60%

Average 9.61% 7.88% 7.46%

 Put Options with 29 - 11 days to expiration

Mean Variance of Market and Models IVs

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 3 4 5 6 7 8

Band

V
o

la
ti

li
ty

 D
if

fe
re

n
c
e

BS

DK

BC

 57

Appendix C. Excel VBA Functions Specifications

 58

Table C.1: Excel VBA Functions Specifications

Function
ID

Function
Name

Inputs Output

1 BC Underlier: asset price
Strik: strike price
Maturity: maturity of option
Risk_Free: risk free rate
Dividend: dividend paid
Steps: number of steps
Option_Type: 0 for call and 1 for put

Option Price
according to
Barle and
Cakici method.

2 BS_Call Underlier: asset price
Strik: strike price
Maturity: maturity of option
BS_Volatility: the constant volatility
Risk_Free: risk free rate
Dividend: dividend paid

Call Option
Price according
to Black and
Scholes model.

3 BS_IV Underlier: asset price
Strik: strike price
Maturity: maturity of option
Risk_Free: risk free rate
Dividend: dividend paid
Option_Price: market price of the
option
Tol: the precision required. i.e.:
0.0001
Call_or_Put: 0 for call and 1 for put

The implied
volatility
resulting from
observed
option price, or
option price
calculated by
DK or BC
models.

4 BS_Put Underlier: asset price
Strik: strike price
Maturity: maturity of option
BS_Volatility: the constant volatility
Risk_Free: risk free rate
Dividend: dividend paid

Put Option
Price according
to Black and
Scholes model.

5 CRR Underlier: asset price
Strik: strike price
Maturity: maturity of option
BS_Volatility: the constant volatility
Risk_Free: risk free rate
Dividend: dividend paid
Steps: number of steps
Option_Type: 0 for call and 1 for put

Option Price
according to
Cox-Ross-
Rubinstein
binomial tree
method.

6 DK Underlier: asset price
Strik: strike price
Maturity: maturity of option
Risk_Free: risk free rate
Dividend: dividend paid
Steps: number of steps
Option_Type: 0 for call and 1 for put

Option Price
according to
Derman and
Kani method.

 59

Function
ID

Function
Name

Inputs Output

7 Vol_Smile Underlier: asset price
Strik: strike price

Returns
options
volatility
according to
the volatility
function
defined within
the code

 60

Appendix D. Excel VBA Functions Code

 61

Function D.1: BC
Function BC(Underlier, Strik, Maturity, Risk_Free, Dividend, Steps, Option_Type)

 ' Variables definition

 Dim TimeStep, time_to_ex, inf_no_dividend, inf_with_dividend, T_node, K_temp, S_temp

 Dim Opt_Price, Out_Opt_Price, rho_sum, S_numer, S_denom

 Dim i As Integer, i_sta As Integer, i_bel As Integer, i_abo As Integer, j As Integer, i_sum As Integer

 Dim arr_Output_Data, Cum_sum

 Dim row_count As Integer

 Dim V As Integer, w As Integer

 Dim mean_log_price_sum

 Dim log_var_sum

 Dim Call_Sum, Put_Sum

 ' --

 ' Matrix definition

 ' --

 ReDim Forward_Price(0 To Steps, 0 To Steps) ' Forward prices at each node

 ReDim Local_impl_vol_TimeStep(0 To Steps - 1, 0 To Steps - 1) ' note the reduced size of this array

 Dim max_impl_vol_rows As Integer

 ' We need to limit the size of the Local_impl_vol matrix, note that max_impl_vol_rows becomes very large

 If Steps <= 20 Then

 max_impl_vol_rows = Steps * (Steps + 1) * (Steps + 2) / 6 - 1 ' i.e. from loop For j = 0 To Steps - 1, For i = 0 To j, For w = j + 1 To n

 62

 ReDim Local_impl_vol(0 To max_impl_vol_rows, 0 To 2)

 ReDim arr_Node_Probabilities_temp(0 To Steps, 0 To Steps) ' Temp probabilities of reaching each node, used in the calculation of

Local_impl_vol(...)

 End If

 ReDim arr_Node_State_Prices(0 To Steps, 0 To Steps) ' Arrow-Debreu state prices

 ReDim arr_Node_Probabilities(0 To Steps, 0 To Steps) ' Probabilities of reaching each node in the tree

 ReDim arr_Output_Data(0 To Steps, 0 To Steps) ' temp array for formatting output data

 ReDim arr_Node_Probabilities_trans(0 To Steps - 1, 0 To Steps - 1) ' Transition probabilities at each node, note the reduced size of this array

 ReDim arr_Stock_Prices(0 To Steps, 0 To Steps) ' Stock prices at each node

 ' --

 ' Tree parameters (note the continuous compounding)

 ' --

 TimeStep = Maturity / Steps

 inf_no_dividend = Exp(Risk_Free * TimeStep)

 inf_with_dividend = Exp((Risk_Free - Dividend) * TimeStep)

 ' --

 ' Set the starting values at the base of the tree

 ' --

 arr_Stock_Prices(0, 0) = Underlier

 arr_Node_State_Prices(0, 0) = 1

 arr_Node_Probabilities(0, 0) = 1

 T_node = 0

 63

 ' --

 ' Calculate DK and BC tree node stock prices and other values

 ' --

 For j = 1 To Steps ' the time steps

 T_node = T_node + TimeStep ' time at each node

 ' --

 ' Calculate the forward prices at the vertical nodes

 ' --

 For i = 0 To j - 1 ' vertical nodes

 Forward_Price(i, j) = arr_Stock_Prices(i, j - 1) * inf_with_dividend

 Next i

 ' --

 ' Determine the vertical nodes for calculating the central, above and below tree data

 ' --

 i_sta = Int((j + 0.0001) / 2) ' central nodes

 i_bel = Int((j + 1.0001) / 2 + 1) ' nodes below the centre (decreasing stock prices)

 If i_bel > j Then i_bel = j

 64

 i_abo = i_sta - 1 ' nodes above the centre (increasing stock prices)

 If i_abo < 0 Then i_abo = 0

 ' --

 ' Calculate the tree parameters for the nodes at the centre of the tree

 ' --

 i = i_sta

 If j Mod 2 = 0 Then ' i.e. j is even so we have only one central node

 arr_Stock_Prices(i, j) = Underlier * (inf_with_dividend ^ j)

 ' --

 ' Compensation against arbitrage and ensure 0 < arr_Node_Probabilities_trans < 1

 ' Applied Quantitative Finance PDF Book, Equation (7.15)

 ' --

 If i > 0 And i < j Then

 If arr_Stock_Prices(i, j) <= Forward_Price(i, j) Or arr_Stock_Prices(i, j) >= Forward_Price(i - 1, j) Then

 arr_Stock_Prices(i, j) = (Forward_Price(i, j) + Forward_Price(i - 1, j)) / 2 ' i.e. the average of the two

 End If

 End If

 65

 Else ' j is odd and there are two central nodes

 K_temp = Forward_Price(i, j)

 S_temp = K_temp

 Opt_Price = BS_Call(Underlier, K_temp, T_node, Vol_Smile(Underlier, K_temp), Risk_Free, Dividend)

 rho_sum = 0

 If j > 2 Then

 For i_sum = 0 To i - 1 ' Applied Quantitative Finance PDF Book, Equation (7.12 and 7.19)

 rho_sum = rho_sum + arr_Node_State_Prices(i_sum, j - 1) * (Forward_Price(i_sum, j) - K_temp)

 Next i_sum

 End If

 S_numer = S_temp * (inf_no_dividend * Opt_Price + arr_Node_State_Prices(i, j - 1) * K_temp - rho_sum)

 S_denom = arr_Node_State_Prices(i, j - 1) * Forward_Price(i, j) - inf_no_dividend * Opt_Price + rho_sum

 arr_Stock_Prices(i, j) = S_numer / S_denom ' Applied Quantitative Finance PDF Book, Equation (7.11 and 7.18)

 arr_Stock_Prices(i + 1, j) = S_temp * S_temp / arr_Stock_Prices(i, j)

 ' --

 ' Compensation against arbitrage and ensure 0 < arr_Node_Probabilities_trans < 1

 ' Applied Quantitative Finance PDF Book, Equation (7.15)

 ' --

 If i > 0 And i < j Then

 If arr_Stock_Prices(i, j) <= Forward_Price(i, j) Or arr_Stock_Prices(i, j) >= Forward_Price(i - 1, j) Then

 arr_Stock_Prices(i, j) = (Forward_Price(i, j) + Forward_Price(i - 1, j)) / 2

 66

 End If

 If arr_Stock_Prices(i + 1, j) <= Forward_Price(i + 1, j) Or arr_Stock_Prices(i + 1, j) >= Forward_Price(i, j) Then

 arr_Stock_Prices(i + 1, j) = (Forward_Price(i + 1, j) + Forward_Price(i, j)) / 2

 End If

 End If

 End If

 ' --

 ' Calculate the tree parameters for the nodes above the centre (increasing stock prices)

 ' --

 For i = i_abo To 0 Step -1 ' vertical nodes

 K_temp = Forward_Price(i, j)

 Opt_Price = BS_Call(Underlier, K_temp, T_node, Vol_Smile(Underlier, K_temp), Risk_Free, Dividend)

 S_temp = arr_Stock_Prices(i + 1, j)

 rho_sum = 0

 For i_sum = 0 To i - 1 ' Applied Quantitative Finance PDF Book, Equation (7.12 and 7.19)

 rho_sum = rho_sum + arr_Node_State_Prices(i_sum, j - 1) * (Forward_Price(i_sum, j) - K_temp)

 Next i_sum

 S_numer = S_temp * (inf_no_dividend * Opt_Price - rho_sum) - arr_Node_State_Prices(i, j - 1) * K_temp * (Forward_Price(i, j) - S_temp)

 S_denom = inf_no_dividend * Opt_Price - rho_sum - arr_Node_State_Prices(i, j - 1) * (Forward_Price(i, j) - S_temp)

 67

 arr_Stock_Prices(i, j) = S_numer / S_denom ' Applied Quantitative Finance PDF Book, Equation (7.13 and 7.20)

 ' --

 ' Compensation against arbitrage and ensure 0 < arr_Node_Probabilities_trans < 1

 ' Applied Quantitative Finance PDF Book, Equation (7.15)

 ' --

 If j > 1 And i = 0 Then

 If arr_Stock_Prices(i, j) <= Forward_Price(i, j) Then

 arr_Stock_Prices(i, j) = arr_Stock_Prices(i + 1, j) * Forward_Price(i, j) / Forward_Price(i + 1, j)

 End If

 End If

 If i > 0 And i < j Then

 If arr_Stock_Prices(i, j) <= Forward_Price(i, j) Or arr_Stock_Prices(i, j) >= Forward_Price(i - 1, j) Then

 arr_Stock_Prices(i, j) = (Forward_Price(i, j) + Forward_Price(i - 1, j)) / 2

 End If

 End If

 Next i

 ' --

 ' Calculate the tree parameters for the nodes below the centre (decreasing stock prices)

 ' --

 For i = i_bel To j ' vertical nodes

 K_temp = Forward_Price(i - 1, j)

 68

 Opt_Price = BS_Put(Underlier, K_temp, T_node, Vol_Smile(Underlier, K_temp), Risk_Free, Dividend) ' Note Put Option

 S_temp = arr_Stock_Prices(i - 1, j)

 rho_sum = 0

 For i_sum = i To j - 1 ' Applied Quantitative Finance PDF Book, Equation (7.12 and 7.19)

 rho_sum = rho_sum + arr_Node_State_Prices(i_sum, j - 1) * (K_temp - Forward_Price(i_sum, j))

 Next i_sum

 S_numer = S_temp * (inf_no_dividend * Opt_Price - rho_sum) + arr_Node_State_Prices(i - 1, j - 1) * K_temp * (Forward_Price(i - 1, j) - S_temp)

 S_denom = inf_no_dividend * Opt_Price - rho_sum + arr_Node_State_Prices(i - 1, j - 1) * (Forward_Price(i - 1, j) - S_temp)

 arr_Stock_Prices(i, j) = S_numer / S_denom ' Applied Quantitative Finance PDF Book, Equation (7.14 and 7.21)

 ' --

 ' Compensation against arbitrage and ensure 0 < arr_Node_Probabilities_trans < 1

 ' Applied Quantitative Finance PDF Book, Equation (7.15)

 ' --

 If i > 0 And i < j Then

 If arr_Stock_Prices(i, j) <= Forward_Price(i, j) Or arr_Stock_Prices(i, j) >= Forward_Price(i - 1, j) Then

 arr_Stock_Prices(i, j) = (Forward_Price(i, j) + Forward_Price(i - 1, j)) / 2

 End If

 End If

 If i > 1 And i = j Then

 If arr_Stock_Prices(i, j) >= Forward_Price(i - 1, j) Then

 arr_Stock_Prices(i, j) = arr_Stock_Prices(i - 1, j) * Forward_Price(i - 1, j) / Forward_Price(i - 2, j)

 69

 End If

 End If

 Next i

 ' --

 ' Calculate the transition probabilities

 ' Applied Quantitative Finance PDF Book, Equation (7.5)

 ' Calculate the implied local volatilities the time to expiry = the time step, TimeStep = T/n

 ' --

 For i = 0 To j - 1 ' vertical nodes

 arr_Node_Probabilities_trans(i, j - 1) = (Forward_Price(i, j) - arr_Stock_Prices(i + 1, j)) / (arr_Stock_Prices(i, j) - arr_Stock_Prices(i + 1, j))

 If arr_Node_Probabilities_trans(i, j - 1) <= 0 Or arr_Node_Probabilities_trans(i, j - 1) >= 1 Then

 MsgBox "Caution: arr_Node_Probabilities_trans(" & i & ", " & j - 1 & ")= " & arr_Node_Probabilities_trans(i, j - 1)

 End If

 ' This is for the time to expiry = the time step TimeStep, see page 152 Applied Quantitative Finance PDF Book, just below equation (7.16):

 Local_impl_vol_TimeStep(i, j - 1) = (arr_Node_Probabilities_trans(i, j - 1) * (1 - arr_Node_Probabilities_trans(i, j - 1))) ^ 0.5 *

Log(arr_Stock_Prices(i, j) / arr_Stock_Prices(i + 1, j))

 Next i

 ' --

 ' Calculate the Arrow-Debreu state prices Applied Quantitative Finance PDF Book, Equations (7.6)

 ' --

 arr_Node_State_Prices(j, j) = arr_Node_State_Prices(j - 1, j - 1) * (1 - arr_Node_Probabilities_trans(j - 1, j - 1)) / inf_no_dividend

 For i = j - 1 To 1 Step -1 ' vertical nodes

 arr_Node_State_Prices(i, j) = (arr_Node_State_Prices(i, j - 1) * _

 70

 arr_Node_Probabilities_trans(i, j - 1) + arr_Node_State_Prices(i - 1, j - 1) * (1 - arr_Node_Probabilities_trans(i - 1, j - 1))) / inf_no_dividend

 Next i

 arr_Node_State_Prices(0, j) = arr_Node_State_Prices(0, j - 1) * arr_Node_Probabilities_trans(0, j - 1) / inf_no_dividend

 ' --

 ' Calculate the probabilities of reaching each node in the tree

 ' --

 For i = 0 To j ' vertical nodes

 arr_Node_Probabilities(i, j) = arr_Node_State_Prices(i, j) * inf_no_dividend ^ j ' from the definition of Arrow-Debreu state price

 Next i

 Next j

 ' --

 ' Calculate the local volatilities implied by the implied binomial tree

 ' See : http://www.xplore-stat.de/help/IBTlocsigma.html for comparison

 ' See also page 152 Applied Quantitative Finance PDF Book, Equation (7.17)

 ' This implementation assumes that the temp node probability arr_Node_Probabilities_temp(i, j) = 1

 ' where (i,j) corresponds to the node (i.e. stock price) for which the implied

 ' volatility is being calculated i.e. arr_Stock_Prices(i, j)

 ' --

 If Steps <= 20 Then ' otherwise the size of the Local_impl_vol array becomes too large, see max_impl_vol_rows

 row_count = 0

 For j = 0 To Steps - 1 ' time steps

 For i = 0 To j ' vertical nodes

 71

 time_to_ex = TimeStep ' used later in the output array

 ReDim arr_Node_Probabilities_temp(0 To Steps, 0 To Steps) ' this is required to clear the contenTimeStep of arr_Node_Probabilities_temp,

do not move it to top of function

 arr_Node_Probabilities_temp(i, j) = 1 ' we assume that the probability of being at arr_Stock_Prices(i, j) is 1

 For w = j + 1 To Steps ' the possible time steps (or poinTimeStep) at which local volatilities can be calculated

 ' Calculate the temporary node probabilities

 arr_Node_Probabilities_temp(i, w) = arr_Node_Probabilities_temp(i, w - 1) * arr_Node_Probabilities_trans(i, w - 1)

 For V = i + 1 To w - 1

 arr_Node_Probabilities_temp(V, w) = arr_Node_Probabilities_temp(V, w - 1) * arr_Node_Probabilities_trans(V, w - 1) + _

 arr_Node_Probabilities_temp(V - 1, w - 1) * (1 - arr_Node_Probabilities_trans(V - 1, w - 1))

 Next V

 arr_Node_Probabilities_temp(w, w) = arr_Node_Probabilities_temp(w - 1, w - 1) * (1 - arr_Node_Probabilities_trans(w - 1, w - 1))

 ' Calculate the expected value of the log stock price, Applied Quantitative Finance PDF Book, Equation (7.17)

 mean_log_price_sum = 0

 For V = i To w

 mean_log_price_sum = mean_log_price_sum + arr_Node_Probabilities_temp(V, w) * Log(arr_Stock_Prices(V, w))

 Next V

 ' Calculate the log variance, Applied Quantitative Finance PDF Book, Equation (7.17)

 log_var_sum = 0

 For V = i To w

 log_var_sum = log_var_sum + arr_Node_Probabilities_temp(V, w) * (Log(arr_Stock_Prices(V, w)) - mean_log_price_sum) ^ 2

 Next V

 72

 ' Write the calculated values into the output array

 Local_impl_vol(row_count, 0) = arr_Stock_Prices(i, j) ' stock price

 Local_impl_vol(row_count, 1) = time_to_ex ' time to expiry for calculation of the implied local volatility

 Local_impl_vol(row_count, 2) = log_var_sum ^ 0.5 ' implied local volatility from variance

 row_count = row_count + 1

 time_to_ex = time_to_ex + TimeStep

 Next w

 Next i

 Next j

 End If ' Steps <= 20

 ' --

 ' Calculate the price of the call using the terminal AD state

 ' prices and the terminal call payoffs

 ' Applied Quantitative Finance PDF Book, Equations (7.9) and (7.10)

 ' --

 Call_Sum = 0

 Put_Sum = 0

 For i = 0 To Steps ' terminal vertical nodes

 Call_Sum = Call_Sum + arr_Node_State_Prices(i, Steps) * Application.Max(arr_Stock_Prices(i, Steps) - Strik, 0)

 Put_Sum = Put_Sum + arr_Node_State_Prices(i, Steps) * Application.Max(Strik - arr_Stock_Prices(i, Steps), 0)

 Next i

 73

 If Option_Type = 0 Then ' Call option

 Out_Opt_Price = Call_Sum

 Else ' Put option

 Out_Opt_Price = Put_Sum

 End If

 BC = Out_Opt_Price

End Function

Function D.2: BS_Call
Function BS_Call(Underlier, Strik, Maturity, BS_Volatility, Risk_Free, Dividend)

 Dim d1, d2

 Dim Nd1, Nd2

 d1 = (Log(Underlier / Strik) + (Risk_Free - Dividend + 0.5 * BS_Volatility ^ 2) * Maturity) / (BS_Volatility * Maturity ^ 0.5)

 d2 = d1 - (BS_Volatility * Maturity ^ 0.5)

 Nd1 = Application.NormSDist(d1)

 Nd2 = Application.NormSDist(d2)

 BS_Call = Underlier * Exp(-Dividend * Maturity) * Nd1 - Strik * Exp(-Risk_Free * Maturity) * Nd2

 74

End Function

Function D.3: BS_IV
Function BS_IV(Underlier, Strik, Maturity, Risk_Free, Dividend, Option_Price, Tol, Call_or_Put)
 Dim High_sigma, Low_sigma
 High_sigma = 2 ' i.e. 200%
 Low_sigma = 0
 If Call_or_Put = 0 Then ' Call Option
 Do While (High_sigma - Low_sigma) > Tol
 If BS_Call(Underlier, Strik, Maturity, (High_sigma + Low_sigma) / 2, Risk_Free, Dividend) > Option_Price Then
 High_sigma = (High_sigma + Low_sigma) / 2
 Else
 Low_sigma = (High_sigma + Low_sigma) / 2

 End If
 Loop

 Else ' Put Option
 Do While (High_sigma - Low_sigma) > Tol
 If BS_Put(Underlier, Strik, Maturity, (High_sigma + Low_sigma) / 2, Risk_Free, Dividend) > Option_Price Then
 High_sigma = (High_sigma + Low_sigma) / 2
 Else
 Low_sigma = (High_sigma + Low_sigma) / 2
 End If
 Loop
 End If
 BS_IV = (High_sigma + Low_sigma) / 2
End Function

 75

Function D.4: BS_Put
Function BS_Put(Underlier, Strik, Maturity, BS_Volatility, Risk_Free, Dividend)
 Dim d1, d2
 Dim Nd1, Nd2
 d1 = (Log(Underlier / Strik) + (Risk_Free - Dividend + 0.5 * BS_Volatility ^ 2) * Maturity) / (BS_Volatility * Maturity ^ 0.5)
 d2 = d1 - (BS_Volatility * Maturity ^ 0.5)
 Nd1 = Application.NormSDist(-d1)
 Nd2 = Application.NormSDist(-d2)
 BS_Put = Strik * Exp(-Risk_Free * Maturity) * Nd2 - Underlier * Exp(-Dividend * Maturity) * Nd1
End Function

Function D.5: CRR
Function CRR(Underlier, Strik, Maturity, BS_Volatility, Risk_Free, Dividend, Steps, Option_Type)
 ' variables definition
 Dim TimeStep ' Time Step
 Dim i As Integer 'counter
 Dim j As Integer 'counter
 Dim Up, Down ' Move up and down factors
 Dim q ' risk neutral probability
 Dim Discount ' discount factor
 Dim Call_Sum, Put_Sum
 Dim Opt_Price ' option price

 ' Arrays definition
 ReDim arr_Stock_Prices(0 To Steps, 0 To Steps) ' Stock Prices Matrix
 ReDim arr_Node_Probabilities(0 To Steps, 0 To Steps) ' Node Probabilities Matrix
 ReDim arr_Node_State_Prices(0 To Steps, 0 To Steps) ' Node State Prices Matrix
 ReDim arr_Terminal_Values(0 To Steps) ' Terminal Call Values Matrix

 TimeStep = Maturity / Steps
 Up = Exp(BS_Volatility * TimeStep ^ 0.5) ' up movement
 Down = 1 / Up ' down movement

 76

 q = (Exp((Risk_Free - Dividend) * TimeStep) - Down) / (Up - Down) ' transition probability at every node
 Discount = Exp(-Risk_Free * TimeStep) ' discount factor

 Call_Sum = 0
 For j = 0 To Steps ' time steps to maturity
 For i = 0 To j ' vertical nodes
 arr_Stock_Prices(i, j) = Underlier * (Down ^ i) * Up ^ (j - i) ' node stock prices
 arr_Node_Probabilities(i, j) = Application.Combin(j, i) * ((1 - q) ^ i) * q ^ (j - i) ' node probabilities
 arr_Node_State_Prices(i, j) = arr_Node_Probabilities(i, j) * Discount ^ j ' node AD prices or state prices
 If j = Steps Then ' determine the terminal call payoffs
 arr_Terminal_Values(i) = Application.Max(arr_Stock_Prices(i, j) - Strik, 0) ' terminal call payoffs
 Call_Sum = Call_Sum + arr_Terminal_Values(i) * arr_Node_State_Prices(i, j) ' sum of product of terminal payoffs and terminal state prices
 End If
 Next i
 Next j

 If Option_Type = 0 Then ' Call Option
 Opt_Price = Call_Sum
 Else ' Put Option
 Opt_Price = Call_Sum + Strik * Exp(-Risk_Free * Maturity) - Underlier * Exp(-Dividend * Maturity) ' from the put call parity relationship
 End If

 CRR = Opt_Price
End Function

Function D.6: DK
Function DK(Underlier, Strik, Maturity, Risk_Free, Dividend, Steps, Option_Type)
 ' Variables definition

 Dim TimeStep, time_to_ex, inf_no_dividend, inf_with_dividend, T_node, K_temp, S_temp
 Dim Opt_Price, Out_Opt_Price, rho_sum, S_numer, S_denom
 Dim i As Integer, i_sta As Integer, i_bel As Integer, i_abo As Integer, j As Integer, i_sum As Integer
 Dim arr_Output_Data, Cum_sum
 Dim row_count As Integer

 77

 Dim V As Integer, w As Integer
 Dim mean_log_price_sum
 Dim log_var_sum
 Dim Call_Sum, Put_Sum
 ' --
 ' Matrix definition
 ' --
 ReDim Forward_Price(0 To Steps, 0 To Steps) ' Forward prices at each node
 ReDim Local_impl_vol_TimeStep(0 To Steps - 1, 0 To Steps - 1) ' note the reduced size of this array
 Dim max_impl_vol_rows As Integer
 ' We need to limit the size of the Local_impl_vol matrix, note that max_impl_vol_rows becomes very large
 If Steps <= 20 Then

 max_impl_vol_rows = Steps * (Steps + 1) * (Steps + 2) / 6 - 1 ' i.e. from loop For j = 0 To Steps - 1, For i = 0 To j, For w = j + 1 To n
 ReDim Local_impl_vol(0 To max_impl_vol_rows, 0 To 2)
 ReDim arr_Node_Probabilities_temp(0 To Steps, 0 To Steps) ' Temp probabilities of reaching each node, used in the calculation of
Local_impl_vol(...)
 End If

 ReDim arr_Node_State_Prices(0 To Steps, 0 To Steps) ' Arrow-Debreu state prices
 ReDim arr_Node_Probabilities(0 To Steps, 0 To Steps) ' Probabilities of reaching each node in the tree
 ReDim arr_Output_Data(0 To Steps, 0 To Steps) ' temp array for formatting output data
 ReDim arr_Node_Probabilities_trans(0 To Steps - 1, 0 To Steps - 1) ' Transition probabilities at each node, note the reduced size of this array
 ReDim arr_Stock_Prices(0 To Steps, 0 To Steps) ' Stock prices at each node
 ' --
 ' Tree parameters (note the continuous compounding)
 ' --
 TimeStep = Maturity / Steps
 inf_no_dividend = Exp(Risk_Free * TimeStep)
 inf_with_dividend = Exp((Risk_Free - Dividend) * TimeStep)
 ' --
 ' Set the starting values at the base of the tree
 ' --
 arr_Stock_Prices(0, 0) = Underlier

 78

 arr_Node_State_Prices(0, 0) = 1
 arr_Node_Probabilities(0, 0) = 1
 T_node = 0
 ' --
 ' Calculate DK and BC tree node stock prices and other values
 ' --
 For j = 1 To Steps ' the time steps

 T_node = T_node + TimeStep ' time at each node
 ' --
 ' Calculate the forward prices at the vertical nodes
 ' --
 For i = 0 To j - 1 ' vertical nodes

 Forward_Price(i, j) = arr_Stock_Prices(i, j - 1) * inf_with_dividend

 Next i

 ' --
 ' Determine the vertical nodes for calculating the central, above and below tree data
 ' --
 i_sta = Int((j + 0.0001) / 2) ' central nodes
 i_bel = Int((j + 1.0001) / 2 + 1) ' nodes below the centre (decreasing stock prices)

 If i_bel > j Then i_bel = j

 i_abo = i_sta - 1 ' nodes above the centre (increasing stock prices)

 If i_abo < 0 Then i_abo = 0

 ' --
 ' Calculate the tree parameters for the nodes at the centre of the tree
 ' --
 i = i_sta

 79

 If j Mod 2 = 0 Then ' i.e. j is even so we have only one central node

 arr_Stock_Prices(i, j) = Underlier

 ' --
 ' Compensation against arbitrage and ensure 0 < arr_Node_Probabilities_trans < 1
 ' Applied Quantitative Finance PDF Book, Equation (7.15)
 ' --
 If i > 0 And i < j Then
 If arr_Stock_Prices(i, j) <= Forward_Price(i, j) Or arr_Stock_Prices(i, j) >= Forward_Price(i - 1, j) Then
 arr_Stock_Prices(i, j) = (Forward_Price(i, j) + Forward_Price(i - 1, j)) / 2 ' i.e. the average of the two
 End If
 End If

 Else ' j is odd and there are two central nodes

 K_temp = arr_Stock_Prices(i, j - 1)
 S_temp = Underlier
 Opt_Price = CRR(Underlier, K_temp, T_node, Vol_Smile(Underlier, K_temp), Risk_Free, Dividend, j, 0)

 rho_sum = 0
 If j > 2 Then
 For i_sum = 0 To i - 1 ' Applied Quantitative Finance PDF Book, Equation (7.12 and 7.19)
 rho_sum = rho_sum + arr_Node_State_Prices(i_sum, j - 1) * (Forward_Price(i_sum, j) - K_temp)
 Next i_sum
 End If
 S_numer = S_temp * (inf_no_dividend * Opt_Price + arr_Node_State_Prices(i, j - 1) * K_temp - rho_sum)
 S_denom = arr_Node_State_Prices(i, j - 1) * Forward_Price(i, j) - inf_no_dividend * Opt_Price + rho_sum
 arr_Stock_Prices(i, j) = S_numer / S_denom ' Applied Quantitative Finance PDF Book, Equation (7.11 and 7.18)
 arr_Stock_Prices(i + 1, j) = S_temp * S_temp / arr_Stock_Prices(i, j)
 ' --
 ' Compensation against arbitrage and ensure 0 < arr_Node_Probabilities_trans < 1
 ' Applied Quantitative Finance PDF Book, Equation (7.15)

 80

 ' --
 If i > 0 And i < j Then
 If arr_Stock_Prices(i, j) <= Forward_Price(i, j) Or arr_Stock_Prices(i, j) >= Forward_Price(i - 1, j) Then
 arr_Stock_Prices(i, j) = (Forward_Price(i, j) + Forward_Price(i - 1, j)) / 2
 End If
 If arr_Stock_Prices(i + 1, j) <= Forward_Price(i + 1, j) Or arr_Stock_Prices(i + 1, j) >= Forward_Price(i, j) Then
 arr_Stock_Prices(i + 1, j) = (Forward_Price(i + 1, j) + Forward_Price(i, j)) / 2
 End If
 End If
 End If

 ' --
 ' Calculate the tree parameters for the nodes above the centre (increasing stock prices)
 ' --
 For i = i_abo To 0 Step -1 ' vertical nodes

 K_temp = arr_Stock_Prices(i, j - 1)
 Opt_Price = CRR(Underlier, K_temp, T_node, Vol_Smile(Underlier, K_temp), Risk_Free, Dividend, j, 0)

 S_temp = arr_Stock_Prices(i + 1, j)
 rho_sum = 0
 For i_sum = 0 To i - 1 ' Applied Quantitative Finance PDF Book, Equation (7.12 and 7.19)
 rho_sum = rho_sum + arr_Node_State_Prices(i_sum, j - 1) * (Forward_Price(i_sum, j) - K_temp)
 Next i_sum

 S_numer = S_temp * (inf_no_dividend * Opt_Price - rho_sum) - arr_Node_State_Prices(i, j - 1) * K_temp * (Forward_Price(i, j) - S_temp)
 S_denom = inf_no_dividend * Opt_Price - rho_sum - arr_Node_State_Prices(i, j - 1) * (Forward_Price(i, j) - S_temp)
 arr_Stock_Prices(i, j) = S_numer / S_denom ' Applied Quantitative Finance PDF Book, Equation (7.13 and 7.20)
 ' --
 ' Compensation against arbitrage and ensure 0 < arr_Node_Probabilities_trans < 1
 ' Applied Quantitative Finance PDF Book, Equation (7.15)
 ' --
 If j > 1 And i = 0 Then
 If arr_Stock_Prices(i, j) <= Forward_Price(i, j) Then

 81

 arr_Stock_Prices(i, j) = arr_Stock_Prices(i + 1, j) * Forward_Price(i, j) / Forward_Price(i + 1, j)
 End If
 End If
 If i > 0 And i < j Then
 If arr_Stock_Prices(i, j) <= Forward_Price(i, j) Or arr_Stock_Prices(i, j) >= Forward_Price(i - 1, j) Then

 arr_Stock_Prices(i, j) = (Forward_Price(i, j) + Forward_Price(i - 1, j)) / 2
 End If
 End If
 Next i
 ' --
 ' Calculate the tree parameters for the nodes below the centre (decreasing stock prices)
 ' --
 For i = i_bel To j ' vertical nodes

 K_temp = arr_Stock_Prices(i - 1, j - 1)
 Opt_Price = CRR(Underlier, K_temp, T_node, Vol_Smile(Underlier, K_temp), Risk_Free, Dividend, j, 1) ' Note Put Option

 S_temp = arr_Stock_Prices(i - 1, j)
 rho_sum = 0
 For i_sum = i To j - 1 ' Applied Quantitative Finance PDF Book, Equation (7.12 and 7.19)
 rho_sum = rho_sum + arr_Node_State_Prices(i_sum, j - 1) * (K_temp - Forward_Price(i_sum, j))
 Next i_sum
 S_numer = S_temp * (inf_no_dividend * Opt_Price - rho_sum) + arr_Node_State_Prices(i - 1, j - 1) * K_temp * (Forward_Price(i - 1, j) - S_temp)
 S_denom = inf_no_dividend * Opt_Price - rho_sum + arr_Node_State_Prices(i - 1, j - 1) * (Forward_Price(i - 1, j) - S_temp)
 arr_Stock_Prices(i, j) = S_numer / S_denom ' Applied Quantitative Finance PDF Book, Equation (7.14 and 7.21)
 ' --
 ' Compensation against arbitrage and ensure 0 < arr_Node_Probabilities_trans < 1
 ' Applied Quantitative Finance PDF Book, Equation (7.15)
 ' --
 If i > 0 And i < j Then
 If arr_Stock_Prices(i, j) <= Forward_Price(i, j) Or arr_Stock_Prices(i, j) >= Forward_Price(i - 1, j) Then
 arr_Stock_Prices(i, j) = (Forward_Price(i, j) + Forward_Price(i - 1, j)) / 2
 End If

 82

 End If

 If i > 1 And i = j Then
 If arr_Stock_Prices(i, j) >= Forward_Price(i - 1, j) Then
 arr_Stock_Prices(i, j) = arr_Stock_Prices(i - 1, j) * Forward_Price(i - 1, j) / Forward_Price(i - 2, j)
 End If
 End If
 Next i
 ' --
 ' Calculate the transition probabilities
 ' Applied Quantitative Finance PDF Book, Equation (7.5)
 ' Calculate the implied local volatilities the time to expiry = the time step, TimeStep = T/n
 ' --
 For i = 0 To j - 1 ' vertical nodes
 arr_Node_Probabilities_trans(i, j - 1) = (Forward_Price(i, j) - arr_Stock_Prices(i + 1, j)) / (arr_Stock_Prices(i, j) - arr_Stock_Prices(i + 1, j))
 If arr_Node_Probabilities_trans(i, j - 1) <= 0 Or arr_Node_Probabilities_trans(i, j - 1) >= 1 Then
 MsgBox "Caution: arr_Node_Probabilities_trans(" & i & ", " & j - 1 & ")= " & arr_Node_Probabilities_trans(i, j - 1)
 End If
 ' This is for the time to expiry = the time step TimeStep, see page 152 Applied Quantitative Finance PDF Book, just below equation (7.16):
 Local_impl_vol_TimeStep(i, j - 1) = (arr_Node_Probabilities_trans(i, j - 1) * (1 - arr_Node_Probabilities_trans(i, j - 1))) ^ 0.5 *
Log(arr_Stock_Prices(i, j) / arr_Stock_Prices(i + 1, j))
 Next i
 ' --
 ' Calculate the Arrow-Debreu state prices Applied Quantitative Finance PDF Book, Equations (7.6)
 ' --
 arr_Node_State_Prices(j, j) = arr_Node_State_Prices(j - 1, j - 1) * (1 - arr_Node_Probabilities_trans(j - 1, j - 1)) / inf_no_dividend
 For i = j - 1 To 1 Step -1 ' vertical nodes
 arr_Node_State_Prices(i, j) = (arr_Node_State_Prices(i, j - 1) * _
 arr_Node_Probabilities_trans(i, j - 1) + arr_Node_State_Prices(i - 1, j - 1) * (1 - arr_Node_Probabilities_trans(i - 1, j - 1))) / inf_no_dividend
 Next i
 arr_Node_State_Prices(0, j) = arr_Node_State_Prices(0, j - 1) * arr_Node_Probabilities_trans(0, j - 1) / inf_no_dividend
 ' --
 ' Calculate the probabilities of reaching each node in the tree
 ' --

 83

 For i = 0 To j ' vertical nodes
 arr_Node_Probabilities(i, j) = arr_Node_State_Prices(i, j) * inf_no_dividend ^ j ' from the definition of Arrow-Debreu state price
 Next i
 Next j
 ' --
 ' Calculate the local volatilities implied by the implied binomial tree
 ' See : http://www.xplore-stat.de/help/IBTlocsigma.html for comparison
 ' See also page 152 Applied Quantitative Finance PDF Book, Equation (7.17)
 ' This implementation assumes that the temp node probability arr_Node_Probabilities_temp(i, j) = 1
 ' where (i,j) corresponds to the node (i.e. stock price) for which the implied
 ' volatility is being calculated i.e. arr_Stock_Prices(i, j)
 ' --
 If Steps <= 20 Then ' otherwise the size of the Local_impl_vol array becomes too large, see max_impl_vol_rows
 row_count = 0
 For j = 0 To Steps - 1 ' time steps
 For i = 0 To j ' vertical nodes
 time_to_ex = TimeStep ' used later in the output array
 ReDim arr_Node_Probabilities_temp(0 To Steps, 0 To Steps) ' this is required to clear the contenTimeStep of arr_Node_Probabilities_temp,
do not move it to top of function
 arr_Node_Probabilities_temp(i, j) = 1 ' we assume that the probability of being at arr_Stock_Prices(i, j) is 1
 For w = j + 1 To Steps ' the possible time steps (or poinTimeStep) at which local volatilities can be calculated
 ' Calculate the temporary node probabilities
 arr_Node_Probabilities_temp(i, w) = arr_Node_Probabilities_temp(i, w - 1) * arr_Node_Probabilities_trans(i, w - 1)
 For V = i + 1 To w - 1
 arr_Node_Probabilities_temp(V, w) = arr_Node_Probabilities_temp(V, w - 1) * arr_Node_Probabilities_trans(V, w - 1) + _
 arr_Node_Probabilities_temp(V - 1, w - 1) * (1 - arr_Node_Probabilities_trans(V - 1, w - 1))
 Next V
 arr_Node_Probabilities_temp(w, w) = arr_Node_Probabilities_temp(w - 1, w - 1) * (1 - arr_Node_Probabilities_trans(w - 1, w - 1))
 ' Calculate the expected value of the log stock price, Applied Quantitative Finance PDF Book, Equation (7.17)
 mean_log_price_sum = 0
 For V = i To w
 mean_log_price_sum = mean_log_price_sum + arr_Node_Probabilities_temp(V, w) * Log(arr_Stock_Prices(V, w))
 Next V

 84

 ' Calculate the log variance, Applied Quantitative Finance PDF Book, Equation (7.17)
 log_var_sum = 0
 For V = i To w
 log_var_sum = log_var_sum + arr_Node_Probabilities_temp(V, w) * (Log(arr_Stock_Prices(V, w)) - mean_log_price_sum) ^ 2
 Next V
 ' Write the calculated values into the output array
 Local_impl_vol(row_count, 0) = arr_Stock_Prices(i, j) ' stock price
 Local_impl_vol(row_count, 1) = time_to_ex ' time to expiry for calculation of the implied local volatility
 Local_impl_vol(row_count, 2) = log_var_sum ^ 0.5 ' implied local volatility from variance
 row_count = row_count + 1
 time_to_ex = time_to_ex + TimeStep
 Next w
 Next i
 Next j
 End If ' Steps <= 20

 Call_Sum = 0
 Put_Sum = 0

 For i = 0 To Steps ' terminal vertical nodes
 Call_Sum = Call_Sum + arr_Node_State_Prices(i, Steps) * Application.Max(arr_Stock_Prices(i, Steps) - Strik, 0)
 Put_Sum = Put_Sum + arr_Node_State_Prices(i, Steps) * Application.Max(Strik - arr_Stock_Prices(i, Steps), 0)
 Next i

 If Option_Type = 0 Then ' Call option
 Out_Opt_Price = Call_Sum
 Else ' Put option
 Out_Opt_Price = Put_Sum
 End If

 DK = Out_Opt_Price
End Function

 85

Function D.7: Vol_Smile
Function Vol_Smile(Underlier, Strik)
 Vol_Smile = 0.4 + (Underlier - Strik) / Underlier / 4
End Function

