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Abstract 

 
In this research work a multivariable feedback control system for the separately 

excited DC motor is presented. The control inputs are the motor armature and the 

motor field voltages, while the controlled outputs are the motor angular speed and the 

motor field current. Three different multivariable control systems were designed and 

compared. The first control system uses the new advances in the multivariable control 

theory, namely, the least effort controller, developed by Whalley, R. and Ebrahimi, M. 

The performance of the system with this controller is compared with the performance 

of the system with other two controllers. One from the classical control school, using 

the Inverse Nyquist Array approach, and the other from the modern control school, 

using the Optimal Control approach. The comparison between the three types of 

controllers includes the general control performance, suitability and applicability, 

disturbance recovery capability and the energy consumed by the control system itself. 

This work concludes that the new least effort control technique provides the simplest 

controller with superior performance and disturbance recovery capability.  

This should promote the implementation of this new type of controllers for general 

multivariable applications.  

 

 

Keyword : least effort control, inverse Nyquist array, optimal control, separately  

                  excited DC motor. 
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 هلخص
 

يتضمن ىذا البحث تصميم نظام تحكم بتغذية راجعة وبمتغيرات متعددة لمحرك تيار مباشر ذو 

تييج مستقل. مداخل التحكم لمنظام ىي جيد الجزء الدوار وجيد ممف المجال لممحرك. بينما 

  المخارج التي يتم التحكم بيا فيي سرعة دوران المحرك وتيار المجال لو.

ثة أنواع من أنظمة التحكم متعددة المتغيرات. النوع اأوول من أنظمة تم تصميم ومقارنة أداء ثلا

التحكم ىذه يستخدم نظرية حديثة تنميز باستراتيجية تقميل استيلاك الطاقة، حيث يتم فييا التركيز 

نفسو. وتم مقارنة أداء نظام التحكم ىذا مع  التحكم نظام بواسطة المستيمكة عمى تقميل الطاقة

، ويستخدم مجموعة لمتحكم التقميديةتحكم أخرين مختمفين. اأوول من المدرسة  أداء نظامي

 ، ويستخدم مبدأ التحكم المثالي. العكسية، والثاني من المدرسة الحديثة لمتحكم  نايكويست

شممت مقارنة أنظمة التحكم الثلاث المختمفة نواح مختمفة مثل اأوداء العام لنظام التحكم، 

ت التي تواجو تطبيقو، كفاءة النظام في مواجية الاضطرابات التي تقابمو الصعوبات والتحديا

 وكذلك الطاقة المستيمكة من نظام التحكم نفسو.

لقد بينت نتائج ىذه الدراسة أن التقنية اأوولى، والتي يتم فييا تصميم نظام تحكم يتميز  

باستراتيجية تقميل استيلاك الطاقة، تؤدي لانتاج نظام تحكم بسيط وأقل تعقيداً وبأداء عالي 

الجودة وذو كفاءةعالية في مواجية الاضطرابات، مما يجعل ىذا النوع من أنظمة التحكم مؤىلًا 

 لاستخدامو لمتحكم في اأونظمة متعددة المتغيرات المختمفة.
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List of Notations and Abbreviations: 
 

The definitions of all the variables that are used in this thesis are given below: 

A – System state matrix 

)(sA – Numerator of )(sG  

B – System input matrix 

C – System output matrix 

D – System feedforward matrix 

)(tE – Control energy 

F  – Outer loop feedback array 

)(sG – Transfer function array 

)(sGN – Transfer function array for percentage changes 

)(sH – Feedback path matrix model  

)(sH – Closed loop transfer function matrix 

I –  Identity matrix 

J – Performance index 

J – System inertia  

K – State feedback matrix  

)(sK – Forward path matrix model 

)(sL – Left (row) factor array 

fL – Self inductance of the motor field winding. 

P – Precompensator array 

P – Solution of Riccati matrix equation 

Q – Coefficient matrix 
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Q – State weighting matrix 

)(sQ – Open loop transfer function matrix 

R – Input weighting matrix 

)(sR – Right (column) factor array 

aR – Resistance of the motor armature circuit. 

fR – Resistance of the motor field winding. 

S – Controllability matrx 

)(sS – Sensitivity array 

)(tT – Motor shaft torque 

)(tU – System input vector 

V – Observability matrix 

)(tX – System state vector 

)(tY – System output vector 

Ĝ , K̂ , Q̂ , Ĥ – Inverse of G , K , Q , H  matrices, respectively 

jia , , jib , ,…, ji , – Coefficient of the Q  matrix 

)(, sa ji – Elements of )(sA  matrix 

)(sb – Polynomial function 

0b , 
1b ,…, 1mb – Coefficient of )(sb  

c – Viscous friction coefficient. 

)(sd – Denominator of )(sG  

id – Diameter of Gershgorin circle for column i   

)(se – Error signal between reference input and output 
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mfff ,...,, 21 – Outer loop feedback gains 

jig , – Elements of )(sG  

)(sh – Transformed measurement elements 

1h , 
2h ,…, mh – Gains of )(sh elements 

)(tia – Motor armature current. 

)(ti f – Motor field current. 

k – Forward path gain 

)(sk – Transformed forward path elements 

ak – Motor torque-armature current proportionality constant.   

Fk – Motor torque-field current proportionality constant. 

1k – Motor back emf-angular speed proportionality constant 

1k , 2k ,…, mk – Gains of )(sk elements 

m – Dimension of )(sA  

m – Number of system inputs and outputs 

n , 
1n , 

2n ,…, 1mn – Gain ratios 

)(sr – Transformed reference input 

)(sr - transformed reference input of the inner loop 

s – Laplace variable 
t – Tim 

)(tu – System input 

)(su – Transformed input 

)(tva – Motor armature voltage 
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)(tvB – Motor back emf voltage. 

)(tv f – Motor field voltage. 

)(sy – Transformed output. 

)(ty – System output. 

ijĝ , ijk̂ , ijq̂ , ijĥ – Elements of the inverse of G , K , Q , H  matrices, respectively 

hk  – Outer product of vectors k  and h  

 hk, – Inner product of vectors k  and h  

)(s – Finite time delay array 

)(s – Transformed disturbance input 

)(t – Disturbance input 

 – Eigen value 

)(t – Motor angular speed 

ARE – Algebriac Riccati equration 

INA– Inverse Nyquist array 

CEL .. – Least effort control 

LQR  – Linear Quadratic Rgulator  

LTI  – Linear Time-invarient  

MIMO– Multi-input Multi-output  

CO. – Optimal Control 

PID  – Proportional-Integral-Derivative 

SEDM– Separately Excited DC Motor 

SISO– Single-input Single-output  
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Chapter (1) 

Introduction 

 

 
1.1 Research Background 
 

Due to their excellent control characteristics, DC motors have been widely used in 

industrial applications. Generally, the DC motor has two windings. These are the 

armature winding and the field winding. In order to produce a unidirectional torque, 

the armature winding is supplied through brushes and a commutator that switches the 

direction of the current in the armature winding. Figure 1.1 shows the construction of 

the DC motor. 

 

 

 
 

Figure 1.1: Construction of the DC motor. 

 

To produce different characteristics, the two motor windings are usually connected in 

different configurations, such as, series, shunt or separately excited. In terms of the 

control theory, series or shunt connection of the two motor windings produces a 
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system with single degree of freedom, as in this case the system will have only a 

single input, which is the motor supply voltage. Motors with separated armature and 

field windings have two degrees of freedom as they have two control inputs, which 

are the motor armature voltage aV  and the motor field voltage fV . These two voltages 

are usually supplied to the motor by two controlled DC voltage sources. The figure 

below shows the schematic diagram of the separately excited DC motor (SEDM).  

 

 

Figure 1.2: Schematic diagram of the separately-excited DC motor. 

 

The interaction of the motor armature current and the magnetic field, produced by the 

current in the motor field winding, produces the motor torque. When the armature of 

the DC motor rotates, a voltage is induced in the armature winding. This voltage is 

called the back emf voltage, 
BV , and it is proportional to the motor angular speed.  

 
As a multi-input, multi-output (MIMO) system, different approaches can be used to 

design the controller of the separately excited DC motor. In this thesis three 

approaches are used. These are the least effort approach (Whalley, R. and Ebrahimi, M., 

1999), the Inverse Nyquist Array approach (Rosenbrock, 1969) and the optimal control 

approach (Kalman R.E., 1960). 

 

The least effort approach is based on minimizing a performance index. The controller, in 

this approach, has two loops; the inner loop ensures stable dynamics of the closed loop 

system, while the outer loop provides specified disturbance suppression conditions and 

provides specified steady state output decoupling (R Whalley, and M Ebrahimi, 1999). 
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In the inverse Nyquist array approach, developed by Rosenbrock in 1969, and in order 

to decrease the system output interaction, a diagonally-dominant closed-loop transfer 

function has to be found. This will reduce the design process to the design of a set of 

independent single loops, in which single-input single- output (SISO) control methods 

can be used. Gershgorin’s band theorem will be used to test the diagonal dominance of 

the closed loop transfer function matrix. 

 

In the optimal control approach, state feedback is used. The  design problem is to find a 

state feedback matrix that will minimize a quadratic performance index, whilst 

simultaneously providing acceptable performance conditions. 

 

1.2 Research Problem Statement:  
 

This research covers the control of the separately-excited DC motor, using different 

control techniques. The motor is modeled as a two-input, two-output multivariable 

system. The armature voltage aV  and the field voltage fV  are the system input 

variables, while the motor shaft speed   and the motor field current fI  are the 

system output variables. The output interaction, in this multivariable system, provides 

new restrictions on the classical control theory, as if any input is changed, it would 

affect all outputs. 

 

Rrandom disturbances, that would affect the performance of the system, are expected. 

These disturbances may be caused by different sources as changes in the supply 

voltages or changes in the motor shaft loading. The control system should be designed 

such that the effect of these disturbances on the system performance is limited. 

 

 

1.3 Research Aims and Objectives 
 

In this research, the recent advances in the multivariable controller design approaches, 

namely the least effort approach, presented by Whalley, R. and Ebrahimi, M, will be 

applied to the case of the combined armature and field control of the separately-

excited  DC motor. The objective will be to design a multivariable feedback 
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controller, to control the angular speed and the field current of the DC motor. The 

armature voltage aV  and the field voltage fV  will be the control inputs, while the 

controlled outputs will be the motor angular speed   and the motor field current, fI . 

The above stated approach will be compared with two other approaches from the 

British and the American schools, these are the Inverse Nyquist Array approach and 

the Optimal Control approach, respectively. The comparison will include the 

difficulties of each approach and the complexity of the controller, the general control 

performance, disturbance recovery and the energy consumed by the controller. 

 

1.4 Dissertation Organization 
 

This Dissertation is organized in seven chapters that will include the following: 

Chapter one: this chapter is the introduction to this research work. It includes the 

theoretical background of DC motors and their control problems. The problem 

statement as well as the aims and objectives, of this research work, are clearly defined 

in this chapter. 

 

Chapter two: this chapter contains the summary of the literature review that was 

made. The literature, that has been reviewed for this research, include that covering 

the control methods used for DC motors, as well as the fundamentals of the 

multivariable feedback control theory as in the British and in the American schools. 

 

Chapter three: this chapter forms the core of this research work. It covers modeling 

the DC motor as an open-loop two-input, two-output system. The motor system is 

modeled using state-space and transfer function representations. The characteristics 

and the open loop response of the DC motor are studied. The study was done by 

simulating the performance of the open-loop DC motor system using 

MATLAB
®
/SIMULINK

®
. 

 

Chapter four: in this chapter, a feedback controller using the first approach, namely, 

the Least Effort approach, is designed to reach certain performance characteristics for 

the closed-loop system. The designed feedback controller was simulated and its 

performance was analyzed. 
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Chapter five: in this chapter a feedback controller, using the second approach, namely, 

the Nyquist Array approach is designed. The designed feedback controller has been 

also simulated and its performance has been analyzed. 

 

Chapter six: this chapter includes the design of a feedback controller using the third 

approach, namely, the Optimal Control approach. The designed feedback controller 

has been simulated and its performance has been analyzed. 

 

Chapter seven: this chapter includes the comparison between the performances of the 

feedback control systems built using the three previously mentioned approaches. It 

also contains the conclusions and the recommendations that have been obtained from 

this research work.  

 

In addition to the above, this dissertation includes an abstract in both Arabic and 

English languages. 
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Chapter (2) 
 

Literature Review 

 
2.1 Introduction 
 

 

 The main advantage of DC motors is the speed control. As the motor angular speed,  , 

is directly proportional to armature voltage and inversely proportional to the magnetic 

flux produced by the field current, adjusting the armature voltage and/or the field current 

will change the rotor angular speed. 

 

The seperately excited DC motor (SEDM) is usually supplied by two controlled 

voltage sources, that can be controlled rectifiers or choppers. One source is supplying 

the motor armature winding with the armature voltage,  aV , and the other is supplying 

the motor field winding by the field voltage fV . The speed of the SEDM can be 

controlled by controlling either the armature voltage aV  or the field voltage fV , or 

both of them. 

 

Usually, the voltage speed control method is used to control the speed of the SEDM 

below its rated speed. In this method, the field voltage fV  is kept constant, while the 

armature voltage aV  is varied. A constant field voltage fV  produces a constant field 

current fI , which in turn, produces a constant magnetic flux in the motor air-gap. 

Hence, the torque produced on the motor shaft remains constant, as the armature 

current remains constant. The motor angular speed   and the power on the motor 

shaft are linearly proportional to the armature voltage aV .  

 

To run the SEDM above its rated speed, the field speed control method is used. Here,  

the field current fI  is reduced by reducing the field voltage fV . The magnetic flux in the 

motor air gap will be reduced, causing reduction of the back emf 
BV . The motor armature 

current will increase, resulting in increasing the motor speed. As a result of that,  the back 

emf 
BV  will increase and a new equilibrium will be established at a higher speed. Or  
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with decreasing the field voltage fV , the motor angular speed   increases, while the 

motor torque decreases and the motor shaft power remains constant. 

The figure below shows the mechanical power and the torque on the shaft of the SEDM, 

as a function of the angular motor speed, in the two previously described control methods. 

 

 

Figure 2.1: Armature voltage control and field voltage control of the separately- 

                           excited DC motor. 

 

It has to be noted that in these two control methods, the SEDM is usually represented as a 

single-input single-output (SISO) system. As only one input ( aV  or fV ) and only one 

output (  or T ) are of interest. 

 

In this research work, the SEDM will be treated as multi-input multi-output (MIMO) 

system, having two control inputs and two outputs. The control inputs are the 

armature voltage aV  and the field voltage fV , while the outputs are the motor angular 

speed   and the motor field current fI . 
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Many researches covering the therory of the multivariable control systems and the 

control of the SEDM have been previously done. This chapter contains a summary 

review of the published literature regarding these two subjects, from both the classical 

and the modern control schools.  

 

 

2.2 Development of the Control Theory 
 

As known, controlling a system is the process of regulating or managing the behavior 

of the system, in the required manner. There are two common classes of control 

systems; open-loop control systems and closed-loop or feedback control systems. In 

open loop control systems, the output is controled by the inputs only. While, in 

closed-loop control systems, feedback control is used. In feedback control systems, 

the difference between the desired and the actual values of the system variables, is 

used to control the system. As the system output, or part of it, is returned back to its 

input, the system is usually called a closed-loop system. 

   

According to reference [28], differential equations were the early tools for the analysis 

of control systems. In 1868, J.C Maxwell studied the stability of Watt's fly-ball 

governor, as a closed-loop system, used in the feedback speed control of the steam 

engines. In his work, Maxwell linearized the differential equations of motion to build 

the characteristic equation of the system.  He showed that the system is stable if the 

roots of the characteristic equation have negative real parts. It can be said that with the 

work of Maxwell the fundamentals of control theory were established. During this 

time, E.J. Routh and A. Hurwitz found a numerical technique for determining when a 

characteristic equation is describing a stable system. 

 

In 1892, A.M Lyapunov studied the stability of nonlinear control systems. In his 

study, he used a generalized notion of energy. During the same year, Operational 

calculus was invented by Heaviside. He analyzed the transient behavior of systems, 

using a notion equivalent to that of the transfer function. In 1893, A.B Stodola studied 

the regulation of the water turbine. The notion of system time constant was firstly 

mentioned by him, when he studied the control of the hydro turbine. 
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The frequency domain approach in studying control systems was developed by J. 

Fourier, P. S. Laplace, A. L. Cauchy and others at Bell Telephone Laboratories. This 

approach was firstly applied for the analysis and design of filters for long telephone 

lines. 

 

During the First World War, ships became more complicated in their design. The  

problem of their control and navigation came to light. Sensors were required for their 

closed-loop control. The gyroscope was invented by E.A. Sperry in 1910. He used it 

in the stabilization and guiding of ships, and later in aircraft control. The three-term 

controller for guiding of ships were introduced by N. Minorsky in 1922. He was the 

first to apply the proportional-integral-derivative (PID) controller. 

 

In 1927, H.S. Black implemented the negative feedback to improve the stability of 

amplifiers. Five years later, in 1932, the stability criterion based on the polar plot of a 

complex function was derived by H. Nyquist. The magnitude and phase frequency 

plots of a complex function were used by H.W Bode, in 1938. He used the notions of 

gain and phase margins to investigate the stability of the closed-loop system. 

 

Nichols Chart for the design of feedback systems was developed by N.B. Nichols in 

1947. One year later, W.R. Evans presented his root locus method. This method 

provided a direct way to determine the closed-loop pole locations in the s-plane. 

During the 1950's, much controls work was focused on the s-plane, and on obtaining 

desirable closed-loop step-response characterictics in terms of rise time, percent 

overshoot, steady-state error and so on. 

 

The period after the Second World War may be called the classical period of control 

theory. This period was distiguished by publishing the first books on control theory 

[MacColl 1945; Lauer, Lesnick, and Matdon 1947; Brown and Campbell 1948; 

Chestnut and Mayer 1951; Truxall 1955], and by inventing of tools that provided 

great intuition and simplifies the solutions of design problems. These tools were 

applied using hand calculations, or slide rules with graphical techniques. 

 



[11] 

 

With the arrival of the space age, in the USA, controls design techniques turned away 

from the frequency-domain, of classical control theory, to time domain, of modern 

control theory. The reason for this development is that the frequency-domain 

techniques were appropriate for linear time-invariant (LTI) systems. They are at their 

best when dealing with single-input/single-output (SISO) systems.  

 

Three significant papers were published by R. Kalman in 1960. The first one 

supported the work of Lyapunov in the time-domain control of nonlinear systems. The 

second, described the optimal control theory and the design of the linear quadratic 

regulator (LQR). Optimal filtering and estimation theory were discussed in the third 

paper. In this paper, the design equations for the discrete Kalman filter were provided. 

In 1961, Kalman and Bucy founded the theory of  the continuous Kalman filter. It can 

be brifly said that in the period of 1960 and 1961, the constraints of the classical 

control theory were overcome, new theoretical techniques for the analysis and the  

design of control systems were introduced, and the era of the  modern control theory 

had  started. 

The focal point of Kalman's publications is that they are discussing the time-domain 

approach, making it more suitable for linear time-varying systems as well as nonlinear 

systems. Kalman used matrices and linear algebra to describe control systems, so that 

multi-input multi-output (MIMO) systems could easily be studied. He introduced the 

concept of the internal system state; hence, his approach covers the system internal 

dynamics as well as the system input/output relationship. In optimal control theory, 

Kalman formalized the concept of optimality by minimizing a generalized quadratic  

energy function. 

 

 In Great Britain,  in the 1970's, H.H. Rosenbrock, A.G.J. MacFarlane, I. 

Postlethwaite  and others extended the classical frequency-domain and the root locus 

techniques to multi-input multi-output (MIMO) systems. New concepts like the 

characteristic locus, diagonal dominance, and the inverse Nyquist array were 

introduced. 

 

 

 



[12] 

 

2.3 The Classical Control School  
 

In the classical control school, system description was conventionally formulated in 

the frequency domain and the s-plane. Relying on transform methods, this description 

is primarily applicable for linear time-invariant (LTI) systems.  

An exact description of the internal system dynamics is not required for classical 

design; that is, only the input/output behavior of the system is of importance. The 

transfer function is used to describe the system input-output relation. The system 

description required for controls design using the methods of Bode or Nyquist is the 

magnitude and phase of the frequency response. This is advantageous as the 

frequency response can be found experimentally. The transfer function can then be 

computed. For root locus design, the transfer function is required. The block diagram 

is used to find the transfer functions of composite systems.  

 

In the classical control school, the design may be done by hand using graphical 

techniques. These methods introduce a great deal of intuition and provide the control 

system designer with a range of design solutions, so that the resulting control systems 

are not unique. The design process is an engineering art. Compensators as lead-lag or 

proportional-integral-derivative (PID)  are usually used in the control structure. The 

effects of these compensators on the Bode, Nyquist, and root locus plots are easy to be 

understood, so that an appropriate compensator structure can be chosen.  

 

As the open-loop properties, of the system to be controlled, are usually known or can 

be measured easily, an essential concept in the classical control is the ability to depict 

the system closed-loop properties in terms of its open-loop properties. For example,  

the Bode, Nyquist and root locus plots for the open-loop system are usually available, 

the steady-state error and disturbance rejection properties, for the closed-loop system, 

can be described in terms of the return difference and sensitivity. 

 

Due to the interaction of the control loops, generally, classical control theory 

is difficult to be applied for multi-input multi-output (MIMO) systems. In these 

systems, a single-input single-output (SISO) transfer function may have acceptable 

properties, but when combined with the other transfer functions, relating the rest of 

the system inputs and outputs, the entire performance of the system may fail to be 
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acceptable. Hence, traditional design, using the approach of closing a single loop at a 

time, may be used. But this approach requires many iterations and is a painstaking 

effort.  

For example, if the root-locus method is used to design a controller for a given 

system, the root locus for each gain element, should be plotted taking into 

consideration the gains previously selected. However, this requires multiple attempts, 

and may not reach the required closed-loop system performance or even system 

stability.   

 

During 1970's different approaches, using the multivariable frequency-domain, have 

been developed to overcome many of these limitation. 

 
Obtaining the transient response of a system from frequency response data was one of 

Rosenbrock’s interests. His work includes the theory of linear systems, the 

transformations of linear system equations and the reduction of system matrices. He 

presented the Nyquist and Inverse Nyquist Array method for multivariable control 

systems design which was done by reducing the system coupling assuring the diagonally 

dominance of the transfer function matrix model in 1969.  Gershgorin’s band theorem 

was used to investigate the stability and the diagonal dominance for the system transfer 

function matrix (Gershgorin, 1931).  In the last decades, the conventional Inverse Nyquist 

Array (INA) method was used by many engineers for the improvement of controllers for 

many processes (Koudstaal et al. 1981) and (Grujic, 1995). 

 

Model predictive and adaptive control, as described in Whalley et al. (2009), have 

also been proposed, for MIMO systems with significant non-linearities. An approach 

based on the consumption of minimum control energy was propsed by Whalley, R. 

and Ebrahimi, M. This approach can be used to design a multivariable robust and low 

gain controllers with acceptable response characteristics and disturbance rejection, 

with minimum consumption of energy. 
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2.4 The Modern Control School  
 

 

Modern control design is, in general, a time-domain technique. In modern control, the 

system to be controlled, is required to be represented in a state-space form, as 

suggested by Kalman. The State-space model of a system is a set of first-order 

differential equations having the form: 

)(.)(.)( tUBtXAtX                                          

 )(.)(.)( tUDtXCtY   

In these equations, )(tX  is a vector of the system states, )(tU  is a vector of the 

control inputs, and )(tY  is a vector of the controlled outputs. Matrices A , B , C  and 

D  describe the dynamical interconnections between the inputs, the states and the 

outputs of the system. State-space model can be used to describe a MIMO system as 

well as a SISO system.  

 

The properties of controllability and observability, of the open-loop system,  provide 

insight on what it is possible to be achieved using feedback control.  As by Kalman, a 

state is controllable if it could be varied by an input signal, in a finite time. And, if all 

the system states are controllable, then the system is said to be completely 

controllable. Meanwhile, a state is said to be observable if it could be found from the 

input signals and the measured output signals, in a finite time.  And, if all the system 

states are observable, then the system is said to be completely observable. 

Controllability and the observability of a given system could be tested by checking the 

ranks of special matrices, called the controllability and the observability matrices, 

respectively.  

 

Generally, to achieve the required closed-loop properties, a feedback control of the 

form: 

)(.)( tXKtU   

is usually used. The elements of the feedback gain matrix, K , are the control gains in 

the system. As the system states are used for feedback, this control method is usually 

called state-variable feedback control.   
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In the standard linear quadratic regulator (LQR), as an example from the modern 

control school, a quadratic time-domain performance index, J , like: 

 dtURUXQXJ TT





0

..  

is used. The feedback gain matrix, K , is selected such that this index is minimized. 

 

Matrices Q  and R , used in the definition of the performance index, J , are the 

design parameters. They are the weighting matrices for the states and the inputs, 

respectively. The elements of these two matrices are chosen to achieve the required 

performance. In modern controls design, the engineering art is in the selection of  

these two weighting matrices.  The value of the feedback gain matrix, K , that 

minimizes the performance index, J , is defined as: 

PBRK T ..1  

In this equation, P  is an nxn   matrix satisfying the Algebriac Riccati Equation,  

01   QPBPBRPAPA TT
 

 

The use of the Ricatti equation for finding the state feedback gain matrix, K , was 

firstly introduced by Kalman. Its use in control theory was new. 

 

It can be noted that the Algebriac Riccati Equation is not suitable for hand 

calculations. Thus, computer-aided design (CAD) is an essential tool for modern 

controls. 

 

 In some practical designs, an output feedback of the form: 

)(.)( tYKtU  . 

is applied.  In this case, this output feedback control law regains much of the intuition 

of classical controls design. 

 

It can be stated that, the developments in digital control theory and discrete-time 

systems, make modern control more applicable for the design of control systems using 

microcontrollers or microprocessors. 
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2.5 Control of DC Motors 
 

Many researches dealing with the control of  DC motors have be done. In reference 

[29], a winder for a deep shaft mining is presented. This winder is driven by a Ward-

Leondard system having a minimum control effort regulation strategy. A linear model 

of the system is derived. The proposed control strategy enables regulation of the 

motor angular speed and the motor armature current. The responses for both the 

closed-loop and the open-loop systems are presented and compared. The control 

energy consumed and the regenerative braking performance of the system are also 

discussed. 

 

A model of speed controller for a separately excited DC motor is provided in [30]. 

The controller has two control loops, one for controlling the motor angular speed and 

the other for controlling the motor armature current. The controller implemented is 

Proportional-Integral ( PI ) type which minimizes the delay and provides fast control. 

The optimization of the speed controller is done by using modulus hugging approach, 

that provides stable and fast control of the DC motor. Simulation results under 

varying speed and varying load torque conditions are shown.  

 

Reference [31] describes DC motor speed control system using the pole assignment 

feedback technique, in which all closed-loop poles are specified. The objective of the 

controller is to regulate the motor angular speed. Results obtained were compared 

with another controller applied to the DC motor based on Proportional Integral 

Derivative (PID) control. 

 

References [32] and [33] present a comparison of time response specification between 

the Linear Quadratic Regulator (LQR) and the conventional Proportional-Integral-

Derivatives (PID) controller for a speed control of a separately excited DC motor. The 

performances of these two types of controllers have been verified through 

simulations. It has been shown, in these two references, that the linear quadratic 

regulator method provides the better performance, in terms of settling time, steady 

state error and overshoot, compared to conventional PID controller.  

 

Refrence [34] describes the principle of DC motor speed control using nonlinear 

combined control and proportional-integral-derivative (PID) controller. The control 
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inputs are both the armature voltage and the field current. Simulation results have 

been obtained using MATLAB
®
/Simulink

®
. 

 

Reference [35] investigates the design and implementation of nonlinear control 

schemes for a separately excited DC motor operating in the field-weakening region. A 

linearized feedback controller, and two other nonlinear controllers are designed and 

implemented. The stability of the closed-loop system is proved using Lyapunov 

theory. A hardware test model is constructed to experimentally verify the designed 

controllers. 

  

The application of artificial neural network-based model reference controller (MRC) 

for the speed control of the separately-excited DC motor is presented in reference 

[36]. This reference proposes the speed control of the motor (SEDM) in the constant 

torque region. The reference also discusses and compares the speed control systems of 

SEDM using PI-controlled and fuzzy logic-controlled chopper circuit with MRC. The 

performance of the system has been modeled using MATLAB
®
 /SIMULINK

®
 .  

 

Comparative studies between the different control strategies, used to control the 

angular speed of the separately-excited DC motor, are provided in references [37], 

[38] and [39]. In reference [37], PID and FUZZY Controllers are represented. Their 

performance are simulated and compared. In reference [38], Proportional, Integral, 

and Proportional-Integral controllers are represented and their performances are also 

compared. In reference [39] , the performance of motor speed controllers of different 

types as proportional, integral, derivative, proportional and integral, PID controller, 

phase lag compensator,  lead integral compensator, lead lag compensator, and the 

linear quadratic regulator (LQR) are presented and compared.  

 

References [40] and [41] provide mathematical models of separately excited DC 

motors. In reference [41] Three different mathematical models of the separately 

excited DC motor are considered: (i) a precise nonlinear model, (ii) a piecewise linear 

model, and (iii) a second-order linear model. Experimental results are presented 

comparing the various models, and the range of applications for each is suggested. 

 

 



[18] 

 

Chapter (3) 
 

Modeling of the DC Motor 
 

In this chapter the separately-excited DC motor is modeled as a linear two-input, two-

output system. The model of this motor is represented in both state-space and transfer 

function forms. The model inputs are the armature and the field supply voltages, i,e., 

av  and fv , respectively. The model outputs are the motor angular speed   and the 

motor field current fi .  The system states are the same as the system outputs, i.e the 

system states are the motor angular speed   and the motor field current fi .  

 

The characteristics and the open loop response of the motor are also studied. 

 

The figure below shows the equivalent circuit of the separately-excited DC motor. As 

shown in the figure, and for simplifying the mathematical model that describes the 

operation of the separately-excited DC motor, the leakage inductance of the motor 

armature circuit is neglected, as usually its value is very small, as compared to other 

motor parameters. 

 

Figure 3.1: Equivalent circuit of the separately-excited DC motor. 

 

3.1 System Governing Equations 
 

Upon analyzing the system, the armature input voltage is equal to the sum of the 

voltage drop on the armature resistance and the back electromotive force, or: 
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           )()(.)( tvtiRtv Baaa                                                                                    (3.1)          

As the back electromotive force is proportional to the motor angular speed, then: 

        )(.)( 1 tktvB                                                                                             (3.2) 

Substituting (3.2) in (3.1), it is found that: 

              )(.)(.)( 1 tktiRtv aaa                                                                              (3.3) 

The motor shaft torque is proportional to both the armature and the field currents, or: 

               )(.)(.)( tiktiktT ffaa                                                                                  (3.4) 

Also, the equation that describes the dynamics of the motor shaft is: 

             )(.)(.)( tctJtT                                                                         (3.5) 

Where:  

             
dt

td
t

)(
)(


                                                                                             (3.6) 

For the field circuit, the field input voltage is equal to the sum of the voltage drops on 

the resistance and the inductance of the field circuit, or: 

            )(.)(.)( tiLtiRtv fffff
                                                                         (3.7) 

Where: 

              
dt

tdi
ti

f

f

)(
)(                                                                                                  (3.8)   

Equation (3.1)-(3.8) are the governing equations that describe the operation of the 

separately-excited DC motor.                                                                                                                           

3.2. System Equations in PQR Form 
 

Equating the right-hand sides of equations (3.4) and (3.5), it is found that:  

 

          )(.)(.)(.)(. tiktiktctJ ffaa                                                                          (3.9) 
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Or: 

          )(.)(.)(.)(. tctiktiktJ ffaa                                                                (3.10) 

From equation (3.3), it is found that: 

          
a

a
a

R

tktv
ti

)(.)(
)( 1 
                                                                                 (3.11) 

Substituting (3.11) in (3.10), then: 

           )()(.)(.
.

)(. 1 tv
R

k
tiktc

R

kk
tJ a

a

a

ff

a

a 









                                         (3.12)   

Equation (3.7) can be written in the form: 

           )()(.)(. tvtiRtiL fffff                                                                        (3.13) 

Substituting (3.11) in (3.4), it is found that: 

            )(.)(.)(.
. 1 tv

R

k
tikt

R

kk
T a

a

a
ff

a

a                                                         (3.14) 

Equation (3.11) can be written as: 

            )(
1

)()( 1 tv
R

t
R

k
ti a

aa

a                                                                        (3.15) 

Equations (3.12)-(3.15) with the identities )()( tt    and )()( titi ff  , can be 

written in the PQR form as: 
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      (3.16)   

Or in abbreviated form as: 

               URXQ

Y

X

P ...... 
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Here, the matrices P , Q  and R are respectively: 
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The state vector is: 

          TfiX                                                                                                  (3.21) 

 

The output vector is: 

           Tfa iiTY                                                                                     (3.22) 

 

The input vector is:            

           Tfa vvU                                                                                              (3.23) 
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And the required system output are the same as the system states, or the vector of the 

required system outputs is  Tfi . 

 

3.3. State-Space Representation of the System 
         

As mentioned before, the system inputs are )(tva  and )(tv f , while  the system states 

are )(t  and )(ti f . The required system outputs are the same as the system states, 

i.e., the required system outputs are )(t  and )(ti f . The state-space form of the 

system equations can be derived from the PQR form, equations (3.16) – (3.23), by 

matrix inversion or by carrying out row-operation methods. 

Multiplying the two sides of equation (3.17) by the inverse of matrix P , it is found 

that:  
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The inverse of matrix P  can be found by using the equation: 
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Here P  is the determinant of matrix P and ijP  are the cofactors of its elements. 

 

The inverse of matrix P  can also be found by performing row operations, after 

augmenting P  with an identity matrix having a dimension as that of matrix P , as 

shown below. 
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Dividing the first row of the augmented matrix by J and the second row by fL , then: 



[23] 

 

          

































100000

010000

001000

000100

0000
1

0

00000
1

.

.

.

.

.

.

100000

010000

001000

000100

000010

000001

~ )1(
fL

J

P                                 (3.27) 

Hence the inverse of matrix P  is: 
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Substituting equation (3.28) in equation (3.24), it is found that: 
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From this equation, the system state and output equations can be deduced.  

The system state equation is: 
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and the system output equation is: 
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Or, in the abbreviated form: 

          UBXAX ..                                                                                            (3.32) 

           UDXCY ..                                                                                           (3.33) 

Where A , B , C , D , X , Y  and U  are defined as below: 
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3.4. System Transfer Function 
 

Laplace transforms, with zero initial conditions, for each of the state equation (3.32) 

and the output equation (3.33) are, respectively: 

            )(.)(.)(. sUBsXAsXs                                                                 (3.40) 

  and:  

            )(.)( sXCsY                                                                                            (3.41) 

From these two equations, it can be concluded that: 

            )(..)..()( 1 sUBAIsCsY                                                                  (3.42) 
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Or: 

            )().()( sUsGsY                                                                               (3.43) 

Where: 

           BAIsCsG .)..()( 1                                                                                (3.44) 

In this equation, matrix I  is the identity matrix of order as that of the order of matrix

A . 

Substituting matrices A , B  and C  as found in (3.34), (3.35) and (3.36) into 

equation (3.44), it is found that the system transfer function )(sG  is: 
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As: 

             Tfa svsvsU )()()(                                                                                (3.46)                                     

             Tf sissY )()()(                                                                                (3.47)  

Hence: 

 

  
 

































)(

)(
.

....0

...

......

1

)(

)(

11
sv

sv

kkcRsRJ

RkRsLk

RsLkkcRsRJsi

s

f

a

aaa

afffa

ffaaaf



                                                                                                                              (3.48) 

 

 

For the DC motor with the following  parameters: hpP 200 ,  VVa 400 , 

VV f 400 ,  50fR , HL f 25.23 ,  24.0aR ,  sec//96.261 radVk  , 

AmNka /.33.16 , AmNk f /.36.613 , 
2..555 mkgJ  , 

sec)//(.24.1200 radmNc  ,   and after substituting these parameters in equations 

(3.34) and (3.35), the state and the input matrices of the system become: 
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Or the system state equation is: 
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and the system output equation is: 
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The tansfer function of system is found by substtituting the motor parameters in 

equation (3.45), hence: 
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As: 

               Tfa svsvsU )()()(                                                                             (3.54)                                     

                Tf sissY )()()(                                                                              (3.55)   

 

Thus, the input-output description of the system becomes: 
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3.5. Scaling the Model 
 

The base values used for scaling of the model are the maximum values of the input 

and the output signals. The maximum values of the input signals are  

Vvu a 400maxmax1  and Vvu f 400maxmax2  . While, the maximum values of the 

output signals are .sec/96.10maxmax1 rady    and .8
maxmax2 Aiy f   Hence: 
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Or in matrix form: 
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In these equations: 

-  1u  and 2u are the actual values of the input signals, which are the motor 

armature and field voltages, respectively,  

- (%)~
1u  and (%)~

2u are the percentage change of 1u  and 2u , respectively. 

In the same way, for the output signals: 
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Or in matrix form: 

             

























(%)~
(%)~

.
08.00

01096.0

2

1

2

1

y

y

y

y
                                                     (3.62) 

Here: 

-  1y  and 2y are the actual values of the output signals, which are the motor      

angular speed and the motor field current, respectively. 

- (%)~
1y  and (%)~

2y are the percentage change of 1y  and 2y , respectively. 

 

Substituting equations (3.59) and (3.62) in equation (3.56), we find: 
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i.e, the transfer function of the system for percentage changes is: 
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3.6. Modelling the System Using MATLAB
®
/Simulink

®
  

 

 System state equations (3.12) and (3.13), can be written in the form: 
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The block diagram of the separately-excited DC motor as described by these two state 

equations is shown in figure 3.2 below.  
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Figure 3.2: Block diagram of the separately-excited DC motor, as desribed by 

                           the state equations. 

 

For the purpose of simulating the operation of the DC motor system, a 

MATLAB
®
/Simulink

®
 model, using equations (3.65) and (3.66), was built. This 

model is shown in figure A.1. 

 

Other MATLAB
®
/Simulink

®
 model, using the state-space representation of the DC 

motor system, equations (3.30) and (3.31), is also built. This model is shown in figure 

A.2. 

 

Block diagrams of the separetly-excited DC motor, using the transfer function, 

equation (3.56), and the transfer function for pecent changes, equation (3.63), are 

shown in figures 3.3 and 3.4, respectively. 

 

Figure 3.3: Block diagram of the separately-excited DC motor, as described by 

the tranfser function. 
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Figure 3.4: Block diagram of the separately-excited DC motor, as described by 

                           the tranfser function for percentage changes. 

 

MATLAB
®
/Simulink

®
 models, using the transfer function and the transfer function 

for percentage changes, were also built. These models are shown in figures A.3 and 

A.4, respectively. 

 

3.7 Open Loop Response Analysis and Control Objectives 
 

   3.7.1  System Poles and Zeros 

System poles are the zeros of the denominator of the transfer functions )(sG  or 

)(sGN defined by equations (3.53),  and (3.64), respectively. Or system poles are the 

roots of  the equation 06.11783.562  ss , which are: 15.21 p  and 

68.542 p .  

 

As system poles are also the eigenvalues of the state matrix A,  in the state equation of 

the system, system poles can also be found by solving the equation 0.  AIs . 

The system poles are shown in the diagram in figure 3.5. 



[31] 

 

 

Figure 3.5: Poles of the open-loop DC motor system.   

 

System zeros are found from each of the two system inputs to each of the two system 

outputs, defined by the zeros of the numerators of the respective elements of the 

transfer functions )(sG  or )(sGN . Or system zeros are as follows: 

-  from input 1 to output 1:  two zeros at infinity. 

-  from input 2 to output 1: 15.21 z , in addition to a zero at infinity.. 

-  from input1 to output 2: 68.541 z , in addition to a zero at infinity. 

-  from input 2 to output 2: two zeros at infinity. 

As the system poles are negative and real, it can be concluded that this system is 

stable and will have no oscillations. 

 

3.7.2  Output Responses For One Percent Change On Each Input, In Turn 

 

The output responses of the system, for one percent change on each of the two inputs, 

in turn, can be obtained from the MATLAB/Simulink model, which simulates the 

system using the transfer function for percent changes, )(sGN , shown in figure A.4. 

As from equation (3.63),  when 0(%)~
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In the same way, when 0(%)~
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These responses are shown in the figures below. 

 

Figure 3.6: Open-loop system response for a unit step change in the motor armature  

                         voltage, )(1 tu , with no change in the motor field voltage, 0)(2 tu . 

 

 

Figure 3.7: Open-loop system response for a unit step change in the motor field 

voltage, )(2 tu , with no change in the motor armature voltage 0)(1 tu . 
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3.7.3   System Steady State Interaction 

System steady-state interaction can be derived using the final-value theorem, which 

states that: 
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00
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sUsGssYsty                                            (3.71) 

Where )(sG , )(sU  and )(sY  are, as described before: 
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And:                                     
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 In the same manner, system steady state interaction, in percentage changes, can be 

found by applying the final-value theorem to the system transfer function description 

using percentage changes of inputs and outputs, given by equation (3.63). 

or: 
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                                                                                                                          (3.76) 

For %1  changes, on each of the two inputs, simultaneously, the steady state outputs 

will be: 
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These results are the same as those obtained from the Simulink model, simulating the 

performance of the system using the transfer function for percent changes, shown in 

figure A.4. 

 

A MATLAB program is attached to this work. This program builds the system using 

different approaches, draws the output responses for precentage changes on each of 

the two inputs and plots the system poles. 

 

From figure 3.6, it can be seen that, for the change of the motor aramature voltage, the 

change of the motor angular speed has an overdamped character, with a settling time 

of about 0.12 seconds. A 1% change of the motor armature voltage causes around 

0.82% change of the motor angular speed, but no change in the motor field current. 

 

Figure 3.7 shows that for the change in the motor field voltage, the system has also an 

overdamped behavior for both outputs, and a settling time of about 2.5 seconds. A 1% 

change of the motor field voltage causes 1% change of the motor field current, and 

almost 0.15% change of the motor angular speed.   

 

Even though the system is stable and well behaved,  there is a cross coupling  between 

the system outputs. Therefore, the objective of the controller will be to reduce the 

steady-state output cross coupling, as much as possible. A ten percent limit of cross 

coupling between the system outputs will be acceptable. Reducing the steady-state 

error and increasing the system speed, while maintaining an over-damped condition, 

will be another objective of the controller.  Since random disturbances are expected, 

the ability of the system to suppress these disturbance will be studied. Another 

important issue that will be studied in this research work is the energy consumed by 

the control action itself.  
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Chapter (4) 

The Least-Effort Feedback Controller 

 
4.1 Introduction 

 

In the least-effort feedback controller, a dual-loop approach is  proposed. The 

inner loop ensures stable dynamics and the outer loop, in combination, ensures steady 

state interactions with necessary disturbance suppression. By this manner, the system 

dynamics and the steady state response can be adjusted to reach the required 

performance characteristics. 

  

     The generalized block diagram of a two-input, two-output system with a least 

effort feedback controller is shown in figure 4.1. The P controllers correspond to the 

outer loop and are represented by proportional gains. The H controllers correspond to 

the inner loop and are represented by the feedback loops. In this chapter, a least effort 

controller for a separetly-excited DC motor, as described by Whalley, R. and 

Ebrahimi, M. will be designed. The proposed controller will enable simultaneous 

regulation of the motor angular speed and the motor field current. The responses of 

the closed loop system will also be analyzed.  

 

Figure 4.1: Generalized block diagram of a two-input two-output  system with a 

least-effort controller. 
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As from figure 4.1, for system with m  inputs, m  outputs and disturbances, the 

system equation is: 

            )(. ssusGsy                                                                        (4.1) 

and the the control law is described as: 

                )(.)()().()().()( syFsrPsyshsrsksu                   (4.2) 

In the above equation, the inner loop is represented by  )().()().( syshsrsk   

and it satisfies the required system dynamics in the closed loop condition. The outer 

loop, represented by  )(.)( syFsrP  , handles steady state output interactions 

and recovery from undesired disturbances.  

 

4.2 Outer-Loop Analysis 
 

The outer loop feedbak matrix, F , is a diagonal matrix with elements of the main 

diagonal are less than one, or: 

               mjffffF jm  1,10,,...,, 21                                                           (4.3) 

With 0)( sr , the system closed loop equation becomes: 

                 )()Pr()()()()()(
1

sssGPFshsksGIsy m 


                          (4.4) 

If a steady-state matrix, SS , is chosen, such that: 

             )0(.)0( rSy S                                                                                             (4.5) 

then equation (4.4), with no disturbances, can be written as: 

                 11 )0()0()0(
  SmS FSIShkGP                                                       (4.6) 

 

For low steady-state output coupling, the diagonal elements of the steady-state matrix, 

SS , must have unity values and the off-diagonal elements must have absolute values 

that are much less than unity. Or: 

             mjs jj  1,1,                                                                                     (4.7) 

And: 

             jimjis ji  ,,1,1,
                                                          (4.8) 
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For the case of low steady-state interaction of the closed-loop system, and after 

substituting P , from equation (4.6) in equation (4.4), equation (4.4) becomes: 

      )()Pr()()()()0()()()()(
111 sssGFFIshskGshsksGIsy mm 


                                                                                                                                (4.9)  

At low frequencies, as: 

)0()( GsG   

or: 

mIGsG 1)0().(   

equation (4.9) becomes: 

       )()Pr()()()()()(
11

sssGFFIIshsksGIsy mmm 


             (4.10) 

If the elements of the diagonal matrix F  are equal and are less than unity, or if: 

10...21  fandffff m  

equation (4.10) is reduced to: 

    )()Pr()()()()(1)(
1

sssGshsksGIfsy m 


                                   (4.11) 

 As: 

    11 )0()0()0()()(
  FIhkGsGPsG m

                                        

and at low frequencies: 

 )0()0()(
1

1
)( hksGI

f
PsG m 


  

Then equation (4.11) can be written as: 

)()()()( ssSsrIsy m                                                                                          (4.12) 

where: 

  10)()()()1()(  fandshsksGIfsS m                                                 (4.13) 

Equation (4.12) shows that low steady state interaction, caused by reference input 

changes, can be realized. Also, equation (4.13) shows that as f  is increased, the 

steady state disturbance rejection is increased. 
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From equation (4.4), it becomes evident that if a conventional multivariable regulator 

structure, having a forward path matrix  )(sK  and a feedback matrix  )(sH , is 

required, then the closed-loop input-output relation would be: 

                )()()()()()()()(
1

ssrsKsGsHsKsGIsy m 


                                    (4.14) 

From equations (4.4) and (4.14), it can be concluded that: 

             PsK )(                                                                                               (4.15) 

and: 

               FshskPsH   )()()( 1
                                                                       (4.16) 

4.3 Inner-Loop Analysis 
 

As in equation (4.2), the inner-loop is represented by: 

              )().()().()( syshsrsksu                                                       (4.17) 

and its function is to satisfy the required system dynamics for closed loop conditions. 

 

By Whalley et al. (2001), for the purpose of inner-loop analysis, the pre-compensated 

system transfer function )(sG  can be factorized as: 

             )().(.
)(

)(
).()( ssR

sd

sA
sLsG                                                                    (4.18) 

Where  )(sL , )(sR  and )(s  are diagonal matrices of order m , in which )(sL  and 

)(sR  contain the left (row) factors and the right (column) factors of  )(sG , 

respectively, and )(s  contains the transformed, actuator finite time delays of )(sG .  

With: 
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               mjediags jsT
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1,)(                                                     (4.21) 
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The matrix )(sA  is a non-singular matrix of rational functions, with elements: 

             ij

m

ij

m

ijij sbsasa   ...)( 1
,       mji  ,1                                     (4.22) 

Combining system input-output-disturbance relationship, as in equation (4.1), with the 

inner-loop control law, equation (4.17), yields: 

                )()()()()()()()(
1

ssrsksGshsksGIsy m 


                           (4.23) 

The time delays in matrix )(s  can be arranged such that ji TT   for mj 1 , 

ji   and the forward path gain vector can be arranged as: 

        TTTs

mi

TTsTTs miii eskskeskesksk
)()(

2

)(

1 )(...)(...)()()( 21 
      (4.24) 

And as: 

               )(...)()()( 21 shshshsh m                                                                        (4.25) 

Then if )()( sksk jjj   and )()( shsh jjj  , mj 1 , where )(sj  and )(sj  are 

proper or strictly proper, stable, realisable, minimunum phase, rational functions. 

They can be chosen such that equation (4.23) becomes: 
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where, in this equation: 

              Tmkkkk ...21                                                                              (4.27)                                                                                     

and: 

              mhhhh ...21                                                                                     (4.28) 

             0

1

1 ...)( asassd KK  
                                                                        (4.29) 

and: 

               Ksasn ij )()(deg ,      mji  ,1                                                        (4.30) 

The determinant required in equation (4.26), as shown in Whalley (1991) is: 
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)()(1
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m
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
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              (4.31) 

The inner product in this equation, can be written as: 
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If in this equation, the gain ratios are represented as: 

             112 knk  ,  123 knk  , ..., 11knk mm                                                         (4.33) 

and: 

             )()()()( sbsksAsh                                                                              (4.34) 

then this equation implies that: 

                Tmm bbbhQk 011 ...                                                                    (4.35) 

where: 
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and jb , 10  mj , are the coefficients of )(sb , given by equation (4.34). Taking 

into consideration the constraint, that 121 ,...,, mnnn  can be chosen in equation (4.35) so 

that the matrix is invertible, then a unique solution for   121 ... khhh m  exists. 

The dynamics of the closed-loop system, arising from equation (4.25), could be 

improved by selecting an appropriate )(sb  function and gain ratios 121 ,...,, mnnn . The 

vector h  is found by solving equation (4.35), after selecting an arbitray value for the 

parameter 1k .  

 

 

4.4 Least-Effort Optimization 
 

As mentioned earlier, the values of the gain ratios 
121 ,...,, mnnn  can be chosen 

arbitrarily. This provides us with the ability to select these values, such that the energy 

consumed is minimized. For this purpose a performance index, representing the 
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control effort is defined. The minimum of this performance index, against the values 

of the gain ratios, 
121 ,...,, mnnn , is looked for. 

The control effort required to suppress disturbances, with zero set-point changes is 

proportional to: 

   
  )(...

...)(...)(...

21
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or, the control energy costs are proportional to: 
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Hence, for arbitrary changes in the transformed output vector )(ty , following  

arbitrary disturbance changes, minimising the performance index, defined as: 

              
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
m

i

m

j

ji hkJ
1 1

22
                                                                                       (4.38) 

would minimize the required control effort, defined by equation (4.37). 

 

If the relationships: 

112 knk  ,  123 knk  , ..., 
11knk mm                                                   

are proposed, then equation (4.38) becomes: 
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where: hhhhh m ,... 22

2

2

1  . 

The closed loop determinant is given by equation (4.31). With the inner product 

equated to )(sb , as in equation (4.34), then from equation (4.35), it can be found that: 
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Upon substitution of h  from equation (4.40), equation (4.39) becomes: 
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Assuming, for example, that 3m ,  this equation becomes: 
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For 3m  a numerical minimization technique, such as the algorithim of Nedler or the 

genetic algorithm could be employed to find the values of 
121 ,...,, mnnn  which 

minimize J . 

 

4.5 Stability of the Complete System  
 

The stability of the complete system, system with inner and outer feedback loops, 

depends on the denominator of equation (4.14), describing the input-output 

relationship of the system with these two feedback loops.   

 

As the outer-loop feedback gain matrix F  is given by: 

 jjj fffdiagF ,...,, ,  10  jf ,   mj 1  

then the denominator of equation (4.14) can be computed from: 
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From this, it is clear that the elements of the feedback-compensator matrix 
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 become infinite as 1f . Or in other words, as 1f

the closed-loop system becomes unstable. 

 

In addition to that, the characteristic locus method, presented by Macfarlane, can be 

used to confirm the relative stability of the closed-loop system. This can be seen from 

equations (4.15) and (4.16) of  the forward path matrix  )(sK  and the feedback matrix  

)(sH and then, the conevtional structure of the multivariable feedback ssystem, 

indicated by equation (4.14) (Whalley, R. and Ebrahimi, M., 2006). 

 

It has to be mentioned that, in general, disturbance rejection would not be achieved by 

the minimum control effort. To achieve that, the outer-loop feedback gain f should 

satisfy the condition 0.10  f .  Equation (4.13) shows that as f  is increaed, the 

steady state disturbance rejection is inceased. For further analysis see Whalley and 

Ebrahimi (2006). 
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4.6 Least Effort Controller For the Separetly-Excited DC Motor 
 

From equation (3.63), the transfer function of the separately-excited DC motor, in 

percent terms,  is given by:  

            


























6.11783.56

6.11715.2
0

6.11783.56

35.17

6.11783.56

35.9674.44

)(

2

22

ss

s
ssss

s

sGN
                                   (4.42) 

Comparing the above equation with the form )().(.
)(

)(
).()( ssR

sd

sA
sLsG  , and 

selecting: 

            IssRsL  )()()(                                                                             (4.43) 

It is found that: 

            













6.11715.20

35.1735.9674.44
)(

s

s
sA                                                      (4.44) 

And: 

            6.11783.56)( 2  sssd                                                                        (4.45) 

  The inner product is: 

              





















2

1

21 .
6.11715.20

35.1735.9674.44
.).(.

k

k

s

s
hhksAh              (4.46) 

Or: 

            

    221211 6.11715.235.1735.9674.44).(. hkshkhksksAh        

                                                                                                                             (4.47) 

Or, in matrix form: 

             
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
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











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.1).(.
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sksAh                          (4.48) 
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With the gain ratio n , substituting  12 .knk   and with 11 k , the inner product 

becomes: 

             




















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15.20074.44
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sksAh                             (4.49) 

             


















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2
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1
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.15.26.117035.1774.4435.96).(.

hn

h

hn

h

ssksAh         (4.50)     

Hence: 

            






 


n

nn
Q

15.274.44

6.11735.1735.96
                                                              (4.51) 

         

In order to design the inner loop for the system that takes the form 

)(

)(
.

)(

)(
.

sd

sb
k

sd

sA
h  ,  the roots of denominator, )(sd , and the numerator, )(sb , 

should be calculated. Assuming that )(sb has the form )()( 0 xsbsb  , in order to 

find 0b  and x , the root locus diagram of  1
)(

)(


sd

sb
 should be plotted. However, as 

0b  and x  are unknown, the root locus diagram is initially plotted with unity as 

numerator and )(sd  as the denominator. Such a plot is performed by the MATLAB
®
 

program, attached to this thesis, and is shown in figure 4.2. 



[45] 

 

Figure 4.2: Root locus of 1
)(

)(


sd

sb
. 

     From the root locus diagram, shown in figure 4.2, it can be noted that the poles of 

the system lie at 7.54  and at 15.2 . As the slowest pole is located at 15.2 , a 

zero at 5.2  would attract this pole more efficiently and helps in reducing the settling 

time. Thus, x  is chosen as 5.2  and 0b  as 1 . For the chosen x  and 0b , the equation 

)(

)(

sd

sb
 becomes: 

6.11783.56

5.2

)(

)(
2 




ss

s

sd

sb
.  

Hence: 

           









5.2

1
b                                                                                                    (4.52) 

    To determine 2k , the specific gain ratio n , corresponding to minimum effort 

control, should be calculated. As the performance index J  is given by: 
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                bQQbnJ
TT ....1 112                                                                         (4.53) 

substituting the values of Q  and b , from equations (4.51) and (4.52), respectively, in 

equation (4.53), we find that: 

             
  

 22

22

1010854374605

15387575296805884503482312525.1100






nn

nnn
J               (4.54) 

The plot of the performance index  versus the gain ratio n  is shown in figure 4.3. 

 

Figure 4.3: The performance index  as a function of the gain ratio n . 

In order to find the absolute minimum value of  the performnce index, J , the value 

of  n  should be calculated by letting      

       0




n

J
. 

The solutions of 0




n

J
 are 80669.0 , 82128.0 , 81407.0061438.0 j   and 

81407.0061438.0 j . The corresponding values of J  are: 0079873.0 , 

J

J
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010935.0 , 00026885.000033489.0 j   and 00026885.000033489.0 j . From 

the values of J , it can be noted that 0079873.0min J  and it occurs at 

.80669.0n  Alternatively, the graph of J  in Figure 4.3 confirms an absolute 

minimum exists when 80669.0n . 

 Substituting the value of n  in Q  matrix (equation 4.51), thus: 

              











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7344.174.44

867.94354.82
Q                                                                        (4.55) 

)(sh is given by: 

              b
k

Q
sh .)(

1

1

                                                                                            (4.56)  

Substituting the value of Q  and b  in the abBZove equation and assuming 11 k  
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               




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039289.0
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)0(h                                                                                  (4.58) 

As 12 .knk  , and as 11 k , thus 80669.02 k , and: 
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Also, as )(sK  is given by )(.)( sRksK  , and as 1)( sR , thus:                 
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And: 
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The steady state value of the transfer function is found as )0(G , where )(sG  is as 

defined by equation (4.42), or: 

               









10

14753.08193.0
)0(G                                                                     (4.62) 

In order to minimize the closed loop steady state interaction of the system due to 

coupling, the steady state value is assumed as: 
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
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11.0

1.01
SS                                                                                    (4.63) 

 The final step in the calculation is to choose the value of f , such that 10  f . 

In order to achieve the shortest response time and maximum disturbance rejection 

while minimizing the percentage overshoot, the values of the feed forward and 

feedback loop gains will be calculated with three different values of f  from 1.0  to 

9.0  and the most optimized value will be selected.  

For 1.0f ,   
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1.00

01.0
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The feed forward gain of the outer loop is calculated by substituting the values of 

)0(G ,  )0(K , )0(h , SS  and F , as found before,  in the equation: 
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0715.1068045.0

0011718.04043.1
P                                                                 (4.66) 
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The feedback gain matrix, H , can be calculated from the equation: 

                FhKPH   )0()0(.1
                                                                   (4.67) 

Or: 
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By similar calculation, it can found that the values of P  and H  at 5.0f  are: 

                








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Similarly for 9.0f  
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                









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89378.00090814.0

0061782.090903.0
H                                                           (4.72) 

4.7 Simulations and Results 
 

    Based on the obtained values of the feed-forward and feedback gains ( P  and H  

matrices), the open loop system model is modified to include the least effort 

controller, as shown in figure 4.4. 

Simulink models, as shown in figure A.5, were built for all the values of P  and H  

matrices, obtained for three different values of f  ( 1.0 , 5.0 and 9.0 ). Each of these 

models was simulated separately and their responses were analyzed to compare the 
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performance factors, such as speed of response, overshoot, steady state error, steady 

state output interaction, disturbance rejection and energy consumed by the controller. 

To analyze the steady state output interactions, the responses of the system, with 

different values of f , for a unit step input on each of the two inputs individually, 

have been obtained. Disturbances of unit steps were added to the two system outputs, 

to simulate the disturbance rejection capability of the system. To analyze the energy 

consumed by the controller, for different values of f , random disturbances were 

added to the two system outputs. This section explains the dynamic responses, steady 

state interactions, disturbance rejection capability and energy consumed by the 

controller for the closed-loop system, with different values of f . 

 

 

Figure 4.4: Block diagram of the separately-excited DC motor with a least- 

effort controller. 
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The percentage changes in the motor angular speed and the motot field current, 

caused by  a 1% step input on )(1 tr , with 0)(2 tr , for different values of  f , are 

shown in figures 4.5 and 4.6, respectively. 

 

Figure 4.5: Percentage change in the motor angular speed, as a result of  a unit step 

input on )(1 tr , with  0)(2 tr , for different values of f . 

 

 
 

Figure 4.6: Percentage change in the motor field current, as a result of  a unit step 

                            input on )(1 tr , with  0)(2 tr , for different values of f . 
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Figures 4.7 and 4.8 show the system responses for a unit step input on )(2 tr  with 

0)(1 tr , for different values of f . 

 

 
 

Figure 4.7: Percentage change in the motor field current, as a result of  a unit step 

input on )(2 tr , with  0)(1 tr , for different values of f . 

 

 

 
 

Figure 4.8: Percentage change in the motor angular speed, as a result of  a unit step 

input on )(2 tr , with  0)(1 tr , for different values of f . 
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From figure 4.5, it is clearly seen that following  a unit step change on the first 

reference input, the first output, which is the motor angular speed, changes by almost 

%1 .  This means that the steady state error is almost zero. Also it can be clearly 

noted that incresaing the outer loop feedback gain, f , decreases the rising time, with 

a slight over shoot when 9.0f .  

 

Figure 4.6 shows that, a unit step change on the first reference input causes only a 

%1.0  change of the second system output, which is the motor field current. This 

means that the steady state output interaction is limited to 10%.  Again, incresaing the 

outer loop feedback gain, f , decreases the system rising time.  

 

Figures 4.7 and 4.8 show the effect of a unit step change on the second reference 

input. It can be seen from figure 4.7, that a unit step change on the second reference 

input causes almost a unit change on the second output, which is the motor field 

current. This means that the steady state error is again almost zero. Also, it can be 

seen, from figure 4.8, that a 10% output coupling is reached, as a a unit step change 

on the second reference input causes only a %1.0  change of the first system output, 

which is the motor angular speed. Again, incresaing the outer loop feedback gain, f , 

decreases the system rising time, but with a large overshoot when 9.0f . 

 

The effect of the outer loop feedback gain, f ,  on the system disturbance recovery, 

following  unit step changes on each of the first disturbance )(1 t and the second 

disturbance )(2 t , are studied for three system designs, using 1.0f , 5.0f  

and 9.0f . These system responses are shown in figures 4.9, 4.10, 4.11 and 4.12. 
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Figure 4.9: Percentage change in the motor angular speed, as a result of a unit step 

change on )(1 t , for different values of f . 

 

 
Figure 4.10: Percentage change in the motor field current, as a result of a unit step 

change on )(2 t , for different values of f . 
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Figure 4.11: Percentage change in the motor field current, as a result of a unit step 

change on )(1 t , for different values of f . 

 

 

 
Figure 4.12: Percentage change in the motor angular speed, as a result of a unit step 

change on )(2 t , for different values of f . 
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From these figures, it is obviously seen that increasing the outer loop feedback gain, 

f , increases the disturbance recovery rates. Figures 4.9 and 4.10 show that with 

1.0f  the  disturbance recovery rate is poor, and it is about 10% only. With  

5.0f  an almost 50% disturbance recovery rate, with settling time about 0.1 

seconds for the motor angular speed and about a second for the motor field current, is 

achieved. The best disturbance recovery rate, where about 90% of the disturbance is 

eliminated in a very short time, is achieved when 9.0f  .  

 

Figures 4.11 and 4.12 show that a disturbance on one output also affects the second 

output responses; however these effects are very small and could be neglected. 

 

The energy consumed by the controller can be computed from: 

               dttututE

T

.)()()(
0

2

2

2

1                                                                      (4.73) 

Figure 4.13 shows the energy consumed by the controller, following  the imposition 

of random disturbances of the both outputs with 1.0f  and 5.0 , for a period of  

.sec100  It can be noticed from this figure that with increasing the value of f , the 

control energy increases very rapidly. 

 

Figure 4.13: Control energy with random disturbances on the two outputs, with 

0)()( 21  trtr . 
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By analyzing the performance of the compensated system for all values of f , it 

can be noted that the system shows excellent integrity. The presence of steady state 

errors is almost negligible and the system achieves steady state rapidly. The steady 

state interactions due to output coupling are also maintained at %10 . Further, by 

analyzing the response of the closed-loop system, with different values of f , it can 

be seen that increasing the value of f  improves the performance of the system but 

increases the energy consumed by the controller. Thus, in order to maintain stability 

and to meet the design criteria of less steady state interaction, acceptable response and 

settling time, reduced or almost negligible steady state error, with no overshoot in the 

output responses and minimum control effort, 1.0f  is chosen. 
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Chapter (5) 

The Inverse-Nyquist Array Controller 
 
 

5.1 Introduction 
 

In this chapter a feedback controller, using the second approach, the Inverse Nyquist 

Array (INA) approach will be designed. In order to compare the performance of this 

controller with that designed using the least effort approach, as in the previous 

chapter, the designed feedback controller will be simulated and its performance will 

be analyzed. 

 

The INA method was developed by Rosenbrock in 1969 and was used for designing 

controllers for multivariable systems. In this method and in order to decrease the 

system output interaction, a diagonally-dominant closed-loop transfer function has to 

be found. This will reduce the design process to designing a set of independent single 

loops. 

 

In the INA method, the multivariable system is assumed to be represented by a square 

mxm  transfer function matrix )(sG , which is controlled by an mxm  pre-

compensator matrix )(sK  and closing m  feedback SISO loops, as shown in figure 

(5.1), below. 

 

 

Figure 5.1: Generalized block diagram of a multivariable control system. 

 

Here, it is assumed that all the elements of )(sG  and )(sK  are rational polynomials 

in the Laplace variable, s , and both )(sG  and )(sK  are invertible matrices. Also it 
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is assumed that the system )(sG  is stable and all the elements of the pre-

compensator matrix )(sK  have their zeroes and poles in the left-half plane. These 

assumptions will provide a diagonal dominance of the open-loop system, )().( sKsG , 

which in turn will  reduce the system output coupling, hence single-input single-

output (SISO) controllers can be used for each loop independently, to provide the 

required closed loop response. 

 

From figure (5.1), the open-loop transfer function matrix is: 

                  )().()( sKsGsQ                                                                               (5.1) 

And the system output is: 

                   )()().()().()( sysrsQsesQsy                                          (5.2) 

So the closed-loop transfer function is: 

                    )()()(
1

sQsQIsH m


                                                                      (5.3) 

Or: 

                  )()( 11 sQIsH m

                                                                             (5.4) 

For notation, inverted matrices will be denoted as: 

GG ˆ1  , KK ˆ1 
, QQ ˆ1 

 and HH ˆ1 
 

 and their elements as ijĝ , ijk̂ , ijq̂  and ijĥ , respectively. 

then, equation (5.4) can be written as: 

               )(ˆ)(ˆ sQIsH m                                                                                      (5.5) 

 



[60] 

 

A more general approch of the closed-loop system will be when the function  )(sF  

is introduced in the feedback path, as shown in figure (5.2). 

 

Figure 5.2: Closed-loop multivariable control system with feedback )(sF . 

For this system, the transfer function relating system output to system input is: 

                    )()()()(
1

sQsFsQIsR m


                                                             (5.6) 

And: 

                   )()()( 11 sFsQsR  
                                                                        (5.7) 

Or in the form: 

                   )()(ˆ)(ˆ sFsQsR                                                                                (5.8)                             

Note that, when mIF  ,  

                   )(ˆ)(ˆ sHsR                                                                                          (5.9) 

 

5.2 Diagonal Dominance 

A rational mxm  matrix )(ˆ sQ  is said to be row diagonal dominant on the Nyquist D-

contour if: 
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 




m

ij
j

ijii sqsq
1

)(ˆ)(ˆ , for all s  on the D-contour. 

Where: 

)(ˆ sqij  are the elements of  )(ˆ sQ . 

 Similarly, the matix is said to be column dominance if: 

 




m

ji
i

ijii sqsq
1

)(ˆ)(ˆ , for all s  on the D-contour. 

The diagonal dominance of a given matrix )(ˆ sQ  can be tested graphically by 

constructing a set of Gershgorin circles, having centers the elements of the main 

diagonal and a radius: 

               




m

ij
j

iji sqsd
1

)(ˆ)(                                                                                    (5.10) 

According to (Munro, 1972), if the origin is not included in any of the bands 

generated by theses Gershgorin circles, at any frequency; then )(ˆ sQ  is row or column 

dominant. 

As the pre-compensator )(sK  ensures the diagonal dominance of the open-loop 

system, a controller can be designed for each loop independently from other loops. 

Also, the system stability is ensured if the Gershgorin’s bands does not enclose the 

 (-1,0) point (Munro, 1972). 

One method of dertermining the precompensator )(sK , which has proved useful, is 

to try to diagonalize the system at one frequency, for example at zero or at infinity, 

and hope that the effect will be sufficiently beneficial over a wide range of 

frequencies. For example we can choose )0()( 1 GsK . Here )(sK  is a matrix of real 
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constants which simply diagonalizes )(sQ  at zero frequency, (Munro, 1972).  It has 

to be mentioned also that in some cases diagonal dominance of the transfer function 

matrix can be achieved by re-ordering of the inputs and/or the outputs. 
 

 

5.3 Controller For the Separetly-Excited DC Motor by Inverse 

Nyquist Array  

       

From equation (3.63), the input-output description, in percent changes, of the 

separately excited DC motor is given by: 
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Or in the general form: 
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Where: 
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and: 
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As seen from the system description above, a decoupling is already existing between the 

motor field current, fi , and the motor armature voltage, av , as the motor field current is 

controlled only by the motor field voltage, fv . 
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The inverse of )(sGN  is: 
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The diagonal dominance of )(ˆ sGN  can be proved by Gershgorin’s bands theorem. As 

per this theorem, the matrix )(ˆ sGN  is column diagonally dominant if the union of 

Gershgorin’s bands does not enclose the complex plane’s origin. Also, the system 

stability is ensured if the Gershgorin’s bands does not enclose the (-1,0) point (Munro, 

1972).  

The Inverse Nyquist Array for )(ˆ sGN , as described by equation 5.16, with 

Gershgorin circles superimposed could be plotted by an m-file program, attached in 

the appendix.  

 

Figure 5.3 shows the Nyquist diagram of the element )1,1(ˆ
NG , with imposed 

Gershgorin circles for the first column of   )(ˆ sGN . It can be seen, from this figure, that 

the origin is not included in any of the circles, thus the system is first column diagonal 

dominant. 
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Figure 5.3: Nyquist diagram of the element )1,1(ˆ
NG , with Gershgorin circles. 

 

In the same way, Gershgorin’s bands for the second column of )(ˆ sGN , superimposed 

on the Nyquist diagram of the )2,2(ˆ
NG  element, is shown in figure 5.4. It is also seen 

that none of the bands include the origin, therefore diagonal dominance of the system 

(second column) is also achieved, hence the system is completely column dominant. 

This is a special case, where no diagonalising pre-compensator is required and infinite 

gains can be used. Since )(ˆ sGN  is already a diagonal dominant matrix, a controller 

for each loop could be designed independently. 
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Figure 5.4: Nyquist diagram of the element )2,2(ˆ
NG , with Gershgorin circles. 

 

For the purpose of comparing the performance of this system with that of a system 

having a Least Effort Controller, a pre-compensator, )(sK , with gain elements equal 

to that of the feed-forward gain matrix, P , in the least-effort controller, is added to 

the system. Or the pre-compensator matrix is: 











0715.1068045.0

0011718.04043.1
)( PsK  

The open-loop transfer function matrix is: 

                  )().()( sKsGsQ    
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and its inverse is: 
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The Nyquist diagrams, with imposed Gershgorin circles, for the elements )1,1(Q̂  and 

)2,2(Q̂  are shown in figures 5.4 and 5.5, respectively. From these figures, it can be 

seen that the origin is not included in any of the circles, thus the system is first and 

second column diagonally dominant, and decoubling between the outputs is existing 

in the closed-loop system. Also, the system stability is ensured as the Gershgorin’s 

bands does not enclose the point (-1,0). 

 

         Figure 5.5: Nyquist diagram of the element )1,1(Q̂ , with Gershgorin circles. 
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            Figure 5.6: Nyquist diagram of the element )2,2(Q̂ , with Gershgorin circles. 

 

The figure below shows the block diagram of the closed-loop system with unity 

feedback for each of the two independent loops. 

 

 
Figure 5.7: Block diagram of the system with a closed-loop controller using the 

inverse Nyquist array method. 
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 A MATLAB
®
/Simulink

®
  model of the closed-loop system was built, and is shown in 

figure A.6. 

 

5.4 Simulations and Results 
 

The model shown in figure A.6 was simulated, following  a unit step changes on each 

of the two inputs, in turn. These responses are shown in figures 5.8 and 5.9, below. 

 

 

Figure 5.8: Percentage changes in the motor angular speed and the motor field 

current, as a result of  a unit step input on )(1 tr , with  0)(2 tr . 
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Figure 5.9: Percentage changes in the motor angular speed and the motor field current, 

as a result of  a unit step input on )(2 tr , with  0)(1 tr . 

 

 

Figure 5.8, shows that following  a unit step change on the first reference input, the 

first output, which is the motor angular speed, changes only by around %55.0 .  

This means that the steady state error is very large, as it is around %45 . At the same 

time, the motor field current doesn't change, which means that a complete decoupling 

is exising. 

 

From figure 5.9, it can be also seen that, following  a unit step change on the second 

reference input, the second output, which is the motor field current, changes only by 

around %52.0 .  This means that the steady state error is also very large, as it is 

around %48 . At the same time, the motor speed changes by around %035.0 , 

which means that a coupling of aound  %5.3 is existing.  

                 

The responses of the closed-loop system, following  unit step changes on each of the 

first disturbance )(1 t   and the second disturbance )(2 t , are shown in figures 5.10 

and 5.11, respectively. It can be seen from these two figures that the disturbance 

suppression for each of )(1 t  and )(2 t is around 50%, which is poor. 
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Figure 5.10: Percentage changes in the motor angular speed and the motor field 

current, as a result of  a unit step input on )(1 t . 

 

 
 

Figure 5.11: Percentage changes in the motor angular speed and the motor field 

current, as a result of  a unit step input on )(2 t . 
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In the same way, as the case with the Least Effort Controller, the control energy  can 

be computed from: 

                  dttututE

T

.)()()(
0

2

2

2

1                                                                  (5.17) 

Figure 5.12 shows the energy consumed by the controller, following the imposition of 

random disturbances on the both outputs, for a period of  .min10  

 
Figure 5.12: Control energy with random disturbances on the two outputs, with 

0)()( 21  trtr . 

 

           

5.5 Effect of the Forward Gains on the Performance of The System  
   

     Figures 5.8 – 5.12 show the performance of the system with an Inverse Nyquist 

Array Controller with forward gains the same as that of the Least Effort Controller, 

i.e., 









0715.1068045.0

0011718.04043.1
)( PsK .   

 

To invistigate the effect of the values of the forward gains on the performance of the 

system, the system was simulated for different values of forward gains. 

 

Figures 5.13 and 5.14 show the percentage changes in system outputs following  a 1%  

step change on each of the two inputs, respectively, for different values of the forward 
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gains.  These figures show that increasing the forward gains decreases the steady state 

error and increases the system response speed. 

 

 

  

Figure 5.13: Percentage changes in the motor angular speed and the motor field  

                          current, as a result of  a unit step input on )(1 tr , with 0)(2 tr , for 

different gains. 
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                        Figure 5.14: Percentage changes in the motor angular speed and the motor field  

                                              current, as a result of  a unit step input on )(2 tr , with  0)(1 tr , 

for  different gains. 

                                        

 

To investigate the effect of the forward gains on the system disturbance rejection, the 

responses of the system, following unit step changes on each of the first disturbance 

)(1 t   and the second disturbance )(2 t , are simulated for different values of the 

forward gains. These system responses are shown in figures 5.15 and 5.16. 
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Figure 5.15: Percentage changes in the motor angular speed and the motor field current, 

as a result of  a unit step change  on )(1 t , for different gains. 

 

 
Figure 5.16: Percentage changes in the motor angular speed and the motor field 

current, as a result of  a unit step change  on )(2 t , for different gains. 

It is clearly seen from these figures that increasing the forward gains increases the 

disturbance recovery rates.  

Figure 5.17 shows the energy consumed by the controller, following the imposition of 

random disturbances on the both outputs, for different values of the forward gains. It 
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can be noticed from this figure that with increasing the value of forward gains, the 

control energy increases very rapidly. 

 

Figure 5.17: Control energy with random sisturbances on the two outputs, with 

0)()( 21  trtr , for different gains. 
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Chapter (6) 

The Optimal Controller  

 
6.1 Introduction 
 

According to the modern control theory, founded by Kalman, the continuous linear 

time-invariant system can be represented by the state-space equations. These 

equations are: 

             )(.)(.)( tUBtXAtX                                                                        (6.1) 

              )(.)(.)( tUDtXCtY                                                                                (6.2) 

The first equation is called the state equation, while the second equation is called the 

output equation. 

In these equations, A  is a square matrix of order n  and is called the state (or system) 

matrix, B  is nxm  matrix and is called the input matrix, C  is rxn  matrix and is 

called the output matrix, D  is rxm  matrix and is called the feedthrough (or 

feedforward) matrix, while X  is 1nx  state vector, U  is 1mx  input vector and Y  is 

1rx output vector. 

The system transfer function can be found from the system state-space equtions, 

defined above.  

Laplace transforming, with zero initial conditions, for each of the state equation (6.1) 

and the output equation (6.2) give, respectively: 

             )(.)(.)(. sUBsXAsXs                                                                 (6.3) 

  and:  

              )(.)(.)( sUDsXCsY                                                                        (6.4) 

From these two equations, it is found that: 

                )(..)..()( 1 sUDBAIsCsY  
                                  

Or, the system transfer function is: 

              DBAIsC
sU

sY
sG   .)..(

)(

)(
)( 1

                                                          (6.5) 

In this equation, matrix I is the identity matrix of order as that of matrix A .  

For a strictly proper system, 0D , and the system transfer function becomes: 
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              BAIsC
sU

sY
sG .)..(

)(

)(
)( 1                                                         (6.6)  

This chapter will include the design of a feedback controller for the SEDM using the 

third approach, namely, the Optimal Control approach. The designed feedback 

controller will also be simulated and its performance will be analyzed. 

 

6.2 Controllability and Observability 
 

The concepts of contrllability and observability, introduced first by Kalman, paly an 

important role in the design of the optimal controller. In order to be able to design a 

feedback controller for a given system, the systen must be controllable and 

observable. 

The condition of controllability of the system is closely related to the existance of a 

solution of the state feedback for the purpose of placing the eigenvalues of the system 

arbitrarily. The concept of observability relates to the condition of observing or 

estimating the state variables from the output variables, which are generally 

measurable. 

A system is said to be completely controllable if every state variable of the system is 

controllable, or every state variable of the system  can be affected to reach a certain 

value in a finite time by some control input. Or in other words, if any of the system 

state variables is independent of the control input, there will be no way to drive this 

particular state to the desired value by means of a control effort, and the system is said 

to be not completely controllable, or  uncontrollable. 

Controllability can be investegated by checking the rank of the controllability matrix 

S , defined as: 

               BABAABBS n 12 ...                                                         (6.7)  

For a system, with a state matrix A  and an input matix B , to be completely state 

controllabe, the rank of matrix S  must be equal to n .  

 

The concept of observability is quite similar to that of controllability. A system is 

completely observable if every state variable of the system affects some of the system 

outputs. Or in other words, an information about system states can be obtained by 

measurement of the system outputs. If any of the system states cannot be estimated 
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from the system outputs, the system is said to be not completely observable , or 

simply unobservable.  

 

Similar to controllability, observability can be investegated by checking the rank of 

the observability matrix V , defined as: 

                   TnTTTTTT CACACACV
12

...


                                               (6.8) 

For a system, with a state matrix A  and an output matix C , to be completely state 

observable, the rank of matrix V  must be equal to n . 

  

6.3 The Optimal Control Method 
 

The controller structure in the Optimal Control method is shown in the figure below. 

 

Figure 6.1: Controller structure in the optimal control method. 

  

In this method, state feedback is used. The control law is assumed to be: 

               )(.)( tXKtU                                                                                        (6.9) 

Where K  is a constant matrix. 

Substituting equation 6.9 in equation 6.1 yields: 

                 )(..)( tXKBAtX                                                              (6.10) 

This equation shows that the system behavior depends on the eigen values of the 

matrix  KBA . , which can be found by solving the characteristic equation            

                 0..  KBAI                                                                           (6.11) 

In order the closed-loop system to be stable, the roots of equation 6.11 should have 

negative real parts. So, for a system with A  and B  matrices, the design objective 

will be  to find the matrix K  that will place the poles of the closed loop system in 
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suitable s-plane locations and minimizes the quadratic performance index J , defined 

as: 

                dtURUXQXJ TT ...
0




                                                             (6.12) 

In this definition, Q and R should be square, symetric and positive definite or 

positive semi definite matrices. They are the weighting matrices of the state and the 

input vectors, respectively. J is always a scalar quantity. 

An alternative definition of the performance index J , can be defined as: 

                dtURUYQYJ TT ...
0




                                                               (6.13) 

In this defintion, the state vector X  is replaced by the output vector Y . 

 

The gain matrix K  is determined as: 

               PBRK T .1                                                                                        (6.14) 

Where P  is found by solving the algebriac Riccati equration (ARE):  

 

               01   QPBPBRPAPA TT
                                                          (6.15) 

 

As said before, the weighting matrices, matrices Q and R , should be square, 

symetric and positive definite or positive semi definite matrices. A good intial 

selection of these two matrices is that: 
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and: 
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Where: 

                
 2max,

1

i

i
x

q                                                                                       (6.18) 

And: 

                
 2max,

1

i

i
u

r                                                                                        (6.19) 

After simulating the system with these initial values of the weighting matrices, the 

elements of these matrices are adjusted till the required performance of the system is 

achieved. 

 

6.4 Optimal Controller For the Separetly-Excited DC Motor 
 

The design of the optimal controller requires the system to be represented in the sate-

space form. From equations (3.51), the state equation of the SEDM  is given by:  
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And the output equation is: 
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Here, the system states are the motor angular speed and the motor field current, the 

inputs are the motor armature voltage and the motor field voltage. The system outputs 

are the same as the system states. 

 

From these equations, it can be concluded that: 

                 
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A                                                                        (6.22)                                                                          
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The system eigen values are the roots of the characteristic equation: 

                  0.  AI                                                                                          (6.25) 
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Or: 
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Or the system eigen values are: 

                  68.541  ,  15.22     

As all the system eigenvalues lie on the left hand complex plane, then the open-loop 

system of the SEDM is stable. 

 

Testing controlability and observability of the system is the first step in designing the 

optimal controller. As mentioned before, the controllabilty matrix of the system is: 

                   ABBS                                                                                           

(6.26)                               

Substituting values of A  and B  matrices into the controllabilty matrix, results: 

                  













09245.00043.00

47515.0256.67023.1
S                                              (6.27) 

Since the rank of the controllability matrix S  is 2, i.e, matrix S is a full row rank,  

hence the system is completely controllable. 

 

System observability is tested by finding the rank of the observabilty matrix, defined 

by equation 6.8. For our system, the observabilty matrix is: 

                   TTT CACV                                                                                    (6.28) 

Substituting values of A  and C  matrices into the observability matrix, yields: 

                  













15.205.1110

068.5401
V                                                               (6.29) 

Since the rank of matrix V  is 2, i.e, matrix V is a full row rank, hence the system is 

completely observable. 
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As the system is completely controllable and oservable, an optimal controller for this 

system can be designed. 

 

The weighting matrices, Q and R , are selected to be diagonal and positive definite 

ones. Equations 6.18 and 6.19 can be used to determine the elements of these two 

matrices. Or: 
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Here, the values of max , max,fi , max,fv  and max,av  are the ones used for scaling of the 

model, as in chapter 3. 

 

Matrix P  is found by solving the algebriac Riccati equration (ARE), defined by 6.15.  

 

Substituting the values of matrices A , B , Q  and R in this equation results:  
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or: 
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This equation can be expressed as four simultaneous quations: 

 

   00083249.084.29536.109242064 211211

2

1,1  pppp                               (6.34) 

   084.29583.5624206405.11 221212121111  pppppp                (6.35) 

   084.29583.5624206405.11 221212121111  pppppp                   (6.36) 

   

0015625.024206405.1105.113.484.295 2112211222

2

22  pppppp

                                                                                                                                (6.37) 

 

Since P  is symmetric, 1221 pp  , and as equations 6.35 and 6.36 are the same, the 

system of the above four equations is reduced to: 

 

   00083249.084.29536.109242064 211211

2

1,1  pppp                                 (6.38) 

   084.29583.5624206405.11 221212121111  pppppp                 (6.39) 

   0015625.02420641.223.484.295 2

121222

2

22  pppp                               (6.40) 

 

Solving these equations and using only the positive values of the variables, results: 

0000663725.011 p , 0000099384.02112  pp  and 

0030424091.022 p  

 

Or the Riccati matrix is: 

 

         









0030424091.00000099384.0

0000099384.00000663725.0
P                                                         (6.41) 

The gain matrix K  is calculated using equation 6.14, or: 

 

         









932.20068376.0

9559.1062.13
K                                                                                   (6.42) 

To achieve output decoupling at steady  state,  this loop-gain matrix is decompsed into 

a forward path gain matrix, eK , and a backward path gain matrix, H . Or: 
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           HKK e .                                                                                                    (6.43) 

Where, eK  is found from the equation: 

             See SHKGIGK ...).0()0(1  
                                                                   (6.44) 

In this equation SS  is the steady state matrix.  For zero steady state interaction, the 

matrix SS  is the identity matrix. Otherwise, it would have small off-diagonal elements. 

From equations (6.44) and (6.43) , and for steady state matrix 









11.0

1.01
SS , as the case 

with the least-effort controller in chapter 4, it is found that: 

 








 


981.701658.7

2872.1903.56
eK                                                                                        (6.45) 

and: 











 

2908.002216.0

041.02291.0
.1 KKH e                                                                               (6.46)                                                                               

 

The block diagram of the closed loop system with the optimal controller is shown in 

figure 6.2. 

 

 

Figure 6.2: Block diagram of the closed-loop system with the optimal control 

approach. 
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6.5 Simulations and Results 
 

A MATLAB
®
/SIMULINK

®
 model, to simulate the performance of the closed loop 

system, with the values of matrices eK  and H , as given by 6.45 and 6.46, , was built 

and is shown in figure A.7. This model was simulated for  unit step on each of the two 

inputs, respectively. The simulation results are shown in figures 6.3 and 6.4.  

 
 

Figure 6.3: Closed-loop response caused by a unit step change on )(1 tr , with 

0)(2 tr . 
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Figure 6.4: Closed-loop response caused by a unit step change on )(2 tr , with 

0)(1 tr . 

           

Figure 6.3 shows that, a unit step change on the first reference input causes the first 

output (the motor angular speed) to change by 1%, or no steady state error exists.  

While, at the same time, the motor field current changes by 0.1% , which means that a 

10% coupling is existing between the two outputs. 

 

In the same way, figure 6.4  shows that, following a unit step change on the second 

reference input, the second output, which is the motor field current, changes by 1%, 

which means that also no steady state error exists. While, the first output, which is the 

motor angular speed, changes by 0.1%, which means that a coupling of 10% is also 

existing between the two system outputs. 

 

The responses of the closed-loop system, caused by unit step changes on each of the 

first and the second disturbances, )(1 t and )(2 t respectively, are shown in figures 

6.5 and 6.6, respectively. It can be seen from these two figures that the disturbance 

suppression for each of )(1 t  and )(2 t is around 25%, which is very poor. 
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Figure 6.5: Percentage changes in the motor angular apeed and the motor field 

current, as a result of  a unit step input on )(1 t . 
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Figure 6.6: Percentage changes in the motor angular speed and the motor field 

current, as a result of  a unit step input on )(2 t . 

 

 

The control energy  is computed from: 

                  dttututE

T

.)()()(
0

2

2

2

1                                                                    (6.55) 

Figure 6.7 shows the energy consumed by the controller, following the imposition of 

random disturbances of the both outputs, for a period of  .min10  

 

 

Figure 6.7: Control energy with random disturbances on the two outputs and 

0)()( 21  trtr . 
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Chapter (7) 

Comparative Study and Discussion  

 
 

7.1 Introduction 
 

In this research, three approaches were used to design a controller for a separately 

excited DC motor. These approaches are namely the least effort approach, as outlined 

in Whalley, R. and Ebrahimi, M., the Inverse Nyquist Array (INA) approach, as an 

example from the British school, and the Optimal Control approach, as an approach 

from the American school. Each of the above stated approaches found to have its 

advantages and disadvantages. 

 

The separately-excited DC motor is represented as a multi-input, multi-output 

(MIMO) system. The armature voltage aV  and the field voltage fV  are the control 

inputs, while the controlled outputs are the motor angular speed   and the motor 

field current fI . 

 

This chapter includes a detailed comparative study between the three above 

mentioned approaches. The comparison covers four important aspects: 

1. The practicality of the controllers and the difficulties of application. 

2. The responses of the closed-loop systems, caused by a unit step change on 

each of the two inputs, separately. 
  

3. Disturbance recovery, following a unit step change disturbing each output.  

4. The energy consumed by the controller.  

 

7.2 Practicality of the Controller and Difficulties of Application 
 

In the least-effort approach, which is a new method from the British school, the 

system for which the feedback controller has to be designed, is required to be 

represented by its transfer function matrix. The controller designed by this approach, 

as outlined by Whalley, R. and Ebrahimi, M. has two loops. The inner loop ensures 

stable dynamics, while the outer loop ensures steady state interactions with necessary 

disturbance rejections. The generalized block diagram of a two-input, two-output 
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system with a least effort feedback controller is shown in figure 4.1. In this method a 

performance index, representing the energy consumed by the controller, is defined. 

The parameters of the controller are selected such that the mimimum of this 

performance index is achieved. For further analysis of this approach, see Whalley, R. 

and Ebrahimi, M. (2006). This approach is relativey easy and can be applied for 

complicated systems with many inputs and output. A MATLAB
®
 program for 

designing a least-effort controller for a separetly-excied DC motor is attached in the 

appendix. 

 

The Inverse Nyquist Array (INA) method, developed by Rosenbrock in 1969, is 

another method from the British school, which also requires the multivariable system 

to be represented by its transfer function matrix. In this method, the system is 

controlled by a pre-compensator matrix )(sK  with closing single-input, single-

output (SISO) feedback loops, as shown in figure (5.1).  

In order to decrease the system output interaction, a diagonally-dominant closed-loop 

transfer function has to be found. This will reduce the design process to designing a set of 

independent single loops. The diagonal dominance of a given transfer function matrix 

can be checked graphically by superimposing a set of Gershgorin bands, with centers 

on the diagonal elements of the transfer function matrix. A MATLAB
®
 program for 

building such diagrams is attached in the appendix.
 
 

In the literature different methods are suggested to help finding the pre-compensator 

matrix )(sK , that induces diagonal dominance, . One method, which has proved 

useful, is to try to diagonalize the system at one frequency, for example at zero or at 

infinity, and hope that the effect will be sufficiently beneficial over a wide range of 

frequencies. Here, )(sK  will be a matrix of real constants, (Munro, 1972).  It has to 

be mentioned also that in some cases diagonal dominance of the transfer function 

matrix can be achieved by re-ordering the inputs and/or the system outputs. 

 

The optimal control is an approach from the American school. It requires the system 

to be represented in a state-space form. State feedback is used in this approach, as 

shown in figure 6.1. In order to apply this approach, the system must be completely 

controllable and completely observable. Controllability and oservability of a given 
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system are ensured by checking the ranks of the controllability and the observability 

matrices of the  system. In this method a quadratic performance index is built, using 

two weighting matrices, determining the closed loop response of the system. These 

two matrices are selected in some arbitrary manner as no direct guidance are existing 

for their selection. Moreover, if non-measurable states are existing, an observer to 

estimate these states will be needed. This adds complexity to the control system 

design. 

From the above, it can be concluded that the controller by the least effort control is the 

simplest and the most direct one. 

 
7.3 Closed-Loop Responses  
 

Closed-loop responses following a unit step change on each of the two reference 

inputs, for the system with different types of controllers are shown in figures 7.1 and 

7.2. 

Figure 7.1, shows the closed-loop responses, following a unit step change on the first 

reference input for the different types of controllers.  

 

Figure 7.1: Closed-loop responses caused by a unit step change on )(1 tr , with 

0)(2 tr , for the different types of controllers. 
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From this figure, it is clearly seen that for the system with a Least Effort controller or 

the system with an Optimal controller, no steady state error exists in the motor angular 

speed. While for the system with Inverse Nyquist Array Controller, having forward 

gains the same as that for the Least Effort Controller, a large steady stare error 

(around 45%) exists. Moreover, the coupling with the second output (motor field 

current) is removed in a system with the Inverse Nyquist Array Controller, compared 

with almost 10 percent coupling, by the Least Effort Controller and by the Optimal 

Controller. The figure also shows that no overshoots are existing in the system outputs 

for the three different types of controllers. 

 

In the same way, figure 7.2, shows the closed-loop responses, following a unit step 

change on the second reference input, for the different types of controllers.  

 

 

Figure 7.2: Closed-loop responses as a result of  a unit step change On )(2 tr , with 

0)(1 tr , for the different types of controllers. 

 

From this figure, it is seen that for the system with Least Effort controller or the 

system with Optimal controller, no steady state error exists in the motor field current. 

While for the system with Inverse Nyquist Array Controller, a large steady state error 

(around 48%) exists. The interaction of the first output (motor angular speed) is 
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almost 10 percent for the systems with a Least Effort Controller or with an Optimal 

Controller. The output interaction in the system with Inverse Nyquist Array controller 

is less and it is around 2.5 percent only. Again, no overshoots are existing in the 

system outputs for the three different types of controllers. 

 

From the above, it can be concluded that the Inverse Nyquist Array controller, having 

forward gains the same as that for the Least Effort Controller, provides a large steady 

state error, while no error exists in the system with a Least Effort Controller or with an 

Optimal Controller. As mentioned in chapter 5, the steady state error in the system with 

an Inverse Nyquist Array controller can be decreased by increasing the values of the 

forward gains, but this will increase much the energy consumed by the controller, as was 

shown in chapter 5. 

 

7.4 Disturbance Suppression Capability 
 

Speed disturbances are usually caused by electrical supply fluctuations, loading 

variations and frictional changes. While, field current disturbances are caused by 

electrical supply fluctuations and field winding temperature that affects the value of 

the field winding resistance. 

 

To analyze the capabilities of the different types of controllers to suppress 

disturbances on the two system outputs, the closed-loop system, with different types 

of controllers and unit step disturbances on each output, separately, are simulated. The 

simulation results are shown in figures 7.3 and 7.4. 
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Figure 7.3: Closed-loop responses as a result of a unit step change on )(1 t for 

the different types of controllers. 

 

 
 

Figure 7.4: Closed-loop responses as a result of a unit step change on )(2 t for 

the different types of controllers. 
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Figures 7.3 and 7.4 show that following a disturbance on each of the two outputs, the 

disturbance suppression of the system with the Inverse Nyquist Array Controller is 

around 50% and can be further improved by increasing the values of the forward 

gains. For the system with the Least Effort Controller, the disturbance suppression 

capability depends on the value of the outer loop feedback gain, f . Increasing the 

outer loop feedback gain, f , increases the disturbance recovery rates. 

For The system with the Optimal Controller, disturbance suppression is very weak 

and is in the range of 25% only. 

 

7.5 Energy Consumed By The Controller 
 

The energy consumed by the controller, following the imposition of random 

disturbances on the both outputs for a period of min,10  could be computed according 

to Whally, R. and Ebrahimi, M. by: 

                  dttututE

T

.)()()(
0

2

2

2

1                                                                      (7.1) 

Figure 7.5 shows the energy consumed by the Least Effort Controller, with 1.0f , 

and the other two types of controllers. 

 
Figure 7.5: Energy consumed by the different types of controllers. 
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This figure shows that the Least Effort Controller consumes the least control energy, 

followed by the Inverse Nyquist Array Controller. The energy consumed by the 

Optimal controller is the highest. 

 

7.6 Conclusions 
 

The following table summarizes the comparisons between the three types of 

controllers: 

 

         Controller      

                 Type 

       Feature 

Least Effort 

Controller 

Inverse Nyquist Array 

Controller 

Optimal Controller 

Difficulties of 

Application and 

Practicality 

Relatively easy 

to be designed 

and can be 

applied for 

complicated 

systems 

- The closed-loop 

transfer function has to 

be diagonally dominant. 

- checking of diagonal 

dominance is by 

Gershgorin bands which 

requires graphical tools. 

 - No systematic 

methods exist to find 

pre- or post- 

compensators that 

induces diagonal 

dominance. 

- No direct methods 

are existing for 

selection of the 

weighting matrices. 

They are selected in 

some arbitrary 

manner. 

- If non-measurable 

states exist, an 

observer to estimate 

these states is 

required. 

Steady State Error 

caused by a Unit 

Step Change On 

Each of The Two 

Inputs. 

Zero Large, and can be 

decreased by increasing 

the values of the forward 

gains. 

Zero 

Interaction of The 

First Input With The 

Second Output 

Around 10% No Around 10% 

Interaction of The Around 10% Less, around 3.5% only. Around 10% 
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         Controller      

                 Type 

       Feature 

Least Effort 

Controller 

Inverse Nyquist Array 

Controller 

Optimal Controller 

Second Input With 

The First Output 

Can be decreased further 

by increasing the values 

of the forward gains. 

Disturbance 

Suppression 

Capability 

 

The disturbance 

suppression 

capability 

depends on the 

value of the outer 

loop feedback 

gain. Increasing 

the outer loop 

feedback gain 

improves the 

disturbance 

suppression. 

Around 50% of the 

disturbance is 

suppressed. Can be 

improved further by 

increasing the values of 

the forward gains. 

Only, around 25% of 

the disturbance is 

suppressed. 

 Energy Consumed 

By The Controller 

 

The least Moderate The highest 

 

 

It can be concluded that: 

- The Least Effort Controller satisfies all the research objectives. The response of 

the closed-loop system with this controller is stable and will behaved.   

 

- The performance of the Least Effort Controller, in some aspects, is better than that 

for the other two types of controllers. 

 
  

- The Least Effort Controller is the simplest one with the least amount of the control 

energy consumed. 
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- The design method of the Least Effort Controller gives freedom to improve the 

performance of the multivariable system, as it has two loops; the inner loop 

improves the dynamic response of the system and the outer loop improves the 

disturbance recovery and reduces the output interaction. 

 

7.7 Recommendations  

 
Because of its advantages, it is recommended to: 

- Apply the Least Effort Controller for building drive systems using other types of 

electric motors, and compare the performance of these controllers with the 

existing ones. 

 

- Build MATLAB
®
 program(s) to automate the design of the Least Effort 

Controller for different plants. This will be of great benefit for complicated 

systems; having large number of inputs and outputs. 
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Appendix 

 
1) A Program for Studying the Open-Loop System of a Separately-Excited DC  

    Motor 
 

clear all 

clc 

disp(' A Program for Studying the Open-Loop System of a Separately-Excited DC 

Motor') 

disp('====================================================') 

disp('This program:') 

disp('   ') 

disp(' 1)Represents the Open-Loop System in State-Space and Transfer function 

Forms.') 

disp('   ') 

disp(' 2)Builds the Tranfer Function for Percent Changes') 

disp('   ') 

disp(' 3)Plots the output responses for step changes on each of the two inputs') 

disp('   ') 

disp(' 4)Displaying and Plotting System Poles') 

disp('   ') 

disp(' 5)Finds the Steady-State Output for Step Changes on the Two Inputs') 

disp('*******************************************************') 

disp('   ') 

disp('   ') 

disp('Press Enter To Continue') 

pause 

disp('   ') 

disp('   ') 

  

%% The values of the system parameter  

Rf=50; 

Lf=23.25; 

Ra=0.24; 
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k1=26.96; 

ka=16.33; 

kf=613.36; 

J=55.5; 

c=1200.24; 

format compact  

 %% Entering the inputs 

 % The value of the armature voltage 

 Va=input('Input the value of the armature supply voltage   '); 

 disp('   ') 

 % The value of the field voltage 

 Vf=input('Input the value of the field supply voltage   '); 

disp('   ') 

disp('   ') 

clc  

 %% State Space Representation of the linear model of th DC motor  

disp('System State Matrix is:') 

A=[-ka*k1/(J*Ra)-c/J kf/J;0 -Rf/Lf] 

disp('--------------------------------------------------') 

disp('System Input Matrix is:') 

B=[ka/(J*Ra) 0;0 1/Lf] 

disp('--------------------------------------------------') 

disp('System Output Matrix is:') 

C=[1 0;0 1] 

disp('--------------------------------------------------') 

disp('==================================================') 

D=zeros(2); 

%% Building the system using the state-space approach 

disp('Press Enter To Build The System Model Using The State-Space Approach')   

pause 

sys=ss(A,B,C,D) 

disp('--------------------------------------------------') 

disp('==================================================') 
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disp('Press Enter To Show The System Transfer Function')   

pause 

%% Finding the system transfer function 

tf(sys) 

%% The matrix form of the transfer function 

disp('--------------------------------------------------') 

disp('==================================================') 

disp('Press Enter To Show The System Transfer Function in a Matrix Form')   

disp(' ') 

pause 

syms s 

G=C*inv(s*eye(2)-A)*B; 

G=simple(G); 

disp('The Tranfer Function is:') 

pretty(G) 

%% Finding the transfer function for percentage changes 

disp('--------------------------------------------------') 

disp('==================================================') 

disp('Press Enter To Show The System Transfer Function For Percentage Changes')   

GN=inv([0.1096 0;0 0.08])*G*[4 0;0 4]; 

GN=simple(GN); 

pause 

disp('The Transfer Function For Percentage Changes is:') 

disp(' ') 

pretty(GN) 

  

%% Obtaining The output responses for unit step (1%) change on each input, in turn. 

disp('--------------------------------------------------') 

disp('==================================================') 

disp('Press Enter To Draw The Output Responses For unit step (1%) change On Each 

input, in turn') 

pause 

sys1=tf([44.74 96.35],[1 56.83 117.6]); 
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sys2=tf([0],[1 56.83 117.6]); 

sys3=tf([17.35],[1 56.83 117.6]); 

sys4=tf([2.15 117.52],[1 56.83 117.6]); 

  

t=0:0.001:3; 

y1=step(sys1,t); 

y2=step(sys2,t); 

y3=step(sys3,t); 

y4=step(sys4,t); 

subplot(2,1,1) 

plot(t,y1,'b',t,y2,'r') 

grid on 

legend('%change of motor angular speed','%change of motor field current') 

title('Responses For One Percent Step Change of Armature Voltage') 

axis([0,3,-1,1.2]); 

subplot(2,1,2) 

plot(t,y3,'b',t,y4,'r') 

grid on 

legend('%change of motor angular speed','%change of motor field current') 

title('Responses For One Percent Step Change of Field Voltage')  

axis([0,3,-1,1.2]); 

%% Obtaining System poles 

disp('--------------------------------------------------') 

disp('==================================================') 

disp('Press Enter To Find System Poles') 

pause 

[P]=pole(sys) 

disp('Press Enter To locate system poles') 

pause 

figure(2) 

pzmap(sys,'k') 

  

%% finding system steady state output for 1% changes of the two inputs 
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disp('--------------------------------------------------') 

disp('==================================================') 

disp('Press Enter To Find System Steady-State Outputs, in Percent Changes, For 1% 

Changes in The Two Inputs') 

pause 

Y=limit(s*GN*[1/s 1/s]',s,0); 

Y=double(Y); 

disp(' ') 

disp('Percentage Steady-State Motor Angular Speed,For 1% Changes in The Two 

Inputs, is:')    

W=Y(1) 

disp(' ') 

disp('Percentage Steady-State Motor Field Current,For 1% Changes in The Two 

Inputs, is:')    

If=Y(2) 

 

 

 

 

 

2) A Program For Designing A Least Effort Controller For The Separately- 

    Excited DC Motor System 

 

% A Program For Designing A Least Effort Controller For a 

% Separately-Excited DC Motor System.  

clear all 

clc 

disp(' Least Effort Contrller For The Separately-Excited DC Motor System') 

disp('*******************************************************') 

format compact 

%% The Open-Loop Transfer Function 

syms s 

G=1/(s^2+56.83*s+117.6)*[17.35 44.74*s+96.35;2.15*s+117.5 0]; 

disp('The open-loop transfer function of the system, G(s), is') 

pretty(G) 
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disp('-------------------------------------------------------') 

%% Expressing G(S) as G(S)=L(s).A(s)/d(s).R(s).Gamma(s) 

[A,D]=numden(G); 

d=D(1,1)/2000; 

A=d*G; 

L=eye(2); 

R=eye(2); 

Gamma=eye(2); 

% Displaying A(S),d(s),L(s) and R(s) 

disp('Press Enter to display A(s),d(s),L(s),R(s) and Gamma(s)') 

disp('-------------------------------------------------------') 

pause 

disp('A(s) is') 

pretty(A) 

disp('d(s) is') 

pretty(d) 

disp('L(s) is') 

L 

disp('R(s) is') 

R 

disp('Gamma(s) is') 

Gamma 

  

%% Forming the inner product <h.A(s).k> 

syms h1 h2 k1 k2 n real  

hak=[h1 h2]*A*[k1 k2]'; 

hak=subs(hak,k2,n*k1); 

hak=subs(hak,k1,1); 

[hak,how]=simple(hak); 

disp('===================================================') 

disp('Press Enter to display the inner product<h.A(s).k>') 

pause 

disp('The inner product is') 
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pretty(hak) 

%% Forming the matix Q 

% forming the first colum of Q 

hak1=subs(hak,h2,0); 

Q(1,1)=simple((subs(hak1,s,0)/h1)); 

Q(2,1)=simple((hak1-Q(1,1)*h1)/(s*h1)); 

% forming the second colum of Q 

hak1=subs(hak,h1,0); 

Q(1,2)=simple((subs(hak1,s,0)/h2)); 

Q(2,2)=simple((hak1-Q(1,2)*h2)/(s*h2)); 

disp('===================================================') 

disp('Press Enter to display the matrix Q') 

pause 

disp('The Q matrix is') 

Q 

%% Designing the inner loop 

sys=tf(1,sym2poly(d)); 

% Building the root locus 

disp('Press Enter to display the root locus of b(s)/d(s)=-1, with unity unmerator') 

pause 

figure(2) 

rlocus(sys) 

disp('-------------------------------------------------------') 

display('The poles are:') 

p=pole(sys) 

b=[1 2.5]'; 

% Finding the performance index, J 

J=(1+n^2)*b'*inv(Q)'*inv(Q)*b; 

J=simple(J); 

disp('-------------------------------------------------------') 

display('Press Enter to display the performance index,J') 

pause 

pretty(J) 
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disp('Press Enter to display the graph of J as a function of n') 

pause 

figure(3) 

ezplot(J) 

xlabel('n') 

ylabel('J') 

grid on 

% Finding the minimum of J 

% Finding the derivative of J 

J1=diff(J); 

[num,den]=numden(J1); 

J1=num/den; 

disp('================================================') 

display('Press Enter to display the derivative of the performance index,J') 

pause 

pretty(J1) 

% Finding the values of 'n' for which J is minimum 

syms x 

J1=subs(J1,n,x); 

n=solve(J1); 

n=double(n); 

disp('========================================================') 

display('Press Enter to display the the values of n for which J has an extremum') 

pause 

n=sort(n) 

% Findind the corresponding values of J 

J1=subs(J,n) 

% Finding the value of n at which J is the minimum 

disp('----------------------------------------------------------') 

disp('Press Enter to display the value of n at which J is minimum') 

for nn=1:length(n) 

    if isreal(n(nn))==0 

        n(nn)=inf; 



[111] 

 

    end 

end 

n=n(isfinite(n)); 

J=subs(J,n); 

pause 

n=n(find(J==min(J))) 

disp('----------------------------------------------------------') 

disp('Press Enter to display the cosseponding value of matrix Q') 

pause 

Q=subs(Q,n) 

% Finding the value of h(s) 

disp('----------------------------------------------------------') 

disp('Press Enter to display the value of h(s)') 

pause 

k1=1; 

hs=inv(Q)*b/k1 

% Finding the value of k 

disp('----------------------------------------------------------') 

disp('Press Enter to display the value of vector k') 

pause 

k2=n*k1; 

k=[k1 k2]' 

% Finding the steady-state value of the transfer function 

disp('----------------------------------------------------------') 

disp('Press Enter to display the steady-state value of the transfer function') 

pause 

G0=limit(G,s,0) 

% Entering Ss 

disp('----------------------------------------------------------') 

disp('Press Enter to display the value of Ss') 

pause 

Ss=[1 0.1;0.1 1] 

% Entering the value of f and determining the matrix F 
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disp('================================================') 

beep 

disp('Entering the value of f') 

disp('===============================================') 

f=input('Enter the value of f    ') 

pause 

F=[f 0;0 f] 

% Calculating the feed-forward gain of the outer loop 

disp('----------------------------------------------------------') 

disp('Press Enter to display the feed-forward gain matrix of the outer loop,p') 

pause 

P=(inv(G0)+k*hs')*Ss*inv((eye(2)-F*Ss)); 

P=double(P) 

% Calculating the feed-forward gain of the outer loop 

disp('----------------------------------------------------------') 

disp('Press Enter to display the feed-back gain matrix of the outer loop,H') 

pause 

H=(inv(P)*k*hs')+F; 

H=double(H) 

 

3) A Program For Building Gershgorin circles 

 

function ger 

% A program for building Gershgorin circles 

% Inputing the tranfer function elements 

g11=tf([44.74 96.35],[1 56.83 117.6]); 

g12=tf(17.35,[1 56.83 117.6]); 

g21=tf(0.1e-60,[1 56.83 117.6]);% The numerator of g21 is modefied from 0 t0 0.1e-

60 for calculation purposes only. 

g22=tf([2.15 117.6],[1 56.83 117.6]); 

% Bulding the transfer function 

G=[g11 g12;g21 g22]; 

% Inputing the pre-compensator 

K=[1.4043 0;0 1.0715]; 
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% Calculating the Q matrix 

Q=G*K; 

% Finding the inverse of Q matrix 

g=inv(Q); 

%--------------------------------------- 

% Plotting Gershgorin Circles 

[n,m]=size(g); 

w=logspace(-1,6,200); 

q=0:(pi/500):(2*pi); 

for i=1:n 

    for j=1:m 

        if i==j 

            figure(i) 

            nyquist(g(i,i)); 

            grid on 

            title(['Nyquist Diagram of G(',num2str(i),',',num2str(j),')']) 

            for iest=1:n 

                for jest=1:m 

                    if iest~=jest 

                        hold on 

                        C=center(g(i,j),w); 

                        R=radio(g(iest,jest),w); 

                        for k=1:length(C) 

                            plot((R(k)*cos(q))+real(C(k)),(R(k)*sin(q))+imag(C(k)),'g-') 

                        end 

                        hold off 

                    end 

                end 

            end 

        end 

    end 

axis([-0.1,1.5,-0.2 1.5]) 

grid on 
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end 

  

%------------ Subfunction -------------- 

function C = center(g,w) 

g=tf2sym(g); 

C=subs(g,complex(0,w)); 

function R = radio(g,w) 

g=tf2sym(g); 

R=abs(subs(g,complex(0,w))); 

%------------- END OF CODE -------------- 

  

  

function g = tf2sym(G) 

%TF2SYM - Numerical to symbolic conversion of the transfer function Transfer 

Function 

% G is the symbolic form of the transfer function 

% Syntax:  g = tf2sym(G) 

% g is the numerical form of the transfer function 

%  

% Example:  

%    g11=tf([44.74 96.35],[1 56.83 117.6]); 

%    g12=tf(17.35,[1 56.83 117.6]); 

%    g21=tf(0.1e-60,[1 56.83 117.6]); 

%    g22=tf([2.15 117.6],[1 56.83 117.6]); 

% The numerator of g21 is modefied from 0 to 0.1e-60 for calculation purposes only. 

%    G=[g11 g12; g21 g22]; 

%    g=tf2sym(G); 

%    pretty(g) 

% 

% Author: Oskar Vivero Osornio 

% email: oskar.vivero@gmail.com 

% Created: February 2006;  

% Last revision: 25-March-2006; 
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% May be distributed freely for non-commercial use,  

% but please leave the above info unchanged, for 

% credit and feedback purposes 

  

%------------- BEGIN CODE -------------- 

p=sym('p'); 

[n,m]=size(G); 

g=zeros(n,m); 

g=sym(g); 

for i=1:n 

    for j=1:m 

        [num,den]=tfdata(G(i,j),'v'); 

        l=length(den); 

        order=l; 

        for k=1:l 

            A(order,1)=p^(k-1); 

            order=order-1; 

        end 

        n=num*A; 

        d=den*A; 

        g(i,j)=n/d; 

        clear A; 

    end 

end 

% simplifying the answer 

g=simple(g); 
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4) MATLAB
®
/SIMULINK

®
 Models  

  

  

  

  

  

  

 

Figure A.1: A MATLAB
®
/Simulink

®
  model of the separately-excited DC 

motor, using the state equations. 

 

 

Figure A.2: A MATLAB
®
/Simulink

®
  model of the separately-excited DC 

motor, using the state-space representation. 
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Figure A.3: A MATLAB
®
/Simulink

®
  model of the separately-excited DC motor, 

using the transfer-function representation. 

 

 

Figure A.4: A MATLAB
®
/Simulink

®
  model of the separately-excited DC 

motor, using the transfer-function for precent changes. 

 

 



[118] 

 

 

Figure A.5: A MATLAB
®
/Simulink

®
  model of the separately-excited DC motor 

with a least-effort controller. 

 

 

 

Figure A.6: A MATLAB
®
/Simulink

®
  model of the separately-excited DC 

motor with a closed-loop controller using the inverse Nyquist 

array method. 
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Figure A.7: A MATLAB
®
/Simulink

®
  model of the closed-loop system with 

the optimal control approach. 

 

 

 

 


